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Abstract: We deduce, as a consequence of the arithmetic removal lemma, an almost-all
version of the Balog-Szemerédi-Gowers theorem. It states that for any K > 1 and € > 0,
there exists 8 = d(K,€) > 0 such that the following statement holds: if |A +1rA| < K|A]
for some I" > (1 — &8)|A|?, then there is a subset A’ C A with |A’| > (1 — ¢€)|A| such that
|A"+A'| <|A+rA|+€|A|l. We also discuss the quantitative bounds in this statement, in
particular showing that when A C Z, the dependence of d on € cannot be polynomial for any
fixed K > 2.

1 Introduction

Let G be an abelian group, and let A C G be a finite set. The sumset A 4 A is defined by
A+A={a+d": a,d €A}

A central subject in additive combinatorics is to study the structure of sets A with small sumset. It has
emerged that, in some applications, one only has information about a restricted version or a popular-sum
version of the complete sumset A +A. For I' C A x A, we define the restricted sumset

A+rA={a+d: (a,d)eT}.

The following natural question arises: if A +rA is small, can we still obtain structural information on
the set A? The Balog-Szemerédi-Gowers theorem (see [14, Theorem 2.29]) answers this question in the
affirmative, by producing a subset A’ C A with positive density (depending on the density of I"in A x A),
such that the complete sumset A’ + A’ is small.
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Theorem (Balog-Szemerédi-Gowers). Let G be an abelian group, and let A,B C G be two subsets. Let
[’ C A X B be a subset with |T'| > |A||B| /K’ for some K' > 1. If |A+r B| < K|A|'/?|B|'/? for some K > 1,
then there exist subsets A’ C A and B' C B such that
4] 18l
42K 4K’
This paper focuses on an “almost all” version (or 99% version) of the Balog-Szemerédi-Gowers
theorem. More precisely, if I" in the statement above is almost all (as opposed to just a positive proportion)

of A x B, can we take the sets A’, B in the conclusion to be almost all of A, B, and moreover can we ensure
that the sumset A’ + B’ is just a little larger than A + B? We show that the answer to both questions is yes.

AT > |B'| > and |A'+B'| <22 (K")*K3|A|'/?|B|'/?.

Theorem 1.1. Let G be an abelian group, and let A,B C G be two subsets with |A| = |B| = N. Let K > 1
and € € (0,1/2), and let 8 > 0 be sufficiently small in terms of K,€. Let ' C A X B be a subset with
IT| > (1 —8)N2. If|A+r B| < KN, then there exist subsets A' C A and B' C B such that

|A'| > (1—€)N, |B'|>(1—¢)N, and |A'+B'| <|A+rB|+¢€N.
Moreover, if G = I, with p fixed then we may take 6 = (e/K)O(1),

The proof of this theorem is not difficult. In fact, it is closely related to an equivalent formulation of
the arithmetic removal lemma; see Proposition 3.1 below. Consequently, the quantitative dependence of
0 on K, € that we are able to obtain in Theorem 1.1 is the same as that in the arithmetic removal lemma.

As an immediate consequence of Theorem 1.1, we derive the following structure theorem for sets of
integers whose restricted doubling is less than 3.

Corollary 1.2. Let A,B C Z be two subsets with |A| = |B| = N. Let € > 0, and let § > 0 be sufficiently
small in terms of €. Let T C A x B be a subset with |T'| > (1 — §)N>. If|A4rB| < (3 —&)N — 4, then
there exist arithmetic progressions P,Q with the same common difference and sizes at most |A +r B| —
(1—€)N+1, such that [ANP| > (1 —€)N and |BNQ| > (1 —¢€)N.

By comparison, [12, Theorem 1.1] shows that one can take § = c&* for some absolute constant
¢ > 0, under the more restrictive assumption that |A 4+ B| < (3"’7\6 - 8) N. Can one take 6 to depend
polynomially on € in Corollary 1.2? We believe that this should be possible.

Conjecture 1.3. In Corollary 1.2 one can take § = c€€ for some absolute constants c¢,C > 0.

In fact, one may even hope that § = ce? should work. It is easy to see that this would be best possible.
Indeed, let € > 0 be small. Take

A=B={n:1<n<(1-2¢e)N}U{n: 1.LIN <n<(1.1+2¢)N},

and form " by removing the (2eN)? pairs (n,n') with 1.IN < n,n’ < (1.1+2¢)N. Then |A+rA| =
2.1N — 1. On the other hand, if P is an arithmetic progression that shares all but at most €N elements
of A, then P must contain all but at most N elements of the interval from 1 to (1.1 4 2€)N, and so
|P| > |A+rA|— (1 —¢€)N + 1. Hence one must have § < O(€?) in Corollary 1.2.

