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Abstract—For trajectory data that tend to have beyond first-
order (i.e., non-Markovian) dependencies, higher-order networks
have been shown to accurately capture details lost with the
standard aggregate network representation. At the same time,
representation learning has shown success on a wide range of
network tasks, removing the need to hand-craft features for
these tasks. In this work, we propose a node representation
learning framework called EVO or Embedding Variable Orders,
which captures non-Markovian dependencies by combining work
on higher-order networks with work on node embeddings. We
show that EVO outperforms baselines in tasks where high-order
dependencies are likely to matter, demonstrating the benefits of
considering high-order dependencies in node embeddings. We
also provide insights into when it does or does not help to capture
these dependencies. To the best of our knowledge, this is the first
work on representation learning for higher-order networks.

I. INTRODUCTION

Recent work on higher-order networks! (HON ) [2], [3] has
demonstrated the importance of considering non-Markovian
dependencies when building a network representation from
trajectory data (e.g., career paths, flight or ship itineraries,
clickstreams, etc. [2], [3], [4]). Meanwhile, representation
learning has been useful for learning feature representations
for standard (first-order) networks that can be directly used
for downstream tasks [5]. While high-order dependencies
are important for accurately modeling a network, it is not
immediately obvious that the added modeling accuracy is
always useful to learn over. To understand when it is useful,
we evaluate the performance of learning over HON’s on several
classification and clustering tasks, and compare to the perfor-
mance of learning over standard network representations.

We focus on two research questions: (RQ1) how can we
capture non-Markovian dependencies in feature representa-
tions and (RQ2) when are these dependencies useful? In
response to the first question, we propose EVO or “Embedding
Variable Orders” (Figure 1), a modular framework for rep-
resentation learning that works with HON representations to

Note that we are using “higher-order” to refer to non-Markovian or beyond
first-order dependencies in trajectories, rather than motifs [1].
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Figure. 1: The proposed EVO framework (white background),
contrasted with the standard approach SWNE (gray background)
(§ TV-B). EVO takes trajectories as input (e.g., flight itineraries).
Step 1 creates a HON that may contain multiple versions of a node
(e.g., DTW is mapped to two conditional nodes (DTW|LGA &
DTW|DSM) since the 0.5 probability of visiting SFO from DTW
becomes 0.67 or 0.33 depending on how DTW was reached). Step
2 learns node embeddings from the HON. Step 3 combines the
embeddings of all node versions into a single embedding capturing
the important properties of all its versions. SWNE has only two steps.

learn dependency-preserving node representations. In response
to the second question, we find that EVO is effective at
capturing high-order dependencies and is useful for a range
of tasks related to network trajectories. However, contrary to
what might be expected, we find that capturing high-order
dependencies for tasks where they are not very relevant is
not only ineffective, but can be detrimental, suggesting that
capturing more information is not always helpful. This is
a significant finding, since HON representations consist of
multiple nodes for multiple dependencies, requiring additional
computational power—something highly undesirable for large
graphs. Our main contributions are:

« We are the first to propose a general, modular framework,
combining work in representation learning and HONs to
generate node embeddings that capture non-Markovian de-
pendencies. It readily supports both neighborhood and struc-
tural embeddings, and works with any embedding approach.

o Through diverse experiments, we bring insights into when
downstream tasks can benefit from these embeddings.

II. RELATED WORK

Higher-order Networks attempt to preserve non-first-order
dependencies in a network representation. While works such
as [6] used a fixed-order representation, usually only modeling
second-order dependencies, recent work focused on variable-
order dependencies, which are automatically identified from
trajectories [2], [3]. Xu et al. [2] build a variable-order
network by creating multiple versions of nodes to capture
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TABLE I: Major symbols and their meanings.

\4 set of nodes
T trajectories over nodes V'
ry embedding of node v

G(V,E) standard network
H(Vy, Eg,5) HON w/ mapping
from V to Vg

multiple dependencies. The resulting HON admits standard
graph methods. Scholtes et al. [3] build a layered network
(which may require tailored graph methods), with each layer
capturing a progressively higher dependency level.

