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Abstract: We deduce, as a consequence of the arithmetic removal lemma, an almost-all

version of the Balog-Szemerédi-Gowers theorem. It states that for any K ≥ 1 and ε > 0,

there exists δ = δ (K,ε) > 0 such that the following statement holds: if |A+Γ A| ≤ K|A|
for some Γ ≥ (1− δ )|A|2, then there is a subset A′ ⊂ A with |A′| ≥ (1− ε)|A| such that

|A′+A′| ≤ |A+Γ A|+ ε|A|. We also discuss the quantitative bounds in this statement, in

particular showing that when A ⊂ Z, the dependence of δ on ε cannot be polynomial for any

fixed K > 2.

1 Introduction

Let G be an abelian group, and let A ⊂ G be a finite set. The sumset A+A is defined by

A+A = {a+a′ : a,a′ ∈ A}.

A central subject in additive combinatorics is to study the structure of sets A with small sumset. It has

emerged that, in some applications, one only has information about a restricted version or a popular-sum

version of the complete sumset A+A. For Γ ⊂ A×A, we define the restricted sumset

A+Γ A = {a+a′ : (a,a′) ∈ Γ}.

The following natural question arises: if A+Γ A is small, can we still obtain structural information on

the set A? The Balog-Szemerédi-Gowers theorem (see [14, Theorem 2.29]) answers this question in the

affirmative, by producing a subset A′ ⊂ A with positive density (depending on the density of Γ in A×A),

such that the complete sumset A′+A′ is small.
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Theorem (Balog-Szemerédi-Gowers). Let G be an abelian group, and let A,B ⊂ G be two subsets. Let

Γ ⊂ A×B be a subset with |Γ| ≥ |A||B|/K′ for some K′ ≥ 1. If |A+Γ B| ≤ K|A|1/2|B|1/2 for some K ≥ 1,

then there exist subsets A′ ⊂ A and B′ ⊂ B such that

|A′| ≥ |A|
4
√

2K′ , |B′| ≥ |B|
4K′ , and |A′+B′| ≤ 212(K′)4K3|A|1/2|B|1/2.

This paper focuses on an “almost all” version (or 99% version) of the Balog-Szemerédi-Gowers

theorem. More precisely, if Γ in the statement above is almost all (as opposed to just a positive proportion)

of A×B, can we take the sets A′,B′ in the conclusion to be almost all of A,B, and moreover can we ensure

that the sumset A′+B′ is just a little larger than A+Γ B? We show that the answer to both questions is yes.

Theorem 1.1. Let G be an abelian group, and let A,B ⊂ G be two subsets with |A|= |B|= N. Let K ≥ 1

and ε ∈ (0,1/2), and let δ > 0 be sufficiently small in terms of K,ε . Let Γ ⊂ A×B be a subset with

|Γ| ≥ (1−δ )N2. If |A+Γ B| ≤ KN, then there exist subsets A′ ⊂ A and B′ ⊂ B such that

|A′| ≥ (1− ε)N, |B′| ≥ (1− ε)N, and |A′+B′| ≤ |A+Γ B|+ εN.

Moreover, if G = F
n
p with p fixed then we may take δ = (ε/K)Op(1).

The proof of this theorem is not difficult. In fact, it is closely related to an equivalent formulation of

the arithmetic removal lemma; see Proposition 3.1 below. Consequently, the quantitative dependence of

δ on K,ε that we are able to obtain in Theorem 1.1 is the same as that in the arithmetic removal lemma.

As an immediate consequence of Theorem 1.1, we derive the following structure theorem for sets of

integers whose restricted doubling is less than 3.

Corollary 1.2. Let A,B ⊂ Z be two subsets with |A|= |B|= N. Let ε > 0, and let δ > 0 be sufficiently

small in terms of ε . Let Γ ⊂ A×B be a subset with |Γ| ≥ (1− δ )N2. If |A+Γ B| ≤ (3− ε)N −4, then

there exist arithmetic progressions P,Q with the same common difference and sizes at most |A+Γ B|−
(1− ε)N +1, such that |A∩P| ≥ (1− ε)N and |B∩Q| ≥ (1− ε)N.

By comparison, [12, Theorem 1.1] shows that one can take δ = cε2 for some absolute constant

c > 0, under the more restrictive assumption that |A+Γ B| ≤
(

3+
√

5
2

− ε
)

N. Can one take δ to depend

polynomially on ε in Corollary 1.2? We believe that this should be possible.

Conjecture 1.3. In Corollary 1.2 one can take δ = cεC for some absolute constants c,C > 0.

In fact, one may even hope that δ = cε2 should work. It is easy to see that this would be best possible.

Indeed, let ε > 0 be small. Take

A = B = {n : 1 ≤ n ≤ (1−2ε)N}∪{n : 1.1N ≤ n ≤ (1.1+2ε)N},

and form Γ by removing the (2εN)2 pairs (n,n′) with 1.1N ≤ n,n′ ≤ (1.1+ 2ε)N. Then |A+Γ A| =
2.1N −1. On the other hand, if P is an arithmetic progression that shares all but at most εN elements

of A, then P must contain all but at most εN elements of the interval from 1 to (1.1+ 2ε)N, and so

|P|> |A+Γ A|− (1− ε)N +1. Hence one must have δ ≤ O(ε2) in Corollary 1.2.

