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Abstract

Evolutionary adaptation to extreme environments often requires coordinated changes in
multiple intersecting physiological pathways, but how such multi-trait adaptation occurs
remains unresolved. Transcription factors, which regulate the expression of many genes
and can simultaneously alter multiple phenotypes, may be common targets of selection if
the benefits of induced changes outweigh the costs of negative pleiotropic effects. We com-
bined complimentary population genetic analyses and physiological experiments in North
American deer mice (Peromyscus maniculatus) to examine links between genetic variation
in transcription factors that coordinate physiological responses to hypoxia (hypoxia-induc-
ible factors, HIFs) and multiple physiological traits that potentially contribute to high-altitude
adaptation. First, we sequenced the exomes of 100 mice sampled from different elevations
and discovered that several SNPs in the gene Epas1, which encodes the oxygen sensitive
subunit of HIF-2a, exhibited extreme allele frequency differences between highland and low-
land populations. Broader geographic sampling confirmed that Epas1 genotype varied pre-
dictably with altitude throughout the western US. We then discovered that Epas1 genotype
influences heart rate in hypoxia, and the transcriptomic responses to hypoxia (including HIF
targets and genes involved in catecholamine signaling) in the heart and adrenal gland.
Finally, we used a demographically-informed selection scan to show that Epas? variants
have experienced a history of spatially varying selection, suggesting that differences in car-
diovascular function and gene regulation contribute to high-altitude adaptation. Our results
suggest a mechanism by which Epas1 may aid long-term survival of high-altitude deer mice
and provide general insights into the role that highly pleiotropic transcription factors may
play in the process of environmental adaptation.
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Author summary

Adaptation often requires coordinated evolutionary changes across multiple dynamic sys-
tems to maintain physiological function. For example, high-altitude habitats place a pre-
mium on tissue-oxygen delivery to cope with limited oxygen availability (hypoxia).
Circulatory O, transport is regulated dynamically, changing on the order of seconds, and
results from several interacting physiological processes. The mechanisms of adaptation in
such complex phenotypes are poorly understood. One promising candidate is the gene
Epasl, which encodes a transcription factor that regulates physiological responses to hyp-
oxia. We used population genomic analyses and physiological assays to explore the con-
nections between EpasI genetic variation and physiological function in high-altitude deer
mice, which exhibit evolutionary adaptations to hypoxia. We identified a mutation in
Epas] that is associated with variation in cardiovascular function: the predominant variant
at high altitude is associated with the maintenance of an elevated heart rate under hypoxia
and with differences in the expression of genes that influence heart rate and are regulated
by Epasl. Our population genomic analyses demonstrated that Epas! exhibits a signature
of natural selection at high altitude, suggesting that these phenotypic effects influence Dar-
winian fitness. Our results suggest that adaptation in complex and dynamic traits may be
attributable to relatively simple genetic changes.

Introduction

Adaptive evolution often involves changes in multiple phenotypes across interacting biological
pathways. How such multi-trait adaptations are produced by natural selection is an open ques-
tion that requires connecting genetic variation to organismal function and fitness [1]. One
promising mechanism involves functional modification of transcription factors. Because tran-
scription factors coordinate the expression of suites of genes, they may allow for the simulta-
neous alteration of multiple phenotypes, making them common targets of selection [2-4].
However, mutational changes in transcription factors often have negative pleiotropic effects,
which may limit the role of such changes in environmental adaptation [5,6]. If pleiotropic con-
straints are common, then mutations in downstream target genes may be expected to play a
more prominent role in local adaptation [5,6].

Animals adapted to high-altitude (>3,000 m a.s.l.) [7] represent a unique system to under-
stand the role of transcription factors in multi-trait adaptation. Coping with extreme hypoxia
(low O, availability) and cold requires coordinated changes in interacting physiological path-
ways [8-10], including steps of the O, transport cascade that ensure O, supply matches
demand. Many of these responses to hypoxia are coordinated by a single family of transcrip-
tion factors, the hypoxia inducible factors (HIF 1-3) [11]. In particular, the gene Epasi, which
encodes the O,-sensitive o subunit of HIF-2, has been the repeated target of selection in indig-
enous high-altitude human and non-human populations [8,12-15]. In many ways, this pattern
of repeated selection is surprising: although acute activation of HIFs lead to beneficial changes
in O, homeostasis (e.g, via ventilatory acclimatization [16] and angiogenesis [17]), chronic
HIF activity is often linked to high-altitude disease [10]. Thus, modification of HIF signaling
may be constrained by antagonistic pleiotropy.

Determining the extent of pleiotropic constraint requires an understanding of the pheno-
typic effects of naturally segregating HIF variants. Studies in indigenous Tibetan humans, for
example, have linked allelic variation at EpasI to the maintenance of normal blood
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hemoglobin content [8,13] and blood concentrations of erythropoietin (which stimulates red
blood cell production) under conditions of environmental hypoxia [18]. This maintenance of
hemoglobin content under hypoxia is also associated with a missense variant in Eginl that
covaries with EpasI genotype in Tibetans [18] and promotes HIF degradation under hypoxia
[19]. However, follow-up studies found that Epasl genotype did not have a statistically signifi-
cant influence on breathing or pulmonary function within Tibetans living at low elevation,
although there were pronounced differences in several cardiorespiratory phenotypes between
Tibetans and Han Chinese [18]. Nevertheless, a range of other respiratory and cardiovascular
system responses to chronic hypoxia are influenced by HIF-2 signaling, including the hypoxic
ventilatory response [16,20], catecholamine synthesis by the adrenal gland [21], and others
[22], and it remains unclear if these phenotypes have been altered by selection on EpasI, par-
ticularly in other highland taxa. A more detailed understanding of the phenotypic effects of
HIF variation is needed in order to ascertain the general role of regulatory pleiotropy in multi-
trait physiological adaptation to high altitude.

We used the North American deer mouse (Peromyscus maniculatus) to examine links
between genetic variation in HIFs and multiple physiological adaptations to high altitude.
Within the continental U.S., deer mice are distributed across an altitudinal range of ~4500 m,
and have consequently emerged as a prominent model for studies of the mechanisms of adap-
tation [23-31]. Deer mice native to the Rocky Mountain highlands have evolved a unique
physiology that includes suites of adaptations linked to known phenotypes related to HIF sig-
naling (e.g. hematological function, heart rate, tissue capillarity, and metabolic fuel use)
[25,26,31-39]. Given the evidence for multi-trait physiological adaptation to high altitude in
deer mice, and the recent indications that Epasl has been a repeated target of natural selection
in multiple highland specialists, we hypothesized that adaptive phenotypic variation is attribut-
able, at least in part, to naturally segregating genetic variation in genes that encode HIFs.

Results
Epasl genotype varies with altitude in deer mice

In order to examine altitudinal patterns of allele frequency variation of the genes encoding
HIFs, and to put these patterns into a broader genomic context, we sequenced the exomes of
37 lowland mice from Lincoln, NE (430 m a.s.l.), and 48 highland mice from Mt. Evans, CO
(4350 m a.s.l). Fifteen mice from a lowland population in Merced County, CA (~320 m a.s.l.),
were included to infer polarity of DNA changes in highland mice. All exomes were sequenced
using a custom Nimblegen probe set targeting exons from 25,246 nuclear genes (see Materials
and Methods). Captured exomes were paired-end sequenced on an Illumina HiSeq 4000 and
mapped to a reference genome (NCBI GCA_000500345.1 Pman_1.0). The final set of quality-
filtered sites consisted of 5,182,530 high-quality bi-allelic variants sequenced at approximately
18X coverage (S1 Fig). Analyses of population genetic structure (using PCA [40] and Admix-
ture [41]), revealed that all three populations were genetically distinguishable (S2 Fig and S3
Fig). Pairwise Fgy values (estimated with Weir’s Theta [42]) between Mt. Evans and Lincoln
were 0.025+ 3.16e-5 (mean+SEM), between Mt. Evans and Merced were 0.025+6.54e-5, and
between Lincoln and Merced were 0.044+8.00e-5.