Representation Learning aims to learn feature representa-
tions for nodes (or other structures) which can be directly
used for network tasks. Many methods are inspired by word
embeddings [7], replacing the linear context around words
with graph structure around nodes by using variants of random
walks. Some are proximity-based, e.g. [8], [9], while others
are structural, e.g. [10]. Other methods, e.g. [11], utilize the
connection between matrix factorization and skip-gram with
negative sampling [12]. For more, [5] surveys the extensive
work in representation learning. To the best of our knowledge,
we are the first to look at representation learning for HONS.
While [1] uses similar terminology, it is not closely related, us-
ing “higher-order networks” to refer to graph motifs, whereas
we use it to refer to non-Markovian dependencies.

ITII. METHOD
A. Preliminary Definitions

A (standard or first-order) network or graph G = (V, E)
is a set of nodes and a set of edges among them, optionally
with weights denoting the connection strength. G implicitly
encodes the Markov assumption.

We follow [2] and define a higher-order network (HON)
H = (Vy, Eg, ) as anetwork, along with a bijective function
d : V — P(Vy) mapping each node v € V to the subset of
nodes in Vi encoding v’s dependencies. For instance, in Fig-
ure 1, 6(DTW) = {DTW|LGA, DTW|DSM}. Its inverse maps
the nodes back: §~1{({DTW|LGA, DTW|DSM}) = DTW.

B. Problem Definition

Problem 1. Given a set of trajectories 'I' over nodes V, where
the Markov assumption may be violated, find a representation
r, € R? for each node v € V such that the representations
capture the non-Markovian dependencies.

C. EVO: Embedding Variable Orders

Our proposed method, EVO, works in three steps:

(S1) Construct Higher-order Network. Any approach for
building a HON H (e.g. [2]) can be used if there exists a
function & and its inverse 6! to map nodes to and from V.
(S2) Learn Representations from HON. For each node h €
Vi, we obtain its representation ry. Assuming that the HON
is a conventional graph (e.g., not layered), any representation
learning method can be used [5].

(S3) Combine Representations. This step uses a function f :
P(R?) — R? to create a single representation for each node
in V from its corresponding nodes in V. For any node v, we
get its embedding (denoted r,) by applying f (e.g., average,
max, etc.) to the embeddings of all the nodes in Vi which

TABLE II: Data statistics: median length of trajectories, max depen-
dency found by [2], size of G (in SNE form), and size of H.

Dataset Med. Len.  Max Dep. |V |E| |V | |Ep|
Us Flights [3] 5 4 175 1,598 9,776 49,700
London Tube [3] 12 2 268 646 1,029 2,073

correspond to v (which may vary in number per node). Let
R={rp, : h€d(v)} be the set of embeddings of nodes in
d(v), acquired in S2. Formally, r, = f(R) Vv € V.

In summary, the EVO framework allows for a number of
methods, each requiring the selection of (1) a HON repre-
sentation, (2) a representation learning method, and (3) a
function f to convert the representations of HON nodes Vi
into representations for nodes V. Its runtime depends on
the methods employed in S1 and S2. Assuming that their
complexities are o and /3 respectively, and given that S3 can
be performed with a hashtable in a pass over Vi, in O(|Vy|)
time, EVO’s total runtime is O(a + 3 + |V |).

IV. EMPIRICAL ANALYSIS

In our experimental analysis, we aim to answer two main re-
search questions: [RQ1] Performance: Does EVO effectively
capture high-order dependencies? [RQ2] Appropriate Uses:
In what situations does it make sense to capture high-order
dependencies? We consider a variety of node classification
and clustering tasks.

A. Datasets

We use two datasets from [3] (Table II): (1) A London
Tube dataset containing passenger itineraries from the London
subway system and (2) a US Flights dataset containing flight
itineraries, such as LGA — DTW — SFO (Figure 1), meaning
someone flew from LaGuardia to Detroit to San Francisco.

