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Abstract—Bad data outliers and malicious corruption in Pha-
sor Measurement Unit (PMU) data having signature similar
to that of a highly nonlinear event-induced oulier can chal-
lenge reliable event detection when linear principal component
analysis (PCA)-based metrics are used. This paper presents
a moving window based kernel PCA approach for accurately
detecting event-induced outliers in presence of such corruptions
in data. It is demonstrated that with appropriate tuning of
kernel parameters, the change in the square of the norm of
principal component score between successive windows along the
direction of maximum variance in feature space can be used as a
metric for corruption-resilient detection of event-induced outliers.
Analytical justification for the same is provided along with a
bound on this change. The performance of the proposed metric
is validated on both synthetic data and field measurements.

Index Terms—Kernel PCA, PMU, Event Detection, Bad Data
Outlier, Cyber Attack.

NOTATIONS
xi ∈ IRm Measurement vector at ith time instant
X(k) ∈ IRm×N kth window of measurement data
φ(xi) ∈ IRF Mapping of xi in feature space
Φ(k) ∈ IRF×N kth window of feature space samples
C ∈ IRF×F Feature space covariance matrix
vj ∈ IRF jth eigenvector of covariance matrix C

K(k) ∈ IRN×N Kernel matrix for kth window
αj ∈ IRN jth eigenvector of kernel matrix K
ζj ∈ IR Norm of the PC score along vj

I. INTRODUCTION

The advent of Phasor Measurement Units (PMUs) capable
of reporting high fidelity time synchronized measurements
across wide geographies, have significantly improved the
situational awareness in control rooms [1], [2]. Powered by ad-
vanced data analytics these synchronized phasor measurements
have found many applications in power system monitoring
including real time event detection and classification [3].

Utilities in North America- BPA, PJM, TVA, and NYPA
among others, have an expanding network of PMUs reporting
data to respective control centers, where the samples are time-
aligned by Phasor Data Concentrators (PDCs) and are fed to
modules of dedicated algorithms looking for specific event
signatures in the data. In this context, an event signature is
defined as characteristic patterns in system response following
a disturbance like fault, line tripping, generator outage, etc.

The performance of an event detector is not only determined
by how accurately it can differentiate between the onset of
an event and ambient condition, but also by its ability to do
so when samples are corrupted with bad data outliers with
signatures similar to that of an event outlier. To understand
this better, consider a spurious outlier in voltage measurement
arising out of an unreliable sensor or loss of a data packet
in transit, padded as zero. A robust detector exploiting the
correlation in data should not interpret this transient dip in
voltage as a fault and trigger the alarm for an event. The origin
of bad data however is not limited to noisy and erroneous
measurement systems alone- it can creep in through malicious
intruders exploiting the security breaches in the cyber layer
[4]. Under scenarios where a sensor or a pool of sensors have
been compromised to replay pre-recorded disturbance data,
it becomes challenging for the event detector to distinguish
attacks from events. With threats looming on our grids in the
era of post-Ukrainian grid attack [5], it is imperative to instill
resilience into monitoring and control operations so that it
becomes difficult for an attacker to fool an operator into taking
wrong decisions. Thus motivated, the goal of this paper is
to design a robust event detection scheme resilient to such
corruptions in PMU data streams.

There could be two broad approaches to address the chal-
lenge of bad data jeopardizing the reliability of event detection.
Firstly, one can design a data preprocessor to act as an anomaly
detection [6] and correction engine [7], which would clean the
incoming signals of any measurement inconsistencies. Authors
in [7]–[9] have used low-rank matrix completion methods to
reconstruct signals from grossly corrupted and attacked data
samples. The output of these could then be used for a variety
of monitoring applications including event detection. However,
techniques like robust PCA face challenges in distinguishing
outliers at the onset of an event from corruption. The other
approach is to ensure that the event detector is itself robust
to bad data. This paper discusses one such strategy of cir-
cumventing the issues of bad data by exploiting the degree of
correlation in data channels and the low rank property of a
measurement window.