We are unable to settle Conjecture 1.3, but we show that Theorem 1.1 does not hold with polynomial
bounds if G = Z, so that one cannot settle Conjecture 1.3 purely via Theorem 1.1.
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Theorem 1.4. In Theorem 1.1, if G = 7 then for any K > 2 and € > 0 with D := ¢ 'min(K —2,1)
sufficiently large, we must have

0 <exp (—c(logD)z(loglogD)*z)
for some absolute constant ¢ > 0.

Our construction to prove Theorem 1.4 is motivated by, but different from, Behrend’s construction of
a large set of integers without 3-term arithmetic progressions. Let A C [M] be the 3-AP-free Behrend
set, so that |A| > exp(—C(logM)"/>)M. Let ' C A x A be the set of all non-diagonal pairs (i.e. those
pairs (a,a’) with a # a'), so that § = |A|~!. Then A +r A misses all elements 2a (a € A) by the 3-AP-free
property, so that [A +rA| < |A+A| — |A|. If one removes €|A| elements from A to form a subset A’, one
might guess that A’ + A’ is smallest if the €|A| elements removed are from an initial interval {1,2,--- L}
for some L. In this case, A’ + A’ should more-or-less be (A+A)\ {1,2,---,2L}, and so we should have
|A"+A’| > |A+rA|+€|A] if we take L = 0.1]A| (say). Since € is the proportion of elements from A lying
in {1,2,---,L}, it should be of the form & ~ L/M ~ exp(—C(logM)'/?). Since § ~ 1/M, this should
show that we must have

5 <exp <—c (log 5)2)

in Theorem 1.4 when G = Z. We will make this argument rigorous by constructing A as a discretized
version of a thin annulus in R? (with large d), and we use a trick to make the doubling constant K as close
to 2 as possible. Our analysis leads to an extra logloge~! factor, which we do not know how to remove.

Notation

We use O(X) to denote a quantity which is bounded in magnitude by CX for some absolute constant
C > 0. We also write Y < X or X > Y for the estimate |Y| = O(X).

2 Preliminaries

2.1 Dense models for sets with small doubling

Recall thatamap w: G — G from one abelian group G to another is a Freiman isomorphism on A C G, if
it is injective on A and moreover

a)t+ay=a3+ay < n(a))+n(az) = n(az) + n(aa),

for all ay,az,a3,a4 € A. In that case we say that A is Freiman isomorphic to 7(A). Using Freiman’s
theorem, one can show that any set with small doubling is Freiman isomorphic to a dense set in a finite
abelian group (see [7, Proposition 1.2]).

Proposition 2.1. Let G be an abelian group, and let A C G be a finite subset. If |A +A| < K|A| for some
K > 1, then one can find a finite abelian group G and a subset A C G which is Freiman isomorphic to A,
with |A| > ¢(K)|G| for ¢(K) = (20K) 10K,
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In the case G = I, with p fixed, the following proposition [13, Lemma 5.6] says that one can take
¢(K) to be polynomial in K. This is a slight generalization of [7, Proposition 6.1], and can be proved
using Ruzsa’s embedding lemma [11] (see also [14, Lemma 5.26]).

Proposition 2.2. If G = I, then Proposition 2.1 holds with c¢(K) = p 'K and G = '} for some m.

2.2 Arithmetic removal lemmas

The key ingredient in proving Theorem 1.1 is the arithmetic removal lemma due to Green [6] (see
also [9]).

Theorem 2.3. Let G be a finite abelian group, and let A,B,C C G be three subsets. Let € > 0, and let
0 > 0 be sufficiently small in terms of €. If the number of solutions to a+b = ¢ witha € A,b € B,c € C
2, then one can remove at most €|G| elements from A, B,C to obtain A',B',C', respectively,
such that there is no solution to a+b=cwithac A',be B ,c €.

The best known bound in the removal lemma is of tower type; see [3]. However, in the finite field
model G = [, with p fixed, the removal lemma can be proved with polynomial bounds [4], building on
the recent breakthrough on cap-sets [1,2].

Theorem 2.4. If G = F), with p fixed, then Theorem 2.3 holds with 6 = (&/ 3)Cr, where C, is the constant
given by C, =1 -l—c;l and

plicﬂz lnf xf(pfl)/:%(l_'_x_f_xz_’__’_xpfl)
0<x<1
Theorem 2.3 is non-trivial only if A, B, C are dense in G, but using the dense model theorem (Proposi-
tion 2.1), we can deduce a “local” version of the arithmetic removal lemma that applies to sets with small
doubling.

