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Abstract—Graph classification is an important problem in
many fields, from bioinformatics and neuroscience to computer
vision and social network analysis. That said, the task of compar-
ing graphs for the purpose of graph classification faces several
major challenges. In particular, an effective graph comparison
method must (1) expressively and inductively compare graphs;
(2) efficiently compare large graphs; and (3) enable the use of
fast machine learning models for graph classification.

To address such challenges, we propose Randomized Grid
Mapping (RGM), a fast-to-compute feature map that represents
a graph via the distribution of its node embeddings in feature
space. We justify RGM with close connections to kernel methods:
RGM provably approximates the Laplacian kernel mean map
and has the multiresolution properties of the pyramid match
kernel. We also show that RGM can be extended to incorporate
node labels using the Weisfeiler-Lehman framework. Extensive
experiments show that graph classification accuracy with RGM
feature maps is better than or competitive with many powerful
graph kernels, unsupervised graph feature mappings, and deep
neural networks. Moreover, comparing graphs based on their
node embeddings with RGM is up to an order of magnitude
faster than competitive baselines, while maintaining high classi-
fication accuracy.

I. INTRODUCTION

Graph classification has a wide range of applications from
bioinformatics to computer vision to the social sciences. The
problem can be solved with supervised machine learning given
a suitable means of graph comparison. A strong and practical
method for graph comparison must (P1) expressively and in-
ductively compare graphs; (P2) efficiently handle many graphs
with many non-aligned nodes; (P3) enable the downstream use
of fast machine learning models for graph classification.

The first property (P1) implies that an ideal method should
be flexible in characterizing graphs, and must handle unseen
graphs. In terms of flexibility, many methods are constrained
to compare topological graph properties via a small number
of hand-engineered substructures. For example, most popular
graph kernels are instances of the R-convolution framework,
which decomposes a graph into substructures such as shortest
paths, random walks, or graphlets, and compares graphs on
the basis of these substructures [46]. Similarly, some works
simply aggregate statistics (mean, standard deviation) of the
distributions of hand-engineered node or edge features [3].
Moreover, not all methods readily generalize to out-of-sample
nodes or graphs, often assuming that the graphs are defined on
the same sets of vertices [22]. Likewise, optimal assignment

Fig. 1: Overview of our framework. Given an input graph,
node representations are learned via an appropriate embedding
technique (§ II-B). Our proposed feature mapping RGM then
aggregates the graph’s node embeddings in vector space (§ III).

kernels [25] are computed by inducing a hierarchy over the
training and test data and are thus necessarily transductive.

Furthermore, to perform graph classification effectively on
large input graphs, it is necessary to compare graphs not
only expressively but also efficiently (P2). This means that
computing a graph feature representation or evaluating the
kernel function between pairs of graphs must be scalable,
ideally linear in the number of nodes across graphs. However,
many existing feature representations are quadratic in the
number of nodes [45], and R-convolution graph kernels can be
even slower. For instance, the random walk graph kernel can
take O(n3) time in the number of nodes across graphs [46].

While the domain-specific challenge to graph classification
relies mainly on defining a means of graph comparison,
the efficiency of the final graph classifier is also important
(P3). For instance, graph kernels rely on comparatively slow
kernel methods, for which specialized solvers take quadratic
time or more in the number of inputs [17]. This limits their
applicability to problems with large numbers of graphs. Mean-
while, deep neural networks often take many epochs to train
and require specialized hardware. Unsupervised graph feature
representations remain a practical, more scalable choice [44].

In this work, we propose Randomized Grid Mapping or
RGM, a feature map for graphs that enjoys all of the desiderata
mentioned above. RGM characterizes each graph by the
distribution of its node embeddings at multiple levels of
resolution in vector space, where node embeddings may
be obtained from any unsupervised approach that general-
izes across graphs. We justify RGM with novel theoretical
connections to existing implicit kernels. RGM is flexible
and capable of handling node labels within the powerful
Weisfeiler-Lehman label expansion framework [40], making
it highly expressive (P1). Moreover, RGM approximates an



TABLE I: Major symbols and definitions.

Symbol Meaning

Gi Graph Gi = (Vi, Ei) with nodes Vi and edges Ei

ni Number of nodes in graph Gi

d Node embedding dimensionality
Yi Node embedding matrix for graph Gi in Rni×d

yi:j Row-vector embedding in Rd of node j in graph Gi

δ,µ Vectors in Rd of grid cell widths and offsets, resp.
G[δ,µ] Random grid parametrized by cell width δ and offset µ

hi Histogram induced by grid G on Gi’s embeddings Yi

implicit kernel in a fast, randomized fashion, leading to graph
features that can be constructed in time linear in the number of
nodes in that graph (P2). Finally, unlike exact kernel methods,
RGM yields explicit features that can be used with linear
SVMs [17] for scalable classification with many graphs (P3).

The contributions of this work include:
• Feature mappings. We propose Randomized Grid Map-

ping (RGM) feature maps, which characterize graphs by
the distribution of their node embeddings at multiple lev-
els of resolution. We generalize RGM to the Weisfeiler-
Lehman label refinement scheme [40].

• Theoretical analysis. We justify RGM by proving that
the dot product of its histograms of node embeddings
approximate the Laplacian kernel mean map computed
on sets of node embeddings between pairs of graphs. We
also prove that we can extend our feature maps to more
powerful composite kernels.

• Extensive experiments. Our experiments demonstrate that
RGM achieves strong classification performance, effi-
ciency, and scalability compared to a wide variety of com-
petitive baselines including graph kernels, unsupervised
feature representations, and deep neural networks.