We are unable to settle Conjecture 1.3, but we show that Theorem 1.1 does not hold with polynomial

bounds if G = Z, so that one cannot settle Conjecture 1.3 purely via Theorem 1.1.
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Theorem 1.4. In Theorem 1.1, if G = Z then for any K > 2 and ε > 0 with D := ε−1 min(K − 2,1)
sufficiently large, we must have

δ ≤ exp
(
−c(logD)2(log logD)−2

)

for some absolute constant c > 0.

Our construction to prove Theorem 1.4 is motivated by, but different from, Behrend’s construction of

a large set of integers without 3-term arithmetic progressions. Let A ⊂ [M] be the 3-AP-free Behrend

set, so that |A| ≥ exp(−C(logM)1/2)M. Let Γ ⊂ A×A be the set of all non-diagonal pairs (i.e. those

pairs (a,a′) with a 6= a′), so that δ = |A|−1. Then A+Γ A misses all elements 2a (a ∈ A) by the 3-AP-free

property, so that |A+Γ A| ≤ |A+A|− |A|. If one removes ε|A| elements from A to form a subset A′, one

might guess that A′+A′ is smallest if the ε|A| elements removed are from an initial interval {1,2, · · · ,L}
for some L. In this case, A′+A′ should more-or-less be (A+A)\{1,2, · · · ,2L}, and so we should have

|A′+A′| ≥ |A+Γ A|+ε|A| if we take L = 0.1|A| (say). Since ε is the proportion of elements from A lying

in {1,2, · · · ,L}, it should be of the form ε ≈ L/M ≈ exp(−C(logM)1/2). Since δ ≈ 1/M, this should

show that we must have

δ ≤ exp
(
−c
(
log 1

ε

)2
)

in Theorem 1.4 when G = Z. We will make this argument rigorous by constructing A as a discretized

version of a thin annulus in R
d (with large d), and we use a trick to make the doubling constant K as close

to 2 as possible. Our analysis leads to an extra log logε−1 factor, which we do not know how to remove.

Notation

We use O(X) to denote a quantity which is bounded in magnitude by CX for some absolute constant

C > 0. We also write Y � X or X � Y for the estimate |Y |= O(X).

2 Preliminaries

2.1 Dense models for sets with small doubling

Recall that a map π : G → G̃ from one abelian group G to another is a Freiman isomorphism on A ⊂ G, if

it is injective on A and moreover

a1 +a2 = a3 +a4 ⇐⇒ π(a1)+π(a2) = π(a3)+π(a4),

for all a1,a2,a3,a4 ∈ A. In that case we say that A is Freiman isomorphic to π(A). Using Freiman’s

theorem, one can show that any set with small doubling is Freiman isomorphic to a dense set in a finite

abelian group (see [7, Proposition 1.2]).

Proposition 2.1. Let G be an abelian group, and let A ⊂ G be a finite subset. If |A+A| ≤ K|A| for some

K ≥ 1, then one can find a finite abelian group G̃ and a subset Ã ⊂ G̃ which is Freiman isomorphic to A,

with |Ã| ≥ c(K)|G̃| for c(K) = (20K)−10K2

.
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In the case G = F
n
p with p fixed, the following proposition [13, Lemma 5.6] says that one can take

c(K) to be polynomial in K. This is a slight generalization of [7, Proposition 6.1], and can be proved

using Ruzsa’s embedding lemma [11] (see also [14, Lemma 5.26]).

Proposition 2.2. If G = F
n
p then Proposition 2.1 holds with c(K) = p−1K−4 and G̃ = F

m
p for some m.

2.2 Arithmetic removal lemmas

The key ingredient in proving Theorem 1.1 is the arithmetic removal lemma due to Green [6] (see

also [9]).

Theorem 2.3. Let G be a finite abelian group, and let A,B,C ⊂ G be three subsets. Let ε > 0, and let

δ > 0 be sufficiently small in terms of ε . If the number of solutions to a+b = c with a ∈ A,b ∈ B,c ∈C

is at most δ |G|2, then one can remove at most ε|G| elements from A,B,C to obtain A′,B′,C′, respectively,

such that there is no solution to a+b = c with a ∈ A′,b ∈ B′,c ∈C′.

The best known bound in the removal lemma is of tower type; see [3]. However, in the finite field

model G = F
n
p with p fixed, the removal lemma can be proved with polynomial bounds [4], building on

the recent breakthrough on cap-sets [1, 2].

Theorem 2.4. If G = F
n
p with p fixed, then Theorem 2.3 holds with δ = (ε/3)Cp , where Cp is the constant

given by Cp = 1+ c−1
p and

p1−cp = inf
0<x<1

x−(p−1)/3(1+ x+ x2 + · · ·+ xp−1).

Theorem 2.3 is non-trivial only if A,B,C are dense in G, but using the dense model theorem (Proposi-

tion 2.1), we can deduce a “local” version of the arithmetic removal lemma that applies to sets with small

doubling.

Corollary 2.5. Let G be an abelian group, let X ⊂ G be a finite subset with |X +X | ≤ K|X | for some

K ≥ 1, and let A,B,C ⊂ X be three subsets. Let ε > 0, and let δ > 0 be sufficiently small in terms of K,ε .

If the number of solutions to a+b = c with a ∈ A,b ∈ B,c ∈C is at most δ |X |2, then one can remove at

most ε|X | elements from A,B,C to obtain A′,B′,C′, respectively, such that there is no solution to a+b = c

with a ∈ A′,b ∈ B′,c ∈C′.