Corollary 2.5. Let G be an abelian group, let X C G be a finite subset with |X + X| < K|X| for some
K > 1, and let A,B,C C X be three subsets. Let € > 0, and let & > 0 be sufficiently small in terms of K , €.
If the number of solutions to a+b = 2, then one can remove at
most €|X | elements from A, B,C to obtain A’,B',C', respectively, such that there is no solution to a+b = c
withacA',be B ,ceC.

Proof. We may assume that 0 € X (at the cost of replacing K by K + 1). By Proposition 2.1, there exists
a Freiman isomorphism ¢ : X — X, where X is a subset of a finite abelian group G with |X | > ¢(K)|G]|.
By an appropriate translation we may assume that ¢(0) = 0. Note that

a+b=c+0 ifand onlyif ¢(a)+¢(b) = ¢(c)+0

whenever a,b,c € X. Thus the number of solutions to ¢(a) + ¢(b) = ¢(c) witha € A,b € B,c € C'is at
most 8|X|? < 5]5|2. By Theorem 2.3 applied to the three sets ¢ (A), ¢ (B), 9 (C) C G and with € replaced
by £c(K), one can remove at most £¢(K)|G| < £|X| elements from A, B, C to obtain A’, B/, C', respectively,
such that there is no solution to ¢ (a) + ¢ (b) = ¢(c) witha € A’,;b € B',c € C'. This implies that there is
also no solution to a+b = c witha € A’,b € B',c € C’, as desired. O
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Corollary 2.6. If G = I, then Corollary 2.5 holds with & = (e/3pK*)Cr, where C,, is the constant in
Theorem 2.4.

Proof. Run the same argument as above, but using the polynomial bounds in Proposition 2.2 and
Theorem 2.4. 0

It may be of interest to note that Corollary 2.5 can be proved in “self-contained” manner, i.e., using
triangle removal in graphs but not Freiman’s theorem as follows. Apply the standard Kral-Serra-Vena
proof [9] but instead of each part of the graph having vertex set G, let it have vertex set X + X. Each
solution to a + b = ¢ turns into between |X| and K|X]| triangles in the graph from which one can complete
the proof as usual. However, this proof does not let one apply the recent advances on the arithmetic
triangle removal lemma in the finite field setting to derive Corollary 2.6.

2.3 A weak version of Theorem 1.1

Lemma 2.7. Let G be an abelian group, and let A,B C G be two subsets with |A| = |B| = N. Let
[ C A x B be a subset with || > (1 — 8)N? for some 0 < § < 1/4. If |A+rB| < KN for some K > 1,
then there exist subsets A" C A and B' C B such that

A > (1-8"2)N, |B|>(1—8"*)N, and |A'+B'| < K’N/(1—-28"7)2.
Proof. When A = B this is [5, Lemma 5.1]. For the general case, we consider “paths of length 3” in
addition to “paths of length 27, as in [14, Section 6.4]. Let A’ be the set of a € A such that (a,b) € T for
at least (1 — §'/2)N elements b € B, and similarly let B’ be the set of b € B such that (a,b) € T for at
least (1 — 8'/2)N elements a € A. Thus
A’ > (1—8'*)N and |B|> (1-8'/?)N.

It follows that for any a € A’, there are at least (1 —28'/?)N elements b € B such that (a,b) € I'. Thus
for any pair (a’,b') € A’ x B/, there are at least (1 —28'/2)N elements b € B such that (¢, b) € T, and

then for this choice of b there are at least (1 —28'/?)N values of a such that both (a,b) and (a,b') lie in
I. This leads to at least (1 —28'/2)2N? representations of the form

d+b =(d+b)—(a+b)+(at+b)
with (d',b), (a,b),(a,b’) € . It follows that

|A+rBJ? KN
(1-2812)2N2 = (1-281/2)2

A"+ B| <
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3 Proof of Theorem 1.1 and Corollary 1.2

The following proposition encapsulates the connection between Theorem 1.1 and the arithmetic removal
lemma.

Proposition 3.1. Let G be an abelian group, and let A,B C G be two subsets with |A| = |B| = N. Let
€,0 > 0. The following two statements are equivalent.

1. IfT C A x B is a subset with |T'| > (1 — 8)N?, then there exist subsets A' CA, B C Band S CA+B
with
|A'| > (1—¢€)N, |B|>(1—¢€)N, and |S| <eN,

such that A'+ B C (A4+rB)US.
2. Let C C G be a third subset. If the number of solutions to a+b = cwitha € A,b € B,c € C is at

most SN2, then one can remove at most €N elements from A, B, C to obtain A',B',C’, respectively,
such that there is no solutionto a+b=cwithac€A',be B ,c €.