Based on these results, we calculated the population branch statistic (PBS [13]) for each sin-
gle nucleotide polymorphism (SNP) to identify variants that exhibit extreme allele frequency
changes in the highland population (Mt. Evans) relative to both lowland populations (Lincoln
and Merced) (S4 Fig). Among the upper 0.1% of the PBS distribution, the only SNPs located in
HIF genes were three SNPs located in the HIF-2a gene Epasl (Fig 1A, S5 Fig); one of these
SNPs was located in the 3’UTR, one was a non-synonymous polymorphism located at site 755
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Fig 1. Epasl is an exome-wide outlier under spatially varying selection in P. maniculatus along altitudinal gradients. A) Manhattan plot of PBS values
for all SNPs (black dots) located within the last three exons of EpasI (exon numbers provided above schematic). Exome-wide values for mean, top 1%, and
top 0.1% percentile PBS values are shown, and three outlier SNPs in EpasI are highlighted in orange (see key). Pairwise linkage disequilibrium estimates
(measured with the squared correlation coefficient, r?) for each SNP pair are provided. B) Geographic variation in "™755™ Epas1 allele frequency for 23
populations in the Rocky Mountains and Great Plains, USA. Pie charts are shaded according to frequency of high-altitude or low-altitude allele, with size
indicating number of mice sampled (see key). C) Clinal variation in ™755™' Epas1 allele frequency for 10 P. maniculatus populations sampled along a 4500
m altitudinal cline from the Great Plains of Nebraska to the Rocky Mountains in Colorado. In (B) and (C), Mt. Evans (ME) and Lincoln (LN) populations are
labeled. Dashed box in (B) shows populations chosen for assessing clinal variation in (C). See S1 Table for details on sampling location and Epas] allele

frequencies.

https://doi.org/10.1371/journal.pgen.1008420.9001
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in the 14"™ exon that changed threonine to methionine (™755

), and one was a synonymous
polymorphism also located in the 14™ exon. The highest-ranking SNP of these three was the
non-synonymous, polarity-altering "755™ polymorphism (PBS upper 0.1%; Fig 1A). Due
to significant linkage disequilibrium between alleles at the three closely linked Epasl SNPs
(Fig 1A), and because there were no SNPs in any of the genes that encode HIF-1a or HIF-30.
in the upper 0.1% of the empirical PBS distribution, we focused our subsequent analyses on
the ™755M" mutation in Epas].

To more broadly assess the relationship between Epas]
typed an additional 266 deer mice collected from 23 sites across the western U.S. (S1 Table).
We found that the Met-755 allele (henceforth called the Epasi™ allele) is significantly and posi-
tively correlated with altitude (r* = 0.589, p<<0.001; Fig 1B; S6 Fig). For a single altitudinal tran-
sect connecting Lincoln to Mt. Evans, variation in Epas] allele frequency is best explained as a
sigmoidal cline centered at 1399.5 m a.s.l. (95% CI 1192.99-1493.01 m a.s.l.) (Fig 1C). Notably,
the Epasl cline is similar in shape, width, and center to that of 3-globin [43] (S7 Fig), a locus
known to be under selection in high-altitude deer mice [28,43,44]. To infer character polarity
of the amino acid change, we genotyped mice from nine additional Peromyscus species, includ-
ing P. keeni, P. melanotis, P. hylocytes, P. attwateri, P. melanophrys, P. eremicus, P. polionotus,
P. leucopus, as well as an outgroup rodent species, Reithrodontomys montanus. This broader
phylogenetic sampling suggests that the high-altitude variant, Epas1", is the derived allele
within the P. maniculatus subclade (S2 Table; SI Results).

Thro ¢ = Met .
755 and elevation, we geno-

Epasl genotype is associated with physiological traits that influence oxygen
homeostasis

We tested for physiological effects of allelic variation at EpasI using deer mice captured on the
summit of Mt. Evans. EpasI' and Epas1" alleles segregate in this population, occurring at fre-
quencies of 0.83 and 0.17, respectively (Fig 1), which allowed us to isolate the effects of geno-
type on an otherwise randomized genomic background. We developed a restriction digest
protocol to genotype mice in the field (see Methods), and then subjected mice of known geno-
type to a series of tests to characterize variation in traits that influence O, homeostasis under
hypoxia. We used whole-body plethysmography and pulse oximetry during a step-wise hyp-
oxia exposure [20 min at 21 (sea-level), 12 (equivalent to Mt. Evans altitude), 10, 8, and 6 kPa]
to test for genotypic effects on acute respiratory and cardiovascular responses to hypoxia:
breathing frequency and tidal volume, rate of O, consumption (VO,), arterial O, saturation,
and heart rate. Forty-eight hours following plethysmography and pulse oximetry, mice were
exposed to deep hypoxia (6 kPa) for 2 hours and then euthanized. This duration of exposure to
6 kPa O, was chosen in order to strongly stimulate the HIF-induced transcriptional response,
as supported by previous observations that this hypoxic treatment strongly induces the expres-
sion of Vegfa, a key HIF target, in many organisms [44]. Blood, heart, adrenal glands, lungs,
and gastrocnemius muscle were sampled for transcriptomic profiling and/or for morphologi-
cal and histological analysis.

We did not detect significant effects of allelic variation at Epasl on some traits that are
indicative of chronic exposure to hypoxia or that otherwise influence O, transport and utiliza-
tion. Unlike in studies of indigenous Tibetans [12], EpasI genotype did not affect hematocrit
or hemoglobin concentration at high altitude (S3 Table, S4 Table). Similarly, we did not detect
any genotypic differences in the fiber size (S8 Fig, S9 Fig) or the activities of oxidative enzymes
in the gastrocnemius muscle (S5 Table, S10 Fig). There were trends toward reduced muscle
capillarity in individuals that were homozygous for the lowland allele (Epas1™'"), and reduced
lactate dehydrogenase activity in the muscle of individuals that were homozygous for the
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highland allele (Epas1™/™), but these differences were not statistically significant when com-
pared to all other genotypes (S8 Fig, S9 Fig, S10 Fig).

With respect to respiratory and cardiovascular function under acute hypoxia, we also did
not detect any genotypic differences in breathing (total ventilation, breathing frequency, tidal
volume), VO,, body temperature depression, or pulmonary O, extraction (S11 Fig, S12 Fig, S6
Table). However, Epasl genotype did affect heart rate under ecologically relevant levels of hyp-
oxia: resting heart rates in normoxia (21 kPa O,) were similar across genotypes, but individuals
that were homozygous for the highland allele (Epas1™™
during hypoxia exposure compared to the other two genotypes (Epas1™’") (Fig 2). We detected
a significant main effect of genotype on heart rate (F, ;45 = 3.8; p = 0.03), but a non-significant
interaction (p>>0.05), suggesting that Epas1™'™ mice generally maintained higher resting heart
rates. The genotypic difference in heart rate was most pronounced at 12 kPa O,, which approx-

) maintained higher resting heart rates

imates PO, at the summit of Mt. Evans (Fig 2). However, the magnitude of the increase in
heart rate from normoxia to 12 kPa O, was greatest in Epas1™" mice (S13 Fig), suggesting
that Epasl genotype may have influenced the heart rate response to hypoxia at the environ-
mental PO, that are realistic at the high-altitude field site. Heart rate did not differ between
heterozygotes and homozygotes for the lowland allele at any PO, (Fig 2). We observed a steady
decline in resting heart rate for all three genotypes as the level of hypoxia increased at PO,
below 10 kPa (main effect of PO,: F4 145 = 19.741, P<0.001), likely as a consequence of the
depression in VO, and body temperature under extreme hypoxia (S12 Fig).

Epasl genotype affects the regulation of HIF target and catecholamine
genes

We used an RNA-seq approach (TagSeq [45]) to test whether Epasl genotypes differ in gene
regulation in two tissues affecting heart rate under hypoxia: the adrenal gland (which affects
heart rate and vasoconstrictive responses by secreting catecholamines) and the left ventricle of
the heart. For each tissue we measured transcriptome-wide patterns of gene expression, and
the expression of two candidate gene sets: HIF target genes and genes involved in catechol-
amine biosynthesis, secretion, and signaling (S7 Table). Full results of candidate gene differen-
tial expression analysis are available in the online supplement (S8 Table). Overall, this analysis
revealed a significant association between Epasl genotype and the regulation of genes in HIF-
and catecholamine-related pathways in both tissues.

