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Abstract

Evolutionary adaptation to extreme environments often requires coordinated changes in

multiple intersecting physiological pathways, but how such multi-trait adaptation occurs

remains unresolved. Transcription factors, which regulate the expression of many genes

and can simultaneously alter multiple phenotypes, may be common targets of selection if

the benefits of induced changes outweigh the costs of negative pleiotropic effects. We com-

bined complimentary population genetic analyses and physiological experiments in North

American deer mice (Peromyscus maniculatus) to examine links between genetic variation

in transcription factors that coordinate physiological responses to hypoxia (hypoxia-induc-

ible factors, HIFs) and multiple physiological traits that potentially contribute to high-altitude

adaptation. First, we sequenced the exomes of 100 mice sampled from different elevations

and discovered that several SNPs in the gene Epas1, which encodes the oxygen sensitive

subunit of HIF-2α, exhibited extreme allele frequency differences between highland and low-

land populations. Broader geographic sampling confirmed that Epas1 genotype varied pre-

dictably with altitude throughout the western US. We then discovered that Epas1 genotype

influences heart rate in hypoxia, and the transcriptomic responses to hypoxia (including HIF

targets and genes involved in catecholamine signaling) in the heart and adrenal gland.

Finally, we used a demographically-informed selection scan to show that Epas1 variants

have experienced a history of spatially varying selection, suggesting that differences in car-

diovascular function and gene regulation contribute to high-altitude adaptation. Our results

suggest a mechanism by which Epas1 may aid long-term survival of high-altitude deer mice

and provide general insights into the role that highly pleiotropic transcription factors may

play in the process of environmental adaptation.
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Author summary

Adaptation often requires coordinated evolutionary changes across multiple dynamic sys-

tems to maintain physiological function. For example, high-altitude habitats place a pre-

mium on tissue-oxygen delivery to cope with limited oxygen availability (hypoxia).

Circulatory O2 transport is regulated dynamically, changing on the order of seconds, and

results from several interacting physiological processes. The mechanisms of adaptation in

such complex phenotypes are poorly understood. One promising candidate is the gene

Epas1, which encodes a transcription factor that regulates physiological responses to hyp-

oxia. We used population genomic analyses and physiological assays to explore the con-

nections between Epas1 genetic variation and physiological function in high-altitude deer

mice, which exhibit evolutionary adaptations to hypoxia. We identified a mutation in

Epas1 that is associated with variation in cardiovascular function: the predominant variant

at high altitude is associated with the maintenance of an elevated heart rate under hypoxia

and with differences in the expression of genes that influence heart rate and are regulated

by Epas1. Our population genomic analyses demonstrated that Epas1 exhibits a signature

of natural selection at high altitude, suggesting that these phenotypic effects influence Dar-

winian fitness. Our results suggest that adaptation in complex and dynamic traits may be

attributable to relatively simple genetic changes.

Introduction

Adaptive evolution often involves changes in multiple phenotypes across interacting biological

pathways. How such multi-trait adaptations are produced by natural selection is an open ques-

tion that requires connecting genetic variation to organismal function and fitness [1]. One

promising mechanism involves functional modification of transcription factors. Because tran-

scription factors coordinate the expression of suites of genes, they may allow for the simulta-

neous alteration of multiple phenotypes, making them common targets of selection [2–4].

However, mutational changes in transcription factors often have negative pleiotropic effects,

which may limit the role of such changes in environmental adaptation [5,6]. If pleiotropic con-

straints are common, then mutations in downstream target genes may be expected to play a

more prominent role in local adaptation [5,6].

Animals adapted to high-altitude (>3,000 m a.s.l.) [7] represent a unique system to under-

stand the role of transcription factors in multi-trait adaptation. Coping with extreme hypoxia

(low O2 availability) and cold requires coordinated changes in interacting physiological path-

ways [8–10], including steps of the O2 transport cascade that ensure O2 supply matches

demand. Many of these responses to hypoxia are coordinated by a single family of transcrip-

tion factors, the hypoxia inducible factors (HIF 1–3) [11]. In particular, the gene Epas1, which

encodes the O2-sensitive α subunit of HIF-2, has been the repeated target of selection in indig-

enous high-altitude human and non-human populations [8,12–15]. In many ways, this pattern

of repeated selection is surprising: although acute activation of HIFs lead to beneficial changes

in O2 homeostasis (e.g, via ventilatory acclimatization [16] and angiogenesis [17]), chronic

HIF activity is often linked to high-altitude disease [10]. Thus, modification of HIF signaling

may be constrained by antagonistic pleiotropy.

Determining the extent of pleiotropic constraint requires an understanding of the pheno-

typic effects of naturally segregating HIF variants. Studies in indigenous Tibetan humans, for

example, have linked allelic variation at Epas1 to the maintenance of normal blood
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hemoglobin content [8,13] and blood concentrations of erythropoietin (which stimulates red

blood cell production) under conditions of environmental hypoxia [18]. This maintenance of

hemoglobin content under hypoxia is also associated with a missense variant in Egln1 that

covaries with Epas1 genotype in Tibetans [18] and promotes HIF degradation under hypoxia

[19]. However, follow-up studies found that Epas1 genotype did not have a statistically signifi-

cant influence on breathing or pulmonary function within Tibetans living at low elevation,

although there were pronounced differences in several cardiorespiratory phenotypes between

Tibetans and Han Chinese [18]. Nevertheless, a range of other respiratory and cardiovascular

system responses to chronic hypoxia are influenced by HIF-2 signaling, including the hypoxic

ventilatory response [16,20], catecholamine synthesis by the adrenal gland [21], and others

[22], and it remains unclear if these phenotypes have been altered by selection on Epas1, par-

ticularly in other highland taxa. A more detailed understanding of the phenotypic effects of

HIF variation is needed in order to ascertain the general role of regulatory pleiotropy in multi-

trait physiological adaptation to high altitude.

We used the North American deer mouse (Peromyscus maniculatus) to examine links

between genetic variation in HIFs and multiple physiological adaptations to high altitude.

Within the continental U.S., deer mice are distributed across an altitudinal range of ~4500 m,

and have consequently emerged as a prominent model for studies of the mechanisms of adap-

tation [23–31]. Deer mice native to the Rocky Mountain highlands have evolved a unique

physiology that includes suites of adaptations linked to known phenotypes related to HIF sig-

naling (e.g. hematological function, heart rate, tissue capillarity, and metabolic fuel use)

[25,26,31–39]. Given the evidence for multi-trait physiological adaptation to high altitude in

deer mice, and the recent indications that Epas1 has been a repeated target of natural selection

in multiple highland specialists, we hypothesized that adaptive phenotypic variation is attribut-

able, at least in part, to naturally segregating genetic variation in genes that encode HIFs.

Results

Epas1 genotype varies with altitude in deer mice

In order to examine altitudinal patterns of allele frequency variation of the genes encoding

HIFs, and to put these patterns into a broader genomic context, we sequenced the exomes of

37 lowland mice from Lincoln, NE (430 m a.s.l.), and 48 highland mice from Mt. Evans, CO

(4350 m a.s.l). Fifteen mice from a lowland population in Merced County, CA (~320 m a.s.l.),

were included to infer polarity of DNA changes in highland mice. All exomes were sequenced

using a custom Nimblegen probe set targeting exons from 25,246 nuclear genes (see Materials

and Methods). Captured exomes were paired-end sequenced on an Illumina HiSeq 4000 and

mapped to a reference genome (NCBI GCA_000500345.1 Pman_1.0). The final set of quality-

filtered sites consisted of 5,182,530 high-quality bi-allelic variants sequenced at approximately

18X coverage (S1 Fig). Analyses of population genetic structure (using PCA [40] and Admix-

ture [41]), revealed that all three populations were genetically distinguishable (S2 Fig and S3

Fig). Pairwise FST values (estimated with Weir’s Theta [42]) between Mt. Evans and Lincoln

were 0.025± 3.16e-5 (mean±SEM), between Mt. Evans and Merced were 0.025±6.54e-5, and

between Lincoln and Merced were 0.044±8.00e-5.