Proof. To show that (2) implies (1), let C = (A+B)\ (A+rB). Ifa+b = c forsomea € A,b € B,c € C,
then (a,b) ¢ I by the definition of C, and thus the number of solutionstoa+b =cwitha € A,b € B,c€C
is at most SN2. Then (2) implies that one can remove at most €N elements from A, B, C to obtain A’, B, C’,
respectively, such that (A’ + B") N C' is empty. Thus

A > (1—€)N, |B|>(1—€)N, and |C\C'| < eN.

Since any element of A’ + B’ lies in either A+ B or C\ C', (1) follows by taking S = C\ C'.

To show that (1) implies (2), let I' = {(a,b) € Ax B: a+b ¢ C}. Every pair (a,b) ¢ I" leads to a
solution to a+b = c witha € A,b € B,c € C, so the number of pairs not in I" is at most SN2. Then (1)
implies that there exist subsets A’ C A, B’ C Band S C A+ B with

|A"| > (1—¢€)N, |B'| > (1—¢)N, and |S| < €N,

such that A’ + B’ C (A+rB)US. Since A +r B is disjoint from C by the definition of ', we may take
C' =C\ S so that A’ + B’ is disjoint from C’, as desired. O

Proof of Theorem 1.1. Suppose that 6 < 1/100 is small enough in terms of K, €. By Proposition 3.1, it
suffices to prove the second statement of Proposition 3.1 for any C C G. By Lemma 2.7, we can find
Ap C A and By C B such that

|Ag| > (1= 8"2)N, |Bo| > (1—8'*)N, and |Ao+ Boy| < 2K°N.
By shrinking A¢ or By, we may assume that |Ag| = |Bo|. Let Co = CN(Ag+By), and let X = AgUByUCp.
Then X + X is contained in the union of the iterated sumsets nAg + mBy with n,m € {0, 1,2}. Using the

Ruzsa triangle inequality, one can deduce that

X +X| < KOUN <« kKO0 x|
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(See [14, Corollary 2.24]). The number of solutions to a+ b = ¢ with a € Ag,b € By, c € Cy is at most
SN? < 28|X|?, so Corollary 2.5 (applied with € replaced by €K -o() /2) implies that one can remove at
most €N /2 elements from Ay, By, Cy to obtain A, B, C)), respectively, such that there is no solution to
a+b=cwitha € Aj,b € B, c € Cj,. If we take A’ = A, B' = B{;, and C' = C;U (C\ (y), then there are
still no solutions to a+b = c witha € A’,b € B',c € C’, and moreover

A\A'| < 1eN+8'>N <eN, |B\B'|<eN, and |C\C'| <eN,

as desired. The polynomial dependence of 6 on K, ¢ in the case when G = [}, follows by using
Corollary 2.6. 0

Proof of Corollary 1.2. By Theorem 1.1 (applied with € replaced by £/10), there exist subsets A’ C A
and B’ C B such that

A'|=|B|> (1-&)N and |A'+B| < |A+rB|+ 5N < (3—-%)N 4.

Hence |A’+ B'| < 3|A’| — 4. Apply (an asymmetric version of) Freiman’s 3k — 4 theorem (see [10]) to
conclude that there exist arithmetic progressions P, Q with the same common differences and sizes at
most

|A"+B'|—|A'|+1<|A+rB|—(1—€)N+1,

such that A’ C P and B’ C Q. This completes the proof. O

4 A continuous version of Behrend’s construction

Our construction for proving Theorem 1.4 is motivated by Behrend’s construction of a large 3-AP-free
set, and in particular motivated by the construction in [8], which starts with a continuous version and then
converts it into a discrete one via a probabilistic argument. We will also start with a continuous set, but to
convert it into a discrete set we adopt a more rudimentary approach.

Let d be a positive integer, and henceforth we will always assume that it is sufficiently large. Define

S={xeR":1-n<|x| <1},

where || - || denotes the L?-norm, d is a large positive integer, and 1 > 0 is small (say < d~'°). Denote
by V,; the volume of the unit ball in R?. Then the volume of S is

vol(8) = [1 — (1= n)“)Vy = dnVa(1+ O(dn)).
In particular dnV; < vol(S) < dnV,. We will use the crude estimates
d~?<v,<10?.a792,
Lemma 4.1. The volume of the set
T:={(x,y): x,x—y,x+yeS}
is < (2n)%/*~vol(S).
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Proof. If X,x —y,x+Yy is a 3-term progression in S, then from the identity
2 2
20x[17 +2[ly[I* = lIx+yl* + [x—y|*

one can deduce that
Iyl <1—(1-n)*><2n.

It follows that the volume of 7 is

< (20)2v,-vol(S) < (2n)Y*7vol(S)?.

Clearly S+ S is the ball with radius 2 centered at the origin, so that vol(S+S) = 2V,,.
Proposition 4.2. If S’ C S is a measurable subset with vol(S') > (1 — &) vol(S) for some € € (0,n/?),
then

d
vol(§'+8") > vol(S+S)— 0 <21(7) (TS] +82/3> V01(S)> :

In particular, if € = 25713 then
vol(S'+8') > vol(S+ ) — 15 vol(S).