B. Baselines
We consider three baselines:

« SNE (“Standard Network Embedding”) aggregates the tra-
jectories into a standard network representation, where an
edge exists between two nodes if the edge occurred in at
least one trajectory. Node representations are learned via
the same embedding approach used in EVO.

« SWNE (“Standard Weighted Network Embedding”) is SNE,
but introduces edge weights to count edge occurrences.

« ARWE (“Altered-Random-Walk Embedding™) is an ap-
proach we introduce. ARWE runs variable-order Markov
random walks to generate context for skip-gram-based rep-
resentation learning directly, without building the interme-
diate HON. The random walks simulate trajectories by
obeying the same dependencies used to build H.

C. Experimental Setup

For S1 of EVO, we construct a HON using [2] without
using the optional min-support parameter. For S2, we use
node2vec [9], struc2vec [10], or xNetMF [11], depending on
the task (using node2vec unless the task is structural). xNetMF
and struc2vec do not use weights. Furthermore, xNetMF does
not use random walks, while struc2vec’s walks are on a k-
level graph, so SWNE and ARWE do not apply. For node2vec



and struc2vec, we set the walk length to be the median
trajectory length for that dataset (e.g. 5 for Flights), to treat
random walks as simulations of real trajectories. We perform
50 walks per node, and use a window-size of 10. We use
none of struc2vec’s computational optimizations. For S3, we
consider multiple options—max, min, average, and Hadamard
product—for f, each of which is applied elementwise. We
also tried concatenation, but saw similar or worse results. We
found that max and average worked best, so we report results
for only these, named EVO-max and EVO-avg.

Results are reported as averages with standard deviations
over 10 runs. The top result for each metric is shaded gray.
If the result is statistically significant (which we consider p <
0.05 for a paired t-test), we mark it with an “*”. We discuss
results in each task’s section, and takeaways in § IV-F.

D. Node Classification

We designed four binary classification tasks to answer
our research questions. We use node representations of each
method as input to a random forest classifier with 100 trees,
running with 10 different 70%/30% train/test splits (the same
splits for each method). When using node2vec, we tune its
p and ¢ parameters as in [9], using grid search with 10-fold
cross-validation. We report Accuracy (ACC), AUROC (AUC),
and F1 score in Table III, and discuss results in § IV-F.

1) Trajectory Node Classification is designed to investigate
EVO’s usefulness for tasks related to trajectories. In this
task, we attempt to predict whether each London Tube station
services one line or multiple lines. Since trains follow lines,
this task is related to trajectories, requiring memory of where
a train came from to distinguish between traffic that comes
from one line vs. traffic that comes from multiple lines.
Setup. Since the task is not structural, we use our framework
with node2vec. Note that 70.9% of stations service one line.
Results. EVO’s benefit is clear, as it outperforms all baselines
by a statistically significant amount by all metrics, demon-
strating that EVO captures trajectories and can identify traffic
from multiple lines. In contrast, the baselines only capture
how much traffic comes through each station. To help explain
this, we observe that stations with multiple lines have 6.12
dependencies on average, while stations with only one line
have only 2.91. Thus, when a station services more lines, it
matters more where a train comes from when determining
where it will go next, leading to more dependencies. Indeed,
the number of lines station v services is correlated with the
size of d(v) (0.638 Pearson correlation coefficient).

2) Geographic Node Classification investigates whether
EVO captures geographic information. Unlike the London
Tube network, where edges connect nearby stations, flights
often directly cross geographic regions (e.g., LAX to JFK), so
the network does not reflect geography. Itineraries often end
in the same region where they began, so memory matters. The
task is to predict if an airport is in the Western or Eastern US.
Setup. We use the Census Bureau’s 9 US divisions [13] and
use divisions 1, 2, 3, 5, and 6 (65.7% of airports) as the Eastern
region. The task is not structural, so we use node2vec in S2.

Results. EVO outperforms all baselines by a statistically
significant amount, suggesting that EVO captures geographic
information in trajectories, which is lost by networks where
edges do not respect geography. Indeed, 84.5% of edges cross
regions, but 92.8% of itineraries end in the same region as
they started (largely due to round-trip flights).