Based on these results, we calculated the population branch statistic (PBS [13]) for each sin-

gle nucleotide polymorphism (SNP) to identify variants that exhibit extreme allele frequency

changes in the highland population (Mt. Evans) relative to both lowland populations (Lincoln

and Merced) (S4 Fig). Among the upper 0.1% of the PBS distribution, the only SNPs located in

HIF genes were three SNPs located in the HIF-2α gene Epas1 (Fig 1A, S5 Fig); one of these

SNPs was located in the 3’UTR, one was a non-synonymous polymorphism located at site 755
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Fig 1. Epas1 is an exome-wide outlier under spatially varying selection in P. maniculatus along altitudinal gradients. A) Manhattan plot of PBS values

for all SNPs (black dots) located within the last three exons of Epas1 (exon numbers provided above schematic). Exome-wide values for mean, top 1%, and

top 0.1% percentile PBS values are shown, and three outlier SNPs in Epas1 are highlighted in orange (see key). Pairwise linkage disequilibrium estimates

(measured with the squared correlation coefficient, r2) for each SNP pair are provided. B) Geographic variation in Thr755Met Epas1 allele frequency for 23

populations in the Rocky Mountains and Great Plains, USA. Pie charts are shaded according to frequency of high-altitude or low-altitude allele, with size

indicating number of mice sampled (see key). C) Clinal variation in Thr755Met Epas1 allele frequency for 10 P. maniculatus populations sampled along a 4500

m altitudinal cline from the Great Plains of Nebraska to the Rocky Mountains in Colorado. In (B) and (C), Mt. Evans (ME) and Lincoln (LN) populations are

labeled. Dashed box in (B) shows populations chosen for assessing clinal variation in (C). See S1 Table for details on sampling location and Epas1 allele

frequencies.

https://doi.org/10.1371/journal.pgen.1008420.g001
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in the 14th exon that changed threonine to methionine (Thr755Met), and one was a synonymous

polymorphism also located in the 14th exon. The highest-ranking SNP of these three was the

non-synonymous, polarity-altering Thr755Met polymorphism (PBS upper 0.1%; Fig 1A). Due

to significant linkage disequilibrium between alleles at the three closely linked Epas1 SNPs

(Fig 1A), and because there were no SNPs in any of the genes that encode HIF-1α or HIF-3α
in the upper 0.1% of the empirical PBS distribution, we focused our subsequent analyses on

the Thr755Met mutation in Epas1.

To more broadly assess the relationship between Epas1 Thr755Met and elevation, we geno-

typed an additional 266 deer mice collected from 23 sites across the western U.S. (S1 Table).

We found that the Met-755 allele (henceforth called the Epas1H allele) is significantly and posi-

tively correlated with altitude (r2 = 0.589, p<0.001; Fig 1B; S6 Fig). For a single altitudinal tran-

sect connecting Lincoln to Mt. Evans, variation in Epas1 allele frequency is best explained as a

sigmoidal cline centered at 1399.5 m a.s.l. (95% CI 1192.99–1493.01 m a.s.l.) (Fig 1C). Notably,

the Epas1 cline is similar in shape, width, and center to that of ß-globin [43] (S7 Fig), a locus

known to be under selection in high-altitude deer mice [28,43,44]. To infer character polarity

of the amino acid change, we genotyped mice from nine additional Peromyscus species, includ-

ing P. keeni, P. melanotis, P. hylocytes, P. attwateri, P. melanophrys, P. eremicus, P. polionotus,
P. leucopus, as well as an outgroup rodent species, Reithrodontomys montanus. This broader

phylogenetic sampling suggests that the high-altitude variant, Epas1H, is the derived allele

within the P. maniculatus subclade (S2 Table; SI Results).

Epas1 genotype is associated with physiological traits that influence oxygen

homeostasis

We tested for physiological effects of allelic variation at Epas1 using deer mice captured on the

summit of Mt. Evans. Epas1H and Epas1L alleles segregate in this population, occurring at fre-

quencies of 0.83 and 0.17, respectively (Fig 1), which allowed us to isolate the effects of geno-

type on an otherwise randomized genomic background. We developed a restriction digest

protocol to genotype mice in the field (see Methods), and then subjected mice of known geno-

type to a series of tests to characterize variation in traits that influence O2 homeostasis under

hypoxia. We used whole-body plethysmography and pulse oximetry during a step-wise hyp-

oxia exposure [20 min at 21 (sea-level), 12 (equivalent to Mt. Evans altitude), 10, 8, and 6 kPa]

to test for genotypic effects on acute respiratory and cardiovascular responses to hypoxia:

breathing frequency and tidal volume, rate of O2 consumption (VO2), arterial O2 saturation,

and heart rate. Forty-eight hours following plethysmography and pulse oximetry, mice were

exposed to deep hypoxia (6 kPa) for 2 hours and then euthanized. This duration of exposure to

6 kPa O2 was chosen in order to strongly stimulate the HIF-induced transcriptional response,

as supported by previous observations that this hypoxic treatment strongly induces the expres-

sion of Vegfa, a key HIF target, in many organisms [44]. Blood, heart, adrenal glands, lungs,

and gastrocnemius muscle were sampled for transcriptomic profiling and/or for morphologi-

cal and histological analysis.

We did not detect significant effects of allelic variation at Epas1 on some traits that are

indicative of chronic exposure to hypoxia or that otherwise influence O2 transport and utiliza-

tion. Unlike in studies of indigenous Tibetans [12], Epas1 genotype did not affect hematocrit

or hemoglobin concentration at high altitude (S3 Table, S4 Table). Similarly, we did not detect

any genotypic differences in the fiber size (S8 Fig, S9 Fig) or the activities of oxidative enzymes

in the gastrocnemius muscle (S5 Table, S10 Fig). There were trends toward reduced muscle

capillarity in individuals that were homozygous for the lowland allele (Epas1L/L), and reduced

lactate dehydrogenase activity in the muscle of individuals that were homozygous for the
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highland allele (Epas1H/H), but these differences were not statistically significant when com-

pared to all other genotypes (S8 Fig, S9 Fig, S10 Fig).

With respect to respiratory and cardiovascular function under acute hypoxia, we also did

not detect any genotypic differences in breathing (total ventilation, breathing frequency, tidal

volume), VO2, body temperature depression, or pulmonary O2 extraction (S11 Fig, S12 Fig, S6

Table). However, Epas1 genotype did affect heart rate under ecologically relevant levels of hyp-

oxia: resting heart rates in normoxia (21 kPa O2) were similar across genotypes, but individuals

that were homozygous for the highland allele (Epas1H/H) maintained higher resting heart rates

during hypoxia exposure compared to the other two genotypes (Epas1L/-) (Fig 2). We detected

a significant main effect of genotype on heart rate (F2,148 = 3.8; p = 0.03), but a non-significant

interaction (p>0.05), suggesting that Epas1H/H mice generally maintained higher resting heart

rates. The genotypic difference in heart rate was most pronounced at 12 kPa O2, which approx-

imates PO2 at the summit of Mt. Evans (Fig 2). However, the magnitude of the increase in

heart rate from normoxia to 12 kPa O2 was greatest in Epas1H/H mice (S13 Fig), suggesting

that Epas1 genotype may have influenced the heart rate response to hypoxia at the environ-

mental PO2 that are realistic at the high-altitude field site. Heart rate did not differ between

heterozygotes and homozygotes for the lowland allele at any PO2 (Fig 2). We observed a steady

decline in resting heart rate for all three genotypes as the level of hypoxia increased at PO2

below 10 kPa (main effect of PO2: F4,148 = 19.741, P<0.001), likely as a consequence of the

depression in VO2 and body temperature under extreme hypoxia (S12 Fig).

Epas1 genotype affects the regulation of HIF target and catecholamine

genes

We used an RNA-seq approach (TagSeq [45]) to test whether Epas1 genotypes differ in gene

regulation in two tissues affecting heart rate under hypoxia: the adrenal gland (which affects

heart rate and vasoconstrictive responses by secreting catecholamines) and the left ventricle of

the heart. For each tissue we measured transcriptome-wide patterns of gene expression, and

the expression of two candidate gene sets: HIF target genes and genes involved in catechol-

amine biosynthesis, secretion, and signaling (S7 Table). Full results of candidate gene differen-

tial expression analysis are available in the online supplement (S8 Table). Overall, this analysis

revealed a significant association between Epas1 genotype and the regulation of genes in HIF-

and catecholamine-related pathways in both tissues.

In the adrenal gland, we detected a subtle but significant shift toward reduced expression of

candidate genes in mice possessing the high-altitude Epas1 allele (Fig 3A and 3B). Kolmogo-

rov-Smirnov (K-S) tests revealed significant differences in the distribution of log fold-change

values for each comparison of Epas1L/L vs. Epas1H/L and Epas1H/H in catecholamine-associated

genes (Fig 3A and 3B), but not HIF targets (p>0.05). Specifically, log-fold change values were

significantly more negative for candidate genes in Epas1H/- mice compared to the transcrip-

tome-wide background (Fig 3A and 3B), indicating a reduced expression of these genes in

mice that carry Epas1H alleles. To test the robustness of this result, we generated a null distri-

bution of K-S test D-statistics by drawing 1000 random gene sets that were equal in size to the

candidate catecholamine gene set (n = 79). This randomization procedure demonstrates that

the D-statistics calculated for both genotypic comparisons were above the 99% quantile of the

null distribution (Fig 3B inset). The pattern of down-regulation of catecholamine-related

genes is consistent with recent findings that, compared to low-altitude deer mice from

Nebraska, high-altitude mice express lower levels of DOPA decarboxylase in the adrenal

medulla and exhibit reductions in catecholamine release from adrenal chromaffin cells [46].