Extensive literature exists on use of multivariate statistical
methods for event detection and localization in power systems
including [10]–[13] and references therein. In [10] authors



have combined the classical principal component analysis
(PCA) with T 2 and Q statistics to capture the occurrence of
an event and to separate it from normal operating conditions.
Subsequently in [11] this idea was extended to the geometric
interpretation of T 2 and Q showing that they can be separately
used to detect generation mismatch and islanding events re-
spectively. Although the issue of a single PMU malfunctioning
with a fixed bias has been discussed in [10], it does not
comment on the performance of the detection algorithm with
larger outliers comparable to magnitude of faults or under
fault replay attacks in one or more data streams. Another
limitation of PCA-based methods is in the assumption of
linear relationship between the measured variables. With the
nonstationary nature of system dynamics due to change in
load, generation and operating conditions, and inherent non-
linearity associated with an event such assumptions may lead
to inaccurate results.

Improvements on these have been suggested in [12] and [13]
using a kernel PCA (K-PCA) based nonlinear technique. In-
stead of computing the principal components of the input data,
this method maps the data to a higher dimensional space where
the assumptions of linearity hold and then use the ‘kernel trick’
to solve a linear PCA problem. However, a few important
questions still remain: 1) Since K-PCA is computationally
intensive over linear PCA, can the window size of computation
be reduced for real-time monitoring without compromising on
the detector accuracy? 2) How sensitive are T 2 and Q to data
anomalies and noise in a reduced window? and finally 3) Can
better indices be developed with higher selectivity to events
and lower sensitivity to data anomalies while working on sub-
second windows?

To address these questions, this paper presents a K-PCA-
based detection index derived from the norm of the principal
component (PC) score of a moving window of data mapped
in feature space. It is demonstrataed that with an appropriate
choice of a kernel function the change in the largest eigenvalue
of the kernel matrix can be used as an detector for occurrence
of events. Unlike the T 2 and Q statistics presented in literature,
the proposed metric works fine with small windows and is
insensitive to noise, corruption and spurious outliers. The other
contribution of the paper is in the derivation of an upper bound
on the change in the largest eigenvalue of kernel between
two successive windows in terms of the data samples without
explicitly performing an eigen decomposition. Further it is
shown that the bound can itself act as a detector, thereby
significantly reducing the computation in real time.

The remaining paper is organized as follows. In Section II,
a brief theoretical overview of kernel PCA is presented, an
outline of the detection logic is discussed and an upper bound
on the change in kernel eigenvalues is derived. In Section III,
results from case studies on both simulated data and actual
field measurements are presented to validate the claims of the
event detection. Also, comparisons are drawn with existing
T 2 and Q statistics based methods. Concluding remarks and
discussions are summarized in Section V.

II. KERNEL PCA FOR DETECTING EVENT OUTLIERS

In multivariate statistics, PCA [14] is a powerful tool for lin-
ear dimensionality reduction and feature extraction. However,
as discussed before, the nonlinear and nonstationary nature of
power system response impedes the success of PCA in event
detection. Kernel principal component analysis (K-PCA) [15]
proposed by Scholkoph et. al in 1998, is a generalization of
PCA to nonlinear dimensionality reduction which has found
a wide range of applications in process control, spectrum
sensing, image processing, and other fields.

Kernel PCA constitute a two step process: 1) Mapping
the input data to a higher dimensional feature space where
the relation between the mapped variables is linear, and 2)
Using PCA in feature space for dimensionality reduction.
Being a kernel method, K-PCA does not explicitly compute
the mapping to the higher dimensional feature space, but
uses a function of the measured data to encode the mapping
information. The choice of this function (called kernel) thus
decides the efficacy of the mapping and the analysis that
follows in the mapped domain.