In the adrenal gland, we detected a subtle but significant shift toward reduced expression of
candidate genes in mice possessing the high-altitude Epas] allele (Fig 3A and 3B). Kolmogo-
rov-Smirnov (K-S) tests revealed significant differences in the distribution of log fold-change
values for each comparison of Epas1™" vs. Epas1™"" and Epas1™™ in catecholamine-associated
genes (Fig 3A and 3B), but not HIF targets (p>0.05). Specifically, log-fold change values were
significantly more negative for candidate genes in EpasI™~ mice compared to the transcrip-
tome-wide background (Fig 3A and 3B), indicating a reduced expression of these genes in
mice that carry EpasI™ alleles. To test the robustness of this result, we generated a null distri-
bution of K-S test D-statistics by drawing 1000 random gene sets that were equal in size to the
candidate catecholamine gene set (n = 79). This randomization procedure demonstrates that
the D-statistics calculated for both genotypic comparisons were above the 99% quantile of the
null distribution (Fig 3B inset). The pattern of down-regulation of catecholamine-related
genes is consistent with recent findings that, compared to low-altitude deer mice from
Nebraska, high-altitude mice express lower levels of DOPA decarboxylase in the adrenal
medulla and exhibit reductions in catecholamine release from adrenal chromaffin cells [46].
Moreover, HIF-2a has been shown to be a positive regulator of catecholamine synthesis in
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Fig 2. Deer mice that were homozygous for the highland EpasI variant exhibited higher heart rates when exposed
to environmentally realistic levels of hypoxia at 4300 m altitude (12 kPa O,). Measurements were made using a
MouseOx Plus collar. * Significant main effect of EpasI genotype in a mixed linear model. n = 26 Epas1™/™, n = 13
Epasl H/L, and n =4 Epasl UL variants.

https://doi.org/10.1371/journal.pgen.1008420.9002

adrenal chromaffin cells of rats [21], suggesting that the high-altitude EpasI variant leads to a
direct reduction in gene expression of enzymes involved in catecholamine biosynthesis, and
thereby reduces circulating catecholamine levels.

In a related analysis, we found that positive regulators of catecholamine processes (1 = 15)
were downregulated in mice possessing the high-altitude allele (mean log fold-change between
Epas1™™ and Epas1™™: -0.04 + 0.17), relative to genes known to be negative regulators of cate-
cholamines (n = 13; mean log fold-change = 0.23 + 0.19). This trend, though not statistically
significant (p>0.05) is consistent with the hypothesis that possessing the high-altitude Epas]I
allele is associated with a downregulation of genes that positively influence catecholamine pro-
cesses. Due to the small size of the subset of genes for which a directional influence could be
established, and the lack of statistical significance, these results should be viewed with caution.

In contrast to the adrenal gland, candidate gene expression in the left ventricle was signifi-
cantly higher in mice possessing EpasI' alleles, but this effect was subtle and only significant
for HIF target genes (Fig 3C and 3D). K-S tests revealed a significant shift toward more posi-
tive distribution of log fold-change values in Epas1™/™ (Fig 3C) and Epas1™" (Fig 3D) mice.
Randomization procedures indicated that the empirical D-statistic falls outside of the 99%
quantile of the null distribution for both comparisons (Fig 3D). We note that several genes in
the top 10% of the distribution of log fold-change in expression (adrenomedullin [Adm],
endothelin [Ednl], and atrial natriuretic peptide [Nppa]; S8 Table) are known effectors of
vasodilation [47-49], suggesting that improved O, supply to cardiac tissue may be positively
influenced by EpasI genotype.
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https://doi.org/10.1371/journal.pgen.1008420.g003

Importantly, none of the genes in these pathways were differentially expressed among geno-
types after correcting for multiple testing in either tissue (FDR >0.05), nor were any other
genes in either transcriptome. This result suggests that effects of EpasI genotype on the regula-
tion of any single gene are weak in these tissues. We note that the O, pressure (6 kPa) used to
stimulate gene expression was strong, and led to uniform metabolic depression across
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genotypes (Fig 2) potentially masking genotypic differences in expression that may exist at less
extreme levels of hypoxia. Future research will examine whether 12 kPa O,, the level leading to
the largest genotypic differences in heart rate (Fig 2), elicits greater genotypic difference in the
expression of HIF and catecholamine target genes, or potentially other unknown pathways.
Nevertheless, our results demonstrate that the combined effects of multiple subtle, but con-
certed, shifts in expression of HIF target genes and genes in catecholamine-related pathways
were detectable among genotypes.

Hypoxia-related genes, including Epas1, are targets of positive selection in
highland deer mice

To formally test for a history of spatially varying selection on EpasI polymorphisms, we per-
formed a demographically-corrected selection scan. We first estimated effective population
sizes (N,), divergence times (T), and pairwise migration rates (m) for two pairs of populations
(Mt. Evans-Lincoln and Mt. Evans-Merced) by modeling the folded two-dimensional site fre-
quency spectra (2D-SFS) derived from variation at synonymous SNPs using dadi [50]. The
best-fitting demographic model (S14 Fig) allowed for variation in gene flow among loci by
including two symmetrical migration rate parameters applied to proportions P and I-P of loci,
following [51], which produced significantly better fit to the data (p = 0; adjusted likelihood
ratio test using the Godambe Information Matrix [52]). For Mt. Evans and Merced, we esti-
mated that approximately 84.2% of SNPs experience a relatively high migration rate (2.07
migrants/generation), while the remaining SNPs experience a substantially lower migration
rate (0.08 migrants/generations). Similarly, between Mt. Evans and Lincoln, we estimate that
approximately 86.4% of SNPs experience a migration rate of ~1.75 migrants/generation while
remaining SNPs have a rate of ~0.08 migrants/generation. Under these models, we estimated
effective population sizes of approximately 368,000 (95% CI: 266,977-470,061) for Mt. Evans,
220,000 (95% CI: 170,878-270,767) for Lincoln, and 371,000 (95% CI: 266,871-477,310) for
Merced populations (S9 Table). The inferred split time between Mt. Evans and Lincoln popu-
lations was approximately 217,000 generations ago (95% CI: 180,998-254,122 generations ago)
and the inferred split between Mt. Evans and Merced was 190,000 generations ago (95% CI:
127,569-253,390 generations ago) (S9 Table).

We established a null PBS distribution by simulating 500,000 neutral SNPs (85% with the
high migration rates and 15% with the low migration rates) across Mt. Evans, Merced, and
Lincoln populations in msms [53] under our estimated demographic model, assuming no
direct gene flow between Merced and Lincoln (S15A Fig). This approach results in a conserva-
tive null model for selection because SNPs simulated under low migration rates between popu-
lations likely mimic SNPs that experience local selection. After calculating PBS values [13]
from these simulated SNPs, we used the distribution to identify outliers above the simulated
99.9™ percentile (corresponding PBS: 0.252). There were 37,169 SNPs located in 6,913 genes
above the 99.9'" percentile of the simulated distribution (red dashed line in S15 Fig). The
Thr755Met Epas1 SNP was highly significant (S15B Fig), as were the two linked noncoding
SNPs (S15B Fig). These results provide strong evidence for spatially-varying selection on
Epasl genotype and suggest that the associated phenotypic effects have fitness consequences in
the wild.

Although we had a specific focus on the role of Epasl in physiological adaptation to high
altitude, our demographically-corrected exome scan also identified a number of other promis-
ing candidates for high-altitude adaptation. Among the PBS outliers relative to the simulated
null, 37 GO categories and 13 KEGG pathways were significantly enriched (FDR p-value
<0.05; S10 Table). Many of these enriched categories are related to known physiological
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mechanisms for maintaining homeostasis under hypoxia, such as “response to oxygen-con-
taining compound” (GO:1901700), “regulation of systemic arterial blood pressure”
(GO:0003073), and “circulatory system process” (GO:0003013). We focused our examination
on outlier SNPs that are located within 1,247 hypoxia-related genes identified by Zhang et al.
[14] (S11 Table) that represent a set of candidates compiled from “hypoxia” and “hypoxia
inducible factor” keyword searches in multiple sources [14]. Of the 6,913 genes with outlier
SNPs, 353 genes overlapped with the set of 1,247 hypoxia-related genes from Zhang et al. [14]
(S11 Table; S12 Table; Fig 4), representing a significant enrichment of hypoxia-related genes
(one-sided Fisher’s exact test; FDR-corrected p-value <0.001). Epasl was the tenth highest
ranking gene (S12 Table).

The top three hypoxia-related genes were Collagen type I alpha 2 (Colla2) (highest-ranking
SNP (PBS: 3.33), Integrin subunit alpha 7 (Itga7) (PBS: 3.18) and Potassium calcium-activated
channel subfamily M alpha 1 (Kcnmal) (PBS: 2.82). Colla2 encodes one of the most abundant
types of collagens that is a ubiquitous component of connective tissue in several organs,
whereas Itga7 and Kcnmal may both play roles in muscle structure and function. Itga” is
expressed in skeletal and cardiac muscles, where it may play a developmental role [54], and
Kcnmal encodes the pore-forming subunit of an ion channel that is integral to smooth muscle
control [55]. Other high-ranking genes of note include Ceruloplasmin (Cp), which was the sev-
enth highest ranking gene (PBS: 2.55; S12 Table) and is involved in iron transport across the
cell membrane, in stimulation of erythropoiesis, and in nuclear translocation of HIF1 [56].
Further exploration of these hypoxia-related genes, as well as other targets of selection in high-
altitude deer mice, is the focus of an ongoing study.