Remark 4.3. Tt is natural to conjecture that vol(S’ + ') is smallest when S’ is the set {x € R?: 1 —n <
|x|| <1—en}, in which case §' + 5’ is the ball with radius 2 —2&n and so

vol(§') > (1 —0(g)) vol(S) and vol(S'+S') > vol(S+S) — 0O(2%& vol(S)).
Our result is weaker than this, but turns out to be sufficient for our purposes.
To prove Proposition 4.2, first we need some estimates on the volume of the sets Ry := SN (y —S).
Lemma 4.4. If ||y|| =2 —1¢ for some t € (0,2), then
vol(Ry) > V1274 n:“@=D/2 min(r,n).
Proof. By symmetry, we may assume thaty = (2 —1,0,---,0). First we show that Ry contains the set
Ry :={x=(x;,--,xg) €8: 1-5<x; <1-5+3, 1-1 <x|]| < 1}.

Clearly Ry is contained in S. To see that Ry is also contained in y — S, take any x € R, and use the
identity
2 2 2
Iy =x[|” = [IxI[* + lIy]|* = 2x-y.

Since
1-2<|x|<1, [ly=2-1 and 2—1)*<2x'y<(2-1)(2—1+1),

a little bit of algebra reveals that 1 — 1 < ||y —x|| < 1, as desired.
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Thus it suffices to estimate the volume of Ry, which can be done by an integral. For any x; € 0,1),
denote by I(x;) the volume of
(X eR ! x = (x,X) ERy}.

If x; <1-mn/2, then

B B (d-1)/2
Vil iGa) = (1=) D2 = [(1-3)* = o]

2\ (d—1)2
(11— 2)d-Dr2 1<171—T£>
— 2 )

I —xj

Since 1 — (1 —x)@1/2> x forany d >3 and x € [0, 1], we have
V() > n(1—x) @92 (1 —xy) @32
for x; < 1—mn/2. On the other hand, if x; > 1 —1/2, then
Vi) = (1= )05 (1402

So overall we always have
I(xl) > 7’](1 —xl)(d_l)/sz_l

for all x; € (0,1). Hence,

min(1—1/241/8,1)
VOI(R;) = /1 I(xl)dxl

—t/2
min(1-7/24n/8,1)
> T]Vdfl/ (l—xl)(dfl)/zdxl
1-1/2
/2 _
= an—l / )ng 1)/2dx1
max(t/2—1/8,0)

>V, 274 (t(‘”l)/z — max <(t - n/4)(d+l)/2,0>> .
If t > n /4, then

I

[d+1/2 _ (1— n/4)(d+1)/2 — a+1))2 [1 _ (1 _ %)(dﬂ)/Z} > m(d—l)/z

so that
vol(Ry') > Vo127 .n2 =12,

If r <1n/4, then
VOI(R;) > Vd_12_d . nt(d+l)/2.

The conclusion follows immediately. O
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Remark 4.5. Using Lemma 4.4 one can already get a weaker version of Proposition 4.2: If r > Cg?/(¢+1)
for some C large enough in terms of d and (say) € = 1>, then y is a popular sum in the sense that
vol(Ry) > €vol(S), and thus y must lie in §' + 5’ It follows that

vol(§'+5') > vol(S+8) — Oy <82/(d+1)) _

Unfortunately this will not be enough for our purposes because of the exponent 2/(d + 1) decaying like
1/d as d grows. To do better we will make use of the fact that most of the Ry’s are disjoint from each
other.

Lemma 4.6. Suppose that ||yi|| =2 —1t1 and ||y2|| =2 —12 for some t1,t; € (0,2). If Ry, \Ry, is nonempty,
then ||lyi —y2|| < 2(1)% +1,%).

Proof. Letx € Ry, NRy,. Then all of ||x||,||y1 —x||, ||y> —x]|| lie in [I — 1, 1]. From the identity
2% = y1? = 2|x]1* +2[[yr = xI|* — [ly1 %,

it follows that

12x—yi | < 2,72
Similarly we have
l2x—yal| < 21,
and the conclusion follows by the triangle inequality. O

Proof of Proposition 4.2. Fort € (0,2), let
Di={ye(S+S\(S+5):2—r<|y]| <2—-1/2}.