The rest of this paper is structured as follows. In § II we
give the preliminaries necessary to introduce RGM. In § III we
propose and theoretically analyze RGM. In § IV we present
an extensive range of experimental results. We discuss related
work in § V, and offer concluding takeaways in § VI.

II. PRELIMINARIES

We begin by outlining necessary background on embedding
and kernel techniques for graph comparison. For reference,
Table I gives our main symbols.

A. Problem definition and terminology

In graph classification, we are given a collection of training
and test graphs of different sizes, with or without node labels.
Each graph has a class that must be predicted. The i-th graph
(in either the training or test set) is denoted Gi = (Vi, Ei),
where Vi and Ei are respectively the nodes and edges of graph
Gi. We denote the number of nodes in Gi as ni ≡ |Vi|.

Using node embedding, the graph Gi may be represented
as a matrix Yi ∈ Rni×d of d-dimensional vector embeddings.
The vector embedding of node j in graph Gi is denoted yi:j ∈
Rd. Without loss of generality, we assume embeddings are
normalized to be in [0, 1]d. Our goal is to train a machine

learning hypothesis that can successfully predict the classes
of the test graphs, given these embeddings.

B. Embedding techniques

Our proposed feature mapping RGM characterizes the dis-
tribution of a graph’s node embeddings in latent feature space.
While RGM can utilize any existing method for node em-
bedding that inductively generalizes to multi-network settings,
here we focus on three in particular. The first two have been
previously used for graph classification [32], [53], and the third
extends a structural node feature descriptor with subquadratic
time complexity previously used for graph alignment [13]:

Eigenvector embeddings (EIG). Many graph similarity func-
tions take as embeddings the eigenvectors of the adjacency
matrix or the graph Laplacian, with node i represented by
the absolute values of the i-th components of the top d
eigenvectors [18], [32]. Eigenvectors capture global properties
of the graph [32], which may generalize across graphs.

Return probability features (RPF). This method describes each
node by a vector whose i-th entry represents the probability
that an i-step random walk starting at that node returns to
itself. This was shown to be an effective structural node feature
descriptor [53], albeit requiring a full eigendecomposition of
the adjacency matrix to compute exactly.

iNetMF. We extend the xNetMF [13] embedding technique,
which was originally used for multi-network alignment. At
a high level, xNetMF constructs a histogram per node that
captures the degree distribution in that node’s (weighted) k-
hop neighborhood. xNetMF efficiently computes embeddings
using these histograms by comparing each node to a small
sample of landmark nodes randomly chosen from all training
graphs, then constructing a low-rank implictit factorization of
a structural node similarity matrix leveraging the Nyström
method [6]. We make xNetMF inductive (i.e., iNetMF) by
reusing the same “landmark nodes” from the training set to
embed the test graphs, in effect embedding the test graphs into
the same subspace as the training graphs. This can be viewed
as a simplified version of latent network summarization [16]
using the fast Nyström decomposition.

C. Embedding kernel techniques

We briefly overview existing kernel methods that operate
on the node embeddings of pairs of graphs, accepting node
embedding matrices Y1 ∈ Rn1×d and Y2 ∈ Rn2×d for
graphs G1 and G2, respectively, as input. Embeddings may
be compared in two different ways:

Distance-based. One way to compare G1 and G2 is to com-
pute the (continuous) distances between pairs of their node
embedding vectors. While many such comparison methods
exist, such as the Earth Mover’s Distance (used in [32]), here
we focus on the Laplacian kernel mean map [41], which,



for embedding matrices Y1 and Y2 and hyperparameter γ
controlling the kernel’s resolution, is

kLKM(Y1,Y2; γ) =
1

n1n2

n1∑
i=1

n2∑
j=1

exp (−γ||y1:i − y2:j ||1) . (1)

Equation (1) corresponds to the average Laplacian kernel
similarity between all pairs of embeddings in graphs G1

and G2 and has O(n1n2d) complexity to compute for d-
dimensional node embeddings.

Grid-based. An alternative (discretized) approach is to com-
pute the embeddings’ spatial overlap on a grid or histogram.
Here we focus on the pyramid match or PM kernel [8],
which fits a set of increasingly finer resolution grids to the
d-dimensional unit hypercube. As used in graph classifica-
tion [32], the grid at each level ` ∈ 0, . . . , L has 2` cells
of equal width without offset from the origin. At each level
`, these grids induce histograms h

(`)
1 and h

(`)
2 capturing the

number of node embeddings from Y1 and Y2 that map into
each grid cell. The intersection of pairs of histograms at level `
across cells c is given as I(h(`)

1 ,h
(`)
2 ) =

∑
cmin{h(`)1,c, h

(`)
2,c}.

The PM kernel, which takes O((n1 + n2)dL) time to com-
pute, is a weighted sum of new intersections found at each
increasingly coarse grid:

kPM(Y1,Y2;L) =
L−1∑
`=0

1

2L−`

[
I
(
h

(`)
1 ,h

(`)
2

)
− I
(
h

(`+1)
1 ,h

(`+1)
2

)]
. (2)

III. RGM FEATURE MAPS

With the necessary background given, we now discuss
how we aggregate a collection of node embeddings into a
unified explicit feature map for a graph. We first propose our
histogram-based mapping RGM and prove its connection to
the Laplacian kernel mean map. We then generalize RGM to
a multiresolution feature map, and further extend it to incor-
porate node labels within the Weisfeiler-Lehman framework.

A. Randomized features of graphs

In this section we propose our feature mapping RGM, and
theoretically justify it by connecting it to the existing kernel
techniques discussed in § II-C.