3) Structural Node Classification seeks to predict whether

or not an airport is a hub, as characterized by the FAA [14],
which defines hubs in terms of the quantity of enplanements.
This is highly related to node degree, and is hence structural.
Setup. To capture the structure of nodes, we use xNetMF
(we also tried struc2vec, but saw similar results). The baseline
accuracy is 62%, as 38% of airports are not hubs.
Results. SNE performs the best, suggesting that degree infor-
mation is lost in a HON. Indeed, the median size of é(v) for
airports is 14. However, for the 25 highest degree airports,
the median size is 88. Thus, because hubs have more nuanced
flying patterns, they also have more dependencies. The hub’s
degree in G is then distributed across more nodes in H (i.e.,
all those in &(v)), leading to loss of degree information.

4) Neighborhood Node Classification tests whether depen-
dencies are appropriate for tasks related to node neighbor-
hoods. The task is to predict whether a London Tube stop is
in an outer or an inner zone. The Tube system is split into 9
zones forming rings around the city center (i.e., zone 1 is the
city center, zone 2 is a ring around zone 1, etc.).

Setup. To capture neighborhood information, we use our
methods with node2vec. Note that 65.1% of stations are in
the inner zone (which we consider to be zones 1, 2 and 3).
Results. Either SNE or SWNE perform the best on this task,
likely because Tube trajectories cross 3.2 zones on average,
biasing node contexts away from neighborhoods. In contrast,
a station is generally in the same zone as its neighbors.

E. Clustering

We further investigate RQ1 and RQ2 in an unsupervised
setting with more than two classes by clustering nodes and
comparing to four ground truth groupings: (1) Tube stations
grouped by the line they are on, (2) airports grouped by their
region, (3) airports grouped by their FAA hub category, and
(4) Tube stations grouped by the zone they are in.

Setup. When using lines as ground truth, we disregard stations
which fall on multiple lines, leaving 190 stations. Likewise,
when considering zones, we disregard stations in multiple
zones, leaving 242. There are 11 Tube lines, 9 zones, 9 airport
regions, and 4 airport hub categories (large, medium, small,
and non-hub); we use k-Means for clustering with k set to the
number of ground truth groups. We use node2vec in all tasks
except hubs, where we use struc2vec (omitting xNetMF for
brevity). There is no training set, so we try the same node2vec
(p, q) pairs as classification, and report results with the best
pair. We evaluate the quality of clusterings using Normalized
Mutual Information (NMI), and report results in Table III.

Results. EVO-max and EVO-avg lead to clusters most similar
to station lines and airport regions respectively, while either
SNE or SWNE lead to clusters most similar to hubs and



TABLE III: Node Classification (§ IV-D): Task 1: Classify whether a stop services 1 or >1 line (trajectories matter). Results suggest:
EVO captures high-order dependencies. Task 2: Classify airports by region (geography matters). Results suggest: EVO captures geography
via dependencies. Task 3: Classify airports as hubs (structure matters). Results suggest: degree is lost in H. Task 4: Classify tube stops
as inner/outer-zone (neighborhoods matter). Results suggest: trajectories can be deceptive. Clustering (§ IV-E): Results are consistent with
classification (except SWNE beats SNE on zones), thus our observations hold even in an unsupervised setting with all categories.

“* marks results where EVO is stat. sig. better than all baselines or where a baseline is stat. sig. better than EVO-max and EVO-avg.