We now obtain an upper bound for vol(D;). Pick a maximal set of elements yi,---,y, € D; with
Ry,,---, Ry, mutually disjoint. Then for any y € D;, the set Ry must intersect with some Ry,, and thus by
Lemma 4.6, ||y —y;|| < 4¢'/2. It follows that

D, c |J Blyi4t'?),

1<i<im

where B(y;, 4t/ 2) denotes the ball with radius 4¢'/2 centered at y;. By considering the volumes of these
balls, we see that vol(D,) < m(16t)4/>V,. Thus it suffices to bound m. Since y; ¢ S’ +5', each x € Ry,
must satisfy either x ¢ S’ or y; —x ¢ §'. Hence either Ry, N (S\§') or (y; —Ry,) N (S\ ') has volume at
least vol(Ry,)/2. But y; — Ry, = Ry,, so

vol(Ry, N(S\S")) > 3 vol(Ry,).

Summing over all i, and using the disjointness of Ry, and Lemma 4.4, we get

vol(Ry, N (S\S")) > mV,_147. nt“=D/2 min(z, 1),

™

I
—_

€-dnVy > vol(S\ ) >
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which leads to the inequalities

Va € d €
< 44d . <5 ,
" Vot (@ D2min(n) 1@ 2min(r,n)
since V; < V;_1. Hence
82‘1/2
vol(D;) < 207V, ———.
min(#,1)

We also have the trivial bound

vol(D,) <vol({y e R¥: 2 —r < |ly|| <2 —1/2})
=[(2—1/2)! = (2—1)V; < d29V, -1,

which is better when # < £2/3. Combining these bounds we have

e’ n! n<r<2,
vol(D,) < 207V, - { er 12 g2 <1<,
t 0<r<e?’

By summing over ¢ dyadically we find that
r o d € 253 204 (€ 2/3

as desired. O

While this finishes the analysis of S, for technical reasons later on we will need to cut off the corners
of § and consider instead the set

S={x=(x1,--,x5) €S: max(|x1|,---,|x4]) <1 —d"1°}.
We summarize the required properties of S in the following proposition.

Proposition 4.7. Let d be large, and suppose that 1 > d~?. The set S defined above has the following
propetrties.

1. vol(S) =dnVy(1+0(dn)).
2. Theset T :={(x,y): X,x—y,x+y € S} has volume vol(T) < (21)4/>~ 1 vol(§)>.

3. IfS' C S is a measurable subset with vol(S') > (1 —3079n3)vol(S), then vol(S' 4 S') > vol(S +
S) — g5 vol(S).

Proof. Note that S\ § is contained in the union of 2d “caps” of height 1 = d~'°, and each cap has volume

1 1
/h(l—xz)(d_l)/sz_ldx<<2dVd_1/1 (1= g 21V h
1— _
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Since V;_,/V; < d'/?, we have
vol(S\ §) < 39V a2 « g=* yol(S).

Hence (1) is clear from the estimate on vol(S), and (2) follows from Lemma 4.1. To prove (3), note that
if S C §is a subset with vol(S’) > (1 —3079n3)vol(S), then

vol(§) > (1 -3079n% —0(d*)) vol(S) > (1 —25"9n3) vol(S),

where the second inequality follows from the assumption that 7 > d~¢. Hence by Proposition 4.2 we
have
vol(S'+5') > vol(S+ ) — 155 vol(S) > vol(S+8) — g5 vol(S).

5 Non-polynomial bounds: Proof of Theorem 1.4

Now we discretize S, the “trimmed” version of S. Let d be large as in the previous section, and we set
n =2~ (say) so that the assumption 7 > d~¢ in Proposition 4.7 is satisfied. Let M be sufficiently large
in terms of d,n. We construct a discrete version A C Z¢ of § as follows. For a € Z¢, denote by By(a)
the hypercube M~'a+M~"-[0,1]¢, which has one corner at M~ 'a and has side length M~'. Define

A:={acZ By(a) C §}.

In particular A lies inside the ball of radius M centered at 0, and moreover if a = (a;,--- ,a4) € A then
la;] < (1 —d~'9)M for each i.

Lemma 5.1. We have
(vol(§) — oMﬁw(l))M‘i <Al < V01(§)Md,

where 0y (1) denotes a quantity that tends to 0 as M — oo.

Proof. Since S contains | J,c4 By(a), we have |A| < vol(§)M¢. In the other direction, by standard measure
theory, U,ca By (@) is a better and better approximation to S as M — oo, in the sense that

vol <S_\ U BM(a)> = 0y (1).
acA

This implies the lower bound for |A|. O

Lemma 5.2. The number of 3-term arithmetic progressions in A is < 6d‘r]d/ =HA

Proof. Let T be defined as in Proposition 4.7(2). Any 3-term progression a,a—b,a+b in A leads to a
subset
Ta,b = {(M’l(a+u1),M’l(b+u2)): up,u; —u,u;+uy € [0, l]d} cT.
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Since the sets T, j, for different choices of (a,b) are disjoint from each other, and the volume of each T, p,
is (4M?)~4, we can conclude that the number of such (a,b) is at most