Proof. We may assume that 0 ∈ X (at the cost of replacing K by K +1). By Proposition 2.1, there exists

a Freiman isomorphism φ : X → X̃ , where X̃ is a subset of a finite abelian group G̃ with |X̃ | ≥ c(K)|G̃|.
By an appropriate translation we may assume that φ(0) = 0. Note that

a+b = c+0 if and only if φ(a)+φ(b) = φ(c)+0

whenever a,b,c ∈ X . Thus the number of solutions to φ(a)+φ(b) = φ(c) with a ∈ A,b ∈ B,c ∈C is at

most δ |X̃ |2 ≤ δ |G̃|2. By Theorem 2.3 applied to the three sets φ(A),φ(B),φ(C)⊂ G̃ and with ε replaced

by εc(K), one can remove at most εc(K)|G̃| ≤ ε|X̃ | elements from A,B,C to obtain A′,B′,C′, respectively,

such that there is no solution to φ(a)+φ(b) = φ(c) with a ∈ A′,b ∈ B′,c ∈C′. This implies that there is

also no solution to a+b = c with a ∈ A′,b ∈ B′,c ∈C′, as desired.
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Corollary 2.6. If G = F
n
p then Corollary 2.5 holds with δ = (ε/3pK4)Cp , where Cp is the constant in

Theorem 2.4.

Proof. Run the same argument as above, but using the polynomial bounds in Proposition 2.2 and

Theorem 2.4.

It may be of interest to note that Corollary 2.5 can be proved in “self-contained” manner, i.e., using

triangle removal in graphs but not Freiman’s theorem as follows. Apply the standard Kral-Serra-Vena

proof [9] but instead of each part of the graph having vertex set G, let it have vertex set X +X . Each

solution to a+b = c turns into between |X | and K|X | triangles in the graph from which one can complete

the proof as usual. However, this proof does not let one apply the recent advances on the arithmetic

triangle removal lemma in the finite field setting to derive Corollary 2.6.

2.3 A weak version of Theorem 1.1

Lemma 2.7. Let G be an abelian group, and let A,B ⊂ G be two subsets with |A| = |B| = N. Let

Γ ⊂ A×B be a subset with |Γ| ≥ (1− δ )N2 for some 0 < δ < 1/4. If |A+Γ B| ≤ KN for some K ≥ 1,

then there exist subsets A′ ⊂ A and B′ ⊂ B such that

|A′| ≥ (1−δ 1/2)N, |B′| ≥ (1−δ 1/2)N, and |A′+B′| ≤ K3N/(1−2δ 1/2)2.

Proof. When A = B this is [5, Lemma 5.1]. For the general case, we consider “paths of length 3” in

addition to “paths of length 2”, as in [14, Section 6.4]. Let A′ be the set of a ∈ A such that (a,b) ∈ Γ for

at least (1− δ 1/2)N elements b ∈ B, and similarly let B′ be the set of b ∈ B such that (a,b) ∈ Γ for at

least (1−δ 1/2)N elements a ∈ A. Thus

|A′| ≥ (1−δ 1/2)N and |B′| ≥ (1−δ 1/2)N.

It follows that for any a ∈ A′, there are at least (1−2δ 1/2)N elements b ∈ B′ such that (a,b) ∈ Γ. Thus

for any pair (a′,b′) ∈ A′×B′, there are at least (1−2δ 1/2)N elements b ∈ B′ such that (a′,b) ∈ Γ, and

then for this choice of b there are at least (1−2δ 1/2)N values of a such that both (a,b) and (a,b′) lie in

Γ. This leads to at least (1−2δ 1/2)2N2 representations of the form

a′+b′ = (a′+b)− (a+b)+(a+b′)

with (a′,b),(a,b),(a,b′) ∈ Γ. It follows that

|A′+B′| ≤ |A+Γ B|3
(1−2δ 1/2)2N2

≤ K3N

(1−2δ 1/2)2
.
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3 Proof of Theorem 1.1 and Corollary 1.2

The following proposition encapsulates the connection between Theorem 1.1 and the arithmetic removal

lemma.

Proposition 3.1. Let G be an abelian group, and let A,B ⊂ G be two subsets with |A| = |B| = N. Let

ε,δ > 0. The following two statements are equivalent.

1. If Γ ⊂ A×B is a subset with |Γ| ≥ (1−δ )N2, then there exist subsets A′ ⊂ A, B′ ⊂ B and S ⊂ A+B

with

|A′| ≥ (1− ε)N, |B′| ≥ (1− ε)N, and |S| ≤ εN,

such that A′+B′ ⊂ (A+Γ B)∪S.

2. Let C ⊂ G be a third subset. If the number of solutions to a+b = c with a ∈ A,b ∈ B,c ∈C is at

most δN2, then one can remove at most εN elements from A,B,C to obtain A′,B′,C′, respectively,

such that there is no solution to a+b = c with a ∈ A′,b ∈ B′,c ∈C′.

Proof. To show that (2) implies (1), let C = (A+B)\ (A+Γ B). If a+b = c for some a ∈ A,b ∈ B,c ∈C,

then (a,b) /∈ Γ by the definition of C, and thus the number of solutions to a+b= c with a∈ A,b∈ B,c∈C

is at most δN2. Then (2) implies that one can remove at most εN elements from A,B,C to obtain A′,B′,C′,
respectively, such that (A′+B′)∩C′ is empty. Thus

|A′| ≥ (1− ε)N, |B′| ≥ (1− ε)N, and |C \C′| ≤ εN.