Let xi be a vector of detrended measurements from m PMU
channels obtained at instant i, and φ(xi) be the mapping of
xi in feature space, φ : X→ Φ. Without loss of generality let
us assume that the data in feature space is centered.

We consider a window of size N sliding in time, with the
vector of latest observations augmented to the last column and
the oldest observation discarded from the first.

Eigen decomposition of the covariance matrix C in feature
space can then be expressed as,

Cvj = λjvj =⇒ 1

N

N∑
i=1

φ(xi)φ
T (xi)vj = λjvj (1)

=⇒ vj =
N∑
i=1

φ(xi){
φT (xi)vj

Nλj
} =

N∑
i=1

αjiφ(xi) (2)

Substituting (2) in (1) and pre-multiplying by φT (xl),
N∑
i=1

φT (xl)φ(xi)

N∑
n=1

αjnφ
T (xi)φ(xn)

= Nλj

N∑
n=1

αjnφ
T (xl)φ(xn)

(3)

Let Φ =
[
φ(x1) . . . φ(xN)

]
and let K be the matrix of

inner products in feature space, K = ΦTΦ.
N∑
i=1

N∑
n=1

KliKinαjn = Nλj

N∑
n=1

Klnαjn (4)

Concatenating the expression in (4) for l = 1, 2, . . . N ,

K2αj = NλjKαj =⇒ Kαj = Nλjαj (5)

This is the expression for eigen decomposition of the kernel
matrix with eigen pair (Nλj ,αj). To ensure that the eigen
vectors of the feature space covariance matrix are orthonormal,

vT
j vj = (Φαj)

T (Φαj) = 1 =⇒
∥∥αj

∥∥
2

=
1√
Nλj

(6)



The eigen vectors of the covariance matrix are the principal
directions in the feature space.

If the mapped data in feature space is not centered, one can
alternatively center the Kernel matrix as follows.

K̃ = [Φ− { 1

N

N∑
i=1

φ(xi)}JN
T ]T [Φ− { 1

N

N∑
i=1

φ(xi)}JN
T ]

= K− 1

N
KJN×N −

1

N
JN×NK +

1

N2
JN×NKJN×N

(7)
where, JN ∈ IRN and JN×N ∈ IRN×N with all entries as 1.

If the construction of the mapping φ is such that the
feature space is isometric to the input space, the inner product
in the feature space can be expressed as a positive semi-
definite symmetric function of pre-images in input space. This
is commonly referred to as the ‘kernel trick’ in literature
and the positive semi-definite function K, is called a kernel.
Some commonly used kernels include- Gaussian kernel, linear
kernel, polynomial kernel, etc. In this paper, we will use the
polynomial kernel in (8) for detecting event outliers.

Kij = φ(xi)
Tφ(xj) = K(xi,xj) = (xT

i xj)
d (8)

The idea behind the detection is to compare between suc-
cessive time windows, the projection of the mapped data
along the direction of maximum variance in feature space.
The magnitude of this quantity is captured in the norm of
the PC score along the first principal direction. The PC score
norm (ζ1) of a window of mapped data along the direction of
maximum variance v1 can be computed as,

ζ1 =
∥∥∥vT

1 Φ
∥∥∥
2

=
∥∥∥αT

1 K
∥∥∥
2

= Nλ1

∥∥∥αT
1

∥∥∥
2

=
√
Nλ1 (9)

� Remark I: The norm of the projection, as in (9), is also
the square root of the largest eigenvalue of the kernel matrix
obtained from the measurement window at that instant. With a
suitable choice of kernel function and proper tuning of hyper-
parameters it can be ensured that eigenvalue of kernel for a
window with incoming event outlier is significantly higher
compared to the windows containing ambient and anomalous
data. This will thus be used as the metric for event detection.

Let the kernel matrix for the ith window of data be K(i),
(xT

i xi)
d (xT

i xi+1)d . . . (xT
i xi+N−1)d

(xT
i+1xi)

d (xT
i+1xi+1)d . . . (xT

i+1xi+N−1)d

...
...

