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Abstract

This paper studies model selection consistency for high dimensional sparse regression when
data exhibits both cross-sectional and serial dependency. Most commonly-used model selection
methods fail to consistently recover the true model when the covariates are highly correlated.
Motivated by econometric and financial studies, we consider the case where covariate depen-
dence can be reduced through the factor model, and propose a consistency strategy named
Factor-Adjusted Regularized Model Selection (FarmSelect). By learning the latent factors and
idiosyncratic components and using both of them as predictors, FarmSelect transforms the prob-
lem from model selection with highly correlated covariates to that with weakly correlated ones
via lifting. Model selection consistency, as well as optimal rates of convergence, are obtained
under mild conditions. Numerical studies demonstrate the nice finite sample performance in
terms of both model selection and out-of-sample prediction. Moreover, our method is flexible
in the sense that it pays no price for weakly correlated and uncorrelated cases. Our method
is applicable to a wide range of high dimensional sparse regression problems. An R-package

FarmSelect is also provided for implementation.
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1 Introduction

With the development of data collection and storage technologies, high dimensional time series char-
acterize many contemporary research problems in economics, finance, genomics, statistics, machine
learning and so on. Specifying an appropriate yet parsimonious model has become a key topic in
high dimensional time series analysis. Parsimonious models are preferable due to their simplicity
and interpretability. In classic econometric studies, extensive efforts have been made to identify
the correct orders of time series models, see Akaike (1973), Schwarz (1978), Tsay and Tiao (1985),
Choi (1992) and Tiao and Tsay (1989) among others. In addition, removing redundant coefficients
can improve the prediction accuracy of time series. Professor George C. Tiao and his co-authors,
among others, have contributed to this area by a series of pioneering works (Box and Tiao, 1976;
Liu et al., 1992; Montgomery et al., 1998).

Over the past two decades, many model selection methods have been developed. A major part
of them are based on the regularized M-estimation approach including the LASSO (Tibshirani,
1996), the SCAD (Fan and Li, 2001), the elastic net (Zou and Hastie, 2005), and the Dantzig
selector (Candes and Tao, 2007), among others. These methods have attracted a large amount of
theoretical and algorithmic studies. See Donoho and Elad (2003), Fan and Peng (2004), Efron et al.
(2004), Meinshausen and Biihlmann (2006), Zhao and Yu (2006), Fan and Lv (2008), Zou and Li
(2008), Bickel et al. (2009), Wainwright (2009), Zhang (2010), and references therein. However, most
existing model selection schemes are not tailored for economic and financial applications as they
assume covariates are cross-sectionally weakly correlated and serially independent. These conditions
are easily violated in economic and financial datasets. For example, economics studies (e.g. Stock
and Watson, 2002; Bai and Ng, 2002) show that there exist strong co-movements among a large
pool of macroeconomic variables. A stylized feature of the stock return data is cross-sectionally
correlated among the stock returns. Furthermore, even if the weakly correlated assumption holds,
one may still observe strong spurious correlations in a high dimensional sample.

To illustrate how cross-sectional correlations influence the model selection result, we consider
a toy example of LASSO with an equally correlated design. Consider a sparse linear model y =

X3* +e. We choose sample size n = 100, dimensionality p = 200, 8* = (B, , f10, 0% ))T,

(p—10
and € ~ N(0,, 0.31,). The nonzero coefficients (i, -- , S19 are drawn from i.i.d. Uniform [2,5].
The covariates X = (x1,--- ,%,)] are drawn from the normal distribution N(0,, £) where ¥ is

a correlation matrix with all off-diagonal elements p for some p € [0, 1). Let p increase from 0 to

0.95 by a step size 0.05. For each given p, we simulate 200 replications and calculate the average
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Figure 1: LASSO model selection results with respect to the correlations

model size selected by LASSO, the average model size when the first false discovery (x;, j > 10)
enters the solution path and the model selection consistency rate. As is shown in Figure 1, the
correlation influences the model selection results in the following three aspects: (i) selected model
size, (ii) early selection of false variables, (iii) model selection consistency rates. Therefore, when
the covariates are highly correlated, there is little hope to exactly recover the active set from the
solution path of LASSO. As to be shown later, the correlation has similar adverse impacts on other
model selection methods (e.g. SCAD and elastic net).

To overcome the the aforementioned problems caused by the cross-sectional correlation, this
paper proposes a consistent strategy named Factor-Adjusted Regularized Model Selection (Farm-

Select) for the case where covariates can be decorrelated via a few pervasive latent factors. More

precisely, let x;; be the tth (¢t = 1,--- ,n) observation of the jth (j =1, - -, p) covariate, and assume
that x; = (241, ,24)] follows an approximate factor model
Xt :Bft—l—ut, (11)

where f; is a K x 1 vector of latent factors, B is a p x K matrix of factor loadings, and u; isa p x 1
vector of idiosyncratic components that are uncorrelated with f;. The strategy of FarmSelect is to
first learn the parameters in approximate factor model (1.1) for the covariates {x:};~,. Denote by

/f\t and B the obtained estimators of the factors and loadings respectively. Then by identifying the



highly correlated low rank part by ﬁ/ﬂ, we transform the problem from model selection with highly
correlated covariates in x; to that with weakly correlated or uncorrelated idiosyncratic components
u; = x; — ﬁ/ﬂ and /ft This lifting step makes covariates weakly correlated. The second step
amounts to solving a regularized profile likelihood problem. We study FarmSelect in detail by
providing theoretical guarantees that FarmSelect can achieve model selection consistency as well as
estimation consistency under mild conditions. Unlike traditional studies of model selection where
the samples are assumed to be i.i.d., the serial dependency is allowed and thus our theories apply to
time series data. Moreover, both theoretical and numerical studies show the flexibility of FarmSelect
in the sense that it pays no price for weakly correlated cases. This property makes FarmSelect very
powerful when the underlying correlations between active and inactive covariates are unknown.

FarmSelect is applicable to a wide range of high dimensional sparse regression related problems
that include but are not limited to linear model, generalized linear model, Gaussian graphic model,
robust linear model, and group LASSO. For the sparse linear regression, the proposed approach is
equivalent to projecting the response variable and covariates onto the linear space orthogonal to the
one spanned by the estimated factors. Existing algorithms that yield solution paths of LASSO can
be directly applied in the second step. To demonstrate the finite sample performance of FarmSelect,
we study two simulated and one empirical example. The numerical results show FarmSelect can
consistently select the true model even when the covariates are highly correlated while existing
methods like LASSO, SCAD and elastic net fail to do so. An R-package FarmSelect ( https://
cran.r-project.org/web/packages/FarmSelect ) is also provided to facilitate the implementation
of our method.

Various methods have been studied to estimate the approximate factor model. Principal compo-
nents analysis (PCA, Stock and Watson, 2002) is among one of the most popular ones. Data-driven
estimation methods of the number of factors have been studied in extensive literature, such as Bai
and Ng (2002), Luo et al. (2009), Hallin and Liska (2007), Lam and Yao (2012), and Ahn and
Horenstein (2013) among others. Recently, a large amount of literature contributed to the asymp-
totic analysis of PCA under the ultra-high dimensional regime including Johnstone and Lu (2009),
Fan et al. (2013), Shen et al. (2016) and Wang and Fan (2017), among others.

The rest of the paper is organized as follows. Section 2 overviews the problem setup including
regularized M-estimators of sparse regression, the irrepresentable condition, and approximate factor
models. Section 3 introduces the model selection methodology of FarmSelect and studies the sparse

generalized linear model as a showcase example. Some issues related to the estimation of approxi-



mate factor models will be discussed in Section 3 as well. Section 4 presents the general theoretical
results. Section 5 provides simulation studies and Section 6 studies the forecast of U.S. bond risk
premia. Due to the limitation of space, all technical proofs are presented in a separate supplement
file.

Here are some notations that will be used throughout the paper. I,, denotes the n x n identity
matrix; 0 refers to the n x m zero matrix; 0,, and 1,, represent the all-zero and all-one vectors in R",
respectively. For a matrix M, we denote its matrix entry-wise max norm as || M||max = max; ; |M;;|
and denote by |[M| r and ||M]||, its Frobenius and induced p-norms, respectively. Amin(IM) denotes
the minimum eigenvalue of M if it is symmetric. For M € R™™, I C [n] and J C [m], define
M;; = (Myj)ierjes, Mr. = (Myj)icr jeim) and M.j = (Myj)igjn) jes- For a vector v € R? and
S C [p], define vg = (v;)ies to be its subvector. Let V and V2 be the gradient and Hessian
operators. For f: R? — R and I,J € [p], define Vi f(z) = (Vf(2))r and V3, f(z) = (V2f(z))1,.

N(p,X) refers to the normal distribution with mean g and covariance matrix 3.

2  Problem Setup

2.1 Regularized M-estimator

Let us begin with a family of high dimensional sparse regression problems in the following settings.
From now on we suppose that {x;};" ; are (p—1)-dimensional random vectors of covariates with zero
mean', and {y;}7; are responses with each y; sampled from some probability distribution P(z;)
parametrized by 2z = 8§ + Z?;% Bixij = (1,xI)B*. Here B* = (B3, - ,5;_1)T € R? is a sparse
vector with s < p non-zero elements. Let X = (x1, --- ,x,)T € R™*P~D and y = (y1, ---yn)? €
R™ be the design matrix and response vector, respectively. Define X = (1,,X) € R"*P, where the
subscript 1 refers to the all-one column added to the original design matrix X.