Since any element of A′+B′ lies in either A+Γ B or C \C′, (1) follows by taking S =C \C′.
To show that (1) implies (2), let Γ = {(a,b) ∈ A×B : a+ b /∈ C}. Every pair (a,b) /∈ Γ leads to a

solution to a+b = c with a ∈ A,b ∈ B,c ∈C, so the number of pairs not in Γ is at most δN2. Then (1)

implies that there exist subsets A′ ⊂ A, B′ ⊂ B and S ⊂ A+B with

|A′| ≥ (1− ε)N, |B′| ≥ (1− ε)N, and |S| ≤ εN,

such that A′+B′ ⊂ (A+Γ B)∪ S. Since A+Γ B is disjoint from C by the definition of Γ, we may take

C′ =C \S so that A′+B′ is disjoint from C′, as desired.

Proof of Theorem 1.1. Suppose that δ < 1/100 is small enough in terms of K,ε . By Proposition 3.1, it

suffices to prove the second statement of Proposition 3.1 for any C ⊂ G. By Lemma 2.7, we can find

A0 ⊂ A and B0 ⊂ B such that

|A0| ≥ (1−δ 1/2)N, |B0| ≥ (1−δ 1/2)N, and |A0 +B0| ≤ 2K3N.

By shrinking A0 or B0, we may assume that |A0|= |B0|. Let C0 =C∩ (A0+B0), and let X = A0∪B0∪C0.

Then X +X is contained in the union of the iterated sumsets nA0 +mB0 with n,m ∈ {0,1,2}. Using the

Ruzsa triangle inequality, one can deduce that

|X +X | � KO(1)N � KO(1)|X |.
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(See [14, Corollary 2.24]). The number of solutions to a+b = c with a ∈ A0,b ∈ B0,c ∈C0 is at most

δN2 ≤ 2δ |X |2, so Corollary 2.5 (applied with ε replaced by εK−O(1)/2) implies that one can remove at

most εN/2 elements from A0,B0,C0 to obtain A′
0,B

′
0,C

′
0, respectively, such that there is no solution to

a+b = c with a ∈ A′
0,b ∈ B′

0,c ∈C′
0. If we take A′ = A′

0, B′ = B′
0, and C′ =C′

0 ∪ (C \C0), then there are

still no solutions to a+b = c with a ∈ A′,b ∈ B′,c ∈C′, and moreover

|A\A′| ≤ 1
2
εN +δ 1/2N ≤ εN, |B\B′| ≤ εN, and |C \C′| ≤ εN,

as desired. The polynomial dependence of δ on K,ε in the case when G = F
n
p follows by using

Corollary 2.6.

Proof of Corollary 1.2. By Theorem 1.1 (applied with ε replaced by ε/10), there exist subsets A′ ⊂ A

and B′ ⊂ B such that

|A′|= |B′| ≥
(
1− ε

10

)
N and |A′+B′| ≤ |A+Γ B|+ ε

10
N ≤

(
3− 9ε

10

)
N −4.

Hence |A′+B′| ≤ 3|A′|−4. Apply (an asymmetric version of) Freiman’s 3k−4 theorem (see [10]) to

conclude that there exist arithmetic progressions P,Q with the same common differences and sizes at

most

|A′+B′|− |A′|+1 ≤ |A+Γ B|− (1− ε)N +1,

such that A′ ⊂ P and B′ ⊂ Q. This completes the proof.

4 A continuous version of Behrend’s construction

Our construction for proving Theorem 1.4 is motivated by Behrend’s construction of a large 3-AP-free

set, and in particular motivated by the construction in [8], which starts with a continuous version and then

converts it into a discrete one via a probabilistic argument. We will also start with a continuous set, but to

convert it into a discrete set we adopt a more rudimentary approach.

Let d be a positive integer, and henceforth we will always assume that it is sufficiently large. Define

S = {x ∈ R
d : 1−η ≤ ‖x‖ ≤ 1},

where ‖ · ‖ denotes the L2-norm, d is a large positive integer, and η > 0 is small (say η ≤ d−10). Denote

by Vd the volume of the unit ball in R
d . Then the volume of S is

vol(S) = [1− (1−η)d ]Vd = dηVd(1+O(dη)).

In particular dηVd � vol(S)� dηVd . We will use the crude estimates

d−d/2 ≤Vd ≤ 10d ·d−d/2.

Lemma 4.1. The volume of the set

T := {(x,y) : x,x−y,x+y ∈ S}

is � (2η)d/2−1 vol(S)2.
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Proof. If x,x−y,x+y is a 3-term progression in S, then from the identity

2‖x‖2 +2‖y‖2 = ‖x+y‖2 +‖x−y‖2

one can deduce that

‖y‖2 ≤ 1− (1−η)2 ≤ 2η .

It follows that the volume of T is

� (2η)d/2Vd ·vol(S)� (2η)d/2−1 vol(S)2.

Clearly S+S is the ball with radius 2 centered at the origin, so that vol(S+S) = 2dVd .

Proposition 4.2. If S′ ⊂ S is a measurable subset with vol(S′) ≥ (1− ε)vol(S) for some ε ∈ (0,η3/2),
then

vol(S′+S′)≥ vol(S+S)−O

(
20d

η

(
ε

η
+ ε2/3

)
vol(S)

)
.

In particular, if ε = 25−dη3 then

vol(S′+S′)≥ vol(S+S)− 1
100

vol(S).

Remark 4.3. It is natural to conjecture that vol(S′+S′) is smallest when S′ is the set {x ∈ R
d : 1−η ≤

‖x‖ ≤ 1− εη}, in which case S′+S′ is the ball with radius 2−2εη and so

vol(S′)≥ (1−O(ε))vol(S) and vol(S′+S′)≥ vol(S+S)−O(2dε vol(S)).