. . .
...

(xT
i+N−1xi)

d (xT
i+N−1xi+1)d . . . (xT

i+N−1xi+N−1)d


Let, K(i) =

[
p cT

c A

]
and PrK

(i)Pc =

[
A c

cT p

]
= B

where, Pr =

[
0(N−1)×1 I(N−1)×(N−1)

1 01×(N−1)

]
and Pc = Pr

−1

From (5) the eigen decomposition of K(i) can be written as,

K(i)αj = Nλ
(i)
j α

(i)
j

=⇒ PrK
(i)Pcα̂

(i)
j = Nλ

(i)
j PrPcα̂

(i)
j = Nλ

(i)
j α̂

(i)
j

(10)

Thus, the matrices K(i) and PrK
(i)Pc have same eigenvalues.

The kernel matrix for the (i+1)th window of data be K(i+1),
(xT

i+1x(i+1))
d . . . xT

i+1xi+N−1)d (xT
i+1xi+N )d

...
. . .

...
...

(xT
i+N−1xi+1)d . . . (xT

i+N−1xi+N−1)d(xT
i+N−1xi+N )d

(xT
i+Nxi+1)d . . . (xT

i+Nxi+N−1)d (xT
i+Nxi+N )d


Let, K(i+1)=

[
A b

bT q

]
=B+E , where E is the perturbation

in the kernel matrix with respect to the previous window.

E =

[
0(N−1)×(N−1) b− c

b− cT q − p

]
(11)

Using the classical perturbation bound [16], between two
successive windows, the difference in the squared PC score
norms along v1 can be expressed as,

∆(ζ1)2 = |(ζ(i+1)
1 )2 − (ζ

(i)
1 )2| = |Nλ(i+1)

1 −Nλ(i)1 |
= |λ1(K(i+1))− λ1(K(i))| = |λ1(B + E)− λ1(B)|
≤‖E‖2 = λ1(E)

(12)
where, λ1(E) corresponds to the largest eigenvalue of E .

λ1(E) =
(q − p) +

√
((q − p)2 + 4(b− c)T (b− c)

2
(13)

� Remark II: Between two successive windows i and i + 1,
the term q− p equals to ‖xi+N‖2d−‖xi‖2d and each entry in
the vector b− c equals to (xT

j+1xi+N )d− (xT
j+1xi)

d, for j =
i, (i+1), . . . (i+N−1). If both the windows are from ambient
condition, then the difference between the outgoing data vector
xi and the incoming data point xi+N is small, only source of
difference being the ambient noise and minor variations about
equilibrium. However, if xi+N corresponds to the onset of an
event, the difference would be significantly larger compared
to the previous case. Further, with an appropriate choice of
d (> 1) the difference can be amplified. Thus, both q − p
and b− c would be significantly larger contributing to a large
λ1(E) for an ambient-to-event transition compared to ambient-
to-ambient transition of data windows.

If xi+N corresponds to a bad data or malicious corruption,
depending on the number of PMU channels corrupted the
difference with xi would vary. In most cases, only a small
fraction of PMUs can be assumed to be affected by bad data
or malicious corruption. Thus, the difference would always
be less than that compared to an event. With high values
of the parameter d, the event condition would be amplified
more compared to an anomaly condition, and clear separation
between them can be obtained. Thus, the upper bound on the
deviation in PC score norm, as expressed in (13) can be used as
a metric for detecting the onset of an event. A major advantage
of using this is that the closed form expression in (13) can
be computed using inner products and completely eliminates



the need for an eigen decomposition of the kernel matrix, as
required in the PC score based detector in (9).
� Remark III: Event-induced outliers are important in the
detection process described above. Onset of events that do not
produce an outlier signature may not be efficiently detected.
The determination of an appropriate kernel function is another
aspect of research.