Task Metric SNE SWNE ARWE EVO-avg EVO-max
ACC 0.8259 £ 0.03 0.8481 £ 0.05 0.8506 £ 0.04 0.8321 £ 0.04 0.8901* £ 0.03
1. Trajectory Node Classification AUC 0.8859 £ 0.04 0.9037 £ 0.04 0.9026 £ 0.04 0.8823 £ 0.05 0.9627* £ 0.02
F1 0.8792 £ 0.02 0.8960 £ 0.03 0.8969 £ 0.03 0.8886 + 0.03 0.9254* £ 0.02
=
= ACC 0.6000 £ 0.06 0.5980 £ 0.07 0.6160 £ 0.04 0.7280* £ 0.05  0.7100* £ 0.05
8 2. Geographic Node Classification AUC 0.5233 £ 0.09 0.5951 £ 0.05 0.5179 £ 0.06 0.7791* £ 0.04  0.7611* £ 0.06
= F1 0.2155 £ 0.09 0.2921 £ 0.12 0.1241 £ 0.13 0.4988* £ 0.09  0.4180* £ 0.08
@
8 ACC 0.8748* £ 0.04 N/A N/A 0.7730 £ 0.05 0.8107 £ 0.04
3 3. Structural Node Classification AUC 0.9227* £ 0.04 N/A N/A 0.8785 £ 0.03 0.9006 £ 0.03
S F1 0.8991* + 0.03 N/A N/A 0.8212 £+ 0.04 0.8429 + 0.04
ACC 0.9556* £ 0.02 0.9333 £ 0.02 0.9160 £ 0.03 0.9296 + 0.03 0.9148 £ 0.03
4. Neighborhood Node Classification AUC 0.9916* + 0.01 0.9867 £ 0.01 0.9791 £ 0.01 0.9770 £ 0.02 0.9684 £ 0.03
F1 0.9668* +£ 0.01 0.9502 £ 0.02 0.9369 £ 0.02 0.9469 £ 0.02 0.9358 £ 0.02
& I Lines as ground truth NMI 0.6478 £0.01  0.6258 £0.02  0.6458 £ 0.01  0.7100* £ 0.01  0.7125* £ 0.02
'S 2. Regions as ground truth NMI 0.1441 £ 0.00 0.1245 4+ 0.00 0.1096 £ 0.01  0.3856* + 0.00  0.2880* 4 0.02
g 3. Hubs as ground truth NMI 0.4138* &£ 0.00 N/A N/A 0.0505 £ 0.01 0.2844 £ 0.00
O 4. Zones as ground truth NMI 0.2542 £+ 0.02 0.2705* £ 0.02 0.1933 £ 0.03 0.2192 £ 0.01 0.2444 £ 0.02

station zones. The results are consistent with the classification
results, suggesting that our observations hold even in the non-
binarized, unsupervised clustering setting.

FE Discussion

For trajectory related tasks, such as clustering stations by
line or classifying an airport’s region, we see that EVO pro-
vides significant improvement over the baselines, demonstrat-
ing that EVO captures high-order dependencies. For instance,
high-order dependencies capture information about Tube lines,
since where passengers go next depends on what line they are
on. Furthermore, while edges in an airport network violate
geography, high-order dependencies remember the region of
origin, since passengers are likely to return there.

However, for many tasks, accurately capturing high-order
dependencies can distract from the information that is actually
important for that task. We see this in the degradation of
performance on structural tasks, where degree information is
lost, and likewise on neighborhood tasks, where node contexts
are biased away from their neighbors.

We found that either element-wise max or average worked
best for f in S3. We conjecture that when max works best,
features of large magnitude for any of the embeddings of
d(v) are likely also important for v; max preserves this. When
average is best, distributional information may be important.
This is reminiscent of max- or average-pooling, e.g. [15].

We conjecture that ARWE’s lower performance is due to
the fact that it aggregates context from variable-order random
walks before learning. In contrast, EVO builds context for
each node in Vy separately and learns from that.

V. CONCLUSION

We propose a modular representation learning framework
called EVO, which captures non-Markovian dependencies in
node embeddings. We investigate EVO’s performance on a
wide range of tasks, empirically evaluating when accurately
capturing non-Markovian dependencies is useful for network
tasks. We find that if a task is related to trajectories, capturing

the non-Markovian dependencies is highly useful, and EVO is
an effective way of doing this. However, if a task is unrelated
to trajectories, learning over the non-Markovian dependencies
can actually be distracting, leading to decreased performance.
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