Moreover, HIF-2α has been shown to be a positive regulator of catecholamine synthesis in
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adrenal chromaffin cells of rats [21], suggesting that the high-altitude Epas1 variant leads to a

direct reduction in gene expression of enzymes involved in catecholamine biosynthesis, and

thereby reduces circulating catecholamine levels.

In a related analysis, we found that positive regulators of catecholamine processes (n = 15)

were downregulated in mice possessing the high-altitude allele (mean log fold-change between

Epas1H/H and Epas1L/L: -0.04 ± 0.17), relative to genes known to be negative regulators of cate-

cholamines (n = 13; mean log fold-change = 0.23 ± 0.19). This trend, though not statistically

significant (p>0.05) is consistent with the hypothesis that possessing the high-altitude Epas1
allele is associated with a downregulation of genes that positively influence catecholamine pro-

cesses. Due to the small size of the subset of genes for which a directional influence could be

established, and the lack of statistical significance, these results should be viewed with caution.

In contrast to the adrenal gland, candidate gene expression in the left ventricle was signifi-

cantly higher in mice possessing Epas1H alleles, but this effect was subtle and only significant

for HIF target genes (Fig 3C and 3D). K-S tests revealed a significant shift toward more posi-

tive distribution of log fold-change values in Epas1H/H (Fig 3C) and Epas1H/L (Fig 3D) mice.

Randomization procedures indicated that the empirical D-statistic falls outside of the 99%

quantile of the null distribution for both comparisons (Fig 3D). We note that several genes in

the top 10% of the distribution of log fold-change in expression (adrenomedullin [Adm],

endothelin [Edn1], and atrial natriuretic peptide [Nppa]; S8 Table) are known effectors of

vasodilation [47–49], suggesting that improved O2 supply to cardiac tissue may be positively

influenced by Epas1 genotype.

Fig 2. Deer mice that were homozygous for the highland Epas1 variant exhibited higher heart rates when exposed

to environmentally realistic levels of hypoxia at 4300 m altitude (12 kPa O2). Measurements were made using a

MouseOx Plus collar. � Significant main effect of Epas1 genotype in a mixed linear model. n = 26 Epas1H/H, n = 13

Epas1H/L, and n = 4 Epas1L/L variants.

https://doi.org/10.1371/journal.pgen.1008420.g002
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Importantly, none of the genes in these pathways were differentially expressed among geno-

types after correcting for multiple testing in either tissue (FDR >0.05), nor were any other

genes in either transcriptome. This result suggests that effects of Epas1 genotype on the regula-

tion of any single gene are weak in these tissues. We note that the O2 pressure (6 kPa) used to

stimulate gene expression was strong, and led to uniform metabolic depression across

Fig 3. Epas1 genotype affects the regulation of HIF and catecholamine genes. Distribution of log fold-change values between Epas1L/L v. Epas1H/H and

Epas1H/L for candidate genes (black) compared the the background transcriptome-wide distribution (grey) for adrenal catecholamine genes (A-B) and left

ventricle HIF targets (C-D). Insets show the distribution of K-S test D-statistics for 1,000 randomly permuted datasets tested against the transcriptome-wide

background. Dashed indicated the 99% quantile of the null distribution, while solid lines indicate the observed D-statistic for each comparison.

https://doi.org/10.1371/journal.pgen.1008420.g003

Selection on Epas1 leads to hypoxia adaptation in high-altitude deer mice

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008420 November 7, 2019 8 / 27

https://doi.org/10.1371/journal.pgen.1008420.g003
https://doi.org/10.1371/journal.pgen.1008420


genotypes (Fig 2) potentially masking genotypic differences in expression that may exist at less

extreme levels of hypoxia. Future research will examine whether 12 kPa O2, the level leading to

the largest genotypic differences in heart rate (Fig 2), elicits greater genotypic difference in the

expression of HIF and catecholamine target genes, or potentially other unknown pathways.

Nevertheless, our results demonstrate that the combined effects of multiple subtle, but con-

certed, shifts in expression of HIF target genes and genes in catecholamine-related pathways

were detectable among genotypes.

Hypoxia-related genes, including Epas1, are targets of positive selection in

highland deer mice

To formally test for a history of spatially varying selection on Epas1 polymorphisms, we per-

formed a demographically-corrected selection scan. We first estimated effective population

sizes (Ne), divergence times (T), and pairwise migration rates (m) for two pairs of populations

(Mt. Evans-Lincoln and Mt. Evans-Merced) by modeling the folded two-dimensional site fre-

quency spectra (2D-SFS) derived from variation at synonymous SNPs using @a@i [50]. The

best-fitting demographic model (S14 Fig) allowed for variation in gene flow among loci by

including two symmetrical migration rate parameters applied to proportions P and 1-P of loci,

following [51], which produced significantly better fit to the data (p = 0; adjusted likelihood

ratio test using the Godambe Information Matrix [52]). For Mt. Evans and Merced, we esti-

mated that approximately 84.2% of SNPs experience a relatively high migration rate (2.07

migrants/generation), while the remaining SNPs experience a substantially lower migration

rate (0.08 migrants/generations). Similarly, between Mt. Evans and Lincoln, we estimate that

approximately 86.4% of SNPs experience a migration rate of ~1.75 migrants/generation while

remaining SNPs have a rate of ~0.08 migrants/generation. Under these models, we estimated

effective population sizes of approximately 368,000 (95% CI: 266,977–470,061) for Mt. Evans,

220,000 (95% CI: 170,878–270,767) for Lincoln, and 371,000 (95% CI: 266,871–477,310) for

Merced populations (S9 Table). The inferred split time between Mt. Evans and Lincoln popu-

lations was approximately 217,000 generations ago (95% CI: 180,998–254,122 generations ago)

and the inferred split between Mt. Evans and Merced was 190,000 generations ago (95% CI:

127,569–253,390 generations ago) (S9 Table).

We established a null PBS distribution by simulating 500,000 neutral SNPs (85% with the

high migration rates and 15% with the low migration rates) across Mt. Evans, Merced, and

Lincoln populations in msms [53] under our estimated demographic model, assuming no

direct gene flow between Merced and Lincoln (S15A Fig). This approach results in a conserva-

tive null model for selection because SNPs simulated under low migration rates between popu-

lations likely mimic SNPs that experience local selection. After calculating PBS values [13]

from these simulated SNPs, we used the distribution to identify outliers above the simulated

99.9th percentile (corresponding PBS: 0.252). There were 37,169 SNPs located in 6,913 genes

above the 99.9th percentile of the simulated distribution (red dashed line in S15 Fig). The
Thr755Met Epas1 SNP was highly significant (S15B Fig), as were the two linked noncoding

SNPs (S15B Fig). These results provide strong evidence for spatially-varying selection on

Epas1 genotype and suggest that the associated phenotypic effects have fitness consequences in

the wild.

Although we had a specific focus on the role of Epas1 in physiological adaptation to high

altitude, our demographically-corrected exome scan also identified a number of other promis-

ing candidates for high-altitude adaptation. Among the PBS outliers relative to the simulated

null, 37 GO categories and 13 KEGG pathways were significantly enriched (FDR p-value

<0.05; S10 Table). Many of these enriched categories are related to known physiological
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mechanisms for maintaining homeostasis under hypoxia, such as “response to oxygen-con-

taining compound” (GO:1901700), “regulation of systemic arterial blood pressure”

(GO:0003073), and “circulatory system process” (GO:0003013). We focused our examination

on outlier SNPs that are located within 1,247 hypoxia-related genes identified by Zhang et al.
[14] (S11 Table) that represent a set of candidates compiled from “hypoxia” and “hypoxia

inducible factor” keyword searches in multiple sources [14]. Of the 6,913 genes with outlier

SNPs, 353 genes overlapped with the set of 1,247 hypoxia-related genes from Zhang et al. [14]

(S11 Table; S12 Table; Fig 4), representing a significant enrichment of hypoxia-related genes

(one-sided Fisher’s exact test; FDR-corrected p-value <0.001). Epas1 was the tenth highest

ranking gene (S12 Table).