Discussion

While many studies have identified hypoxia-inducible factors (HIFs) as candidates for high-
altitude adaptation (e.g., [8,13-15,57,58]), few have experimentally documented phenotypic
effects of mutations in these genes on aspects of systems-level physiology [18]. Yet, these types
of genotype-to-phenotype association studies are necessary for identifying functional links
that can advance multiple fields from evolutionary biology to biomedicine [59,60]. We com-
bined a series of complimentary population genetic analyses and physiological experiments to
test the role of HIFs in high-altitude adaptation of deer mice. We first identified a non-synony-
mous and polarity-altering polymorphism in the coding region of EpasI (which encodes
HIF20) that exhibited an extreme allele frequency difference between highland and lowland
populations (Fig 1A). Moreover, the high-altitude EpasI™ allele, which is derived in the P.
maniculatus sub-clade, varied predictably with altitude in mice sampled throughout the west-
ern United States (Fig 1B and 1C). These results suggested that variation at Epas] may contrib-
ute to well-characterized physiological differences observed between highland and lowland
deer mice [25,26,31-39]. Physiological tests of this hypothesis demonstrated that EpasI poly-
morphism was not associated with many traits known to be regulated by HIFs [11]. Most nota-
bly we did not detect an association between Epasl genotype and hematocrit or hemoglobin
concentration (S3 Table, S4 Table) unlike studies in high-altitude indigenous Tibetans [12],
nor did we detect associations with adaptive variation in breathing pattern [34] or skeletal
muscle fiber type [32] shown in high-altitude deer mice (see S5 and S6 Tables). If the observed
mutation at Epasl does affect such traits, our results suggest that other mechanisms compen-
sate for these effects in mice that have developed at high altitude.

Although we did not detect an effect of Epasl genetic variation on several HIF-related traits,
we documented an unprecedented relationship between EpasI genotype and cardiovascular
function. Experimental hypoxia exposures demonstrated that mice homozygous for Epas1™
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Fig 4. Epasl is an outlier in a demographically-controlled selection scan. Exome-wide distribution of population branch statistic (PBS) for Mt.
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under a realistic demographic scenario, and SNPs in hypoxia-related genes are highlighted in orange. The top ten hypoxia-related genes are labeled, with
EpasI indicated in bold text. SNPs with a PBS value below the top 0.1% percentile have been randomly down-sampled (1:20) for ease of plotting.
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maintain an elevated heart rate under physiologically and ecologically relevant levels of hyp-
oxia (Fig 2). Moreover, Epas] genotype appears to have systematic effects on pathway gene
expression, leading to downregulation of genes involved in catecholamine biosynthesis and
secretion in the adrenal gland (Fig 3A and 3B), and upregulation of HIF targets in the left ven-
tricle of the heart (Fig 3B and 3C). While the effects of Epasl genotype on the expression of
any single gene are weak, the combined effects of subtle but concerted shifts in expression of
genes in these candidate pathways were detectable and varied predictably among genotypes.
Finally, formal demographically-controlled selection scans revealed that Epasl, and a number
of other genes in hypoxia response pathways, have been a target of natural selection at high
altitude (Fig 4). These results suggest that the associated phenotypic differences in cardiovascu-
lar function and gene regulation contribute to fitness differences in the wild.

This study provides the first documentation of a relationship between naturally occurring
genetic variation at Epasl and heart rate under hypoxia. The maintenance of an elevated heart
rate during hypoxia could be the direct phenotypic target of selection on EpasI in order to
improve circulatory O, delivery at high altitude. Assuming that there are not opposing differ-
ences in stroke volume between genotypes, increased heart rate should result in an increased
cardiac output and thus enhanced O, delivery to systemic tissues [10]. Indeed, mice that were
homozygous for the highland Epasl genotype tended to have slightly larger ventricles
(Table S4), which although not statistically significant, suggest that lower heart rates are not
compensated for with increases in heart size (and potentially associated increases in stroke vol-
ume). Elevated heart rates during hypoxia could also be a secondary consequence of adaptive
changes in other functions of the cardiovascular control system that are the direct targets of
selection. One possible target of selection is catecholamine release from the adrenal medulla,
which we have recently shown is attenuated in high-altitude deer mice [46]. The genetic basis
for this attenuation is unknown, but the patterns of variation in expression for genes related to
catecholamine synthesis and release suggest that genetic variation in Epasl may be involved.
Catecholamine release in hypoxia normally acts to induce vasoconstriction and constrain
blood flow to many peripheral tissues [61], so the attenuation of catecholamine release in high-
land mice may serve primarily to minimize this effect and improve tissue blood flow during
hypoxia. However, hypoxic vasoconstriction could normally lead to feedback activation of the
baroreflex, which would tend to reduce heart rate and oppose other factors that tend to stimu-
late heart rate in hypoxia (i.e., activation of sympathetic neurons innervating the heart). This
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potential secondary effect of hypoxic vasoconstriction would be minimized by an attenuation
of adrenal catecholamine release, such that heart rate would rise more in response to hypoxia.
Therefore, in this hypothetical example, the primary target of selection (improvement in
regional tissue blood flows via reductions in catecholamine release) has secondary conse-
quences on the heart rate response to hypoxia.

Whatever the mechanism, the observed effects of Epas] genotype within highland mice
mirror genetically-based population differences in heart rate between highlanders and low-
landers [34], suggesting that evolved population differences may result from allelic variation at
Epasl. Humans native to the Qinghai-Tibetan plateau (2200-5200 m a.s.1) reach higher maxi-
mal cardiac outputs during exercise compared to closely related lowland Han Chinese when
tested at high altitude [62]. These results suggest that changes in cardiovascular function or
control-either at rest, as in deer mice, or during exercise, as in Tibetan humans-may be a com-
mon adaptation to high altitude. The potential benefit to circulatory O, delivery conferred by
these cardiovascular changes is likely one of many adaptations that improve metabolic homeo-
stasis across systemic tissues in highlanders. These other potential adaptations include evolved
changes in breathing and respiratory gas exchange [34], higher hemoglobin O, affinity [28],
enhanced capacity for O, diffusion into metabolically active muscles [26,32,37], as well as
changes in the density, intracellular distribution, and function of muscle mitochondria
[37,38]. All of these modifications are likely to contribute to an enhancement of aerobic perfor-
mance under O, deprivation [24,25,32].

The results of this study demonstrate a role for coding changes in a transcription factor in
environmental adaptation. The majority of the systems-level traits we measured (e.g., breath-
ing, metabolism) were remarkably similar between EpasI genotypes, as were the transcrip-
tome-wide effects of EpasI genotype on gene expression in the adrenal gland and heart,
suggesting that the Epas] amino acid mutation has highly targeted phenotypic effects. Our
results suggest that selection on high-level transcription factors such as Epasl contribute to
local adaptation, so any negative pleiotropic effects associated with the evolved changes must
be compensated by other mechanisms.

Materials and methods
Ethics statement

We handled and sampled mice in accordance with the University of Montana’s Institutional
Animal Care and Use Committee (AUP 029-16), the Colorado Department of Fish and Wild-
life (License Number: 17TR2168a) and the United States Forest Service (Authorization ID:
CLC772). Following protocol, mice were euthanized with an isofluorane overdose followed by
decapitation.

Exome design, capture, and high-throughput sequencing

To identify all annotated exons, we downloaded the Peromyscus maniculatus bairdii GFF v101
from NCBI (Accession GCF_000500354.1), and extracted all features annotated as an exon.
The final set of unique, non-pseudogenized exonic regions consisted of 218,065 exons in
25,246 genes. A custom Roche NimbleGen SeqCap EZ Library kit capture a total of 226,973
regions (77,559,614 bp).