Our result is weaker than this, but turns out to be sufficient for our purposes.

To prove Proposition 4.2, first we need some estimates on the volume of the sets Ry := S∩ (y−S).

Lemma 4.4. If ‖y‖= 2− t for some t ∈ (0,2), then

vol(Ry)�Vd−12−d ·ηt(d−1)/2 min(t,η).

Proof. By symmetry, we may assume that y = (2− t,0, · · · ,0). First we show that Ry contains the set

R−
y :=

{
x = (x1, · · · ,xd) ∈ S : 1− t

2
≤ x1 ≤ 1− t

2
+ η

8
, 1− η

2
≤ ‖x‖ ≤ 1

}
.

Clearly R−
y is contained in S. To see that R−

y is also contained in y− S, take any x ∈ R−
y and use the

identity

‖y−x‖2 = ‖x‖2 +‖y‖2 −2x ·y.
Since

1− η
2
≤ ‖x‖ ≤ 1, ‖y‖= 2− t, and (2− t)2 ≤ 2x ·y ≤ (2− t)

(
2− t + η

4

)
,

a little bit of algebra reveals that 1−η ≤ ‖y−x‖ ≤ 1, as desired.
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ON AN ALMOST ALL VERSION OF THE BALOG-SZEMERÉDI-GOWERS THEOREM

Thus it suffices to estimate the volume of R−
y , which can be done by an integral. For any x1 ∈ (0,1),

denote by I(x1) the volume of

{x′ ∈ R
d−1 : x = (x1,x

′) ∈ R−
y }.

If x1 ≤ 1−η/2, then

V−1
d−1I(x1) = (1− x2

1)
(d−1)/2 −

[(
1− η

2

)2 − x2
1

](d−1)/2

= (1− x2
1)

(d−1)/2


1−

(
1− η − η2

4

1− x2
1

)(d−1)/2

 .

Since 1− (1− x)(d−1)/2 ≥ x for any d ≥ 3 and x ∈ [0,1], we have

V−1
d−1I(x1)� η(1− x2

1)
(d−3)/2 � η(1− x1)

(d−3)/2

for x1 ≤ 1−η/2. On the other hand, if x1 ≥ 1−η/2, then

V−1
d−1I(x1) = (1− x2

1)
(d−1)/2 � (1− x1)

(d−1)/2.

So overall we always have

I(x1)� η(1− x1)
(d−1)/2Vd−1

for all x1 ∈ (0,1). Hence,

vol(R−
y ) =

∫ min(1−t/2+η/8,1)

1−t/2
I(x1)dx1

� ηVd−1

∫ min(1−t/2+η/8,1)

1−t/2
(1− x1)

(d−1)/2dx1

= ηVd−1

∫ t/2

max(t/2−η/8,0)
x
(d−1)/2

1 dx1

� ηVd−12−d
(

t(d+1)/2 −max
(
(t −η/4)(d+1)/2,0

))
.

If t ≥ η/4, then

t(d+1)/2 − (t −η/4)(d+1)/2 = t(d+1)/2
[
1−
(
1− η

4t

)(d+1)/2
]
� ηt(d−1)/2,

so that

vol(R−
y )�Vd−12−d ·η2t(d−1)/2.

If t ≤ η/4, then

vol(R−
y )�Vd−12−d ·ηt(d+1)/2.

The conclusion follows immediately.
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Remark 4.5. Using Lemma 4.4 one can already get a weaker version of Proposition 4.2: If t ≥Cε2/(d+1)

for some C large enough in terms of d and (say) ε = η3, then y is a popular sum in the sense that

vol(Ry)> ε vol(S), and thus y must lie in S′+S′. It follows that

vol(S′+S′)≥ vol(S+S)−Od

(
ε2/(d+1)

)
.

Unfortunately this will not be enough for our purposes because of the exponent 2/(d +1) decaying like

1/d as d grows. To do better we will make use of the fact that most of the Ry’s are disjoint from each

other.

Lemma 4.6. Suppose that ‖y1‖= 2−t1 and ‖y2‖= 2−t2 for some t1, t2 ∈ (0,2). If Ry1
∩Ry2

is nonempty,

then ‖y1 −y2‖< 2(t
1/2

1 + t
1/2

2 ).

Proof. Let x ∈ Ry1
∩Ry2

. Then all of ‖x‖,‖y1 −x‖,‖y2 −x‖ lie in [1−η ,1]. From the identity

‖2x−y1‖2 = 2‖x‖2 +2‖y1 −x‖2 −‖y1‖2,

it follows that

‖2x−y1‖< 2t
1/2

1 .

Similarly we have

‖2x−y2‖< 2t
1/2

2 ,

and the conclusion follows by the triangle inequality.

Proof of Proposition 4.2. For t ∈ (0,2), let

Dt := {y ∈ (S+S)\ (S′+S′) : 2− t ≤ ‖y‖ ≤ 2− t/2}.

We now obtain an upper bound for vol(Dt). Pick a maximal set of elements y1, · · · ,ym ∈ Dt with

Ry1
, · · · ,Rym

mutually disjoint. Then for any y ∈ Dt , the set Ry must intersect with some Ryi
, and thus by

Lemma 4.6, ‖y−yi‖ ≤ 4t1/2. It follows that

Dt ⊂
⋃

1≤i≤m

B(yi,4t1/2),

where B(yi,4t1/2) denotes the ball with radius 4t1/2 centered at yi. By considering the volumes of these

balls, we see that vol(Dt)≤ m(16t)d/2Vd . Thus it suffices to bound m. Since yi /∈ S′+S′, each x ∈ Ryi

must satisfy either x /∈ S′ or yi −x /∈ S′. Hence either Ryi
∩ (S\S′) or (yi −Ryi

)∩ (S\S′) has volume at

least vol(Ryi
)/2. But yi −Ryi

= Ryi
, so

vol(Ryi
∩ (S\S′))≥ 1

2
vol(Ryi

).