III. CASE STUDIES

A. Event-Outlier Detection from Simulated Data
The 16-machine 5-area New England - New York system

[17], with PMUs at all inter tie buses was used to generate the
synthetic data for simulations. Voltage magnitudes of buses-
18, 27, 41, 42, 49, 53, 54, 60, and 61 were considered for
analysis after appropriate detrending of the data. The reporting
rate of the PMUs was assumed to be 50Hz and a moving
window of 25 samples, equivalently of 0.5s duration was
studied for detecting the onset of an event.
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Fig. 1: Fault outlier detection in 16-machine NE-NY system.

The performance of the detection principle was studied for
multiple event scenarios. One such case is reported in Fig.
1 with two instances of three phase fault and a fault replay
attack on the voltage measurements of buses 18 and 42. The
fault at t = 5s at bus 18 is cleared by opening the line 18-42.
This is followed by a self-clearing fault at t = 25s near bus
18. The recorded fault data from t = 25s is replayed at t =
45s at the mentioned buses.

It can be seen from the figure that a T 2 based event detection
metric fails to differentiate between events (fault a 5s and
25s) and attack (at 45s). However, when ∆ζ21 is used as a
metric for detection, it clearly identifies the event and does
not have a false triggering during the attack. Also, the relative
magnitude of the index in a window capturing the onset of an
event is significantly higher compared to ambient and attack
cases. Thus, any clustering algorithm using ∆ζ21 as a feature
would identify these instants as onset of events. The plot for
the bound on the change in ∆ζ21 is also reported in Fig. 1. It
validates the claim that λ1(E) can also be used as a metric.

B. Event-Outlier Detection from Field Measurements

Synchronized frequency measurements [18] from four loca-
tions in the Indian grid were obtained for analysis. Multiple
disturbances in the grid have been captured in the frequency
data from these locations. Two of these cases have been
reported in this paper. The reporting rate of the PMUs were
50 Hz, and the analysis was carried on a moving window of
25 samples.
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Fig. 2: Detection of Mundra-Mohindergarh HVDC pole trip.

� Mundra−Mohindergarh HVDC Pole Trip: Frequency
data from June 2013 capturing the disturbance following the
tripping of Pole-1 of the ± 500 kV Mundra-Mohindergarh
bipolar HVDC link is considered. In addition, two spurious
bad data outliers in magnitude comparable to the frequency
dip/rise have been injected artificially into the data. The



frequency variation corresponding to the event along with the
performance of the detector is shown in Fig. 2. It can be seen
that the usual T 2 metric is equally selective for the disturbance
and the outliers, also it is sensitive to measurement noise.
Thus, any detection approach using T 2 as a feature is prone to
false positives. In contrast, the robustness of the ∆ζ21 metric
is illustrated in Fig. 2.

� Multiple Trippings at Samaypur substation: Frequency
data is from April 2013 capturing the grid disturbance fol-
lowing a series of failures (including a current transformer
and three phase circuit breakers) at Samaypur substation has
been considered. This ultimately lead to tripping of multiple
lines. In addition, for validating the performance of the event
detection scheme, we have artificially injected a disturbance
in one of the data channels, as shown in Fig. 3. The plot of
∆ζ21 clearly shows that the index is robust to bad data and
is more selective towards detecting events as compared to the
T 2 metric.
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Fig. 3: Detection of mutiple trippings at Samaypur Substation.

IV. CONCLUSION AND DISCUSSIONS

A corruption-resilient approach for detection of event-
induced outliers was presented in the paper. It was shown that
the change in the square of the norm of PC score along the first
principal direction in feature space between two successive
windows is insensitive to bad data and can be used as a metric
for detecting event-induced outliers. It was shown that the PC
score-based metric can work with very small window of data.
However, this approach may not be successful in detecting
events that do not produce outliers at its onset. Moreover, the

choice of the kernel function and the kernel parameters play
a crucial role in deciding the success of the detection scheme.
Our ongoing research is focused on constructing a data-driven
kernel matrix without specifying its structure a-priori.
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