Let L, (y,X13) be some convex and differentiable loss function assigning a cost to any parameter
B € RP. Suppose that 3" is the unique minimizer of the population risk E[L, (y, X;3)]. Under the
high-dimensional regime, it is natural to estimate 3* via a regularized M-estimator as follows:

B € argmin { L, (y, X18) + AR.(8)}, (2.1)
BeRP

"We use (p — 1) instead of p to denote the number of covariates so that there are p coefficients including the
intercept. In addition, we center the covariates if they could have non-zero means. Whether this step is done or not

does not affect the estimation of {3} }‘;’:1, but does affect the intercept 3;.



where R, : R? — R is a norm that penalizes the use of a nonsparse vector 3 and A > 0 is a tuning
parameter.

A special case of this problem is the L; penalized likelihood estimation of generalized linear
models. Suppose the conditional density function of Y given covariates x is a member of the

exponential family, i.e.
fylx, B%) o< explyz — b(z) + c(y)]; (2:2)

where z = 8§ + Z?;% Bixj = (1,x7)3*, b(-) and ¢(-) are known functions, and B* is an unknown
coefficient vector of interest. It is commonly assumed that b(-) is strictly convex. Taking the loss
function to be the negative log-likelihood function and the penality function to be the L; norm, the

regularized M-estimator of 3* admits the form

n
BER? =1

B € argmin {1 S w1 xD)B + (1L x)B)] + Auﬂul} . (2.3)

2.2 Irrepresentable condition

We expect a good estimator of (2.1) to achieve estimation as well as selection consistency. The
former requires |3 — B8*|| L, 0 for some norm ||| as n — co; while the latter requires P(supp(3) =
supp(3*)) — 1 as n — oo. In general, the estimation consistency does not imply selection consis-
tency and vice versa. To study the selection consistency, we consider a stronger condition named

general sign consistency as follows.

Definition 2.1 (Sign consistency). An estimate B 18 sign consistent with respect to 3% if nh_)rrolo P(sign(,@) =
sign(8*)) = 1.

Zhao and Yu (2006) studied the LASSO estimator and showed there exists an irrepresentable
condition which is sufficient and almost necessary for both sign and estimation consistencies for a
sparse linear model. Without loss of generality, we assume supp(8*) = [s] = S. Denote (X1)g
and (X1)ge as the submatrices of X; defined by its first s columns and the rest (p — s) columns,

respectively. Then the irrepresentable condition requires some 7 € (0, 1), such that
1(X1) e (X1)s[(X1) & (X1)s] oo <1 = (2.4)

For general regularized M-estimator (2.1) to achieve both sign and estimation consistencies, Lee
et al. (2015) proposed a generalized irrepresentable condition. When applied to the L; regularizer,

it becomes

V35 L(BY)VES LB Moo <1, (2.5)



for some 7 € (0, 1), where L(3) = L,(y,X18). It is easy to check (2.5) is equivalent to (2.4) under
the LASSO case. The generalized irrepresentable condition will easily get violated when there exist
strong correlations between active and inactive variables. Even if it holds, the key parameter 7 can
be very close to zero, making it hard to select the correct model and obtain small estimation errors

simultaneously.

2.3 Approximate factor model

To go beyond the assumption of weakly correlation, a natural extension is a conditional weak
correlation. Suppose covariates are dependent through latent common factors. Given these common
factors, the idiosyncratic components are weakly correlated. The factor model has been well studied
in econometrics and statistics literature, we refer to Lawley and Maxwell (1971); Stock and Watson
(2002); Bai and Ng (2002); Forni et al. (2013); Fan et al. (2013), among others. For an overview,
see Fan et al. (2019+).

We assume that {x;}} ; C RP~! follows the approximate factor model
x; = Bf; + uy, t e [n], (26)

where {f;}?_; C RX are latent factors, B € RP~D*K ig a loading matrix, and {u;}?; C RP~! are
idiosyncratic components. Note that x; is the only observable quantity. Throughout the paper, K
is assumed to be independent of n, which is frequently imposed in the literature of factor model
(Fan et al., 2013). We assume that {f;,u;}} ; come from a time series {f;,u;}2 .. Denote
F=(f, -, f)T e R  and U = (uy,--- ,u,)” € R*™®=D Then (2.6) can be written in a
more compact form:

X =FB? + U. (2.7)

We impose the following identifiability assumption (Fan et al., 2013). Here we only put the most
basic assumption for factor model, and more can be found in Section 3.3 where estimation of factor

model is discussed.

Assumption 2.1. Assume that cov(f;) = I, BIB is diagonal, and all the eigenvalues of BTB/p

are bounded away from 0 and oo as p — oo.



3 Factor-adjusted regularized model selection

3.1 Methodology

To illustrate the main idea, we temporarily assume f; and u; to be observable. Define By =
(0, BT)T € RE*P and Uy = (1,,U) € R™P. By the approximate factor model (2.7), we have
decompositions X = FBOT + U; and

X;8=FBl3+U8=Fvy+UB,

where v = B3 € RX. The regularized M-estimator (2.1) can be written as

Be argmin {Ln(y,.Fy+U18) + AR, (8)} .
BeRr, v=BI'BeRK,

Instead of using ,B to estimate 3%, we regard ~ as nuisance parameters, drop the constraint v = BE‘)FB,
and consider a new estimator

Be argmin {L,(y,Fy+U18) + AR.(8)}, (3.1)
BERP, veRK

namely (u},f!)? are now regarded as new covariates. In other words, by lifting the covariate space
from RP to RPTX | the highly dependent covariates x; are replaced by weakly dependent ones.
The theory for us to ignore the constraint v = Bg,@ is given by the following lemma, whose

proof is given by Appendix A in the supplement file.

Lemma 3.1. Consider the generalized linear model (2.2), let Ly(y,z) = = >0 [—yze + b(z1)],
e =y — V' ((1,x{)B") and wy = (1, uf ,£1)". If E(newi) = Opyxc, then

(B*,B{B*) = argmin E[L,(y,Fy+ U18).
BERP, vyeRK

It is worth pointing out that the assumption E(n;w;) = 0,1 is very mild and natural. We just
assume the residual 7; and augmented covariates w; to be uncorrelated, which is almost as weak
as the standard condition E(n|x;) = 0 for the generalized linear model. For example, in the linear
model y; = (1,x])B* + 1, we strengthen the condition only from E(n;x;) = 0 to E(n:f;) = 0 and
E(ntu) = 0. In particular, the assumptions hold if 7; is independent of u; and f;.

By construction, (U, F) has much weaker cross-sectional correlation than X. Thus, the penalized
profile likelihood (3.1) removes the effect of strong correlations caused by the latent factors. It can

be implemented as follows:



Step 1: Initial estimation. Let X € R™*P be the design matrix. Fit the approximate factor
model (2.7) and denote ]§, F and U = X —FBT the obtained estimators of B, F and U respectively
by using the principal component analysis (Bai, 2003; Fan et al., 2013; Fan et al., 2019+). More
specifically, the columns of F /+/n are the eigenvectors of XX corresponding to the top K eigenval-
ues, B = n~!XTF. This is the same as B = (VA€ VAkE) and F=XB diag(A\7t--- ,/\I_(l),
where {)\j}JK: , and {ﬁj}JKz , are top K eigenvalues in descending order and their associated eigen-

vectors of the sample covariance matrix.

Step 2: Augmented M -estimation. Define W = (1, ﬁ, f‘) e R P+E) and 9 = (BT, AT €

RPTE . Then B is obtained from the first p entries of the solution to the augmented problem
6 € argmin {Ln(y, \/7\79) + )\Rn(e[p])} . (3.2)

OcRPtK

We call the above two-step method as the factor-adjust regularized model selection (FarmSelect).
If u; is independent of f; and the variables in the idiosyncratic component u; are weakly correlated,
then the columns in W = (1,, fJ, f‘) are weakly correlated as long as F and U are well estimated.
Hence, we successfully transform the problem from model selection with highly correlated covariates
X in (2.1) to model selection with weakly correlated or uncorrelated ones by lifting the space to
a higher dimension. The augmented problem (3.2) is a convex optimization problem which can

be minimized via many existing convex optimization algorithms, such as coordinate descent (e.g.

Friedman et al., 2010) and ADMM (Boyd et al., 2011).

3.2 Example: sparse linear model

Now we illustrate the FarmSelect procedure using sparse linear regression, where y = X18" + €.

With aforementioned notation, we have
y=Xi8"+e=FBlp" + U8 +e. (3.3)
The augmented M-estimator (3.2) for the sparse linear model is of the following form:
~ ) 1 ~ P
B € argmin 2—|]y—F7—U1,6||2+A\|6|!1 .
BERP, veREK n

Solving the least-squares problem with respect to -+, we have the penalized profile least-squares

solution

Be argmm{lnan _B)y - 0.8 +A||ﬁ|1}, (3.4)

Berr 21



where P = f‘(f‘Tf‘)*lf‘T is the n x n projection matrix onto the column space of F. As the
decorrelation step does not depend on the choice of the regularizer R(-), FarmSelect can be applied
to a wide range of penalized least squares problems such as SCAD, group LASSO, elastic net, fused

LASSO, other folded concave penalties, and so on.