Histograms of node embeddings. RGM builds on the intuition
of grid-based binning (§ II-C) for a fast-to-compute feature
mapping that can be used with linear SVMs for efficient graph
classification. Let G[δ,µ] be a randomized grid specified by
d-dimensional random vectors δ and µ, which respectively
specify the cell width and offset of the grid along each
dimension. Given graph Gi with node embedding matrix Yi,
with a hash function φ(·) mapping each node’s embedding to
a cell in G[δ,µ] we induce a histogram hi. The value of the
j-th element of hi is

hi,j =

ni∑
p=1

1

{
φ
(
d(yi:p − µ)/δe

)
= j

}
. (3)

We can use hi as a feature vector for graph Gi. Intuitively,
each cell in the histogram represents a region of d-dimensional

embedding space, so these features count the number of
embeddings that fall into each region of the space. In other
words, we describe Gi in terms of the distribution of its node
embeddings in vector space.

Probabilistic interpretation. Our randomized grid construction,
given a suitable choice of parameters δ and µ, gives RGM a
probabilistic kernel interpretation. Specifically, the dot product
of two graphs’ RGM histograms approximates the Laplacian
kernel mean map between the graphs. We first state a founda-
tional result about random features for general kernel methods:

Lemma 1 (Adapted from [35]). For vectors x1,x2 ∈ Rd, the
probability that x1 and x2 map to the same cell in random grid
G[δ,µ] with cell widths δi drawn from a Gamma distribution
with shape 2 and scale 1

γ , and offsets µi ∼ Uniform(0, δi)
sampled independently along each dimension i is equal to the
Laplacian kernel exp(−γ||x1 − x2||1).

Using this lemma, we connect the embedding histograms
of Equation (3) and the Laplacian kernel mean map:

Theorem 1. Let h1 and h2 be the normalized histograms
induced via RGM on graph node embedding matrices Y1 and
Y2 respectively, by a grid G[δ,µ] with random cell widths δi
drawn from a gamma distribution with shape 2 and scale 1

γ ,
and offsets µi ∼ Uniform(0, δi) sampled independently along
each dimension i. Then

E
[
〈h1,h2〉

]
=

1

n1n2

n1∑
i=1

n2∑
j=1

exp(−γ||y1:i − y2:j ||1),

where the right-hand side is equivalent to the Laplacian kernel
mean map (1) between embedding matrices Y1 and Y2.

Proof. For each node i ∈ V1, let fi be a binary indicator
vector with fic = 1{y1:i ∈ G[δ,µ][c]}; i.e., 1 if i’s embedding
falls into grid cell c. We define the indicator vectors for V2
similarly. Then we have that

〈h1,h2〉 =
1

n1n2

∑
c∈G

n1∑
i=1

n2∑
j=1

fic fjc =
1

n1n2

n1∑
i=1

n2∑
j=1

f>i fj ,

since the product of the numbers of nodes in G1 and G2 that
fall into the same cell c is the number of the corresponding
cross-graph node pairs. This can be determined by multiplying
the corresponding indicator vectors for all these pairs, since
the product will be 0 when the nodes do not fall into the same
cell. Recall that the vectors fi and fj depend on the parameter
γ governing the distribution from which the components of δ
and µ are sampled. Their dot product is 1 iff the embeddings
of node i in G1 and node j in G2 map to the same cell in G.
Thus, E[f>i fj ; γ] = exp(−γ||y1:i − y2:j ||1), and the theorem
follows from Lemma 1.

This result offers a theoretical connection between our
feature maps based on node embedding distributions and graph
kernels, namely the Laplacian kernel mean map. Indeed, we
see a new connection between distance-based and grid-based
embedding comparison techniques (§ II-C): with appropriate



grid construction, the latter can be used to approximate the
former, in linear time in the number of nodes in each graph. An
important advantage that our explicit feature maps have over
both kernels is that faster linear machine learning algorithms
may be used, which scale better to large numbers of graphs.

B. Multiresolution feature maps

Representing each graph using embedding histograms from
Equation (3) with grid construction as in Theorem 1 allows
us to construct a feature map that approximates the Laplacian
kernel mean map for a particular resolution given by a fixed γ.
A large value of γ drives the kernel similarity function closer
to zero, meaning only extremely similar nodes will contribute
meaningfully to the kernel mean map. Meanwhile, a small
value drives the kernel similarity function close to one, in
which case even rather dissimilar nodes may still measure a
relatively high similarity.

Composite kernels and composite feature maps. Any single
kernel or parametrization has strengths and drawbacks, and a
feature map that approximates that single kernel shares that
kernel’s limitations. A powerful and arguably more flexible
technique, then, is to create composite kernels from linear
combinations of single kernels. Defining αi as the contribution
of the i-th kernel ki, composite kernels have the form

K(Y1,Y2) =
M∑
i=1

αiki(Y1,Y2). (4)

Similarly, we can create composite feature maps with
similarly greater expressive power.Specifically, we show that
if the individual kernels comprising a composite kernel are
approximable by random features, we have a (random) feature
map for the corresponding composite kernel:

Lemma 2. Given kernels k1(Y1,Y2), . . . , kM (Y1,Y2) with
approximate feature maps, the composite kernel K =∑M
i=1 αiki(Y1,Y2) (i.e., Equation (4)) has a corresponding

approximate feature map.

Proof. Let ψi(·) be a function that, for embeddings Yi,
constructs features approximating the individual kernel ki:
ki(Y1,Y2) ≈ ψi(Y1)

>ψi(Y2). We define the feature map for
embedding Yi as hi = [

√
α1ψ1(Yi) || . . . ||

√
αMψM (Yi)],

where || denotes vector concatenation. Then

h>1 h2 =

M∑
i=1

αiψi(Y1)
>ψi(Y2)

≈
M∑
i=1

αiki(Y1,Y2) = K(Y1,Y2).