The top three hypoxia-related genes were Collagen type I alpha 2 (Col1a2) (highest-ranking

SNP (PBS: 3.33), Integrin subunit alpha 7 (Itga7) (PBS: 3.18) and Potassium calcium-activated
channel subfamily M alpha 1 (Kcnma1) (PBS: 2.82). ColIa2 encodes one of the most abundant

types of collagens that is a ubiquitous component of connective tissue in several organs,

whereas Itga7 and Kcnma1 may both play roles in muscle structure and function. Itga7 is

expressed in skeletal and cardiac muscles, where it may play a developmental role [54], and

Kcnma1 encodes the pore-forming subunit of an ion channel that is integral to smooth muscle

control [55]. Other high-ranking genes of note include Ceruloplasmin (Cp), which was the sev-

enth highest ranking gene (PBS: 2.55; S12 Table) and is involved in iron transport across the

cell membrane, in stimulation of erythropoiesis, and in nuclear translocation of HIF1 [56].

Further exploration of these hypoxia-related genes, as well as other targets of selection in high-

altitude deer mice, is the focus of an ongoing study.

Discussion

While many studies have identified hypoxia-inducible factors (HIFs) as candidates for high-

altitude adaptation (e.g., [8,13–15,57,58]), few have experimentally documented phenotypic

effects of mutations in these genes on aspects of systems-level physiology [18]. Yet, these types

of genotype-to-phenotype association studies are necessary for identifying functional links

that can advance multiple fields from evolutionary biology to biomedicine [59,60]. We com-

bined a series of complimentary population genetic analyses and physiological experiments to

test the role of HIFs in high-altitude adaptation of deer mice. We first identified a non-synony-

mous and polarity-altering polymorphism in the coding region of Epas1 (which encodes

HIF2α) that exhibited an extreme allele frequency difference between highland and lowland

populations (Fig 1A). Moreover, the high-altitude Epas1H allele, which is derived in the P.

maniculatus sub-clade, varied predictably with altitude in mice sampled throughout the west-

ern United States (Fig 1B and 1C). These results suggested that variation at Epas1 may contrib-

ute to well-characterized physiological differences observed between highland and lowland

deer mice [25,26,31–39]. Physiological tests of this hypothesis demonstrated that Epas1 poly-

morphism was not associated with many traits known to be regulated by HIFs [11]. Most nota-

bly we did not detect an association between Epas1 genotype and hematocrit or hemoglobin

concentration (S3 Table, S4 Table) unlike studies in high-altitude indigenous Tibetans [12],

nor did we detect associations with adaptive variation in breathing pattern [34] or skeletal

muscle fiber type [32] shown in high-altitude deer mice (see S5 and S6 Tables). If the observed

mutation at Epas1 does affect such traits, our results suggest that other mechanisms compen-

sate for these effects in mice that have developed at high altitude.

Although we did not detect an effect of Epas1 genetic variation on several HIF-related traits,

we documented an unprecedented relationship between Epas1 genotype and cardiovascular

function. Experimental hypoxia exposures demonstrated that mice homozygous for Epas1H
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maintain an elevated heart rate under physiologically and ecologically relevant levels of hyp-

oxia (Fig 2). Moreover, Epas1 genotype appears to have systematic effects on pathway gene

expression, leading to downregulation of genes involved in catecholamine biosynthesis and

secretion in the adrenal gland (Fig 3A and 3B), and upregulation of HIF targets in the left ven-

tricle of the heart (Fig 3B and 3C). While the effects of Epas1 genotype on the expression of

any single gene are weak, the combined effects of subtle but concerted shifts in expression of

genes in these candidate pathways were detectable and varied predictably among genotypes.

Finally, formal demographically-controlled selection scans revealed that Epas1, and a number

of other genes in hypoxia response pathways, have been a target of natural selection at high

altitude (Fig 4). These results suggest that the associated phenotypic differences in cardiovascu-

lar function and gene regulation contribute to fitness differences in the wild.

This study provides the first documentation of a relationship between naturally occurring

genetic variation at Epas1 and heart rate under hypoxia. The maintenance of an elevated heart

rate during hypoxia could be the direct phenotypic target of selection on Epas1 in order to

improve circulatory O2 delivery at high altitude. Assuming that there are not opposing differ-

ences in stroke volume between genotypes, increased heart rate should result in an increased

cardiac output and thus enhanced O2 delivery to systemic tissues [10]. Indeed, mice that were

homozygous for the highland Epas1 genotype tended to have slightly larger ventricles

(Table S4), which although not statistically significant, suggest that lower heart rates are not

compensated for with increases in heart size (and potentially associated increases in stroke vol-

ume). Elevated heart rates during hypoxia could also be a secondary consequence of adaptive

changes in other functions of the cardiovascular control system that are the direct targets of

selection. One possible target of selection is catecholamine release from the adrenal medulla,

which we have recently shown is attenuated in high-altitude deer mice [46]. The genetic basis

for this attenuation is unknown, but the patterns of variation in expression for genes related to

catecholamine synthesis and release suggest that genetic variation in Epas1 may be involved.

Catecholamine release in hypoxia normally acts to induce vasoconstriction and constrain

blood flow to many peripheral tissues [61], so the attenuation of catecholamine release in high-

land mice may serve primarily to minimize this effect and improve tissue blood flow during

hypoxia. However, hypoxic vasoconstriction could normally lead to feedback activation of the

baroreflex, which would tend to reduce heart rate and oppose other factors that tend to stimu-

late heart rate in hypoxia (i.e., activation of sympathetic neurons innervating the heart). This

Fig 4. Epas1 is an outlier in a demographically-controlled selection scan. Exome-wide distribution of population branch statistic (PBS) for Mt.

Evans mice based on 5,182,530 SNPs from the exome. Horizontal line (red) indicates the top 0.1% percentile PBS of 500,000 neutral SNPs simulated

under a realistic demographic scenario, and SNPs in hypoxia-related genes are highlighted in orange. The top ten hypoxia-related genes are labeled, with

Epas1 indicated in bold text. SNPs with a PBS value below the top 0.1% percentile have been randomly down-sampled (1:20) for ease of plotting.

https://doi.org/10.1371/journal.pgen.1008420.g004
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potential secondary effect of hypoxic vasoconstriction would be minimized by an attenuation

of adrenal catecholamine release, such that heart rate would rise more in response to hypoxia.

Therefore, in this hypothetical example, the primary target of selection (improvement in

regional tissue blood flows via reductions in catecholamine release) has secondary conse-

quences on the heart rate response to hypoxia.

Whatever the mechanism, the observed effects of Epas1 genotype within highland mice

mirror genetically-based population differences in heart rate between highlanders and low-

landers [34], suggesting that evolved population differences may result from allelic variation at

Epas1. Humans native to the Qinghai-Tibetan plateau (2200–5200 m a.s.l) reach higher maxi-

mal cardiac outputs during exercise compared to closely related lowland Han Chinese when

tested at high altitude [62]. These results suggest that changes in cardiovascular function or

control–either at rest, as in deer mice, or during exercise, as in Tibetan humans–may be a com-

mon adaptation to high altitude. The potential benefit to circulatory O2 delivery conferred by

these cardiovascular changes is likely one of many adaptations that improve metabolic homeo-

stasis across systemic tissues in highlanders. These other potential adaptations include evolved

changes in breathing and respiratory gas exchange [34], higher hemoglobin O2 affinity [28],

enhanced capacity for O2 diffusion into metabolically active muscles [26,32,37], as well as

changes in the density, intracellular distribution, and function of muscle mitochondria

[37,38]. All of these modifications are likely to contribute to an enhancement of aerobic perfor-

mance under O2 deprivation [24,25,32].

The results of this study demonstrate a role for coding changes in a transcription factor in

environmental adaptation. The majority of the systems-level traits we measured (e.g., breath-

ing, metabolism) were remarkably similar between Epas1 genotypes, as were the transcrip-

tome-wide effects of Epas1 genotype on gene expression in the adrenal gland and heart,

suggesting that the Epas1 amino acid mutation has highly targeted phenotypic effects. Our

results suggest that selection on high-level transcription factors such as Epas1 contribute to

local adaptation, so any negative pleiotropic effects associated with the evolved changes must

be compensated by other mechanisms.

Materials and methods

Ethics statement

We handled and sampled mice in accordance with the University of Montana’s Institutional

Animal Care and Use Committee (AUP 029–16), the Colorado Department of Fish and Wild-

life (License Number: 17TR2168a) and the United States Forest Service (Authorization ID:

CLC772). Following protocol, mice were euthanized with an isofluorane overdose followed by

decapitation.

Exome design, capture, and high-throughput sequencing

To identify all annotated exons, we downloaded the Peromyscus maniculatus bairdii GFF v101

from NCBI (Accession GCF_000500354.1), and extracted all features annotated as an exon.

The final set of unique, non-pseudogenized exonic regions consisted of 218,065 exons in

25,246 genes. A custom Roche NimbleGen SeqCap EZ Library kit capture a total of 226,973

regions (77,559,614 bp).