There is another way to understand this method. By left multiplying the projection matrix

(I, — P) to both sides of (3.3), we have

~

(I, — P)y = (I, - P)U; 8" + (I, — P)e, (3.5)

where (In—f’)ﬁl can be treated as the decorrelated design matrix and (In—f’)y is the corresponding
response variable. From (3.5) we see that the method in Kneip and Sarda (2011) coincides with
FarmSelect in the linear case. However, the projection-based representation only makes sense in
sparse linear regression. In contrast, our idea of profile likelihood directly generalizes to more general

problems.

3.3 Estimating factor models

Principal component analysis (PCA) is frequently used to estimate latent factors for model (2.7).
The estimated matrix of latent factors F is v/n times the eigenvectors corresponding to the K largest
eigenvalues of the n x n matrix XX”. Using the normalization FTF/n = I yields B = XTf/n.
Now we introduce the asymptotic properties of estimated factors and idiosyncratic components. We
adopt the regularity assumptions in Fan et al. (2013), which are similar to the ones in Bai (2003)

and other literature on high-dimensional factor analysis.

Assumption 3.1. 1. {f,, w};2, is strictly stationary. In addition, E fy, = Euyj = E(w; fue) =
0 forallie[n], jep—1] and k € [K];

2. There exist constants c1,ca2 > 0 such that Amin(cov(ug)) > c1, || cov(ug)|1 < e2 and

min; pepp—1) var(ugjug) > c1;

3. There exist 1,79 > 0 and by,bs > 0 such that for any s > 0, j € [p— 1] and k € [K],
P(lug| > ) < exp(=(s/b1)"™) and P(|fu| > s) < exp(—=(s/b2)").

Assumption 3.2. Let F° and F¥ denote the o-algebras generated by {(f,u;) : i < 0} and
{(fs,uz) : i > T} respectively. Assume the existence of r3,C > 0 such that 3/r1+3/(2r2)+1/r3 > 1

10



and for all T > 1,

sup  [P(A)P(B) — P(AB)| < exp(~CT"™);
AeFO _ ,BEFX

Assumption 3.3. There exists M > 0 such that for all t,s € [n], we have |B|max < M,
E{p~'?[u]us, — E(ulu,)*} < M and E|[p~/?BTw||3 < M.

We summarize useful properties of F and U in Lemma 3.2, which directly follows from Lemmas

10-12 in Fan et al. (2013).

Lemma 3.2. Let y~' = 3/ry 4+ 3/(2r2) 4+ 1/r3 + 1. Suppose that logp = o(n/%), n = o(p?), and

Assumptions 2.1, 3.1, 3.2 and 3.3 hold. There exists a nonsingular matriz Hy € REXK such that

= /
1. HFHO - FHmaX = OP(% + L\/;);

2. max n~ ! 37 [(FHo) s — fir|? = Op(

1,1
ke[K] + p)

n

2 —LNY m |2 = Op (g2 4 1y
- omax nT Y0 Uy — uglt = Op(5 +p)’
Jj€p—1]

4. 1|0 = Ullmax = op(1).

A practical issue arises on how to choose the number of factors, i.e. K. As latent factors, loading
and idiosyncratic components are all unobservable in the approximate factor model, the estimation
of K is an intrinsic un-supervised learning problem. From the inference point of view, existing
literature (Chamberlain and Rothschild, 1982; Stock and Watson, 2002; Bai and Ng, 2002, among
others) usually assumes that there exists a non-negative integer K such that the first K population
eigenvalues of X are diverging with p, while the rest p — K eigenvalues are bounded. From the
dimension reduction point of view, selecting K is to find a proper trade-off between goodness-of-fit
and compactness of the model. In this paper, we follow a conditional sparsity perspective (Fan
et al., 2013) regarding the role of K, where K is the smallest non-negative integer such that the
idiosyncratic components U = X — FB7 is weakly correlated. In this regard, for our purpose of
model selection, a small overestimation of K does not seriously affect the adjusted model selection.

We adopt the modified ratio method, e.g. equation (10) in Chang et al. (2015), for the numerical
studies in this paper due to its simplicity. Let A\x(XX7) be the kth largest eigenvalue of XX
Kpaz be a prescribed upper bound and C), be a constant that depends on n and p. The number of
factors can be estimated by

> )\k:+1(XXT) + Cn

K = argmin

k<Kmae Me(XXT) 4+ Cy, (3.6)

11



for some given C,. When X itself is weakly correlated, one can estimate K as 0.
Besides the modified ratio method, Bai and Ng (2002) studied the convergence and consistency
estimation of K for high dimensional factor models. They proposed to estimate K by minimizing

a family of information criteria. We refer to equation (9) in Bai and Ng (2002) for viable examples.

3.4 Factor-adjusted variable screening

Screening methods (e.g. Fan and Lv, 2008; Fan and Song, 2009; Wang and Leng, 2016) are com-
putationally attractive and thus popular for ultra-high dimensional data analysis. However, the
screening methods tend to include too many variables when there exist strong correlations among
covariates (Fan and Lv, 2008; Wang and Leng, 2016). As an extension of FarmSelect, we propose

the following conditional variable screening method to tackle this problem.

Step 1: Initial estimation. We fit the approximate factor model (2.7) to obtain ]§, F and U.

Step 2: Augmented marginal regression. For j € [p — 1], let ﬁj be the j-th column of U and
compute

a€R,BER,yERE

Step 3 Screening. Return {j : ]@\ > ¢} for some prescribed threshold &.

For sparse linear regression, our screening method reduces to the factor-profiled screening method

proposed by Wang (2012).

4 Theoretical results

4.1 FarmSelect with approximate factor model

Now we establish theoretical guarantees of the FarmSelect estimator (3.2). Recall that 8* is equal
to the first p entries of 8*. Define S = supp(0*), S1 = supp(B*) and Sy = [p + K]\S. When the
covariates X admit the approximate factor model (2.7), the oracle procedure uses true augmented

covariates w; = (1,ul, £)T for t € [n] and solves

min{Ln(y, W) + All0p[1},

12



where W = (wl, ..., wl)T = (Uy,F). However, W is not observable in practice. Hence we need

to use its estimator {7\\7 and solve
min{Ly(y, W) + Al[0p |1 }.

Below the error induced by the factor estimation will be studied carefully. To deliver a clear
discussion on the conditions and results, we focus on the FarmSelect estimator for the generalized

linear model (2.3), and assume that the covariates are generated from the approximate factor model

(2.7).

Assumption 4.1 (Smoothness). b(z) € C3(R). For some constants My and M3, we have 0 <

b'(2) < My and [V (2)] < M3, Vz.

*
Assumption 4.2 (Restricted strong convexity and irrepresentable condition). Let 8% = i
Assume the existence of ka > koo > 0 and T € (0,1) such that
1
1[V25Ln(y, WO*)] 7Y, < P for £ =2 and oo,
ke (4.1)

IV, s Ln(y, WO")[VEg Ly (y, WO*)] oo < 1 - 27.

Assumption 4.3 (Estimation of factor model). |[W|max < 220 for some constant My > 0. In
. . . . I,  Opxr 53 V4
addition, there exist K x K nonsingular matriz Hy, and H = such that for W =

0K><p HO

_— _ 1/2
WH, we have |W — W||pax < % and Max ey k] <% iy [wey — wtj\2> < #ﬂ‘m

Before presenting the main results, we make a few remarks on the assumptions.

1. Assumption 4.1 holds for a large family of generalized linear models. For example, linear
model has b(z) = 122, My = 1 and M3 = 0; logistic model has b(z) = log(1 + €7) and finite
My, Ms.

2. The first inequality in (4.1) involves only a small matrix and holds easily, and the second in-
equality there is related to the generalized irrespresentable condition. Standard concentration
inequalities (e.g. the Bernstein inequality for weakly dependent variables in Merlevéde et al.
(2011)) yield that Assumption 4.2 holds with high probability as long as E[V2L,(y, W6*)]

satisfies similar conditions.

13



3. Here we show an example where the irrepresentable condition holds for the augmented covari-
ates W but fails to hold for the original ones X. Suppose the covariates {x;}?_; are generated
from a single factor model x; = bf; + u;, where b = (1,1,2,---,2)7 € R, f; ~ N(0,1),
u; ~ N(0,I,) and it is independent of f;. Consider a sparse linear model y; = x?,@*—i—ai, where
{e;}, are ii.d. N(0,0?) variables for some o > 0 and they are independet of {f;,u;}";;
B* = (1,1,0,---,0)7 € RP. Let L,(y,z) = 5|y — z||3. Note that w; = (ul, f;)T € RPF1,
0" = ((8)7, b7 BT € RP+1,

yi=x: B +ei=fibl B +ul B +¢ =wl0"+¢,

and V2L, (y, W) = %WTW. Thanks to the independence, we have w; ~ N(0,I,.1) and
EV2L,(y,W8) = I,,1. Hence

V3, E Lu(y, WO")[Vig E L, (y, W6*)| "1 = 0,

where S = {1,2,p + 1} and Sy = {3,---,p}. With high probability, the irrepresentable
condition also holds for the empirical quantity L, (y, W@*). On the other hand, we observe
that x; ~ N(0,X) with ¥ = bb” +I,. When X are used as covariates, we have S = {1,2} and

2 1
So={3,---,p}. From Xgg = Lo and Xgeg = 2'1(p72)><27 we get 25cSZ§é = %-l(p,Q)Xg
and HEchEgéHoo = % > 1. Hence the irrepresentable condition is violated.