Multiresolution RGM features. With Lemma 2, we now have
the tools to develop our RGM features based on histograms
of node embeddings that overcome the limitations of any fixed
resolution by combining multiple levels of resolution. That is,
by concatenating node embedding histograms across L levels
of resolution, we achieve the effect of a composite Laplacian
kernel mean map with different values of γ.

Fig. 2: Multiresolution feature maps for graphs. We create his-
tograms by binning a graph’s node embeddings using grids with
randomly chosen cell widths and offsets along each dimension.
We use multiple grids parametrized differently in expectation
to produce histograms of coarser (left) and finer (right) levels of
resolution. The final graph features are a weighted concatenation
of these histograms.

At each level of resolution ` ∈ [0, 1, . . . , L], we construct
component histograms h

(`)
i from Yi using Equation (3), with

cell widths drawn from a gamma distribution with shape 2
and scale 1

2`+1 along with uniform offsets (recall that the
scale corresponds to the inverse of γ in the Laplacian kernel
mean map, by Theorem 1). The expected cell width along each
dimension for h(`)

i is 1
2`

. The earlier histograms will thus have
coarse cells that capture many matches, while later histograms
will have fine cells that only bin together embeddings very
close in vector space, as demonstrated in Figure 2.

As in [32], we use a weighing scheme to prioritize matches
found at more discriminative finer resolutions: a histogram
with expected cell width 1

2`
has weighing factor

√
1/2L−`.

The dot product of two component histograms with this
weighing factor will then be weighed by 1/2L−`. Putting it
all together, for a graph Gi with node embeddings Yi, our
RGM feature map for a set of node embeddings is

hi = [
√
1/2Lh

(0)
i ||

√
1/2L−1h

(1)
i || . . . || h

(`)
i ] (5)

This multiresolution design recalls the design of the pyra-
mid match kernel (§ II-C) while retaining the theoretical
connections to the Laplacian kernel mean map discussed in
the previous section. However, it should be noted that the
multiresolution RGM is not approximating the PM kernel, but
rather has a similar design that compares graphs at multiple
levels of resolution in vector space. Two key differences
between multiresolution RGM and PM are: (1) PM compares
embeddings via histogram intersection versus RGM’s dot
product, and (2) PM excludes nodes matched at finer levels
of granularity before comparing coarser levels of granularity.
Concerning the former, RGM’s dot product permits the use
of faster (linear) machine learning algorithms. Concerning the
latter, by including matches in all levels, RGM places further
weight on matches found in fine levels of granularity, which
are likely to be matched at coarser levels of granularity as
well, amplifying the effect that PM attempts to achieve.

Complexity analysis. Each level of RGM hashes ni nodes
per graph Gi, and each graph is represented by features of d



dimensions. Therefore, a single level of RGM is O(nid). With
L total levels of resolution, RGM’s complexity is O(nidL).

C. Handling node labels

Node labels may provide an additional source of informa-
tion beyond the graph topology alone. Without loss of gener-
ality, it suffices to consider discrete node labels, as continuous
attributes may be hashed into discrete labels [29]. We review
techniques that transform unlabeled graph kernels into labeled
ones and make simple labeled kernels more powerful. For each
technique, we show that using Lemma 2, RGM feature maps
can have equivalent capabilities.

Composite labeled kernels. Given a kernel between sets of
embeddings k(Y1,Y2), a corresponding composite labeled
kernel is

KB(Y1,Y2) =
∑
b∈B

k(Y
{b}
1 ,Y

{b}
2 ), (6)

where B is the set of unique node labels, Y
{b}
i consists

of the embeddings in Gi of nodes with label b, and k is the
(unlabeled) base kernel, such as the pyramid match kernel [32],
or our multiresolution weighted sum of Laplacian kernel mean
maps approximated by RGM. Intuitively, the idea is to use the
base kernel to only compare nodes with the same label.

We follow this intuition to design labeled features by
forming multiresolution histograms using Equation (5) for
embeddings of nodes with each label and concatenating them.
From Lemma 2, it follows that this labeled version of RGM
corresponds to the labeled kernel built on the (multiresolution)
Laplacian kernel mean map using Equation (6).

Corollary 1. Given graph Gi with embedding matrix Yi, the
feature map

hi = [h
{b1}
i || . . . || h{b|B|}i ] (7)

approximates the labeled Laplacian kernel mean map.

Each h
{b}
i refers to an RGM feature map constructed using

Equation (5) for nodes with label b only, with embeddings
Y
{b}
i . As each node is still mapped to only one cell in the

corresponding grid, the worst-case complexity of RGM is
unchanged. Thus, we can maintain linear-time feature con-
struction and training even with node labels using RGM.

RGM with Weisfeiler-Lehman framework. We can further
generalize the labeled feature maps from Equation (7) to the
Weisfeiler-Lehman (WL) framework [40], a state-of-the-art
graph kernel framework that over H iterations assigns each
node a new label by hashing its neighbors’ labels in the
previous iterations. Given a labeled graph kernel KB(Y1,Y2)
as in Equation (6), the corresponding WL kernel is

KWL(Y1,Y2;H) =
H∑
h=0

KBh
(Y1,Y2), (8)

where for H iterations, Bh is the Weisfeiler-Lehman labeling
at iteration h, and B0 is the set of original node labels. In the

TABLE II: Real data [19] used in our experiments. We give the
total number of nodes/edges across all graphs per dataset.