We extracted DNA from tissues of 85 deer mice (Lincoln, NE: n = 37; Mount Evans, CO:
n = 48) and sheared DNA to ~300 bp using a Covaris E220 Focused Ultrasonicator. Genomic
libraries for each individual were prepared using 200 ng of sheared DNA with a NEBNext
Ultrall kit and unique index following manufacturer’s protocols. We pooled batches of 24
indexed libraries prior to target enrichment and PCR amplification following the NimbleGen
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Seq Cap EZ protocol (Roche). Quality control for each capture pool included a check of size
distribution and a check for enrichment of targeted regions and no enrichment of non-tar-
geted regions using qPCR. Each capture pool of 24 individuals was sequenced with 100 bp
paired-end sequencing on an Illumina HiSeq 4000. We extracted and quantified DNA samples
for the California deer mice (Merced, CA; n = 15) at the Museum of Vertebrate Zoology, UC
Berkeley, before shearing one pg of genomic DNA to less than 500 bp with a Biorupter (Diage-
node). We prepared barcoded Illumina sequencing libraries using the Meyer and Kircher [63]
protocol, then amplified libraries with Phusion High-Fidelity DNA Polymerase (Thermo Sci-
entific) for 6-8 cycles during the indexing PCR. Exome enrichment was conducted with a cus-
tom capture design from the SeqCap EZ Developer Libary (Nimblegen) that was almost
identical to that used in the 85 non-CA samples. Captures were quantified, pooled proportion-
ally to the amount of DNA in each, and sequenced using 100bp pair-end sequencing on an
Mlumina HiSeq4000.

Data pre-processing and variant discovery on all samples followed the recommendations of
the Broad Institute GATK v3.7-0-gcfedb67 Best Practices pipeline. We trimmed reads of
adapter sequences and for a minimum base quality of 20 using fastq_illumina_filter 0.1
(https://mcbl.readthedocs.io/en/latest/mcbl-tutorials-PF-clean.html) and trim_galore 0.3.1
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). We used bwa mem [64]
to align and map forward and reverse reads to the Peromyscus maniculatus baiardii genome.
We removed duplicates using samtools rmdup [65], then added read group information using
picard. (http://picard.sourceforge.net). To generate a set of “known” variant sites for GATK
Base Quality Score Recalibration (BQSR), we genotyped each individual using samtools mpileup
(-q 30 -Q 30) and bcftools call, then filtered genotypes to have a minimum depth of coverage
(minDP) of 10 and minimum genotype quality (minGQ) of 30, and only used those variants
observed in at least two individuals. The resulting set of variant positions was used with
the -knownSites flag during GATK BQSR. A subsequent round of BQSR was completed and
convergence of quality scores was verified using GATK AnalyzeCovariates. To genotype each
sample, we used GATK HaplotypeCaller with the ‘--emitRefConfidence’ flag, then called vari-
ants GATK GenotypeGVCFs. We combined GVCFs and filtered them to remove SNPs with a
quality of depth <2.0, a FS > 60, mapping quality < 40, mapping quality rank sum < -12.5,
and read position rank sum < -8.0. We implemented all processing steps in GATK using the
‘-interval’ flag, a bed file of capture regions, and a ‘--interval_padding’ of 200 bp. These pro-
cessing steps resulted in a total of 106,883,914 sites among all individuals.

After assessing the quality of filtered reads using the vcftools package[66], we further filtered
variants so that a site was called in at least 50% of individuals, was bi-allelic, and each site had a
minDP of 5 and minGQ of 20. We proceeded with a set of 5,183,434 high-quality bi-allelic var-
iants, with a mean depth of coverage of 18.10+6.38 X (S1 Fig).

Population genetic structure

We assessed population genetic structure of Mount Evans, Lincoln, and Merced mice using
principal components analysis within PLINK [40] and Admixture [41]. Prior to running the
analyses, we pruned the set of variants to only sites with no missing data, and not linked (using
the “--indep-pairwise 50 5 0.5” option within PLINK). The final set of variants for these analy-
ses consisted of 296,196 bi-allelic sites.

Allele frequency variation in HIF genes

In order to examine altitudinal patterns of allele frequency variation of the genes encoding
HIF-10, HIF-20, and HIF-3a, we calculated pairwise Fst using vcftools, then the Population
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Branch Statistic (PBS) [13] for each of the 5,183,434 bi-allelic variants. Using the ‘ecdf func-
tion in R, we used the empirical distribution of PBS values and set a threshold of 99.9% for sig-
nificance (corresponding PBS: 0.886). We used Ensembl’s Variant Effect Predictor [67] with
the P. maniculatus reference genome annotation data set to identify SNPs located in HIF
genes. For the three outlier SNPs located in Epasl, we calculated pairwise linkage between
each SNP as the squared correlation coefficient, r*, using the ‘--geno-r2’ function within
vcftools [66],

Geographic and phylogenetic survey

To fully assess the geographic and phylogenetic extent of variation in Epasl, we genotyped
266 P. maniculatus samples from across the western US (S1 Table), plus samples of P. keeni,

P. melanotis, P. hylocytes, P. attwateri, P. melanophrys, P. eremicus, P. polionotus, P. leucopus,
Reithrodontomys montanus, and Phyllotis xanthopygus (52 Table). We obtained tissue samples
from our existing freezer collections or museums (Museum of Southwestern Biology at the
University of New Mexico, or Museum of Comparative Zoology, Harvard University). From
each sample, we extracted DNA then PCR amplified EpasI with custom exonic primers
(“epasl_snp_L” and “epasl_snp_R”; S13 Table) designed from the P. maniculatus bairdii
genome under the following conditions: 94°C for 2 mins; 30 cycles of 94°C for 45 sec, 58°C
for 1 min, 72°C for 1 min; then 72°C for 10 mins. To improve amplification specificity for

P. maniculatus samples, we used modified primers and PCR conditions (“epasl_setl_F” and
“epasl_setl_R”; S13 Table): 94°C for 2 mins; 35 cycles of 94°C for 30 sec, 62°C for 30 sec,
68°C for 1 min; then 68°C for 10 mins. Technicians at Genewiz (South Plainfield, NJ) cleaned
amplified products and sequenced them in both directions. We called genotypes after aligning
sequences to the reference sequence using Geneious 8.1.8. We calculated population allele fre-
quencies within each sampling locality, and obtained elevation for each locality from GPS data
recorded upon sampling, or from Google Maps. We mapped these allele frequency data on a
map of elevation (data downloaded from www.worldclim.org) using the ‘maps’ package in R.
Finally, we placed Epasl genotype for each sequenced species on a Peromyscus phylogeny con-
structed previously [68-70].

Cline analysis for Epasl and Hemoglobin genes

We tested whether the Epas] allele frequencies follow a clinal pattern using the R package
HZAR [71]. In HZAR, genetic data are fit to equilibrium cline models using the Metropolis—
Hastings Markov chain Monte Carlo (MCMC) algorithm, and parameters such as the cline
center (c) and width (w) are estimated. c and w characterize the location within the transect
where the variable changes most rapidly, and the values of these parameters can be estimated
within HZAR by 15 models that differently estimate the exponential decay on either side of the
cline center, as well as the minimum or maximum frequencies. We used as input the Epas]
allele frequency data and elevation for populations of deer mice sampled across the Rocky
Mountain to Great Plains elevational cline, and used a burn-in of 10000. We compared the
Epasl cline to that for previously published hemoglobin haplotype frequencies in deer mice
[43].

Physiological effects of allelic variation at Epas1

To test for physiological effects of allelic variation at EpasI, we captured deer mice from a sin-
gle interbreeding population in which the high-altitude allele is segregating. We collected adult
deer mice from the summit of Mt. Evans (Clear Creek Co., Colorado, USA; 39°35’18” N, 105°
3838” W; 4,350 m above sea level; PO, ~ 95.6 mm Hg) in August 2016 and 2017 and screened
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the Epas1 allele (a C/T polymorphism at nucleotide position 2264, hereafter “2264"). From
each individual, we sampled an ear clip sample, extracted DNA, then genotyped Epasl ©2264"
using a custom restriction enzyme digest assay. Briefly, we PCR amplified EpasI with custom
exonic primers (S13 Table) designed from the P. maniculatus bairdii genome and amplified
under the PCR conditions specified above. For all amplified PCR products, we cut Epas1 at
©2264" by incubating the PCR product with the BsaHI restriction enzyme at 37°C for 1 hour
followed by a heat denaturation for 20 mins. We called EpasI genotypes via gel electrophoresis
(T ~675 bp; C ~300 bp;), then subsequently confirmed field genotypes with Sanger sequencing
at Genewiz.