4. Under the conditions of Lemma 3.2, we have |[W—W/||max = op(1) and max;ep,; k] <% Yoy W —

1/2 .~ I 0
wtj‘Q) = Op( logp L) where W=WH, H= P PXK 1 and some proper Hy.
" VP 0K><p HO

Hence |S \2(10% + %) = O(1) can guarantee Assumption 4.3 to hold with high probability.

Theorem 4.1. Suppose Assumptions 4.1-4.3 hold. Define M = M3M3|S\3/2 and

€= max ’lzwtj[_yt+b/((1axg)6*)]"
t=1

jelp+K]In

If % <A< %; then we have supp(,@) C supp(B*) and

6 ~ 4X\/|S 6>\S
B-Blos o 1B-gls 2L gy < L

-y . K2KooT2 : *| .o * ; 6Ce
In addition, if € < EITNIE and min{|B}|: 8] # 0, j € [p|} > 5= hold for some C > 7, then by
C

taking A € ( €, =€) we can achieve the sign consistency 51gn(ﬁ) = sign(8%).
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By taking A < e, one can achieve the sign consistency and [|8—8*||so/e = Op(1), ||B—B*||2/c =
Op(1/]S]) and ||B — B*||1/e = Op(|S|). Hence ¢ is a key quantity characterizing the error rate of

our FarmSelect estimator, whose size is controlled using the following lemma.

Lemma 4.1. Let n; = v, — b/ ((1,x1)B*) and w, = (1,u] ,£)7. Assume that {wy, > is strictly

stationary and satisfies the following conditions
1. E(newy) = 0;

2. There exist constants b,y1 > 0 such that P(|n:| > s) < exp(1 — (s/b)") for all t € Z and

s>0;
3. There exist constants c,v3 > 0 such that for all T > 1,

s [P(A)P(B) — P(AB)| < exp(~cT™),
AR’ BEFY

where ?(ioo and f(loo denote the o-algebras generated by {(w¢,n:) : @ < 0} and {(we,m) 11 >
T} respectively;

In addition, suppose that the assumptions in Lemma 3.2 hold. Then we have

1 n

lo 1
Wit 8D —)
"3

Recall that the assumption E(n,w;) = 0 has been used in Lemma 3.1 as a cornerstone of our

£ = max

. = Op(
JE[p+K]

FarmSelect methodology. The rest in the list are standard conditions similar to Assumptions 3.1-3.3.

All of them are mild and interpretable.

Lemma 4.1 asserts that ¢ = Op( lofip + ﬁ) The first term 10% corresponds to the optimal
rate of convergence for high-dimensional M-estimator (e.g. Bickel et al., 2009). The second term
% is the price we pay for factor estimation, which is negligible if n = O(plogp). In that high-
dimensional regime, all the error bounds for |3 — 8%/, (¢ = 1,2, 00) match the optimal ones in the

literature.

4.2 Factor-adjusted variable screening

In this subsection, we study the factor-adjusted variable screening procedure described in Section

3.4. The lemma below considers the population version of the factor-adjusted screening procedure.
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It shows that as long as E(ujy) # 0 for all j’s in the active set supp(8*), where u; is the j-
th idiosyncratic component, the screening retains all the important variables. Furthermore, if

E(ujy) = 0 for all j’s outside the active set, the screening procedure exactly recovers the active set.

Lemma 4.2. Let f be a K-dimensional random vector, u be a zero-mean random variable and is
independent of £, y be another random variable living in the same probability space, and b € C?(R)
such that 0 < b” < M. Assume that u, y and the coordinates of £ all have finite second moments.
Define

(,8,v) = argmin  E[b(a+uB + 1) — (a4 uB + 7).
a€R,BER,yERK

We have the followings.
1 |B] = [E(uy)|/ (M - Eu?);

2. If E(uy) =0 and P(u=0) =0, then 8 = 0.

Now we investigate the sure screening property of the factor-adjusted screening procedure. Recall
that F = (f1,---,f,)7 € R™K and U = (uy,---,u,)’ € R™P are matrices of true factors
and idiosyncratic components, respectively, and their estimated versions are F and U. We use
Uj, ﬁj € R™ to refer to the j-th columns of U and U. Define Ly j(a,B,7) = La(y, lna—l—ﬁjﬂ—l—ﬁ'y)
for j € [p], a €R, B € R and v € RE. Let

(o, Bj,7;) = argmin  E L,(y,1n,a+ U, + Fv) (4.2)
a€R, BeR yeRE
be the population version of (&, Bj,’/)\/j).
The following three assumptions are variants of those in Section 4.1, and hence they hold almost

surely or with high probability in the cases we are interested in.

Assumption 4.4 (Smoothness). b € C3(R). For some constant M, we have 0 < b'(z) < M and
0" (2)| < M, V=.

Assumption 4.5 (Strong convexity of marginal loss functions). There exists some constant k > 0

such that Van,j(ozj,ﬁj,‘yj) = kI for all j € [p)].

Assumption 4.6 (Estimation of factor model). There ezist constants C, ¢ and a nonsingular matric

Opr HO

H, € REXE such that the followings happen. Let H = and W = WH. We have

_ 1/2
[Wllnax < C, [[W = W|[pnax < C and maX;ep+K] (% Z?:l |@tj - wtj|2> <ec.
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Theorem 4.2. Suppose that Assumptions 4.4, 4.5 and 4.6 hold with high probability, and the

constant ¢ in Assumption 4.6 is small enough. For j € [p — 1], define

1 n
&= D Wy + £+ uyB)) — el (LA uy)”
t=1

If £ < pminjegppg) | E(ujy)|/ (M - Eujz) for some constant p € (0,1) and

max_|lgjll2 =op( min E(u]y)\/EuJQ), (4.3)

Jj€supp(B™) j€Esupp(8*)

then we have
P(supp(B8*) C {j : |B;| > &}) = 1—o(1).

Under the conditions in Lemma 4.1, we can prove that

/logp 1
max eilla =0 + —).
j€supp(B*) I3z P n \/15)

Theorem 4.2 asserts that if min;cqpp(g+) | E(u;y)|/ Euj2 grows faster than lo% + ip, the factor-

adjusted screening procedure enjoys the sure screening property (Fan and Lv, 2008; Fan and Song,
2009). The optimal choice of the screening threshold £ can be disucssed by following the analysis as

in Fan and Song (2009). Here we do not pursue this result as it is not the main focus of the paper.

5 Simulation study

5.1 Example 1: Linear regression

We study a simulated example for high dimensional sparse linear regression with correlated covari-
ates. The correlation structure is calibrated from S&P 500 monthly excess returns between 1980
and 2012. Throughout the numerical studies of this paper, the tuning parameter A is selected by
the 10-fold cross-validation. The model selection performance is measured by the model selection
consistency rate and the sure screening rate. The former is the proportion of simulations that the
selected model is identical to the true one and the latter is the proportion of simulations that the

selected model contains all important variables.
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Calibration and data generation process

We calculate the centered monthly excess returns for the stocks in S&P 500 index that have complete

records from January 1980 to December 2012. The data, collected from CRSP? | contains the returns

of 202 stocks with a time span of 396 months. Denote the centred monthly excess returns as z;,

t=1,...,396. The calibration and data generation procedure are outlined as follows.

(1)

Fit z; with a three factor model. We apply PCA on the sample covariance of {z:}3%} and

denote A and &, k = 1,2, 3, as the top three eigenvalues and corresponding eigenvectors. We

estimate loadings B = (vA1€1, VA2€y, vVAa€s) and § = (A €Tz, A, €020, 0y €T )T

Calculate g as the sample covariance of the rows of B, which is diag(A1, A2, A3). Generate

loading matrix B whose rows are draws from i.i.d. N(0, ¥p).

Fit VAR(1) model f; = ®f,_; +n,. Denote ® the estimate of ® and calculate X,=1- 33 .
Generate f; from the VAR(1) model f; = of,_1 + 1, with fy = 0, where n, is generated from
iid. N(0, Xp).

Calculate the residual u; = z; — Bft and X, the sample covariance matrix of u;. Denote
02 the average of the diagonal entries of X,. Generate covariates x; from a factor model

x; = Bf; + u; where the entries in u; are drawn from i.i.d. N(0, o2).

Generate the response y; from a sparse linear model y; = x! 8* + ;. The true coefficients
are 3% = (B1, -, S1o, O%’;ilo))T, and the nonzero coefficients g1, - - - , 819 are drawn from i.i.d.

Uniform(2,5). We draw &; from an AR(1) model &, = 0.5¢;_1 + ¢ with v ~ N(0, 0.3).

The results of the calibrated parameters are presented in Table 1.