We extracted DNA from tissues of 85 deer mice (Lincoln, NE: n = 37; Mount Evans, CO:

n = 48) and sheared DNA to ~300 bp using a Covaris E220 Focused Ultrasonicator. Genomic

libraries for each individual were prepared using 200 ng of sheared DNA with a NEBNext

UltraII kit and unique index following manufacturer’s protocols. We pooled batches of 24

indexed libraries prior to target enrichment and PCR amplification following the NimbleGen
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Seq Cap EZ protocol (Roche). Quality control for each capture pool included a check of size

distribution and a check for enrichment of targeted regions and no enrichment of non-tar-

geted regions using qPCR. Each capture pool of 24 individuals was sequenced with 100 bp

paired-end sequencing on an Illumina HiSeq 4000. We extracted and quantified DNA samples

for the California deer mice (Merced, CA; n = 15) at the Museum of Vertebrate Zoology, UC

Berkeley, before shearing one μg of genomic DNA to less than 500 bp with a Biorupter (Diage-

node). We prepared barcoded Illumina sequencing libraries using the Meyer and Kircher [63]

protocol, then amplified libraries with Phusion High-Fidelity DNA Polymerase (Thermo Sci-

entific) for 6–8 cycles during the indexing PCR. Exome enrichment was conducted with a cus-

tom capture design from the SeqCap EZ Developer Libary (Nimblegen) that was almost

identical to that used in the 85 non-CA samples. Captures were quantified, pooled proportion-

ally to the amount of DNA in each, and sequenced using 100bp pair-end sequencing on an

Illumina HiSeq4000.

Data pre-processing and variant discovery on all samples followed the recommendations of

the Broad Institute GATK v3.7-0-gcfedb67 Best Practices pipeline. We trimmed reads of

adapter sequences and for a minimum base quality of 20 using fastq_illumina_filter 0.1
(https://mcbl.readthedocs.io/en/latest/mcbl-tutorials-PF-clean.html) and trim_galore 0.3.1
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). We used bwa mem [64]

to align and map forward and reverse reads to the Peromyscus maniculatus baiardii genome.

We removed duplicates using samtools rmdup [65], then added read group information using

picard. (http://picard.sourceforge.net). To generate a set of “known” variant sites for GATK
Base Quality Score Recalibration (BQSR), we genotyped each individual using samtools mpileup
(-q 30 -Q 30) and bcftools call, then filtered genotypes to have a minimum depth of coverage

(minDP) of 10 and minimum genotype quality (minGQ) of 30, and only used those variants

observed in at least two individuals. The resulting set of variant positions was used with

the -knownSites flag during GATK BQSR. A subsequent round of BQSR was completed and

convergence of quality scores was verified using GATK AnalyzeCovariates. To genotype each

sample, we used GATK HaplotypeCaller with the ‘--emitRefConfidence’ flag, then called vari-

ants GATK GenotypeGVCFs. We combined GVCFs and filtered them to remove SNPs with a

quality of depth <2.0, a FS > 60, mapping quality < 40, mapping quality rank sum < -12.5,

and read position rank sum < -8.0. We implemented all processing steps in GATK using the

‘--interval’ flag, a bed file of capture regions, and a ‘--interval_padding’ of 200 bp. These pro-

cessing steps resulted in a total of 106,883,914 sites among all individuals.

After assessing the quality of filtered reads using the vcftools package[66], we further filtered

variants so that a site was called in at least 50% of individuals, was bi-allelic, and each site had a

minDP of 5 and minGQ of 20. We proceeded with a set of 5,183,434 high-quality bi-allelic var-

iants, with a mean depth of coverage of 18.10±6.38 X (S1 Fig).

Population genetic structure

We assessed population genetic structure of Mount Evans, Lincoln, and Merced mice using

principal components analysis within PLINK [40] and Admixture [41]. Prior to running the

analyses, we pruned the set of variants to only sites with no missing data, and not linked (using

the “--indep-pairwise 50 5 0.5” option within PLINK). The final set of variants for these analy-

ses consisted of 296,196 bi-allelic sites.

Allele frequency variation in HIF genes

In order to examine altitudinal patterns of allele frequency variation of the genes encoding

HIF-1α, HIF-2α, and HIF-3α, we calculated pairwise FST using vcftools, then the Population
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Branch Statistic (PBS) [13] for each of the 5,183,434 bi-allelic variants. Using the ‘ecdf’ func-

tion in R, we used the empirical distribution of PBS values and set a threshold of 99.9% for sig-

nificance (corresponding PBS: 0.886). We used Ensembl’s Variant Effect Predictor [67] with

the P. maniculatus reference genome annotation data set to identify SNPs located in HIF

genes. For the three outlier SNPs located in Epas1, we calculated pairwise linkage between

each SNP as the squared correlation coefficient, r2, using the ‘--geno-r2’ function within

vcftools [66],

Geographic and phylogenetic survey

To fully assess the geographic and phylogenetic extent of variation in Epas1, we genotyped

266 P. maniculatus samples from across the western US (S1 Table), plus samples of P. keeni,
P. melanotis, P. hylocytes, P. attwateri, P. melanophrys, P. eremicus, P. polionotus, P. leucopus,
Reithrodontomys montanus, and Phyllotis xanthopygus (S2 Table). We obtained tissue samples

from our existing freezer collections or museums (Museum of Southwestern Biology at the

University of New Mexico, or Museum of Comparative Zoology, Harvard University). From

each sample, we extracted DNA then PCR amplified Epas1 with custom exonic primers

(“epas1_snp_L” and “epas1_snp_R”; S13 Table) designed from the P. maniculatus bairdii
genome under the following conditions: 94˚C for 2 mins; 30 cycles of 94˚C for 45 sec, 58˚C

for 1 min, 72˚C for 1 min; then 72˚C for 10 mins. To improve amplification specificity for

P. maniculatus samples, we used modified primers and PCR conditions (“epas1_set1_F” and

“epas1_set1_R”; S13 Table): 94˚C for 2 mins; 35 cycles of 94˚C for 30 sec, 62˚C for 30 sec,

68˚C for 1 min; then 68˚C for 10 mins. Technicians at Genewiz (South Plainfield, NJ) cleaned

amplified products and sequenced them in both directions. We called genotypes after aligning

sequences to the reference sequence using Geneious 8.1.8. We calculated population allele fre-

quencies within each sampling locality, and obtained elevation for each locality from GPS data

recorded upon sampling, or from Google Maps. We mapped these allele frequency data on a

map of elevation (data downloaded from www.worldclim.org) using the ‘maps’ package in R.

Finally, we placed Epas1 genotype for each sequenced species on a Peromyscus phylogeny con-

structed previously [68–70].

Cline analysis for Epas1 and Hemoglobin genes

We tested whether the Epas1 allele frequencies follow a clinal pattern using the R package

HZAR [71]. In HZAR, genetic data are fit to equilibrium cline models using the Metropolis–

Hastings Markov chain Monte Carlo (MCMC) algorithm, and parameters such as the cline

center (c) and width (w) are estimated. c and w characterize the location within the transect

where the variable changes most rapidly, and the values of these parameters can be estimated

within HZAR by 15 models that differently estimate the exponential decay on either side of the

cline center, as well as the minimum or maximum frequencies. We used as input the Epas1
allele frequency data and elevation for populations of deer mice sampled across the Rocky

Mountain to Great Plains elevational cline, and used a burn-in of 10000. We compared the

Epas1 cline to that for previously published hemoglobin haplotype frequencies in deer mice

[43].

Physiological effects of allelic variation at Epas1
To test for physiological effects of allelic variation at Epas1, we captured deer mice from a sin-

gle interbreeding population in which the high-altitude allele is segregating. We collected adult

deer mice from the summit of Mt. Evans (Clear Creek Co., Colorado, USA; 39˚35’18” N, 105˚

38’38” W; 4,350 m above sea level; PO2 ~ 95.6 mm Hg) in August 2016 and 2017 and screened
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the Epas1 allele (a C/T polymorphism at nucleotide position 2264, hereafter C2264T). From

each individual, we sampled an ear clip sample, extracted DNA, then genotyped Epas1 C2264T

using a custom restriction enzyme digest assay. Briefly, we PCR amplified Epas1 with custom

exonic primers (S13 Table) designed from the P. maniculatus bairdii genome and amplified

under the PCR conditions specified above. For all amplified PCR products, we cut Epas1 at
C2264T by incubating the PCR product with the BsaHI restriction enzyme at 37˚C for 1 hour

followed by a heat denaturation for 20 mins. We called Epas1 genotypes via gel electrophoresis

(T ~675 bp; C ~300 bp;), then subsequently confirmed field genotypes with Sanger sequencing

at Genewiz.