Summing over all i, and using the disjointness of Ryi
and Lemma 4.4, we get

ε ·dηVd � vol(S\S′)≥
m

∑
i=1

vol(Ryi
∩ (S\S′))� mVd−14−d ·ηt(d−1)/2 min(t,η),
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which leads to the inequalities

m � 4dd
Vd

Vd−1

· ε

t(d−1)/2 min(t,η)
� 5d ε

t(d−1)/2 min(t,η)
,

since Vd �Vd−1. Hence

vol(Dt)� 20dVd

εt1/2

min(t,η)
.

We also have the trivial bound

vol(Dt)≤ vol({y ∈ R
d : 2− t ≤ ‖y‖ ≤ 2− t/2})

= [(2− t/2)d − (2− t)d ]Vd � d2dVd · t,

which is better when t ≤ ε2/3. Combining these bounds we have

vol(Dt)� 20dVd ·





εt1/2η−1 η ≤ t < 2,

εt−1/2 ε2/3 ≤ t ≤ η ,

t 0 < t ≤ ε2/3.

By summing over t dyadically we find that

vol((S+S)\ (S′+S′))� 20dVd

(
ε

η
+ ε2/3

)
� 20d

η

(
ε

η
+ ε2/3

)
vol(S),

as desired.

While this finishes the analysis of S, for technical reasons later on we will need to cut off the corners

of S and consider instead the set

S̄ = {x = (x1, · · · ,xd) ∈ S : max(|x1|, · · · , |xd |)≤ 1−d−10}.

We summarize the required properties of S̄ in the following proposition.

Proposition 4.7. Let d be large, and suppose that η ≥ d−d . The set S̄ defined above has the following

properties.

1. vol(S̄) = dηVd(1+O(dη)).

2. The set T̄ := {(x,y) : x,x−y,x+y ∈ S̄} has volume vol(T̄ )� (2η)d/2−1 vol(S̄)2.

3. If S′ ⊂ S̄ is a measurable subset with vol(S′) ≥ (1− 30−dη3)vol(S̄), then vol(S′+ S′) ≥ vol(S̄+
S̄)− 1

90
vol(S̄).

Proof. Note that S\ S̄ is contained in the union of 2d “caps” of height h = d−10, and each cap has volume

∫ 1

1−h
(1− x2)(d−1)/2Vd−1dx � 2dVd−1

∫ 1

1−h
(1− x)(d−1)/2dx � 2dVd−1h(d+1)/2.
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Since Vd−1/Vd � d1/2, we have

vol(S\ S̄)� 3dVdh(d+1)/2 � d−4d vol(S).

Hence (1) is clear from the estimate on vol(S), and (2) follows from Lemma 4.1. To prove (3), note that

if S′ ⊂ S̄ is a subset with vol(S′)≥ (1−30−dη3)vol(S̄), then

vol(S′)≥ (1−30−dη3 −O(d−4d))vol(S)≥ (1−25−dη3)vol(S),

where the second inequality follows from the assumption that η ≥ d−d . Hence by Proposition 4.2 we

have

vol(S′+S′)≥ vol(S+S)− 1
100

vol(S)≥ vol(S̄+ S̄)− 1
90

vol(S̄).

5 Non-polynomial bounds: Proof of Theorem 1.4

Now we discretize S̄, the “trimmed” version of S. Let d be large as in the previous section, and we set

η = 2−d (say) so that the assumption η ≥ d−d in Proposition 4.7 is satisfied. Let M be sufficiently large

in terms of d,η . We construct a discrete version A ⊂ Z
d of S̄ as follows. For a ∈ Z

d , denote by BM(a)
the hypercube M−1a+M−1 · [0,1]d , which has one corner at M−1a and has side length M−1. Define

A := {a ∈ Z
d : BM(a)⊂ S̄}.

In particular A lies inside the ball of radius M centered at 0, and moreover if a = (a1, · · · ,ad) ∈ A then

|ai| ≤ (1−d−10)M for each i.

Lemma 5.1. We have

(vol(S̄)−oM→∞(1))M
d ≤ |A| ≤ vol(S̄)Md ,

where oM→∞(1) denotes a quantity that tends to 0 as M → ∞.

Proof. Since S̄ contains
⋃

a∈A BM(a), we have |A| ≤ vol(S̄)Md . In the other direction, by standard measure

theory,
⋃

a∈A BM(a) is a better and better approximation to S̄ as M → ∞, in the sense that

vol

(
S̄\

⋃

a∈A

BM(a)

)
= oM→∞(1).

This implies the lower bound for |A|.

Lemma 5.2. The number of 3-term arithmetic progressions in A is � 6dηd/2−1|A|2.

Proof. Let T̄ be defined as in Proposition 4.7(2). Any 3-term progression a,a−b,a+b in A leads to a

subset

Ta,b = {(M−1(a+u1),M
−1(b+u2)) : u1,u1 −u2,u1 +u2 ∈ [0,1]d} ⊂ T̄ .
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Since the sets Ta,b for different choices of (a,b) are disjoint from each other, and the volume of each Ta,b

is (4M2)−d , we can conclude that the number of such (a,b) is at most

(4M2)d vol(T̄ )� 4d2d/2−1ηd/2−1(vol(S̄)Md)2 � 6dηd/2−1|A|2,

where we used Lemma 5.1 in the last inequality.