Table 1: Parameters calibrated from S&P 500 returns

~

P o =, o2

0.5237 0 0 0.1897 -0.0375 -0.0223 | 0.9621 -0.0056 0.0182

0 0.2884 0 0.0630  0.1553  0.0206 | -0.0056 0.9715 -0.0078 | 0.246
0 0 0.2372 | -0.0432 0.0102 0.4343 | 0.0182 -0.0078 0.8094

2Center for Research in Security Prices Database, see http://www.crsp.com/ for more details.
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Impacts of Irrepresentable Condition

First, we show LASSO performs poorly in terms of model selection consistency rate when the
wrrepresentable condition is violated, while FarmSelect can consistently select the correct model. Let
n =100 and p = 500. Denote by I'og = || XL Xs(XEXs)!|oo. When T'sg < 1 the irrepresentable
condition holds and otherwise it is violated. We simulate 10,000 replications. For each replication,
we calculate I'o, and apply both LASSO and FarmSelect for model selection. Then we calculate the
model selection consistency rate within each small interval around I', (a nonparametric smoothing).
The results are presented in Figure 2. According to Figure 2, both FarmSelect and LASSO have
high model selection consistency rate when I'oo < 1. This shows FarmSelect does not pay any price
under the weak correlation scenario. As I's, grows beyond 1, the correct model selection rate of
LASSO drops quickly. When the irrepresentable condition is strongly violated (e.g. T'no > 1.5),
the correct model selection rate of LASSO is close to zero. On the contrary, FarmSelect has high

selection consistency rates regardless of I'y.

Correct model selection rate with respect to I,

Q ] 1
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Figure 2: Relationship between model selection consistency rate and irrepresentable condition.
Among the 10,000 replications, more than 9,500 replications have ' > 1 and more than 8,000

replications have I' > 1.5.
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Impacts of sample size

Second, we examine the model selection consistency with a fixed dimensionality and an increasing
sample size. We fix p = 500 and let n increase from 50 to 150. For each given sample size, we
simulate 200 replications and calculate the model selection consistency rates and the sure screening
rates for LASSO, SCAD, elastic net, and FarmSelect, respectively. For the elastic net, we set
A1 = A2 = A. The results are presented in Figure 3 (a) and Figure 3 (b). Figure 3 (a) shows that
model selection consistency rates of LASSO, SCAD, and elastic net do not enjoy fast convergence
to 1 when the sample size increases, while the one of FarmSelect equals to one as long as the sample
size exceeds 100. Similar phenomena are observed from sure screening rates. To demonstrate the
prediction performance, we report the mean estimation error || B — B%||2 for each method, which is
a good indicator of the prediction error. The estimation errors are reported in Figure 3 (c). When
the sample size is small, LASSO, SCAD, and elastic net have large estimation errors since they tend

to select overfitted models.

Impacts of dimensionality

Third, we assess the model selection performance when the dimensionality p is growing beyond n
and diverging. We fix n = 100 and let p grow from 200 to 1000. For each given p, we simulate
200 replications and calculate the model selection consistency rate of LASSO, SCAD, elastic net,
and FarmSelect respectively. The model selection consistency rates are presented in Figure 4(a).
According to Figure 4(a), the model selection consistency rate of FarmSelect stays close to 1 even
as p increases, whereas the rates for the other three methods drop quickly. Again, we report the
estimation errors in Figure 4(b). As the dimensionality grows, FarmSelect has the least increase in

estimation error.

5.2 Example 2: Logistic regression

We consider the following logistic regression model whose conditional probability function is:

Py = 1% = 22X

Rl B O 5.1
1+ exp(X7'B3) (5.1)

We set sample size n = 300 and dimensionality p = 300, 400, 500. The true coefficients are set to
be B* = ( F{l), 0)7 with By = (6, 5, 4)T. Hence the true model size is 3.

The covariates X are generated from one of the following three models:
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(a) Model selection consistency rate with respect to N (P=500)
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Figure 3: From above to below: (a) Model selection consistency rates with fixed p and increasing n;

(b) Sure screening rates with fixed p and increasing n; (¢) Mean estimation errors ||B — B*[|2 with

21
fixed p and increasing n.



Figure 4: From above to below: (a) Model selection consistency rates with fixed n and increasing
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(1)

(2)

(3)

We compare the model selection performance of FarmSelect with LASSO and simulate 100 repli-

Factor model x; = Bf; + u; with K = 3. Factors are generated from a stationary VAR(1)
model f; = ®f;_; + n, with fy = 0. The (¢, j)th entry of ® is set to be 0.5 when i = j and
0.3/=3! when i # j. We draw B, u; and 7, from the i.i.d. standard Normal distribution.

Equal correlated case. We draw x; from i.i.d. Np(0,X), where X has diagonal elements 1 and

off-diagonal elements 0.4.

Uncorrelated case. We draw x; from i.i.d. N,(0,I)
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cations for each scenario. The model selection performance is measured by the selection consistency

rate, sure screening rate and the average size of the selected model.

The results are presented

in Table 2 below. According to Table 2, FarmSelect pays no price for the uncorrelated case and

outperforms LASSO for highly correlated cases.

Table 2: Model selection results of logistic regression (n = 200)

Factor model with K =3
FarmSelect LASSO
Selection rate  Screening rate  Average model size | Selection rate  Screening rate  Average model size
p =300 0.91 1.00 3.22 0.22 0.98 8.13
p =400 0.90 0.99 3.14 0.17 0.97 7.66
p =500 0.89 0.98 3.15 0.14 0.97 9.99
Equal correlated case
FarmSelect LASSO
Selection rate  Screening rate  Average model size | Selection rate  Screening rate  Average model size
p =300 0.91 1.00 3.07 0.61 0.99 4.63
p =400 0.91 1.00 3.06 0.54 0.99 4.67
p =500 0.87 0.99 3.05 0.55 0.99 5.45
Uncorrelated case
FarmSelect LASSO
Selection rate  Screening rate  Average model size | Selection rate  Screening rate  Average model size
p =300 1.00 1.00 3.00 0.88 1.00 4.05
p =400 0.99 1.00 3.01 0.86 1.00 5.11
p =500 0.99 1.00 3.02 0.85 1.00 3.57

6 Prediction of U.S. bond risk premia

In this section, we predict U.S. bond risk premia with a large panel of macroeconomic variables.

The response variable is the monthly data of U.S. bond risk premia with a maturity of 2 to 5 years
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between January 1980 and December 2015 containing 432 data points. The bond risk premia are
calculated as the one year return of an n year maturity bond excessing the risk-free rate. The
covariates are 128 monthly U.S. macroeconomic variables in the FRED-MD database® (McCracken
and Ng, 2016). The covariates in the FRED-MD dataset are strongly correlated and can be well
explained by a few principal components. To see this, we apply principal component analysis to
the covariates and draw the scree plot of the top 20 principal components in Figure 5. The scree
plot shows the first principal component solely explains more than 60% of the total variance. In
addition, the first 5 principal components together explain more than 90% of the total variance.

We apply one month ahead rolling window prediction with a window size of 120 months. Within
each window, we predict the U.S. bond risk premia by a high dimensional linear regression model
of dimensionality 128. We compare the proposed FarmSelect method with LASSO in terms of
model selection and prediction. Besides, we include the principal component regression (PCR) in
the competition of prediction. Instead of using the covariates as regressors directly, PCR regresses
the dependent variable on the leading principal components of covariates. The FarmSelect is im-
plemented by the FarmSelect R package with default settings. To be specific, the loss function
is L1, the number of factors is estimated by the modified eigen-ratio method and the regularized
parameter is selected by multi-fold cross-validation. The LASSO method is implemented by the
glmnet R package. The PCR method is implemented by the pls package in R.

The prediction performance is evaluated by the out-of-sample R? which is defined as

432 ~

Zt:121(yt - yt)2
432 —\o?

Zt:121(yt - Z/t)2

where 1 is the response variable realized at time ¢, 3 is the predicted y; by one of the three methods

R*=1-

above using the previous 120 months data, and g; is the sample mean of the previous 120 months
responses (y¢—120,---,Yt—1), which represents a naive predictor. For FarmSelect and LASSO, we
also report the average selected model size for prediction at time ¢t € {121,---,432}. The out-of-
sample R? and average selected model size are reported in Table 3. The results in Table 3 show
that FarmSelect selects parsimonious models and achieves the highest R?’s in all scenarios. On the
contrary, LASSO may select redundant models as it ignores correlations among covariates. To see
this, we rank the covariates according to the selected frequency. The top 5 selected covariates and

their frequencies are listed in Table 4. According to Table 4, LASSO tends to select some highly

3The FRED-MD is a monthly economic database updated by the Federal Reserve Bank of St. Louis which is

publicly available at http://research.stlouisfed.org/econ/mccracken/sel/.
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correlated covariates simultaneously. For instance, LASSO includes both Civilians Unemployed for

5-14 Weeks and Civilians Unemployed for 15-26 Weeks due to the strong correlation between them.