Acute hypoxia responses with pulse oximetry

At the University of Denver Mt. Evans field station (3230 m a.s.l.; ~15kPa O2), we screened

these Mt. Evans mice with alternative Epas1 genotypes for a suite of physiological responses

involved in O2 transport and utilization and/or known to be influenced by HIFs. We measured

hypoxia responses in mice (26 Epas1H/H, 13 Epas1H/L, and 4 Epas1L/L) using previously

described barometric plethysmography, respirometry, and pulse oximetry techniques [34,72].

We placed each mouse in a whole-body plethysmograph (chamber volume: 530 ml) that was

supplied with hyperoxic air, mixed to simulate the partial pressure of O2 (PO2) at sea level (21

kPa O2, balance N2), at a rate of 600 ml min-1. We gave mice 20–60 min to adjust to the cham-

ber and stabilize their breathing and metabolism. We recorded measurements for an addi-

tional 20 min at 21 kPa O2, then exposed mice to 20 min stepwise reductions in inspired PO2

of 12, 10, 8, and 6 kPa. We set the incurrent gas composition by mixing dry compressed gases

using precision flow meters and a mass flow controller, such that the desired PO2 was delivered

to the chamber at a constant rate of 600 ml min-1. At the end of the experiment, we measured

body temperature (Tb) using a mouse rectal probe. We also measured Tb exactly 24 h later to

determine resting Tb (this was used as a proxy for the resting Tb at the start of the experiment,

which was not measured to prevent stress to the animal).

We determined breathing and O2 consumption rate (VO2) during the last 10 min at each

PO2 by subsampling incurrent and excurrent airflows at 200 ml min-1. For incurrent and

excurrent air, we measured water vapor (RH-300, Sable Systems) using a thin-film capacitive

water vapor analyzer, then dried air with pre-baked drierite, and measured continuously for

O2 and CO2 fraction using a galvanic fuel cell O2 analyzer and infrared CO2 analyzer (FOX-

BOX, Sable Systems). We used these data to calculate VO2 and CO2 production rate (VCO2),

expressed at standard temperature and pressure (STP), using appropriate equations for dry air

as described by Lighton [73]. We measured breathing frequency and tidal volume from

changes in flow across a pneumotachograph in the plethysmograph wall, detected using a dif-

ferential pressure transducer. We calculated tidal volume using established equations [75,76]

and assuming a constant rate of decline in Tb with declining PO2, which we have previously

shown results in similar tidal volumes to those calculated using direct Tb measurements at

each PO2 [72], and is expressed at STP. We calculated the following parameters: total ventila-

tion (the product of breathing frequency and tidal volume), ventilatory equivalent for O2 (total

ventilation divided by VO2), and percent pulmonary O2 extraction (VO2 divided by the prod-

uct of total ventilation and inspired O2 fraction). We measured SaO2 and heart rate using the

MouseOx Plus pulse oximeter collar sensors and associated software (Starr Life Sciences, Oak-

mont, PA, USA). Use of the collars was enabled by removing a small amount of fur from the

skin around the neck one day before experiments.

We tested for effects of Epas1 genotype on cold-induced VO2 max (thermogenic capacity),

an ecologically relevant measure of whole-organism aerobic performance for which there is an
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evolved difference between lowland and highland deer mice [24]. To do this we measured

maximum rates of oxygen consumption in a hypoxic, heliox atmosphere (21% oxygen, 79%

helium) using open-flow respirometry. All trials were conducted at the summit of Mt. Evans.

The use of heliox ensures that VO2 max can be measured without risking cold injury, since

rates of heat loss in heliox are several times greater than that of ambient air [74]. For each trial,

we equilibrated heliox gas mixtures with atmospheric pressure of the Mt. Evans summit (12

kPa). Mass flow controllers helped pump the heliox mixture into copper coils inside a temper-

ature control chamber. The cooled gas was pumped into an animal chamber and an empty

baseline chamber at a rate of ~750 ml min-1. Excurrent air from the animal and baseline cham-

bers was sampled at a rate of ~130 ml min-1, dried with magnesium perchlorate and scrubbed

of CO2, redried with drierite, and passed through an oxygen analyzer. We defined thermo-

genic capacity as the maximum VO2 averaged over a continuous 5-min period. We tested for

the influence of genotype on thermogenic capacity using an analysis of covariance (ANCOVA)

with body mass as covariate.

Tissue and organ sampling and phenotyping

Mice recovered for 2–3 days after the hypoxia response experiments described above. We

exposed recovered mice to 2 hours of deep hypoxia (6 kPa O2) and euthanized them with an

isofluorane overdose followed by decapitation. We collected blood samples for hematocrit (in

heparinized capillary tubes, spun for 5 minutes) and hemoglobin content (Hemocue, Sweden).

We dissected the heart, then isolated and weighed the ventricles before freezing them sepa-

rately in liquid N2. We determined lung volume by volumetry [75]. We weighed and froze in

liquid N2 one gastrocnemius muscle, then coated the other in embedding medium and froze it

in liquid N2-cooled isopentane for histology. We froze other organs directly in liquid N2.

We measured muscle capillarity using histological methods in a subset of the mice (17

Epas1H/H, 13 Epas1H/L, and 4 Epas1L/L) chosen to ensure a balanced sex distribution (11

Epas1H/H males, 6 Epas1H/H females, 11 Epas1L/- males, 6 Epas1L/- females) and body mass

(21.49 ± 4.05 g for Epas1H/H, 21.76 ± 5.43 g for Epas1H/L, 21.01 ± 4.12 g for Epas1L/L;

means ± SEM) between the three groups. We prepared full transverse sections of the gastroc-

nemius muscle as previously described [32,76]. Briefly, after cutting 10 μm tissue sections

transverse to the muscle fiber length using a cryostat, we identified capillaries by staining sam-

ples for alkaline phosphatase activity following previous studies [32,76]. We used bright-field

microscopy to systematically collect images from across the entire gastrocnemius, and used

ImageJ software [77] to count the number of capillaries and muscle fiber in each image and

measured capillary density, average number of capillaries per muscle fiber, and average trans-

verse area of muscle fibers. We used NIS-Elements D Imaging Software (v. 4.30, Nikon Instru-

ments) to measure the number, perimeter, and capillary surface densities of individual

capillaries within each image. We determined a sufficient number of images to analyze to

account for heterogeneity across the gastrocnemius, determined by the number of replicates

necessary to yield a stable mean value, following ref. [32]. This required analysis of roughly

half of the entire section, with images spread evenly across the section, which was found to be

more than sufficient to accurately represent average values across the entire muscle. For all his-

tological measurements, the observer was blind to genotype during analysis.

We used the remaining gastrocnemius muscle tissue in metabolic enzyme assays that we

have previously described [76]. After removing embedding medium from the muscle tissues

we powdered samples under liquid N2 and homogenized them in ice-cold homogenization

buffer [76]. We centrifuged homogenates at 1000g for 1 min at 4˚C, discarded the pellet, and

stored the homogenate on ice until assay. We assayed activities of cytochrome c oxidase
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(COX), citrate synthase (CS), and lactate dehydrogenase (LDH) in triplicate at 37˚C using a

96-well microplate reader. Assay conditions in mM were as follows: COX, 100 KH2PO4, 0.2

reduced cytochrome c�, pH 8.0; CS, 100 KH2PO4, 0.5 oxaloacetate�, 0.15 acetyl-coA, 0.15 5,50-

dithiobis-2-nitrobenzoic acid (DTNB), pH 8.0; LDH, 100 KH2PO4, 0.15 NADH, 2.5 pyruvate�,

pH 7.2. We determined maximal activities by measuring the change in absorbance over time

at 550 nm for COX (ε = 28.5 mM-1 cm-1), 412 nm for CS (ε = 14.15 mM-1 cm-1), and 340 nm

for LDH (ε = 6.22 mM-1 cm-1), and subtracting the background rate from the rates measured

in the presence of all substrates.

Statistical analyses of physiological effects of allelic variation at Epas1
To assess the influence of Epas1 genotype on physiology and tissue/organ phenotypes, we used

linear mixed effect models and included body mass, genotype, and acute PO2 (when appropri-

ate) as fixed effects. We initially included year (2016 or 2017) and sex as random effects, but

removed them from all models because they were never found to be significant (P>0.25). We

removed body mass from models in which its effect was not significant for variables that we

did not have any a priori expectation of allometric scaling (heart rate, SaO2, hematology, and

gastrocneumius muscle capillarity and enzyme activities). We conducted Holm-Sidak pairwise

post-tests on significant models, and used R (v. 3.4.3) and the lme4 package for all statistical

analysis, with a significance level of 0.05. We report VO2, total ventilation, and tidal volume

relative to body mass to enable comparison to the literature, but we used the absolute data (i.e.,

not expressed relative to body mass) for statistical analyses as described above.