Name Nodes Edges Graphs Classes Node labels Domain

MUTAG 3 371 3 721 188 2 Y bioinf
PTC(-MR) 4 916 5 053 344 2 Y bioinf
NCI1 122 765 132 753 4 110 2 Y bioinf
IMDB (binary) 19773 96531 1000 2 N collab
IMDB (multi) 19 502 98 910 1 500 3 N collab
COLLAB 372 474 12 286 733 5000 3 N collab

above, we sum individual kernels that use the WL labelings
at each iteration. Thus, applying Lemma 2 and Corollary 1,
we design a version of RGM corresponding to the labeled
Laplacian kernel mean map enhanced with the WL framework:

Corollary 2. Given graph Gi with embedding matrix Yi, the
feature map hi = [h

{B0}
i || . . . || h{BH}

i ] is an approximate
feature map for the H-iteration Weisfeiler-Lehman Laplacian
kernel mean map, where Bh is the WL labeled at iteration h
and B0 is the original set of node labels.

Here, the component histograms h{Bh}
i that we concatenate

for each relabeling are constructed using Equation (7).

Complexity analysis. WL RGM is O(nidLH) for H label
expansions. Therefore, by designing linear feature maps to ap-
proximate WL graph kernels using node embeddings, we can
use the well-documented strengths of WL label expansion [40]
to achieve good performance faster than exact kernel methods.

IV. EXPERIMENTS

We now study RGM across a range of extensive experi-
ments. We focus on the following research questions:
Q1 How accurately can we classify graphs with RGM feature

maps?
Q2 How efficient and scalable is RGM relative to related

kernel methods with respect to the number and/or size of
the input graphs?

Q3 Can other node embedding or aggregation choices be
used in RGM, particularly in an inductive setting?

A. Experimental setup

We evaluate our methods on six benchmark graph classifi-
cation datasets from different domains commonly studied in
graph classification–bioinformatics and social collaboration–
all publicly available with detailed descriptions at [19]. Table II
presents aggregate information about each dataset.

Embedding methods. As discussed in § II-B, we use three
embedding methods with RGM feature maps:

1) EIG: Following [32], we take the top 6 eigenvectors of
the adjacency matrix to form the embeddings (if a graph
has size n < 6, we repeat the last features 6− n times).

2) RPF: To compute the return probability features, we use
the recommended d = 50 [53].

3) iNetMF: We set the maximum hop distance K = 2 and
discount factor δ = 0.1, following [13], with embedding
dimensionality d = 100, as per the literature.



For brevity, in our results we report RGM’s performance with
the most accurate embedding method for each dataset among
EIG, RPF, and iNetMF. In general, they perform comparably
across datasets.

Baselines. We compare RGM against several popular base-
lines from the graph kernel literature:

1) SP [5], or the shortest paths kernel;
2) GR [38], or the graphlets kernel. We follow the literature

and using graphlets of size 3 [32];
3) WL-ST [40], or the Weisfeiler-Lehman subtree kernel;
4) WL-OA [25], or the Weisfeiler-Lehman optimal assign-

ment kernel;
5) LWL-3 [28] kernel;
6) WL-PM [32], which computes the Weisfeiler-Lehman

pyramid match kernel on eigenvector embeddings;
7) RetGK [53], a graph kernel based on the return prob-

abilities of random walks as captured by RPF. We use
RetGKII, which uses approximate random features tech-
niques to avoid a quadratic-time comparison of graphs
using RPF and thus conceptually resembles our approach.

From the unsupervised feature mapping literature, we com-
pare to:

a) NetLSD [44], which achieved superior performance and
scalability over unsupervised feature representations such
as NetSimile [3] and FGSD [45]. We use both the heat
and the wave kernel to obtain graph representations, and
report the best results for each dataset.

Finally, following existing practice [53], we compile reported
numbers for deep neural networks for further comparison:

i) DCNN [2], or diffusion-convolutional neural networks;
ii) PSCN [31], or the PATCHY-SAN neural network;

iii) DCGNN [52], a neural architecture that performs end-to-
end graph classification.

Note that NetLSD, SP, and GR do not use node labels, while
the other baselines do. For datasets without node labels, we
give all nodes the same label to start [25]. We fix the number
of WL iterations for RGM and WL baselines to H = 2 [24]
and the number of levels in PM and RGM to 4 [32]. Other
parameters specific to particular baseline methods are set to
values recommended by their authors in the papers and/or
official implementations.

We used MATLAB public implementations of the SP, GR,
and WL-ST baselines [39]. We used the official implemen-
tations of NetLSD, LWL-3, and RetGK written in Python,
C++, and MATLAB respectively, as well as a MATLAB
implementation of WL-OA from the authors of the paper [25].
We implemented the PM kernel following [32] in Python,
along with RGM. Our code is available at https://github.com/
GemsLab/RGM. All experiments ran on an Intel(R) Xeon(R)
CPU E5-1650 at 3.50GHz with 256GB RAM.

B. How accurate is RGM?

Task. We perform 10-fold cross validation averaged over
five trials and report the average accuracy and standard de-
viation.We use a linear SVM to classify feature mappings

and a kernel SVM classifier for kernel matrices, all from
scikit-learn [33], limiting the solver to 104 iterations and
choosing the SVM parameter C by cross-validation from
{10−3, 10−2, . . . , 103}.

Results. We report graph classification accuracy over all base-
lines and RGM in Table III. RGM yields highly competitive
performance against existing graph kernels. It is the most
accurate method on two datasets: the most of any method,
tied only with WL-PM. The only dataset where WL-PM
outperforms RGM significantly is COLLAB, as it only ekes
ahead on PTC-MR. However, RGM outperforms WL-PM
significantly on both NCI1 and IMDB-M. Moreover, RGM
is never lower than fourth best out of all the baselines on each
dataset: a consistent performance (all other baselines besides
WL-ST and WL-PM finish in the bottom half at least once).