(4M%)vol(T) < 49242~ 142 (vol (§)M?)? < 69n/>~ 1A,
where we used Lemma 5.1 in the last inequality. U
Remark 5.3. If one wants to construct a 3-AP-free set A with this approach, then we would like
69n9/2=1|A[? to be smaller than |A|. Since |A| ~ M?, we would need to require that M is smaller
than n~!/2. This scale is certainly too coarse for the argument to work. However, the construction here is

sufficient for the purpose of requiring A to have few 3-APs rather than none, and it allows us to analyze
the sumset A + A (and also A’ + A’ with A" almost all of A) rigorously.

For any a,a’ € A, we have By(a+a’) C By/(a) + By(a’) C §+S. It follows that

M YA+A| < vol(S+5).
Now we study A’ +A’ when A’ is almost all of A.
Lemma 5.4. IfA' C A is a subset with |A'| > (1—100703)|A|, then |A'+A'| > |A+A| — g |A|.
Proof. LetInt(A’) be the set of a € A’ with a+ {0, 1}¢ C A’ (zeometrically think of Int(A’) as the interior
of A”). Since A \ Int(A’) is contained in A\ A’ — {0, 1}, we have

Tnt(A)] > (1 — 50740 ]

Now consider

S = U BM(a) cS.
acInt(A’)

We have
vol(S') = M~4|Int(A")| > (1-50"9n>)M~4|A| > (1 —-30"9n3)vol(S),

where the last inequality folows from Lemma 5.1. Hence by Proposition 4.7(3) we have
vol(§'+8') > vol(S+5) — g5 vol(S).
Now note that §' 4§’ is the union of the hypercubes
By(a)+By(b)= |J Bu(a+b-+u)
ue{0,1}¢

with a,b € Int(A"). But if a,b € Int(A’), then a+u € A’, and thus each a+b +u lies in A’ +A’. Hence
we have
S'+8 c U BM(S>7
SCA'+A’
and so
A" +A| > M vol(S'+8") > M vol(§+8) — gsM? vol(S)
> [A+A|— g5|Al
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Now we can construct our counterexample:

Proposition 5.5. For all sufficiently large d, one can find a subset A C Z with A = —A with the following
propetrties.

1. A lies in an interval of length d°@)|A|.
2. [A+A| <444

3. (A+A)\ (A+rA) contains the set 2-A := {2a: a € A} for some I’ C A x A with |I'| > (1 —
27d2/3)|A‘2'

4. |[A'+A'| > |A+A|—|A|/80 for any A’ C A with |A’| > (1 —800~%)|A|.
5. Forany a € A there are > d—°9|A| elements b € A with |a —b| < 0.1]A].

This already shows that, when G = Z in Theorem 1.1,  cannot depend polynomially on K /€. More
precisely, in Theorem 1.1 we must have

S <exp (—c (log g)z)
for some absolute constant ¢ > 0.

Proof. Letd be large, letn =279, and let M be sufficiently large in terms of d. Let A C 79 be the set
constructed above. Take A to be the image of A under the map 7: Z¢ — Z defined by

n(a) = aj +ay(10M) + - - +ag(10M)*!

for a= (ay, - ,ay). Since AcC [~M,M]?,  is a Freiman isomorphism from A to A, and thus for the
properties (2), (3), and (4), it suffices to prove them with A replaced by A.
For (1), A lies in an interval of length

Al A
10M)? < 104 | _ < 104 < d%d|a|.
( )< vol(S) < anvy — Al

For (2), we have

4Vol(S)

|A+A| <M vol(S+S) < M?-2%V, < (2M) an

<—|A|<<4d|A|
For (3), we define
IF'={(a,a) €A xA: (at+a)/2¢A},

so that A +rA misses the elements 2a with a € A. Moreover, by Lemma 5.2, the number of pairs
(a,a') €AxAnotinTis < 69n9/21|A]2 <2-4/3|A]2, as desned
For (4), it follows immediately from Lemma 5.4 since 100913 = 8007,
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It remains to establish (5). This is the place where we needed to trim the corners of S, so that for any
a=(aj, - ,ay) € A we have |a;| < (1 —d~'°)M for each i. Let

a=ay+a(10M)+---+a;(10M)* ! € A,

Define X C § by
X = {X: (xl,-" ,xd) cS: |Xd—M_lad’ < (30d>_d}7

and then let B
B:={m(a):acA, By(a)NX #0}.