Scree plot of the FRED-MD
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Figure 5: Eigenvalues (dotted line) and proportion of variance explained (bar) by the top 20 principal

components

Table 3: Out of sample R? and average selected model size

Maturity of Bond Out of sample R? Average model size

FarmSelect LASSO PCR | FarmSelect Lasso

2 Years 0.530 0.509 0.462 5.96 6.86
3 Years 0.526 0.523 0.483 0.71 7.09
4 Years 0.484 0.476 0.470 5.53 6.81
5 Years 0.481 0.475 0.477 5.90 6.84
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Table 4: 2 years Maturity: Top 5 variables with highest selection frequency

FarmSelect
Rank | Name Frequency
1 3-Month Commercial Paper Minus FEDFUNDS 133
2 Civilians Unemployed for 15-26 Weeks 84
3 Housing Starts, Midwest 71
4 Industrial Production: Durable Consumer Goods 70
5 Moody’s Baa Corporate Bond Minus FEDFUNDS 65
LASSO
Rank | Name Frequency
1 Total Reserves of Depository Institutions 209
2 Civilians Unemployed for 5-14 Weeks 185
3 Housing Starts, Midwest 110
4 3-Month Commercial Paper Minus FEDFUNDS 96
5 Civilians Unemployed for 15-26 Weeks 88
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Abstract

This supplement file contains all the technical proofs for “Factor-Adjusted Regularized Model

Selection".

A Some preliminary results

In the first appendix, we introduce some useful results in convex analysis and inverse problems.
Under mild conditions, the tools we developed connect the unique global optimum of the regularized

loss function Ly (6) = L(0) + AR(0) with the solution of a constrained problem ming,p,n6)cs LA(6).

Lemma A.1. Suppose L(0) € C*(RP) and is conver. R(0) is conver and R(a + B8) = R(a) +
R(B) for a € M and B € M, where M is a linear subspace of RP and M= is its orthonormal
complement. In addition, there exists R*(6) € C(RP) such that |{c, B)| < R(a)R*(B) for a € M+
and B € RP. Let Ly(0) = L(0) + AR(8) where A > 0, and 6 € argminge v L (0).

If R*(VL(8)) < A and OTVQL(a)B >0 for all @ € M, then 8 is the unique global minimizer of
Lx(0).

Proof. For any 6 € RP we use O, 6,1 to denote its orthonormal projections on M and Mt

respectively. On the one hand, by convexity and orthogonality we have

L(6) — L(Bar) > (VL(Or0). 0 — Oar) = (VL(Or1), 00} > —R(B0 )R (VL(O01)).

*Corresponding author. Postal address of the corresponding author: 310 Herty Drive University of Georgia,
Athens, GA 30602, USA. Email addresses: jqfan@princeton.edu, yuan.ke@uga.edu, kaizheng@princeton.edu.



Since R*(VL(B)) < A, there exists § > 0 such that ||6 — 8]|5 < & implies R*(VL()) < A. Together
with (|0 — 8|2 < [0 — 8|2, we know L(6) — L(6r) > —AR(6,.) as long as |0 — 8]y < 6, and
the inequality strictly holds when R(6 1) > 0.

On the other hand, R(0) — R(Or) = R(Op+ 60 pq1) — R(Opa) = R(6,1). Hence ||0 — 0y <0
forces L\(0) — Lx(Or) = [L(0) — L(Or1)] + A[R(O) — R(Oaq)] > 0 and the inequality strictly holds
when R(6,,.) > 0.

Now suppose 0 < ||§ — 8|l < 8. If @ € M, then the facts @ € argming. , L(6) and
aTV2L(§)a > 0, Voo € M implies that Ly(8") > LA(/é). In addition, our assumptions yield
16]13 < R(O)R*(0) for 8 € M™, leading to R(0) > 0 over M\{0}. If 8 ¢ M, then R(0 ) > 0
and Ly(0) > Ly(0x) > L(6). Therefore 8 is a strict local optimum of Ly(6), which is convex

over RP. This finishes the proof.

Lemma A.2. Let L(0) be convex over a Euclidean space M. If 8g € M, r >0, and L(0) > L(0y)
over the sphere 0B(60o, 1), then any minimizer of L(@) is within the ball B(6g,T).

Proof. For any 0 ¢ B(0y,r), there exists t € (0,1) and 8’ € 9B(0y, ) such that 6’ = (1 —1t)6 + t0y.
Then L(6y) < L(0') < (1 —t)L(0) + tL(0y), yielding L(0) > L(6y). Hence there is no minimizer
outside B(80q, ). O

Lemma A.3. Suppose M is a Euclidean space, 8y € M and L(0) is convex over M. In addition,
there exist k, A > 0 such that L(8) > L(6o) + (h, 0 — 6o) + 5|0 — 003 as long as h € OL(6y) and
160 — 0oll2 < A. If infrepre,) D2 < $KA, then any minimizer of L\(0) = L(6) + AR(0) is within
the ball {0 : |0 — Bgl|2 < 2 infyear(o,) [hl2}-
Proof. 1t ||@ — g|l2 < A and h € OL(0y), then
K K
L(6) — L(60) > (h, 0 — 60) + 5[0 — 8o][5 > —|[h|2[|0 — B0l + 1 — 603
K

= 116 = 6oll2(5116 — oll2 — [[h]]2).
Taking h € 9L(6y) and 7 > 0 such that Z|h|j, < r < A. This forces L(8) — L(6y) > 0 over the
sphere B(6g, 7). Let 8 be one of the minimizers of L(6). Lemma A .2 implies that |8 — 6|| < r < A.



Then 0 > L(8) — L(6o) > (|8 —||2(%]|6 — 6o||2 — ||h|2). The result is proved by taking the infimum
over h € 0L(6y). O

Corollary A.1. Suppose X > 0, M is a Euclidean space, 8g € M, L(0) € C?>(M) and is conver,
and R(0) is convex. In addition, there exist , A > 0 such that V2L(0) = kI as long as ||@ — 0|2 <
AL IfIVL(60)[]2 + Ainfrepra,) [[hll2 < 3KA, then Ly(0) = L(0) + AR(0) has unique minimizer 0
and |0 — B9l2 < Z(|VL(B9)|l2 + A infneor(ay) Ih2).

Proof. Note that 9L (0g) = VL(0g)+ AJR(0y). There exists h € OR(0y) such that h' = VL(6y) +
h € OL)(0y) and |[b||2 < [|[VL(60)2 + Allhl2 < 1xA. Applying Lemma A.3 to Ly and h’, we
obtain that any minimizer of Ly satisfies [|§ — g2 < 2||h’|] < 2(|[VL(60)||2 + Allh[l2). Then

10 — 6|2 < A and V2L(6) = 0, proving both the bound and uniqueness. O
Proof of Lemma 3.1

Let W = (wy, -+, wy)T and 6* = ((8*)7, (8*)"Bo)”. Note that V E[L,(y, W0)] = E{1 > | [~y+
b(wi0)wi} = E{[-y1 + b(wl0)w;} and wl0* = (1,x])B*. The claim is proved by

VE[Ln(y, WO)]lo—g+ = E{[—y1 + b(w] 6")]w1} = E{[—y1 + b((1,x])B*)]w1} = E(mw1) = 0.

Proof of Lemma 3.2

Lemma 3.2 is similar to the results developed in the Appendix C of Wang and Fan (2017) and hence

we omit the details.

B General results for M-estimators

We present general model selection results to be used as tools later. Without loss of generality,
we assume the last K variables are not penalized. Let L,, : RPTX — R be a convex loss function,
0* € RPHE and g* = OED] be the sparse sub-vector of interest. Then 8* and 3" are estimated via

6 = argmin{L,(0) + \[|0,[i} and B =6y,

OcRr+K

respectively. Further, denote S = supp(0*), S1 = supp(3*) and Sz = [p + K]\ S.



Assumption B.1 (Smoothness). L,(8) € C?(RPYE) and there exist A > 0, M > 0 such that
VA% L(6) — V2% Ln(0%)|loo < M||0 — 6*||2 whenever supp(8) C S and ||0 — 6*[]2 < A.

Assumption B.2 (Restricted strong convexity). There ezist g > Koo > 0 such that ||[V4 gLy (6%)] 7 oo <
g and [[VEgLa(07)] 2 < 55
Assumption B.3 (Irrepresentable condition). |]V%25Ln(0*)[V%SLn(H*)]_lHoo <1 -7 for some

€ (0,1).

Assumptions B.1 — B.3 are standard in the studies of high-dimensional regularized estimators
(e.g. Negahban et al., 2012; Lee et al., 2015). Based on them, we introduce the following theorem

of LP (p = 1,2,00) error bounds and sign consistency for the FarmSelect estimator.

Theorem B.1. (i) Error bounds : Under Assumptions B.1 — B.3, if

{ ““T}, (B.1)

*HVL (0)[loo <A <

ke

then supp(@) C S and

16 — 6| < 5io(!VSLn(@*)Hoo + ),

166"l < Z(IVsLa(8")]l2 + AV,

o0l < min {2 (19501 + 5. 29101+ AVISD )
(ii) Sign consistency : In addition, if the following two conditions

c
min{|G|: B} #0, j € [p]} > 7||VLn(0*)||007

(B.2)
IVLn(67) oo <

70\/|? { EOOT}

hold for some C > 5, then by taking A € (£|[VLy(6%)]|c, l(% — 1)||IVLp(0)||0), the estimator

T

achieves the sign consistency Sign(,@) = sign(3%).

Remark B.1. Theorem B.1 shows how the correlated covariates affect the sign consistency as well

as error bounds. To achieve the sign consistency, the tuning parameter A should scale with 7!

1

Therefore, the Lo, and Ly errors will scale with (koo7)™! and (k27)~!, respectively. When the



covariates are highly correlated, the wrrepresentable condition will get violated or the parameter
7 € (0,1) is very small. As a result, the model selection procedures will fail to achieve the sign
consistency and the error bounds will be suboptimal. On the other hand, the optimal error bounds
require a small A, which typically leads to an overfitted model. One can see a trade-off between

model selection and parameter estimation due to the existence of dependency.