Compared to the recent feature representation NetLSD,
RGM is more accurate on all datasets under consideration.
One reason for this may be that NetLSD does not use node
labels. Even on datasets that do not have node labels (the three
collaboration datasets), the Weisfeiler-Lehman framework can
be used to generate meaningful label expansions that RGM
can capitalize on but NetLSD cannot.

Finally, compared to published results from recent and
widely used deep neural network methods, RGM performs
highly favorably. It is more accurate than all of them on almost
all datasets, in many cases (NCI, COLLAB) by a wide margin.
One note is that on the smallest datasets MUTAG and PTC, we
see extremely high variances especially for PSCN. Many deep
learning models for graph classification have been noted [52]
to overfit on smaller datasets in particular, which is one of the
practical difficulties of training them.

Observation 1. RGM is among the most accurate methods for
graph classification, compared to a variety of powerful recent
baselines. It is competitive with leading techniques from all
three major areas of graph classification literature: unsuper-
vised feature learning, kernels, and deep neural networks.

C. How efficient is RGM?

We now focus on the runtime of RGM, as this is a
significant practical benefit afforded by explicit feature maps
compared to many other methods such as kernels. Here we
focus on the pyramid match kernel, which is the most related
baseline both conceptually and in terms of results (Table III).

Task. We study the accuracy versus runtime taken to compare
embeddings using RGM and WL-PM on our six benchmark
datasets. We group the two smallest datasets (the bioinformat-
ics datasets MUTAG and PTC), the two medium-size datasets
(the two IMDB datasets), and the two largest datasets (the NCI
bioinformatics dataset and the COLLAB dataset) together so
that the plots include comparable magnitudes of runtime.

Results. In Figure 3, we see that not only does RGM lead to
highly accurate graph classification, its runtime is favorable
compared to implicit kernel methods that must compute and
manipulate a quadratic kernel matrix. The speedup afforded by

https://github.com/GemsLab/RGM
https://github.com/GemsLab/RGM


TABLE III: Accuracy of RGM versus graph kernels, feature learning algorithms, and deep neural networks. We see that RGM
is one of the most accurate methods on all datasets, compared to baselines from many different fields. (*: Results reported from
original papers. For DCNN, we report results, which did not include standard deviations, from the original paper [2] on datasets
used in that paper. We report the remaining results from [52]. >12hr means that computation was not finished within 12 hours.)

Method MUTAG PTC NCI1 IMDB-BINARY IMDB-MULTI COLLAB

DCNN* 67.0 55.3 62.6 49.1 ± 1.37 33.5 ± 1.42 52.1 ± 0.71
PSCN* 89.0 ± 4.37 62.3 ± 5.68 76.3 ± 1.68 71.0 ± 2.29 45.2 ± 2.84 72.6 ± 2.15
DGCNN* 85.8 ± 1.66 58.6 ± 2.47 74.4 ± 0.47 70.0 ± 0.86 47.8 ± 0.85 73.8 ± 0.49

NETLSD 82.9 ± 0.58 58.7 ± 1.06 62.6 ± 0.25 64.6 ± 0.39 45.9 ± 1.04 66.7 ± 0.11

GR 83.1 ± 0.77 56.7 ± 0.65 62.8 ± 0.08 55.1 ± 0.83 37.0 ± 1.99 60.4 ± 0.08
SP 88.2 ± 0.24 57.6 ± 0.49 66.2 ± 0.44 51.9 ± 1.31 35.4 ± 1.08 43.0 ± 3.27
WL-ST 86.3 ± 1.13 63.0 ± 1.54 82.2 ± 0.19 72.3 ± 0.35 47.7 ± 0.55 78.4 ± 0.15
LWL3 84.0 ± 1.14 58.8 ± 1.52 77.8 ± 2.12 72.3 ± 0.63 46.0 ± 1.22 >12hr
WL-OA 86.0 ± 0.82 62.2 ± 1.10 82.9 ± 0.23 73.3 ± 0.15 48.2 ± 1.04 80.6 ± 0.29
RETGK 86.3 ± 1.22 61.4 ± 0.87 80.7 ± 0.19 72.6 ± 0.83 45.5 ± 0.79 80.8 ± 0.32
WL-PM 88.4 ± 1.10 64.1 ± 0.52 82.6 ± 0.21 73.0 ± 0.48 49.1 ± 0.73 81.5 ± 0.35

RGM 87.8 ± 1.05 63.6 ± 1.53 83.7 ± 0.19 73.0 ± 1.04 51.5 ± 0.40 78.6 ± 0.13

(a) Small datasets: MUTAG & PTC (b) Mid-size datasets: IMDB-B & IMDB-M (c) Large datasets: NCI & COLLAB

Fig. 3: Upper left quadrant is best: Accuracy vs runtime for RGM and its closest competitor WL-PM. We denote datasets by
marker shape and methods by color. Across all sizes of datasets, RGM has comparable accuracy and considerably faster runtime.

RGM is apparent on all sizes of datasets, but is particularly
noticeable on large datasets. Meanwhile, accuracy is very
comparable, as also seen in Table III.

Observation 2. RGM achieves a favorable balance of accu-
racy and speed compared to exact kernel methods.

We further illustrate this point by constructing large datasets
and studying the scalability of the two methods as the number
or size of the graphs increases in a controlled manner.