Acute hypoxia responses with pulse oximetry

At the University of Denver Mt. Evans field station (3230 m a.s.1; ~15kPa O,), we screened
these Mt. Evans mice with alternative Epasl genotypes for a suite of physiological responses
involved in O, transport and utilization and/or known to be influenced by HIFs. We measured
hypoxia responses in mice (26 Epas1™", 13 Epas1™", and 4 Epas1"'") using previously
described barometric plethysmography, respirometry, and pulse oximetry techniques [34,72].
We placed each mouse in a whole-body plethysmograph (chamber volume: 530 ml) that was
supplied with hyperoxic air, mixed to simulate the partial pressure of O, (PO,) at sea level (21
kPa O,, balance N,), at a rate of 600 ml min™*. We gave mice 20-60 min to adjust to the cham-
ber and stabilize their breathing and metabolism. We recorded measurements for an addi-
tional 20 min at 21 kPa O,, then exposed mice to 20 min stepwise reductions in inspired PO,
of 12, 10, 8, and 6 kPa. We set the incurrent gas composition by mixing dry compressed gases
using precision flow meters and a mass flow controller, such that the desired PO, was delivered
to the chamber at a constant rate of 600 ml min™'. At the end of the experiment, we measured
body temperature (T},) using a mouse rectal probe. We also measured T}, exactly 24 h later to
determine resting T, (this was used as a proxy for the resting T}, at the start of the experiment,
which was not measured to prevent stress to the animal).

We determined breathing and O, consumption rate (VO,) during the last 10 min at each
PO, by subsampling incurrent and excurrent airflows at 200 ml min"'. For incurrent and
excurrent air, we measured water vapor (RH-300, Sable Systems) using a thin-film capacitive
water vapor analyzer, then dried air with pre-baked drierite, and measured continuously for
0O, and CO, fraction using a galvanic fuel cell O, analyzer and infrared CO, analyzer (FOX-
BOX, Sable Systems). We used these data to calculate VO, and CO, production rate (VCO,),
expressed at standard temperature and pressure (STP), using appropriate equations for dry air
as described by Lighton [73]. We measured breathing frequency and tidal volume from
changes in flow across a pneumotachograph in the plethysmograph wall, detected using a dif-
ferential pressure transducer. We calculated tidal volume using established equations [75,76]
and assuming a constant rate of decline in T}, with declining PO,, which we have previously
shown results in similar tidal volumes to those calculated using direct T}, measurements at
each PO, [72], and is expressed at STP. We calculated the following parameters: total ventila-
tion (the product of breathing frequency and tidal volume), ventilatory equivalent for O, (total
ventilation divided by VO,), and percent pulmonary O, extraction (VO, divided by the prod-
uct of total ventilation and inspired O, fraction). We measured SaO, and heart rate using the
MouseOx Plus pulse oximeter collar sensors and associated software (Starr Life Sciences, Oak-
mont, PA, USA). Use of the collars was enabled by removing a small amount of fur from the
skin around the neck one day before experiments.

We tested for effects of Epasl genotype on cold-induced VO, max (thermogenic capacity),
an ecologically relevant measure of whole-organism aerobic performance for which there is an
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evolved difference between lowland and highland deer mice [24]. To do this we measured
maximum rates of oxygen consumption in a hypoxic, heliox atmosphere (21% oxygen, 79%
helium) using open-flow respirometry. All trials were conducted at the summit of Mt. Evans.
The use of heliox ensures that VO, max can be measured without risking cold injury, since
rates of heat loss in heliox are several times greater than that of ambient air [74]. For each trial,
we equilibrated heliox gas mixtures with atmospheric pressure of the Mt. Evans summit (12
kPa). Mass flow controllers helped pump the heliox mixture into copper coils inside a temper-
ature control chamber. The cooled gas was pumped into an animal chamber and an empty
baseline chamber at a rate of ~750 ml min™'. Excurrent air from the animal and baseline cham-
bers was sampled at a rate of ~130 ml min ™, dried with magnesium perchlorate and scrubbed
of CO,, redried with drierite, and passed through an oxygen analyzer. We defined thermo-
genic capacity as the maximum VO, averaged over a continuous 5-min period. We tested for
the influence of genotype on thermogenic capacity using an analysis of covariance (ANCOVA)
with body mass as covariate.

Tissue and organ sampling and phenotyping

Mice recovered for 2-3 days after the hypoxia response experiments described above. We
exposed recovered mice to 2 hours of deep hypoxia (6 kPa O,) and euthanized them with an
isofluorane overdose followed by decapitation. We collected blood samples for hematocrit (in
heparinized capillary tubes, spun for 5 minutes) and hemoglobin content (Hemocue, Sweden).
We dissected the heart, then isolated and weighed the ventricles before freezing them sepa-
rately in liquid N,. We determined lung volume by volumetry [75]. We weighed and froze in
liquid N, one gastrocnemius muscle, then coated the other in embedding medium and froze it
in liquid N,-cooled isopentane for histology. We froze other organs directly in liquid N,.

We measured muscle capillarity using histological methods in a subset of the mice (17
Epas1™™, 13 Epas1™*, and 4 Epas1"'™) chosen to ensure a balanced sex distribution (11
Epas1™'™ males, 6 Epas1™'™ females, 11 Epas1"/~ males, 6 Epas1™" females) and body mass
(21.49 + 4.05 g for Epas1'™'™, 21.76 + 5.43 g for Epas1™'", 21.01 + 4.12 g for Epas1"'";
means + SEM) between the three groups. We prepared full transverse sections of the gastroc-
nemius muscle as previously described [32,76]. Briefly, after cutting 10 pum tissue sections
transverse to the muscle fiber length using a cryostat, we identified capillaries by staining sam-
ples for alkaline phosphatase activity following previous studies [32,76]. We used bright-field
microscopy to systematically collect images from across the entire gastrocnemius, and used
Image] software [77] to count the number of capillaries and muscle fiber in each image and
measured capillary density, average number of capillaries per muscle fiber, and average trans-
verse area of muscle fibers. We used NIS-Elements D Imaging Software (v. 4.30, Nikon Instru-
ments) to measure the number, perimeter, and capillary surface densities of individual
capillaries within each image. We determined a sufficient number of images to analyze to
account for heterogeneity across the gastrocnemius, determined by the number of replicates
necessary to yield a stable mean value, following ref. [32]. This required analysis of roughly
half of the entire section, with images spread evenly across the section, which was found to be
more than sufficient to accurately represent average values across the entire muscle. For all his-
tological measurements, the observer was blind to genotype during analysis.

We used the remaining gastrocnemius muscle tissue in metabolic enzyme assays that we
have previously described [76]. After removing embedding medium from the muscle tissues
we powdered samples under liquid N, and homogenized them in ice-cold homogenization
buffer [76]. We centrifuged homogenates at 1000g for 1 min at 4°C, discarded the pellet, and
stored the homogenate on ice until assay. We assayed activities of cytochrome c oxidase
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(COX), citrate synthase (CS), and lactate dehydrogenase (LDH) in triplicate at 37°C using a
96-well microplate reader. Assay conditions in mM were as follows: COX, 100 KH,PO,, 0.2
reduced cytochrome ¢*, pH 8.0; CS, 100 KH,POy,, 0.5 oxaloacetate*, 0.15 acetyl-coA, 0.15 5,5'-
dithiobis-2-nitrobenzoic acid (DTNB), pH 8.0; LDH, 100 KH,PO,, 0.15 NADH, 2.5 pyruvate®,
pH 7.2. We determined maximal activities by measuring the change in absorbance over time
at 550 nm for COX (e = 28.5 mM ™ cm™), 412 nm for CS (€ = 14.15 mM ' cm™), and 340 nm
for LDH (e = 6.22 mM ™' cm™"), and subtracting the background rate from the rates measured
in the presence of all substrates.

Statistical analyses of physiological effects of allelic variation at Epas1

To assess the influence of EpasI genotype on physiology and tissue/organ phenotypes, we used
linear mixed effect models and included body mass, genotype, and acute PO, (when appropri-
ate) as fixed effects. We initially included year (2016 or 2017) and sex as random effects, but
removed them from all models because they were never found to be significant (P>0.25). We
removed body mass from models in which its effect was not significant for variables that we
did not have any a priori expectation of allometric scaling (heart rate, SaO,, hematology, and
gastrocneumius muscle capillarity and enzyme activities). We conducted Holm-Sidak pairwise
post-tests on significant models, and used R (v. 3.4.3) and the Ime4 package for all statistical
analysis, with a significance level of 0.05. We report VO,, total ventilation, and tidal volume
relative to body mass to enable comparison to the literature, but we used the absolute data (i.e.,
not expressed relative to body mass) for statistical analyses as described above.