Remark 5.3. If one wants to construct a 3-AP-free set A with this approach, then we would like

6dηd/2−1|A|2 to be smaller than |A|. Since |A| ≈ Md , we would need to require that M is smaller

than η−1/2. This scale is certainly too coarse for the argument to work. However, the construction here is

sufficient for the purpose of requiring A to have few 3-APs rather than none, and it allows us to analyze

the sumset A+A (and also A′+A′ with A′ almost all of A) rigorously.

For any a,a′ ∈ A, we have BM(a+a′)⊂ BM(a)+BM(a′)⊂ S̄+ S̄. It follows that

M−d |A+A| ≤ vol(S̄+ S̄).

Now we study A′+A′ when A′ is almost all of A.

Lemma 5.4. If A′ ⊂ A is a subset with |A′| ≥ (1−100−dη3)|A|, then |A′+A′| ≥ |A+A|− 1
80
|A|.

Proof. Let Int(A′) be the set of a ∈ A′ with a+{0,1}d ⊂ A′ (geometrically think of Int(A′) as the interior

of A′). Since A\ Int(A′) is contained in A\A′−{0,1}d , we have

| Int(A′)| ≥ (1−50−dη3)|A|.

Now consider

S′ :=
⋃

a∈Int(A′)

BM(a)⊂ S̄.

We have

vol(S′) = M−d | Int(A′)| ≥ (1−50−dη3)M−d |A| ≥ (1−30−dη3)vol(S̄),

where the last inequality folows from Lemma 5.1. Hence by Proposition 4.7(3) we have

vol(S′+S′)≥ vol(S̄+ S̄)− 1
90

vol(S̄).

Now note that S′+S′ is the union of the hypercubes

BM(a)+BM(b) =
⋃

u∈{0,1}d

BM(a+b+u)

with a,b ∈ Int(A′). But if a,b ∈ Int(A′), then a+u ∈ A′, and thus each a+b+u lies in A′+A′. Hence

we have

S′+S′ ⊂
⋃

s∈A′+A′
BM(s),

and so

|A′+A′| ≥ Md vol(S′+S′)≥ Md vol(S̄+ S̄)− 1
90

Md vol(S̄)

≥ |A+A|− 1
80
|A|.
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Now we can construct our counterexample:

Proposition 5.5. For all sufficiently large d, one can find a subset A ⊂ Z with A =−A with the following

properties.

1. A lies in an interval of length dO(d)|A|.

2. |A+A| � 4d |A|.

3. (A+A) \ (A+Γ A) contains the set 2 ·A := {2a : a ∈ A} for some Γ ⊂ A×A with |Γ| ≥ (1−
2−d2/3)|A|2.

4. |A′+A′| ≥ |A+A|− |A|/80 for any A′ ⊂ A with |A′| ≥ (1−800−d)|A|.

5. For any a ∈ A there are ≥ d−O(d)|A| elements b ∈ A with |a−b| ≤ 0.1|A|.

This already shows that, when G = Z in Theorem 1.1, δ cannot depend polynomially on K/ε . More

precisely, in Theorem 1.1 we must have

δ ≤ exp
(
−c
(
log K

ε

)2
)

for some absolute constant c > 0.

Proof. Let d be large, let η = 2−d , and let M be sufficiently large in terms of d. Let Ã ⊂ Z
d be the set

constructed above. Take A to be the image of Ã under the map π : Zd → Z defined by

π(a) = a1 +a2(10M)+ · · ·+ad(10M)d−1

for a = (a1, · · · ,ad). Since Ã ⊂ [−M,M]d , π is a Freiman isomorphism from Ã to A, and thus for the

properties (2), (3), and (4), it suffices to prove them with A replaced by Ã.

For (1), A lies in an interval of length

(10M)d � 10d |A|
vol(S̄)

� 10d |A|
dηVd

≤ dO(d)|A|.

For (2), we have

|A+A| ≤ Md vol(S̄+ S̄)≤ Md ·2dVd � (2M)d vol(S)

dη
� 2d

dη
|A| � 4d |A|.

For (3), we define

Γ = {(a,a′) ∈ Ã× Ã : (a+a′)/2 /∈ Ã},

so that Ã+Γ Ã misses the elements 2a with a ∈ Ã. Moreover, by Lemma 5.2, the number of pairs

(a,a′) ∈ Ã× Ã not in Γ is � 6dηd/2−1|A|2 ≤ 2−d2/3|A|2, as desired.

For (4), it follows immediately from Lemma 5.4 since 100−dη3 = 800−d .
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It remains to establish (5). This is the place where we needed to trim the corners of S, so that for any

a = (a1, · · · ,ad) ∈ Ã we have |ai| ≤ (1−d−10)M for each i. Let

a = a1 +a2(10M)+ · · ·+ad(10M)d−1 ∈ A.

Define X ⊂ S̄ by

X := {x = (x1, · · · ,xd) ∈ S̄ : |xd −M−1ad | ≤ (30d)−d},
and then let

B := {π(a) : a ∈ Ã, BM(a)∩X 6= /0}.
We claim that all elements b ∈ B are close to a in the sense that |a−b| ≤ 0.1|A|. Indeed, if

b = b1 +b2(10M)+ · · ·+bd(10M)d−1 ∈ B,

then |ad −bd | ≤ (30d)−dM+1 by the definition of X ,B, and hence

|a−b| ≤ (10M)d−1 + |ad −bd |(10M)d−1 ≤ 2(10M)d−1 +(3d)−dMd .