Transcriptomic analysis of differential gene expression

We used high throughput sequencing to test for effects of Epas1 genotype on gene expression

in adrenal gland (8 Epas1H/H; 8 Epas1H/L; 3 Epas1L/L) and heart tissue (7 Epas1H/H; 9 Epas1H/L;

3 Epas1L/L). We chose the adrenal gland because of its role in stimulating heart rate via cate-

cholamine release. We assayed gene expression using TagSeq, a 3’ tag-based sequencing fol-

lowing ref. [45]. We extracted RNA from 25 mg of tissue using TRI Reagent (Sigma-Aldrich),

then assessed RNA quality using TapeStation (Agilent Technologies; RIN > 7). The Genome

Sequencing and Analysis Facility at the University of Texas at Austin prepared TagSeq librar-

ies, which were sequenced using Illumina HiSeq 2500. Sequencing generated an average of

4.6M reads per individual. We processed raw reads following Lohman et al. [45] and mapped

them to the P. maniculatus genome using bwa [64]. We used featureCounts [78] to generate a

table of transcript abundances. Since genes with low read counts are subject to increased mea-

surement error [79], we excluded those with less than an average of 10 normalized reads per

individual using the filterByExpr function in edgeR. We retained a total of 12,237 and 10,509

genes after filtering for adrenal and heart transcriptomes, respectively.

We used two complementary approaches to compare levels of transcript abundance among

Epas1 genotypes: (1) A whole-transcriptome differential expression analysis was conducted to

identify genes that were differentially expressed in each tissue. (2) We performed candidate

differential expression analysis on two a priori gene sets aimed at testing whether genes related

to the HIF cascade and/or catecholamine synthesis/transport exhibited concerted changes in

gene expression among alternative genotypes. We conducted the whole-transcriptome differ-

ential expression analysis in edgeR [80]. The function calcNormFactors was used to normalize

read counts among all libraries, after model dispersion was estimated for each transcript sepa-

rately using the function estimateDisp [81]. We tested for differences in transcript abundance

by first fitting a quasi-likelihood negative binomial generalized linear model to raw count data

(glmQLFit function), which included a single main effect of genotype (Epas1L/L was used as a

Selection on Epas1 leads to hypoxia adaptation in high-altitude deer mice

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008420 November 7, 2019 17 / 27

https://doi.org/10.1371/journal.pgen.1008420


reference for comparing against Epas1H/L and Epas1H/H). P-values were calculated using a

quasi-likelihood F test using the glmQLFTest function. We controlled for multiple testing by

enforcing a genome-wide false discovery rate correction of 0.05 [82]. We identified candidate

HIF target genes from the literature [83,84] and Kyoto Encyclopedia of Genes and Genomes

database [85] as those with known function in HIF signaling, and those that have an unknown

function but contain HIF binding sites [84]. We ascertained catecholamine-related genes

based on annotation in the Gene Ontology (GO) database in AmiGO (amigo.geneontology.

org). A total of 277 HIF targets and 149 catecholamine related genes (S7 Table) were

identified.

To determine whether there were concerted shifts in gene expression for the candidate

gene sets among genotypes, we calculated log fold-change in expression between Epas1L/L

mice and mice heterozygous and homozygous for the high-altitude allele in edgeR. The distri-

bution of fold-change values between candidate gene sets and the transcriptome-wide back-

ground (candidate genes excluded) was compared using Kolmogorov-Smirnov (K-S) tests

using the function ks.test in R. We then conducted a randomization procedure to test whether

the observed D-statistic for K-S tests was greater than a null distribution; the null distribution

of D-statistic values was produced by 1000 random draws of gene sets that were of equal size to

candidate sets (adrenal: HIF: n = 207; catecholamine: n = 79; left ventricle: HIF: n = 207; cate-

cholamine: n = 55) and comparing those to the transcriptome-wide background.

Demographic modeling and null PBS distribution

We estimated the demographic history of highland and lowland deer mice using synonymous

SNPs in @a@i [50]. We filtered SNPs in Hardy-Weinberg equilibrium (p<0.001) and excluded

sites with >25% missing data per population using vcftools, resulting in 287,336 SNPs to gener-

ate a folded site-frequency spectrum. We then estimated effective population sizes (Ne), diver-

gence times (T), and pairwise migration rates (m) between highland deer mice from Mt. Evans,

CO (n = 48) and deer mice from Lincoln, NE (n = 37) and Merced, CA (n = 15). We assumed

that any migration between Lincoln and Merced populations would occur indirectly through

the central Mt. Evans population and thus we did not perform a pairwise demographic analysis

for Lincoln and Merced. For our pairwise population comparisons (Mt. Evans-Lincoln and Mt.

Evans-Merced), we calculated maximum-likelihood (ML) parameters for demographic models

with and without a single symmetrical migration parameter and with an effective population

size parameter (u; proportional change in Ne relative to the ancestral population immediately

following the split). We observed that maximum likelihood parameters under models of no

migration or a single symmetrical migration rate strongly underestimated the relative abun-

dance of highly differentiated SNPS, resulting in poor fit to the empirical 2D-SFS (S14 Fig). We

also tested a model which included heterogeneous migration rates among loci in the genome.

Here, we included two symmetrical migration rates, one for proportion P of SNPs and one for

proportion 1-P of SNPs, where we also estimate the P parameter. For each demographic model,

we performed 25 independent runs with starting parameter values sampled randomly from a

uniform prior distribution (0<2Nem<10; 0.01<2Net<10; 0.1<u<10; 0.5<P<1.0). We selected

the optimal demographic model based on an adjusted likelihood ratio test using the Godambe

Information Matrix [52]. We estimated 95% confidence intervals for population size, diver-

gence time, and migration rate parameters using the Godambe Information Matrix with 100

replicate bootstrap data sets consisting of randomly sampled SNPs spaced at least 10 kb apart

(14250 SNPs for each data set). We calibrated theta estimates based on the ratio of all callable

sites to SNPs under the same filtering regime and assuming a mutation rate of 5.4x10-9 per base

per generation (house mouse; ref. [86]).
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To establish a null PBS distribution, we simulated 500,000 neutral SNPs across three popu-

lations in msms [53] under our estimated demographic model. Given our optimal models

included two symmetrical migration rate parameters applied to different sets of SNPs we simu-

lated proportion P of SNPs under high migration rates (85%) and proportion 1-P of SNPs

under low migration rates (15%) and combined the two simulated data sets. We used msstats

(https://github.com/molpopgen/msstats) to obtain FST values for SNPs between each popula-

tion and calculated PBS based on the equation in Yi et al. [13].

Demographically corrected exome scan with the Population branch

statistic

We used the simulated distribution of PBS values, and set a significance threshold of 99.9%

(corresponding PBSsim: 0.199). We focused our examination on outlier SNPs that are located

within 1,247 hypoxia-related genes from Zhang et al. [14] (S11 Table). The genes from Zhang

et al. represent a set of candidates compiled from “hypoxia” and “hypoxia inducible factor”

keyword searches in multiple sources, including the UCSC Genome Browser, Ensembl, NCBI,

UniProt, and RefSeq. For each P. maniculatus gene containing outlier SNPs, we found the cor-

responding Mus musculus gene, then used gProfiler [87] to identify enriched gene ontology

categories above a false discovery rate corrected significance of 0.05, using strong hierarchical

filtering.

Supporting information

S1 Text. File containing supplemental results for population genetic, cline, and physiologi-

cal analyses.

(DOCX)

S1 Table. Sampling locations and frequency of Epas1 alleles for 266 Peromyscus manicula-
tus samples used to generate map and cline in Fig 1. Sampling locations in bold text were

used to generate cline in Fig 1C.

(XLSX)

S2 Table. Sampling locations, museum accessing numbers, and Epas1 genotypes for Pero-
myscus and broader phylogenetic sampling.

(XLSX)

S3 Table. Blood characteristics and organ masses of Epas1 variants of deer mice. Values are

expressed as mean ± SEM; n = 31 for Epas1H/H, n = 13 for Epas1H/L, n = 4 for Epas1L/L vari-

ants.

(XLSX)

S4 Table. F- and P-values for mixed linear effect models of blood and organ mass variables

in Epas1 variants of deer mice. n.s. not significant and excluded from the final model.

(XLSX)

S5 Table. F- and P-values from mixed linear models of gastrocnemius muscle capillarity

and enzyme activity in Epas1 variants of deer mice. n.s. not significant and excluded from

the final model.