Remark B.2. The L; and Ly error bounds in Theorem B.1 depend on |Si|, the number of active
variables. They stem from the bias induced by the penalty. To reduce the bias, it is desirable
to penalize as few active variables as possible. This phenomena motivates FarmSelect to adopt a

penalized profile likelihood form by not imposing penalty on the nuisance parameter ~.

As discussed in Remark B.1, when the covariates are highly correlated, the irrepresentable
condition may not hold, or has a very small 7. This makes the model selection consistency either
very hard to achieve or incompatible with low estimation error bounds. Therefore, the FarmSelect
strategy can improve the model selection consistency and reduce the estimation error bounds if X
can be decomposed into FB? + U such that (U, F) is well-behaved. This is due to the fact that
the irrepresentable condition is easier to hold with positive 7 bounded away from zero after the
decorrelation step. To this end, any effective decorrelation procedure can be incorporated into this

frame work.

B.1 Proof of Theorem B.1

Define Bgs(6*,7) = {0 : ||@ — 0%||2 < r,supp(@) C S} for r > 0. We first introduce two useful

lemmas.

Lemma B.1. Suppose A € R?*" and B,C € R™" and |CB~!|| < 1, where || - || is an induced
- - AB!||IcB"!

norm. Then ||A[(B+ C)~!1 —B71]|| < %.

Proof. By the sub-multiplicity of induced norms,

|A[(B+©)" =B = [AB [T+ CB ) 1| < JABY -1+ CB ) -1

IAB~!|| - [CB~Y|
1-|CB|

[e.9] o
= [AB7- | Yo (-cB) 1 < JABY Y oB )
k=0 k=1



Lemma B.2. Under Assumptions B.1 and B.2, we have ||(V3gLn(0)) " 2 < w5 " and ||(VigLn(8)) oo <
ks over Bg(0*, min{A, %=}).

Proof. Define ay(0) = [[(VEgLn(0%) 1 [VEgLn(0)—V%s L, (0%)]|, for p € {2,00} and @ € Bg(6*, A).
Note that for any symmetric matrix A, we have ||Alj; = ||Allco and [|A|l2 < /]| A|1][Allco < ||A]|0o-
Hence by the Assumptions we obtain that when [|@ — 6%z < min{A, 5} and p € {2, o0},

* - * 1 *
p(0) < I(VsLn(07)) " ool Vs Ln(6) = Vs Ln(0") oo < 5—M ][0 — 6|2 <

N

Lemma B.1 leads to

Qoo 1

1(VEsLn(8)) ™" = (VEsLn(6)) oo < [[(VEsLn(6%) )_1HO°1—aoo ST

a9 1

(VS5 Ln ()" = (VasLn(07) 2 < (Vs Ln(07) 2 — s < 2my

Then the proof is finished by triangle’s inequality and Assumption B.2. O

Now we are ready to prove Theorem B.1.

Proof of Theorem B.1. First we study the restricted problem 6 = argminge v {Ln(0) + AR(6)}.

Take R(6) = (05,1 and R*(0) = [|0s, |- Let A; = min{A, 57} and hence 4; < min{4, 53 }.

Lemma B.2 shows that ||(V4¢Ln(0)) 2 < k5" and [|(V3¢Ln(0)) oo < K over Bg(0*, Ay).
Since supp(0*) C S, any h € OR(8*) satisfies ||h|ls < /|S1|. Therefore

1 1
||V5Ln(0*)||2 + )\Hh”g < §K2A1 < §K/QA.

Then Corollary A.1 implies that ||@ — 6%||2 < %(HVSL(O*)HQ + A/]51]) < Ay

Second, we study the Lo, bound. On the one hand, the optimality condition yields VL, (8) €
29|60y ||o and hence [[V§Ly(0) (oo < A. On the other hand, by letting 6, = (1—)0*+t0 (0 <t < 1)

we have
VsLn(0) — VgLy( /VSSL (0,)(0 — 6%)dt

— V3L,(67)(B - 6°) + /O (V2L (81) — V35 Ln(67)](8 — 07)d.



Hence
16— 6%) — (V35 Ln(6%) " (V5 Ln(B) — Vs Ln(67)][lnc
1
< /0 (V26 Ln(07)) " (V25 Lo (By) — V3L (67)](8 — 67) oot

< H(V%SLn(O*))ilHoots%pl] HV%SLn(ét) - V%SLH(O*)HOOHé — 0%
€0,

By Assumptions B.1 and B.2, we obtain that
0 * 2 *\\—1 0 * M 0 * 0 *
16 = 6%) = (VssLn(67)) " [VsLn(8) = VsLu(6)]lloc < 516 — 67216 — 67| oc-
By 6 € Bs(0*, A1) we have

— " K\ — n * M * a *
16 = 6" loc < [(VE5Ln () ool Vs Ln(8) = Vs Ln(8)loo + 5 — 110 — 67]2]|6 — 67|
2K00

1 1 -
< ——(\ L,(0%)|lso) + =110 — 07| 0o
< 5O+ VS0 ) + 5116 - 6°]
Therefore,
0 * 3 *
06" < > (I75La(6%) oo + ). (B.3)

Third we study the L; bound. The bound on ||@ — 8*||; can be obtained in a similar way. Using
the fact that || - || = || - ||oo for symmetric matrices,

0N * *\\— 2 * M 2 * ra *
16 = 6%[l1 < [(VEsLn(8)) 1l VsLn(8) = VsLn(67)|1 + 2 10— 672116 — 67lx

1 1 -
< —(A L, (6" -0 —6%;.
< G IS+ [VLa(0%)10) + 510 — €'l

Hence [|@ — 0*||1 < 2 (||VsLn(0%)|l1 + A|S1]). Since supp(@) C S, we also have

5Koo

Fa * 0 * 2\/ |S‘ *
10 — 071 < VI[S]]|0 — 7[> < (IVsL(67)[l2 + AV/[51]).

K2
This gives another L; bound.

By Lemma A.1, to derive 8 = 8 it remains to show that Vs, Ln(0)]|oo < A. Using the Taylor

expansion we have

VsLo(8) - Vs La(6%) = | oL (008 - 67
) 0 ) (B.4)
= V2,5Ln(67)(0 — 6%) + /0 92,5Ln(6)) — V2, 5La(6)](8 — 0°)dt.

7



On the one hand, the first term in (B.4) follows,
V3,5 L0 (0°)(8 — 6%)l|oo = [|[VE,5Ln(0") (Vi Ln(67))[VEsLn(67)(6 — 67)]||
< (1 =7)[[VEsLn(87)(0 — 67)]|oc-
By the Taylor expansion, triangle’s inequality, Assumption B.1 and the fact that @ € Bg(8*, Ay),
1
IVEsLn(6°)(8 — 8l < [VsLn(8) = Vs Ln(67)loo +/0 [[VEsLn(8:) = VisLn(6))(8 — 6%)|odt

<NIVsLn(0) oo + VS Ln(07) oo + M0 — 072]10 — 07| oo

/iOOT

<A+ [VsLn(0) oo + 5160 — 67|

On the other hand, we bound the second term in (B.4). Note that 8, € Bg(6*, A;) for all ¢ € [0, 1].

Assumption B.1 yields

| /Ol[ngSLn(gt> — V,5Ln(67)](0 — 0*)dtH

< sup [V,5Ln(8) — V35La(0)|ocll — 0%loc < 27118 — 67|
te(0,1]
As a result,
R * * KooT |15 * K'OOT *

V5, Ln(0)]loc < V55 Ln(07)[loo + (1 — T)<A+ IV Ln(07)lloo + =510 — 0 Hoo> + =16 - 6"

2/<coo 2 .
<A— _ - = .

A=7(A = Z22010 = 0"loe = ZVLa(0")]|c)

Recall that the L bound in (B.3). By plugging in this estimate, and using the assumptions
0<7<1land A> 22| VL, (0")|, we derive that

0 * 2 *
V5, L(@) oo < A= 7(A = S(IVSL(8)loo +2) — 2IVE(6")ll)
3. 4 .
<A=T(EA= VL0 ) < A

This implies 0 = 6 and translates all the bounds for 0 to the ones for 8. The proposition on sign

consistency follows from elementary computation, thus we omit its proof. O

C Proofs of Section 4

C.1 Proof of Theorem 4.1

Proof of Theorem J.1. Recall that § = argming{Ln(y,\/R\’B) + A|@p[l1}.  Also, Assumption

I, Opxx o~ —~
4.3 tells us Hy is nonsingular and so is H = . Define W = WH, 6 = H 16,

Orxxp Hpo



]§0 = (O}Q,ﬁT)T, 0 = AB* and 8° = H™'8. We easily see that B = E[p] = é[p] and
By 8°

0 = argming{L,(y, WO) + A0y, [l1}. Then it follows that supp(8) = supp(8y,)) and |8 — B*| =

18y — Oyl < 18 — 8| for any norm || - .

Consequently, Theorem 4.1 is reduced to studying @ and the loss function L, (y, W@). The
Lemma C.1 below implies that all the regularity conditions (with A = o0) in Theorem B.1 are
satisfied.