Task. To evaluate the scalability of RGM compared to PM,
we measure both methods’ runtime for graph classification
based on comparing embeddings of increasingly large Erdős-
Rényi graphs with random binary labels. We use eigenvector
embeddings for RGM as well as PM and do not use WL label
expansion. For our first experiment, the datasets consist of 100
graphs of 100-100K nodes each. In the second experiment, the
datasets consist of 100-100K graphs of 100 nodes each.

Results. We plot the runtime averaged over five independent
trials in Figure 4. In Figure 4a, we see that both methods scale
approximately linearly with the number of nodes in the input
graphs, as their asymptotic complexities suggest. However, in
Figure 4b, the kernel-based classifier used by PM is much
slower than the linear SVM that can be used with RGM.

(a) Wrt number of nodes (b) Wrt number of graphs

Fig. 4: Scalability of RGM. Dotted linear and quadratic slopes
plotted for reference. RGM scales linearly with respect to both
the number and size of the input graphs. In contrast, the PM
kernel does not scale with the number of graphs.

Indeed, we cannot even compute the quadratic 100K by 100K
kernel matrix for PM within 12 hours. However, RGM finishes
well within this timeframe on 100K graphs, and is indeed
faster for all numbers of graphs we consider in this experiment.
We see that it scales approximately linearly with the number
of graphs, in accordance with its asymptotic complexity [17].

Observation 3. RGM is an efficient method for graph com-
parison and classification, scaling linearly in both the number
and the size of graphs. It can be used on datasets with too
many graphs for exact kernel methods such as PM.



D. Which embedding and aggregation methods work best in
RGM, particularly for inductive learning?

Given that RGM takes node embeddings as input, it can
be seen as a two-step process consisting of learning node
representations and aggregating them into a feature map for a
graph. Here we consider alternative design choices per step.

Task. First, we compare three embedding approaches
before constructing RGM feature maps: node2vec [9],
struc2vec [36], and xNetMF [13]. These choices reflect dif-
ferent network embedding objectives [37]: node2vec preserves
proximity between nodes, whereas the latter two preserve
structural similarity. Moreover, xNetMF is designed for multi-
network settings, whereas the other two are designed for
single-network settings.

We embed all graphs in training folds together, followed by
embedding all test graphs in a separate step (i.e., inductive
learning). To embed graphs jointly using the single-network
formulation of node2vec ands struc2vec, we combine their
adjacency matrices as blocks as a single block-diagonal adja-
cency matrix. We perform 10 random walks of length 80, use
a window size of 10, and set the embedding dimensionality to
d = 100. For node2vec we set p = q = 1.

Results. We see in Figure 5a that off-the-shelf node2vec,
struc2vec, and xNetMF all perform poorly as base node
embedding methods for RGM. node2vec and struc2vec are
designed for a single-graph setting, and even xNetMF, al-
though designed for cross-network tasks, assumes a transduc-
tive setting where all graphs are given up front. In all cases, the
feature space learned for the training graphs is not guaranteed
to be comparable to that learned for the test graphs. However,
our modification of xNetMF, iNetMF, performs dramatically
better than its transductive counterpart, as well as node2vec
and struc2vec. It succeeds in embedding nodes in test data
into the subspace spanned by the training landmarks.

Observation 4. RGM can successfully use advances in node
embedding to classify graphs. The most important change that
existing embedding methods may need, however, is a way to
ensure continuity of the latent feature space across training
and test networks.

For iNetMF, there is little difference in performance com-
pared to a transductive setting. This would also be true of
RPF and EIG embeddings, where the computation can be
done separately for each graph. However, most work in node
representation learning optimizes an objective to preserve
relative similarities between nodes [7]. Without care, such
methods may be led astray in an inductive setting.

Next, we consider alternatives for aggregating embeddings.

Task. We compare our RGM feature maps using iNetMF em-
beddings to two alternative graph representations using feature
pooling, which we call AVG and MAX. These create a d-
dimensional feature vector by taking the average or maximum
value, respectively, along each feature dimension.

(a) Node embedding methods
for inductive classification

(b) RGM vs. embedding pool-
ing methods

Fig. 5: Best choices for node embedding and aggregation. An
inductive graph classification setting shows that node embedding
methods designed to preserve relative similarities between nodes
that are being jointly embedded (e.g. at training or test time)
may lead to incomparability between training and test graphs’
embeddings. Given suitable node embeddings, RGM works
better than simple pooling methods, which less fully capture the
distribution of node embeddings.

Results. We see that in Figure 5, in terms of constructing
feature representations of graphs, the pooling operations MAX
and AVG yield inferior performance to our RGM variants. The
margin is larger on graphs with node labels, as we illustrate
with the largest labeled graph NCI1; it is smaller on the
unlabeled collaboration network IMDB-MULTI. These results
confirm the benefits of capturing the embedding distribution
more comprehensively with RGM.

Observation 5. Capturing the full distribution of embeddings
using RGM is more expressive than pooling the embeddings
using simple summary statistics such as mean or max.

V. RELATED WORK

In this section we outline related literature in three direc-
tions; see [42] for an overview of network similarity methods
from a practitioner’s perspective. Table IV qualitatively com-
pares RGM to selected baselines with respect to our three
desiderata: (P1) expressive and inductive graph comparison;
(P2) efficient comparison; (P3) downstream use of fast ma-
chine learning models for graph classification.

Graph kernels. Some graph kernels capture graph similarity
from substructures, such as walks [46], shortest paths [5],
subtrees [27], graphlets [38], or other subgraphs [21]. Others
leverage dependencies between these substructures [50], study
propagation patterns [30], or characterize a restricted, strictly
transductive class of valid optimal assignment kernels [25].
Finally, recent work has considered the tradeoffs between
using explicit features and the implicit feature mappings of a
kernel function [24], also for a restricted class of graph kernels.