This is ≤ 0.1|A| as claimed, because

|A| � vol(S̄)Md � dηVdMd ≥ dηd−d/2Md ≥ (2d)−dMd .

Hence it suffices to show that |B| ≥ d−O(d)|A|. By the construction of B from X , we have |B| ≥ Md vol(X),
and vol(X) can be estimated via an integral:

vol(X) =
∫ M−1ad+(30d)−d

M−1ad−(30d)−d

[
(1− x2)(d−1)/2 − ((1−η)2 − x2)(d−1)/2

]
Vd−1dx

� ηVd−1

∫ M−1ad+(30d)−d

M−1ad−(30d)−d
(1− x2)(d−3)/2dx

� ηVd−1(30d)−d min
x : |x−M−1ad |≤(30d)−d

(1− x2)(d−3)/2.

Since M−1ad ∈ [−1+d−10,1−d−10], the minimum above is over x with x ∈ [−1+d−9,1−d−9], and

hence vol(X)� d−O(d). This proves that |B| � d−O(d)Md ≥ d−O(d)|A|, as desired.

Finally, we modify the construction above to get counterexamples whose doubling constant can be

arbitrarily close to 2. The following result clearly implies Theorem 1.4, by taking d = c logD/ log logD

for some small absolute constant c > 0.

Proposition 5.6. Let λ ∈ (0,1/2). Let d be large, and set δ = 2−d2/3, ε = λd−Cd for some large absolute

constant C > 0. There exists a subset A ⊂ Z with |A+A| ≤ (2+λ )|A|, and a subset Γ ⊂ A×A with

|Γ| ≥ (1−δ )|A|2, such that

|A′+A′|> |A+Γ A|+ ε|A|
for all A′ ⊂ A with |A′| ≥ (1− ε)|A|.
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Proof. First let A0 ⊂ Z be the set A constructed in Proposition 5.5. By property (1), A0 ⊂ {−N, · · · ,N}
for some N = dO(d)|A0|, and we may assume that −N ∈ A0. We will take

A = A0 ∪{N +1, · · · ,LN},

where L = d10/λe. We have

A+A = (A0 +A0)∪{1, · · · ,2LN}.
Since |A| > (L− 1)N and |A+A| ≤ (2L+ 2)N + 1, our choice of L ensures that |A+A| ≤ (2+λ )|A|.
Let Γ0 ⊂ A0 ×A0 be the set from Proposition 5.5(3). To form Γ, we remove from A×A those pairs in

(A0 ×A0)\Γ0, so that (A×A)\Γ = (A0 ×A0)\Γ0. Then

|Γ| ≥ |A|2 −2−d2/3|A0|2 ≥
(

1−2−d2/3
)
|A|2 = (1−δ )|A|2.

Since all non-positive elements in A+A must come from A0 +A0, we see that A+Γ A misses all the

elements 2a with a ∈ A0 and a ≤ 0, by the symmetry of A0 we have

|A+Γ A| ≤ |A+A|− 1
2
|A0|.

Now let A′ ⊂ A be a subset with |A′| ≥ (1− ε)|A|. We can write A′ = A′
0 ∪ I, where A′

0 ⊂ A0 and

I ⊂ {N +1, · · · ,LN} satisfy the inequalities

|A′
0| ≥ |A0|− ε|A| ≥ (1−LdO(d)ε)|A0| and |I| ≥ (L−1)N − ε|A|.

We need to bound the number of sums in A+A that are missing in A′+A′. They come in three types:

U1 := ((A+A)\ (A′+A′))∩{−2N, · · · ,0},
U2 := ((A+A)\ (A′+A′))∩{1, · · · ,2N},
U3 := ((A+A)\ (A′+A′))∩{2N +1, · · · ,2LN}.

To bound |U1|, note that any sum in the range {−2N, · · · ,0} must come from A0 + A0, so that

U1 ⊂ (A0 +A0) \ (A′
0 +A′

0). By choosing the absolute constant C in the definition ε = λd−Cd large

enough, we can ensure that LdO(d)ε ≤ 800−d , and thus by property (4) of A0 we have

|U1| ≤ |(A0 +A0)\ (A′
0 +A′

0)| ≤ 1
80
|A0|.

To bound |U2|, note that by property (5), there are at least d−O(d)|A0| ≥ L−1d−O(d)|A| elements b ∈ A0

with b ≤−N+0.1|A0|. Thus after removing at most ε|A| elements from A0, there still exists some b ∈ A′
0

with b ≤−N +0.1|A0|. Then b+ I ⊂ A′
0 +A′

0, and b+ I covers all but at most 0.1|A0|+ ε|A| elements of

{1, · · · ,2N}. Hence

|U2| ≤ 0.1|A0|+ ε|A| ≤ 0.1|A0|+LdO(d)ε|A0| ≤ 0.15|A0|.

To bound |U3|, note that I + I ⊂ {2N +1, · · · ,2LN} and

|I + I| ≥ 2|I|−1 ≥ 2(L−1)N −2ε|A|−1 ≥ 2(L−1)N −3ε|A|.
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Hence |U3| ≤ 3ε|A| ≤ 0.05|A0|.
Putting this together, we have

|(A+A)\ (A′+A′)|= |U1|+ |U2|+ |U3|< 0.4|A0|,

and hence

|A′+A′| ≥ |A+A|−0.4|A0| ≥ |A+Γ A|+0.1|A0|> |A+Γ A|+ ε|A|.
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