(XLSX)

S6 Table. F- and P-values from mixed linear models of ventilatory and metabolic responses

of Epas1 variants of deer mice. n.s. not significant and excluded from the final model.

(XLSX)
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S7 Table. Candidate set of hypoxia inducible factor (HIF) cascade target genes and cate-

cholamine synthesis and secretion genes used in targeted differential gene expression anal-

ysis. Candidate genes were curated from the literature (Ortiz-Barahona et al. 2010; Dengler

et al. 2016) and publically available databases (KEGG: Kyoto Encyclopedia of Genes and

Genomes; AmiGO).

(XLSX)

S8 Table. Results of differential gene expression among candidate HIF and catecholamine

genes. Table reports average log2 fold-change (logFC) in expression, average log2 read counts

per million (logCPM), and the F-value (F) from quasi-likelihood F tests, p-value, and false-dis-

covery rate corrected p-value (FDR) of quasi-likelihood generalized linear models comparing

expression between Epas1L/L vs. Epas1H/H and Epas1H/L for adrenal and left ventricle tissues.

Gene names are Mus musculus gene ids.

(XLSX)

S9 Table. Maximum likelihood parameter estimates and 95% confidence intervals (CI) for

demographic model.

(XLSX)

S10 Table. Results from gProfiler for gene ontology enrichment of genes containing SNPs

above the 99.9th percentile of the empirical distribution of PBS values. Only categories sig-

nificant above a Benjamini-Hochberg false-discovery rate of 0.05 are included.

(XLSX)

S11 Table. The list of hypoxia-related genes used in this study. The list of genes was

extracted from Zhang et al. (2014), then orthologs in Mus musculus and Peromyscus manicula-
tus were identified using DAVID and custom scripts.

(XLSX)

S12 Table. Hypoxia-related genes containing SNPs with PBS values above the 99.9th per-

centile of the empirical distribution. For each gene, the PBS value, genomic location, and

percentile of the highest-ranking SNP is provided.

(XLSX)

S13 Table. Epas1 primer sequences. Primers were used to amplify Epas1 prior to restriction

enzyme digest for screening of alternative alleles. Sequences are given 5’ to 3’. See supplemental

text for PCR reaction conditions.

(XLSX)

S1 Fig. Mean Depth of Coverage for 100 Exomes. Distribution of mean depth of coverage for

100 exome samples used in this study. The final set of quality-filtered sites consists of

5,182,530 high-quality bi-allelic variants sequenced at approximately 18X coverage. Red

dashed vertical line indicates the mean.

(PDF)

S2 Fig. PCA of Three Focal Populations. Principal components analysis of Mount Evans

(n = 48), Lincoln (n = 37), and California (n = 15) mice, based on genotypes from 296,196

exome-wide LD-pruned SNPs with no missing data.

(PDF)

S3 Fig. Population assignment made via Admixture for K = 2 to K = 3 for 100 individuals.

A) Admixture was run on a set of 296,196 exome-wide LD-pruned SNPs with no missing data.

Each vertical bar represents an individual, with the colors corresponding to proportion
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assignment at each value of K. B) The lowest cross validation error rate was at K = 1; however,

higher values of K are biologically meaningful and are therefore shown here.

(PDF)

S4 Fig. Density distribution of population branch statistic (PBS) values calculated for

Mount Evans, using Lincoln and Merced populations as outgroups. The mean (green verti-

cal dashed line), 99th (blue vertical dotted line), and 99.9th (red dash-dotted line) values of the

empirical distribution are shown. Orange vertical lines indicate three outlier SNPs located in

Epas1, with the rightmost line indicating the Thr755Met SNP.

(PDF)

S5 Fig. PBS Values for exonic SNPs in Epas1. Manhattan plot of PBS values for all SNPs

(black dots) located within all exons of Epas1. Exome-wide values for mean, 99%, and 99.9%

percentile PBS values are shown, and three outlier SNPs above the 99.9th percentile located in

Epas1 are highlighted in orange. Pairwise linkage disequilibrium estimates (measured with the

squared correlation coefficient, r2) for each SNP pair are provided.

(PDF)

S6 Fig. Correlation between Epas1H frequency and sampling elevation. Significant positive

correlation of high-elevation allele frequency with sampled elevation, based on genotyping 23

populations.

(PDF)

S7 Fig. Clinal variation in two-locus HBB haplotype frequencies. Clinal variation for nine P.

maniculatus populations sampled along a 4500 m altitudinal cline from the Great Plains of

Nebraska to the Rocky Mountains in Colorado. Data from Storz et al. 2012 Genetics.
(PDF)

S8 Fig. Histological analysis of capillarity in the gastrocnemius muscle. Capillaries were

identified by staining for alkaline phosphatase activity. The oxidative core (A,C,E) and the

outer less oxidative region (B,D,F) of the muscle is shown for representative individuals pos-

sessing Epas1H/H (A,B), Epas1H/L (C,D), and Epas1L/L (E,F) genotypes. All images are shown at

the same scale, and the scale bar represents 100 μm.

(PDF)

S9 Fig. Statistical analysis of capillarity in the gastrocnemius muscle. There were no differ-

ences in capillarity in the gastrocnemius muscle between deer mice with different Epas1 geno-

types. Capillarity was quantified using the following measurements: A) capillaries per muscle

fiber, B) capillary surface density, C) capillary density, and D) transverse muscle area per mus-

cle fiber. Sample sizes: n = 16 Epas1H/H, n = 13 Epas1H/L, and n = 4 Epas1L/L variants.

(PDF)

S10 Fig. Activity of oxidative enzymes in the gastrocnemius muscle. The activities of oxida-

tive enzymes, i.e. A) cytochrome c oxidase (COX) and B) citrate synthase (CS) in the gastrocne-

mius muscle were similar between deer mice with different Epas1 genotypes, but C) lactate

dehydrogenase (LDH) activity appeared to be lower in mice that were homozygous for the high-

land Epas1 variant. † Significant difference in a post-hoc comparison between only Epas1H/H

and Epas1H/L genotypes. n = 16 Epas1H/H, n = 13 Epas1H/L, and n = 4 Epas1L/L variants.

(PDF)

S11 Fig. Ventilatory response of deer mice with varying Epas1 genotype. Deer mice with

different Epas1 genotypes exhibited similar ventilatory responses to increasingly severe levels

of acute hypoxia. Ventilation was quantified via A) total ventilation, B) arterial oxygen
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saturation, C) breathing frequency, and D) tidal volume. Sample sizes: n = 26 Epas1H/H, n = 13

Epas1H/L, and n = 4 Epas1L/L variants.

(PDF)

S12 Fig. Response of O2 consumption rate and body temperature under acute hypoxia.

Deer mice with different Epas1 genotypes exhibited similar declines in A) O2 consumption

rate and B) body temperature in response to increasingly severe levels of acute hypoxia, and

similar increases in C) ventilatory equivalent for O2 and D) pulmonary O2 extraction. Sample

sizes: n = 26 Epas1H/H, n = 13 Epas1H/L, and n = 4 Epas1L/L variants.

(PDF)

S13 Fig. Heart rate response according to Epas1 genotype. Deer mice that were homozygous

for the highland Epas1 variant exhibited a significantly greater increase in heart rate from nor-

moxia (21 kPa O2) to environmentally realistic levels of hypoxia at 4300 m elevation (12 kPa

O2). Measurements were made using a MouseOx Plus collar. � A significant pairwise differ-

ence between Epas1H/H and Epas1H/L mice. n = 26 Epas1H/H, n = 13 Epas1H/L, and n = 4

Epas1L/L variants.

(PDF)

S14 Fig. Results of demographic modeling in deer mice. The folded 2-dimensional site fre-

quency spectra (2d-SFS) for deer mice from (A) Mt. Evans, CO, and Merced, CA, and (B) Mt.

Evans, CO, and Lincoln, NE. For each pair of populations, we show the empirical 2d-SFS from

whole exome data and the maximum likelihood 2d-SFS for demographic models with no

migration, one migration rate, and two migration rates. Residuals reflect the overall fit of the

model to the empirical data, where red indicates an overestimation of the number of SNPs by

the model and blue reflects an underestimation.

(PDF)

S15 Fig. Density distributions of PBS values under simulated and empirical models. A)

Density plot of population branch statistic (PBS) values calculated for Mount Evans, using Lin-

coln and Merced populations as outgroups, from 10,000 SNPs simulated under modeled

demography. Values for the mean (green vertical dashed line), 99th (blue vertical dotted line),

and 99.9th (red dash-dotted line) percentiles of the simulated distribution are shown. B) Den-

sity plot of empirical PBS values (same as in S4 Fig), but with significance thresholds based on

simulated 99th and 99.9th percentile shown.

(PDF)
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