Some works do consider node embeddings for graph classi-
fication: [18] considers optimal assignment of geometric em-
beddings, but produces indefinite similarity matrices. RetGK
graph kernels [53] compute return probabilities of random
walks in cubic time. The faster of the two proposed methods,
RetGKII, simply averages node feature maps and still applies
the kernel trick at the end. More relevant to our work is [32],
which apply the PM kernel [8] to embeddings formed from the



top eigenvectors of a graph’s adjacency matrix. We achieve a
similar design in a flexible explicit feature map that allows for
faster training. Finally, RGM compares largely favorably to
the concurrently proposed RGE random feature map [48] that
approximates an EMD-like transportation distance between
eigenvector embeddings. RGE samples node embeddings with-
out discerning how they are distributed in vector space, the
very information that RGM captures.

Techniques inspired by the Weisfeiler-Lehman test of iso-
morphism [40] can improve the performance of methods that
use node labels, including ours. Further extensions capture
global and local structure, although they require approximation
to be computationally practical [28]. In general, computing
graph kernel functions and using them in kernel machines falls
short on computational properties laid out in P2 and P3.

Other graph similarity functions (besides kernels) include
graph edit distance [4], whose computational impracticality for
all but small graphs violates P2. The scalable graph similarity
function DeltaCon [23] is designed for graphs defined over
the same set of vertices, limiting its expressivity (P1).

Unsupervised feature mappings. An early graph feature map,
NetSimile, consists of basic summary statistics from distri-
butions of hand-engineered node and edge features. Such
features may be useful for aligning graphs [12] or exploratory
graph analysis with domain knowledge [15] but are limited
in expressivity. More recently, FGSD [45], uses histograms to
characterize a graph based on its biharmonic kernel. However,
its practical limitations include quadratic time complexity and
inability to use node labels. NetLSD [44] was shown to be
more powerful and scalable, but it too cannot use node label
information. These all fall short on P1 at minimum.

Like our method RGM, all of the above works are unsu-
pervised, which makes training simpler and generally faster.
Representations for graphs or subgraphs [1], [14] may also be
learned by analogy to paragraph or document representation
learning in NLP [26]. However, these methods require exces-
sive amounts of graph sampling (a computational challenge for
P2) to achieve competitive results and/or have high variance.

Deep neural networks. Deep neural networks have grown
in popularity and have been extended to graph classification
tasks. Diffusion-convolution neural networks [2] adapt graphs
for use with existing convolutional architectures by scanning a
diffusion process across each node, which had empirical limits
for graph classification. PATCHY-SAN [31] extracts fixed-
sizes patches from graphs and then uses graph canonization
tools to define a vertex ordering for use with CNNs, which
the recent work DGCNN [52] does in an end-to-end fashion.

It is also possible to adapt node classification architectures
with specialized graph convolutions, such as GraphSAGE [10]
and GCN [20], by aggregating the node features. We showed
that given the same set of node embeddings, RGM aggregation
is often more effective than the mean- and max-pooling oper-
ations that are often used in neural network architectures. The
recent hierarchical method DiffPool [51] performs supervised
node pooling at greater computational expense.

TABLE IV: Qualitative comparison of various methods. Existing
graph kernels and unsupervised feature representations lack one
or more desirable properties that RGM has.

Method Expressive Inductive Fast Comparison Fast ML

NetLSD 7 3 3 3

WLOA 3 7 3 7

RETGK 3 3 7 7

WLPM 3 3 3 7

RGM 3 3 3 3

It is challenging to make precise statements regarding P1,
P2, and P3 for deep learning-based methods, as all three
depend on how well the training converges. In general, how-
ever, neural networks are heavily parametrized and thus more
difficult to train, requiring additional computational resources
such as GPUs (a practical efficiency issue regarding P2 and
P3) and risking overfitting especially on smaller datasets (a
concern for expressivity, i.e. P1) [52]. Only recently have
neural network models been designed for limited, noisy data
in specific domains such as neuroscience [49].

Network embedding. Network representation learning has re-
cently gained traction for its power in downstream graph
mining tasks [7]. Intuitively, such methods learn similar em-
beddings for similar nodes. In most cases, similarity is defined
in terms of proximity via random walks [34], [9] or first-
and second-order connections [43]. Representations may be
learned with shallow [34] or deep architectures [47], regardless
of architecture, preserving within-graph node proximity may
not be useful for multi-network problems [11]. Recent work
inductively learns representations with deep convolutional
architectures [10], but mainly targets tasks with node-level
supervision. Node embedding that preserve structural node
similarity may be more suitable for cross-network analysis
[13]. struc2vec [36] samples context from an auxiliary struc-
tural similarity graph and optimizes a skip-gram objective
to embed the nodes. However, struc2vec is still formulated
for a transductive setting on a single graph. xNetMF [13]
was designed for cross-network comparison, but still assumes
a transductive multi-network setting. In contrast, inductive
settings require embedding nodes in out-of-sample graphs.

VI. CONCLUSION

In this paper we propose RGM, a feature map that captures
the distribution of a graph’s node embeddings at multiple
levels of resolution. We demonstrate theoretical connections
between RGM and existing kernel methods, enhancing its
performance with node labels using Weisfeiler-Lehman label
expansion. We show that RGM is up to 20% more accu-
rate than competitive baselines from graph kernels, feature
learning, and deep neural networks. Furthermore, RGM is up
to an order of magnitude faster and scales to larger datasets
than the most relevant and competitive exact kernel baseline.
RGM thus efficiently turns feature descriptors of nodes into
a principled and powerful feature descriptor for the network.
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