Transcriptomic analysis of differential gene expression

We used high throughput sequencing to test for effects of EpasI genotype on gene expression
in adrenal gland (8 Epas1™™; 8 Epas1™"; 3 Epas1'") and heart tissue (7 Epas1™'™; 9 Epas1™/*;
3 Epas1™'™). We chose the adrenal gland because of its role in stimulating heart rate via cate-
cholamine release. We assayed gene expression using TagSeq, a 3’ tag-based sequencing fol-
lowing ref. [45]. We extracted RNA from 25 mg of tissue using TRI Reagent (Sigma-Aldrich),
then assessed RNA quality using TapeStation (Agilent Technologies; RIN > 7). The Genome
Sequencing and Analysis Facility at the University of Texas at Austin prepared TagSeq librar-
ies, which were sequenced using Illumina HiSeq 2500. Sequencing generated an average of
4.6M reads per individual. We processed raw reads following Lohman et al. [45] and mapped
them to the P. maniculatus genome using bwa [64]. We used featureCounts [78] to generate a
table of transcript abundances. Since genes with low read counts are subject to increased mea-
surement error [79], we excluded those with less than an average of 10 normalized reads per
individual using the filterByExpr function in edgeR. We retained a total of 12,237 and 10,509
genes after filtering for adrenal and heart transcriptomes, respectively.

We used two complementary approaches to compare levels of transcript abundance among
Epasl genotypes: (1) A whole-transcriptome differential expression analysis was conducted to
identify genes that were differentially expressed in each tissue. (2) We performed candidate
differential expression analysis on two a priori gene sets aimed at testing whether genes related
to the HIF cascade and/or catecholamine synthesis/transport exhibited concerted changes in
gene expression among alternative genotypes. We conducted the whole-transcriptome differ-
ential expression analysis in edgeR [80]. The function calcNormFactors was used to normalize
read counts among all libraries, after model dispersion was estimated for each transcript sepa-
rately using the function estimateDisp [81]. We tested for differences in transcript abundance
by first fitting a quasi-likelihood negative binomial generalized linear model to raw count data
(glmQLFit function), which included a single main effect of genotype (Epas1™'™ was used as a
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H/L H/H

reference for comparing against EpasI™~ and Epas1™'"). P-values were calculated using a
quasi-likelihood F test using the glmQLFTest function. We controlled for multiple testing by
enforcing a genome-wide false discovery rate correction of 0.05 [82]. We identified candidate
HIF target genes from the literature [83,84] and Kyoto Encyclopedia of Genes and Genomes
database [85] as those with known function in HIF signaling, and those that have an unknown
function but contain HIF binding sites [84]. We ascertained catecholamine-related genes
based on annotation in the Gene Ontology (GO) database in AmiGO (amigo.geneontology.
org). A total of 277 HIF targets and 149 catecholamine related genes (S7 Table) were
identified.

To determine whether there were concerted shifts in gene expression for the candidate
gene sets among genotypes, we calculated log fold-change in expression between Epasi™™
mice and mice heterozygous and homozygous for the high-altitude allele in edgeR. The distri-
bution of fold-change values between candidate gene sets and the transcriptome-wide back-
ground (candidate genes excluded) was compared using Kolmogorov-Smirnov (K-S) tests
using the function ks.test in R. We then conducted a randomization procedure to test whether
the observed D-statistic for K-S tests was greater than a null distribution; the null distribution
of D-statistic values was produced by 1000 random draws of gene sets that were of equal size to
candidate sets (adrenal: HIF: n = 207; catecholamine: n = 79; left ventricle: HIF: n = 207; cate-
cholamine: n = 55) and comparing those to the transcriptome-wide background.

Demographic modeling and null PBS distribution

We estimated the demographic history of highland and lowland deer mice using synonymous
SNPs in 9adi [50]. We filtered SNPs in Hardy-Weinberg equilibrium (p<0.001) and excluded
sites with >25% missing data per population using vcftools, resulting in 287,336 SNPs to gener-
ate a folded site-frequency spectrum. We then estimated effective population sizes (N,), diver-
gence times (7)), and pairwise migration rates (1) between highland deer mice from Mt. Evans,
CO (n = 48) and deer mice from Lincoln, NE (n = 37) and Merced, CA (n = 15). We assumed
that any migration between Lincoln and Merced populations would occur indirectly through
the central Mt. Evans population and thus we did not perform a pairwise demographic analysis
for Lincoln and Merced. For our pairwise population comparisons (Mt. Evans-Lincoln and Mt.
Evans-Merced), we calculated maximum-likelihood (ML) parameters for demographic models
with and without a single symmetrical migration parameter and with an effective population
size parameter (u; proportional change in N, relative to the ancestral population immediately
following the split). We observed that maximum likelihood parameters under models of no
migration or a single symmetrical migration rate strongly underestimated the relative abun-
dance of highly differentiated SNPS, resulting in poor fit to the empirical 2D-SFS (S14 Fig). We
also tested a model which included heterogeneous migration rates among loci in the genome.
Here, we included two symmetrical migration rates, one for proportion P of SNPs and one for
proportion 1-P of SNPs, where we also estimate the P parameter. For each demographic model,
we performed 25 independent runs with starting parameter values sampled randomly from a
uniform prior distribution (0<2N,m<10; 0.01<2N,t<10; 0.1<u<10; 0.5<P<1.0). We selected
the optimal demographic model based on an adjusted likelihood ratio test using the Godambe
Information Matrix [52]. We estimated 95% confidence intervals for population size, diver-
gence time, and migration rate parameters using the Godambe Information Matrix with 100
replicate bootstrap data sets consisting of randomly sampled SNPs spaced at least 10 kb apart
(14250 SNPs for each data set). We calibrated theta estimates based on the ratio of all callable
sites to SNPs under the same filtering regime and assuming a mutation rate of 5.4x10° per base
per generation (house mouse; ref. [86]).
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To establish a null PBS distribution, we simulated 500,000 neutral SNPs across three popu-
lations in msms [53] under our estimated demographic model. Given our optimal models
included two symmetrical migration rate parameters applied to different sets of SNPs we simu-
lated proportion P of SNPs under high migration rates (85%) and proportion 1-P of SNPs
under low migration rates (15%) and combined the two simulated data sets. We used msstats
(https://github.com/molpopgen/msstats) to obtain Fsr values for SNPs between each popula-
tion and calculated PBS based on the equation in Yi et al. [13].

Demographically corrected exome scan with the Population branch
statistic

We used the simulated distribution of PBS values, and set a significance threshold of 99.9%
(corresponding PBSg;,: 0.199). We focused our examination on outlier SNPs that are located
within 1,247 hypoxia-related genes from Zhang et al. [14] (S11 Table). The genes from Zhang
et al. represent a set of candidates compiled from “hypoxia” and “hypoxia inducible factor”
keyword searches in multiple sources, including the UCSC Genome Browser, Ensembl, NCBI,
UniProt, and RefSeq. For each P. maniculatus gene containing outlier SNPs, we found the cor-
responding Mus musculus gene, then used gProfiler [87] to identify enriched gene ontology
categories above a false discovery rate corrected significance of 0.05, using strong hierarchical
filtering.

Supporting information

S1 Text. File containing supplemental results for population genetic, cline, and physiologi-
cal analyses.
(DOCX)

S1 Table. Sampling locations and frequency of Epasl alleles for 266 Peromyscus manicula-
tus samples used to generate map and cline in Fig 1. Sampling locations in bold text were
used to generate cline in Fig 1C.

(XLSX)

$2 Table. Sampling locations, museum accessing numbers, and Epasl genotypes for Pero-
myscus and broader phylogenetic sampling.
(XLSX)

$3 Table. Blood characteristics and organ masses of Epas1 variants of deer mice. Values are
expressed as mean + SEM; n = 31 for Epas1™/™, n = 13 for Epas1™*, n = 4 for Epas1"'" vari-
ants.

(XLSX)

$4 Table. F- and P-values for mixed linear effect models of blood and organ mass variables
in Epasl variants of deer mice. n.s. not significant and excluded from the final model.
(XLSX)

S5 Table. F- and P-values from mixed linear models of gastrocnemius muscle capillarity
and enzyme activity in Epasl variants of deer mice. n.s. not significant and excluded from
the final model.