We claim that all elements b € B are close to a in the sense that |a — b| < 0.1]A|. Indeed, if
b= by +by(10M) +---+ba(10M)*~" € B,
then |ay — by| < (30d)~?M + 1 by the definition of X, B, and hence
la—b| < (10M)"~" +|ag — by|(10M)"~" <2(10M)*~" + (3d)~M".
This is < 0.1]A| as claimed, because
IA] > vol(S)M? > dnV,M?¢ > dnd~*M? > (2d)~*M“.

Hence it suffices to show that |[B| > d~?(%)|A|. By the construction of B from X, we have |B| > M?vol(X),
and vol(X) can be estimated via an integral:

M~ ag+(30d) 4
V01(X)=/_ R e (TR e s L A PR
M~1a;—(30d)~4
M~ Lay+(30d) ¢
>NV / ‘ (1 —xz)(d_3)/2dx
M~'a;—(30d)~
> 1V, 1(30d)™ min (1—x3)d=3/2,

x: x—M~1a,|<(30d)~4

Since M~'ay € [~1+d =101 —d~'9], the minimum above is over x with x € [-1 +d~°,1 —d~°], and
hence vol(X) > d~9) . This proves that |B| > d~ %@ M? > d~9D)|A|, as desired. O

Finally, we modify the construction above to get counterexamples whose doubling constant can be
arbitrarily close to 2. The following result clearly implies Theorem 1.4, by taking d = clogD/loglog D
for some small absolute constant ¢ > 0.

Proposition 5.6. Let A € (0,1/2). Let d be large, and set § = 27413 £ = Ad~C4 for some large absolute
constant C > 0. There exists a subset A C Z with |A+A| < (2+A)|A|, and a subset " C A X A with
IT| > (1—8)|AJ%, such that

|A"+A'| > |A+TA| +€|A]
forall A" C Awith |A'| > (1—¢€)|A|.
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Proof. First let Ay C Z be the set A constructed in Proposition 5.5. By property (1), Ag C {—N,--- ,N}
for some N = d°(@) |Ao|, and we may assume that —N € Ag. We will take

A=A)U{N+1,--- LN},

where L = [10/A]. We have
A+A=(Ag+A49)U{l, - ,2LN}.

Since |A| > (L—1)N and |[A+A| < (2L+2)N + 1, our choice of L ensures that [A+A| < (2+1)]A].
LetT'p C Ap X Ap be the set from Proposition 5.5(3). To form I', we remove from A x A those pairs in
(Ao X A()) \Fo, so that (A X A) \F = (Ao X Ao) \F(). Then

T > AP =27 R4 > (1-277F) |aP = (1 - §)|A P,

Since all non-positive elements in A +A must come from Ag + Ap, we see that A +r A misses all the
elements 2a with a € Ag and a < 0, by the symmetry of Ay we have

A4rA| < [A+A| - 1Al

Now let A" C A be a subset with |[A’] > (1 —¢€)|A|. We can write A’ = AjUI, where Aj C Ag and
I C{N+1,---,LN} satisfy the inequalities

|AG| > |Ao| —€]A| > (1 — Ld®@g)|Ag| and |I] > (L—1)N —¢|A|.

We need to bound the number of sums in A + A that are missing in A’ + A’. They come in three types:

Up:=((A+A)\ (A" +A"))Nn{-2N,---,0},
Uy :=((A+A)\ (A" +A"))n{l,--- 2N},
Us = (A+A)\ (A" +A))N{2N +1,--- ,2LN}.

To bound |U;|, note that any sum in the range {—2N,---,0} must come from Ag + Ao, so that
U C (Ao +40) \ (A) +Ap). By choosing the absolute constant C in the definition € = Ad~? large
enough, we can ensure that Ld°@e < 8007, and thus by property (4) of Ap we have

U1 < [(Ao+40) \ (Ah +A5)| < g5A0l-

To bound |U3|, note that by property (5), there are at least d~ ) |Ag| > L~ 'd =@ |A| elements b € Ay
with b < —N+0.1]A|. Thus after removing at most €|A| elements from Ay, there still exists some b € Aj,
with b < —N+0.1|Ag|. Then b+1 C A}, + A, and b +1 covers all but at most 0.1|A¢| + €|A| elements of
{1,---,2N}. Hence

Us| < 0.1]Ag| + €]A| < 0.1|Ag| + Ld°De|Ag| < 0.15|A¢].
To bound |Us|, note that I +7 C {2N+1,--- ,2LN} and

[+1)>2]1| —1>2(L—1)N —2¢|A| — 1 > 2(L—1)N — 3¢/A|.
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Hence |Us| < 3€|A| < 0.05|A¢).
Putting this together, we have

[(A+A)\ (A" +A))| = U1 |+ |U2] + U3| < 0.4]A0],

and hence
|A'+A| > |[A+A|—0.4|Ag| > |A+TA| +0.1]Ag| > |A+TA| +€|A|.
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