(XLSX)

S6 Table. F- and P-values from mixed linear models of ventilatory and metabolic responses
of Epasl variants of deer mice. n.s. not significant and excluded from the final model.
(XLSX)
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S7 Table. Candidate set of hypoxia inducible factor (HIF) cascade target genes and cate-
cholamine synthesis and secretion genes used in targeted differential gene expression anal-
ysis. Candidate genes were curated from the literature (Ortiz-Barahona et al. 2010; Dengler

et al. 2016) and publically available databases (KEGG: Kyoto Encyclopedia of Genes and
Genomes; AmiGO).

(XLSX)

S8 Table. Results of differential gene expression among candidate HIF and catecholamine
genes. Table reports average log, fold-change (logFC) in expression, average log2 read counts
per million (logCPM), and the F-value (F) from quasi-likelihood F tests, p-value, and false-dis-
covery rate corrected p-value (FDR) of quasi-likelihood generalized linear models comparing
expression between Epas1™" vs. Epas1"™™ and Epas1™'" for adrenal and left ventricle tissues.
Gene names are Mus musculus gene ids.

(XLSX)

$9 Table. Maximum likelihood parameter estimates and 95% confidence intervals (CI) for
demographic model.
(XLSX)

$10 Table. Results from gProfiler for gene ontology enrichment of genes containing SNPs
above the 99.9™ percentile of the empirical distribution of PBS values. Only categories sig-
nificant above a Benjamini-Hochberg false-discovery rate of 0.05 are included.

(XLSX)

S11 Table. The list of hypoxia-related genes used in this study. The list of genes was
extracted from Zhang et al. (2014), then orthologs in Mus musculus and Peromyscus manicula-
tus were identified using DAVID and custom scripts.

(XLSX)

$12 Table. Hypoxia-related genes containing SNPs with PBS values above the 99.9" per-
centile of the empirical distribution. For each gene, the PBS value, genomic location, and
percentile of the highest-ranking SNP is provided.

(XLSX)

$13 Table. Epasl primer sequences. Primers were used to amplify Epasl prior to restriction
enzyme digest for screening of alternative alleles. Sequences are given 5’ to 3’. See supplemental
text for PCR reaction conditions.

(XLSX)

S1 Fig. Mean Depth of Coverage for 100 Exomes. Distribution of mean depth of coverage for
100 exome samples used in this study. The final set of quality-filtered sites consists of
5,182,530 high-quality bi-allelic variants sequenced at approximately 18X coverage. Red
dashed vertical line indicates the mean.

(PDF)

S2 Fig. PCA of Three Focal Populations. Principal components analysis of Mount Evans
(n =48), Lincoln (n = 37), and California (n = 15) mice, based on genotypes from 296,196
exome-wide LD-pruned SNPs with no missing data.

(PDF)

S3 Fig. Population assignment made via Admixture for K = 2 to K = 3 for 100 individuals.
A) Admixture was run on a set of 296,196 exome-wide LD-pruned SNPs with no missing data.
Each vertical bar represents an individual, with the colors corresponding to proportion
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assignment at each value of K. B) The lowest cross validation error rate was at K = 1; however,
higher values of K are biologically meaningful and are therefore shown here.
(PDF)

$4 Fig. Density distribution of population branch statistic (PBS) values calculated for
Mount Evans, using Lincoln and Merced populations as outgroups. The mean (green verti-
cal dashed line), 99" (blue vertical dotted line), and 99.9" (red dash-dotted line) values of the
empirical distribution are shown. Orange vertical lines indicate three outlier SNPs located in
Epas1, with the rightmost line indicating the ™755M¢ SNP.

(PDF)

S5 Fig. PBS Values for exonic SNPs in EpasI. Manhattan plot of PBS values for all SNPs
(black dots) located within all exons of Epasi. Exome-wide values for mean, 99%, and 99.9%
percentile PBS values are shown, and three outlier SNPs above the 9.9 percentile located in
Epasl are highlighted in orange. Pairwise linkage disequilibrium estimates (measured with the
squared correlation coefficient, r*) for each SNP pair are provided.

(PDF)

$6 Fig. Correlation between Epas1™ frequency and sampling elevation. Significant positive
correlation of high-elevation allele frequency with sampled elevation, based on genotyping 23
populations.

(PDF)

S7 Fig. Clinal variation in two-locus HBB haplotype frequencies. Clinal variation for nine P.
maniculatus populations sampled along a 4500 m altitudinal cline from the Great Plains of
Nebraska to the Rocky Mountains in Colorado. Data from Storz et al. 2012 Genetics.

(PDF)

S8 Fig. Histological analysis of capillarity in the gastrocnemius muscle. Capillaries were
identified by staining for alkaline phosphatase activity. The oxidative core (A,C,E) and the
outer less oxidative region (B,D,F) of the muscle is shown for representative individuals pos-
sessing Epas1™™ (A,B), Epas1™" (C,D), and Epas1"'" (E,F) genotypes. All images are shown at
the same scale, and the scale bar represents 100 um.

(PDF)

S9 Fig. Statistical analysis of capillarity in the gastrocnemius muscle. There were no differ-
ences in capillarity in the gastrocnemius muscle between deer mice with different EpasI geno-
types. Capillarity was quantified using the following measurements: A) capillaries per muscle
fiber, B) capillary surface density, C) capillary density, and D) transverse muscle area per mus-
cle fiber. Sample sizes: n = 16 EpasI™'™, n = 13 Epas1™/", and n = 4 Epas1*/'"
(PDF)

variants.

$10 Fig. Activity of oxidative enzymes in the gastrocnemius muscle. The activities of oxida-
tive enzymes, i.e. A) cytochrome c oxidase (COX) and B) citrate synthase (CS) in the gastrocne-
mius muscle were similar between deer mice with different Epasl genotypes, but C) lactate
dehydrogenase (LDH) activity appeared to be lower in mice that were homozygous for the high-
land EpasI variant. + Significant difference in a post-hoc comparison between only Epas1™™
and Epasl H/L genotypes. n = 16 Epasl HH h=13 EpaslH/ ', and n = 4 Epasl YL variants.

(PDF)

S11 Fig. Ventilatory response of deer mice with varying Epasl genotype. Deer mice with
different Epasl genotypes exhibited similar ventilatory responses to increasingly severe levels
of acute hypoxia. Ventilation was quantified via A) total ventilation, B) arterial oxygen
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saturation, C) breathing frequency, and D) tidal volume. Sample sizes: n = 26 Epas1™™, n = 13
Epas1™*, and n = 4 Epas1'"
(PDF)

variants.

$12 Fig. Response of O, consumption rate and body temperature under acute hypoxia.
Deer mice with different Epasl genotypes exhibited similar declines in A) O, consumption
rate and B) body temperature in response to increasingly severe levels of acute hypoxia, and
similar increases in C) ventilatory equivalent for O, and D) pulmonary O, extraction. Sample
sizes: n = 26 Epas]H/H, n=13 EpasIH/L, andn=4 Epas]L/L
(PDF)

variants.

S13 Fig. Heart rate response according to Epasl genotype. Deer mice that were homozygous
for the highland EpasI variant exhibited a significantly greater increase in heart rate from nor-
moxia (21 kPa O,) to environmentally realistic levels of hypoxia at 4300 m elevation (12 kPa
0,). Measurements were made using a MouseOx Plus collar. * A significant pairwise differ-
ence between Epas1™™ and Epas1™'" mice. n = 26 Epas1™'", n = 13 Epas1*™/"
Epasl YL variants.

(PDF)

,andn=14

S$14 Fig. Results of demographic modeling in deer mice. The folded 2-dimensional site fre-
quency spectra (2d-SES) for deer mice from (A) Mt. Evans, CO, and Merced, CA, and (B) Mt.
Evans, CO, and Lincoln, NE. For each pair of populations, we show the empirical 2d-SFS from
whole exome data and the maximum likelihood 2d-SFS for demographic models with no
migration, one migration rate, and two migration rates. Residuals reflect the overall fit of the
model to the empirical data, where red indicates an overestimation of the number of SNPs by
the model and blue reflects an underestimation.

(PDF)

S15 Fig. Density distributions of PBS values under simulated and empirical models. A)
Density plot of population branch statistic (PBS) values calculated for Mount Evans, using Lin-
coln and Merced populations as outgroups, from 10,000 SNPs simulated under modeled
demography. Values for the mean (green vertical dashed line), 99™ (blue vertical dotted line),
and 99.9" (red dash-dotted line) percentiles of the simulated distribution are shown. B) Den-
sity plot of empirical PBS values (same as in S4 Fig), but with significance thresholds based on
simulated 99" and 99.9"™ percentile shown.

(PDF)
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