Let wy; and wy; be the (4, 7)-th element of W and W, respectively. Observe that Ly, (y, W6) =
LS [~y 6+ b 0)], VL (y, W) = L5 [~y + /(0| and W8 = X, 3", Hence
VL (y, WO")| oo = € and consequently, || VgL, (y, W8)||o <€, |[VsLn(y, WO")||2 < e4/]S] and
|VsLn(y, W8)|1 < ¢|S|. In addition, A\ > 7¢e/7 > . Based on these estimates, all the results

follow from Theorem B.1 and some simple algebra. O

Here we present the Lemma C.1 used above and its proof.

Lemma C.1. Let Assumptions 4.1, /.2 and 4.3 hold. Treat L,(y, W8) as a function of @, and the
derivatives below are taken with respect to it. Define M = MgMg\SP/Q. Then

(i) IV%Ln(y, WO) = Vi Ln(y, WO") [l < M||6 — 67|2, V8,

i ST AR\ — 1
i) (VEsLaly, WO") oo < 5
A 1
(i) (VEsTaly, W) 2 < 5 .
K2

() [VE,5Ln(y, WO ) (VEgLn(y, WO")) oo <117,

Proof. (i) Based on the fact that W8* = W8" = X, 8*, we have V2L, (y, W0*) = L S0 v (W] 0" )wyw]
and V2L, (y,W@") = %Z?:l V' (w0 )y w,w!. For any j,k € [p+ K] and supp(0) C S,

— — I, e
V3 Ln(y, W) — V5. Ln(y, WO")| < - > (Wl 0) — V(W[ 07)| - (Wi Wl
t=1
n (C.1)
1 . _. J—
<= > M Wl(0—607)] - [W| s

t=1

By the Cauchy-Schwarz inequality and |[W||max < [[W|lmax + [|[W — W ||lmax < Mo, we obtain that

for i € [n], W5 (0 — 6)| = [Wii(0 — 0")s| < ||[Wis|2]|0 — 67 ||l2 < /|S|Mp||@ — 07||2. Plugging this



result back to (C.1), we get

VikLn(y, WO) = V3, Ln(y, WO")| < /|SIMMG |0 — 07||2, Vj, k € [p+ K];

IV%Lu(y, W) = VisLn(y, W) |loo < [SI*2 M5 M3 |0 — 67 || = M]|6 — 67]|2.

(ii) Now we come to the second claim. For any k € [p+ K],

n

< 5* « 1 T
IVisLn(y, WO") = VigLu(y, W) || < ﬁzb”(xtTﬂ Nwwwis — wiwislloo

t—1
Ma/]S] < T

< o

S tzz: Wik Wis

— wtkW%|’2.

Also, by [[W||max < Mo/2 and ||W || max < Mo we have

[T Wig — waWisll2 < [wie] - [|(Wes — wis) T |2 + [ — wun| - [ W g2
<N W |lmax [Wes — Weslle + [We — wir] - v/|S][W || max

My, __ _
< THWtS —wisll2 + Mo/ |S]| - [W — we]-

Define 6 = maxje[erK](% S [Wyy — wij)?)'/2. By the Jensen’s inequality, V.J C [p + K],

%ZHWN = w2 < ( ZHWU = w3 ) < (M max Z\wt] — wj ) <76
t=1

n jep+K]

As a result,

. 3 (C.2)
= ax ([ VisLa(y, W) = VisLn(y, WO")lloe < 5MoMa]S]o
Let a = |[(VigLn(y, WO*)) L [VigLn(y,WEO") — V4oL, (y, WO")]|ls. Then
7l A* *
a < [[(VisLn(y, W) ol VEsLn(y, W 8") = VigLu(y, WO*)|
3 ! (C.3)

Lemma B.1 yields

WA\ *\\— *\\— a
1(VEsLn(y, WO ) ™! = (Va5 Ln(y, WO) oo < [[(VEsLa(y, W)

l—«

1 « 3
< : <
4ko 1—35 = 16KZ,

MoM,|S|6.

10



We also have a cruder bound |[(VZ¢L,(y, WO™)) ™! — (VisLn(y, WO*)) ! < ﬁ, which leads

to

[(VEsLn(y, WO)) oo < [(VEsLn(y, WO*) oo + 1 Sg
Koo Koo

(C.4)

ric matrix A, we have [(V4gLn(y,WO))™t — (VigL,(y,W6*)) L2 < ﬁ < ﬁ and thus
I(VEsLn(y, WO)"Hl2 < 55

2K9 "

(iii) The third argument follows (C.4) easily. Since [[All2 < ||A|lo holds for any symmet-

(iv) Finally we prove the last inequality. On the one hand,
IV3,5Ln(y, WO")(VisLa(y, WO")) ™ — V&,5Ln(y, WO*)(VisLn(y, WO")) ™|l
< HV%QSLn(yUWé*) - V%QSLn(YvWe*)HOOH(V%SLn(YaWé*))iluoo
+[IVE,5Ln(y, WO")[(VisLn(y, WO") ™" — (VigLu(y, WO*)) ™|l cc-

From claim (ii) and (C.2) it is easy to see that
Ix 7 NxK * Ix 7N ¥ — 1
Hv?gzsLn(YaWG ) — V%‘QSLTL(Y’WO )HOOH(V%SLTL(Y’WO ) 1”00 < -3MoM3|S10.
4K

On the other hand, we can take A = V%ZSLn(y, W6*),B = VL, (y, WO*) and C = VL, (y, WO")—
VisLn(y, W6*). By Assumption 4.2, [AB™!| <1—27 < 1. Lemma B.1 forces that

V2,5 Ln(y, WO (Vi Ln(y, WO™) ™! — (VigLn(y, WO")) ]l

ICB oo _  [ICllsolB™ [l
1—[[CB Moo = 1= [[Cllso| B~ low

=[|A[B +C)™' =B [x < [AB™||x
We have shown above in (C.3) that ||Clleo|B™!|lee < %MOMQISM <1/2. As a result,

* v Va2 A N *\\— 3
V3,5 Ln(y, WO (VisLn(y, WO) ™ = (VisLn(y, WO")) " lloo < Mo M| S5,

By combining these estimates, we have

IV%,5Ln(y, WO")(VEsLn(y, WO")) ™ — V&, sLn(y, WO*) (Vs Ln(y, WO*)) |

3
< ——MyMs|S|6 < 7.
2K 00

Therefore HV?%SLn(y,Wé*)(V%SLn(y,Wé*))_lﬂoo <(1-21)4+71=1-7. O
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C.2 Proof of Lemma 4.1

Let g5 = L3700 Wy for j € [p+ K|. Observe that &€ = max;ep, €5 and €5 = [£ 370wy +
LS (Wi — wyj)me|- By Cauchy-Schwarz inequality,

n

) B 2 1/2 Lo ) 1/2
n;(wt] wg)Me| < ( g Wi — wij) ) (ntzlﬁt> .
As a result,
Lo ) 1/2 Lo , 1/2
< i S+ (i) (FEmw) e

By Theorem 1 and Remark 1 in Merlevéde et al. (2011), there exist constants Cy, Ca, C3 and
C4 such that for any s > 0,

& (ns)? (ns)Q (ns)2 (ns)v(l—v)
P ( - 2 > s) < nexp <_C1> + exp <_nC’2> + exp (— Can exp <C4[log(ns)]7)) .

> i
From this it is easily seen that for large enough constant C' > 0, we have P <}711 oy wtjm’ > Ch/ loflp) <

p~2 for all j € [p+ K]. Union bounds then force the first in (C.5) to be of order Op(4/ 1ng).
Similarly, we can apply the concentration inequality in Merleveéde et al. (2011) to get % oy Nt =

Op(1). It follows from Lemma 3.2 that max;cp, 4k (250 (W — wyj)?] 12 _ OP(\/IO% + %)
Hence the second term in (C.5) is of order Op( 10% + %)

C.3 Proof of Lemma 4.2

We follow the proofs of Theorems 2 and 3 in Fan and Song (2009). First of all, the optimality

condition for (o™, M ~M) implies that
E{u[t/ (o™ 4+ fT4M 4 upM) — 4]} = 0. (C.6)
The independence between u and f as well as the fact that Eu = 0 lead to
Efub/ (o™ + fT4M)] = 0. (C.7)
From (C.7) and b” < M we get

| Efub (o™ + £79™ +up™))| = [ E[ub (o™ + 1™ +up™))| - | E[ut (@™ + £74M)]]

12



< |E{uft/ (@™ + 7™ + up™) — /(o™ + £T4 M)}
< E[|ul - ]b’(aM + fT4M 4 uBM) — b’(aM + fT’yM)H
< E(|u| - |[MupM|) = MM - Eu?.

On the other hand, (C.6) leads to |E[ub/(aM + fT4M + upM)]| = | E(uy)|. This proves the first
part.

When E(uy) = 0, (C.6) yields E[ub/ (™ + fT4M + 4M)] = 0. Then

E{ult/ (o™ + 1AM fupM)y — v/ (oM + T4} = 0. (C.8)
Suppose that M #£ 0. Since b’ is strictly increasing, we have

0 < [B'(a™ + 7y +up™) — b/ + ETM][(@M + £ + upt) — (@M + £14M)]
:[bl(OéM+fT’YM+UﬁM)—b/(OéM—i-fT’YM)}’U/BM

as long as u # 0. As P(u = 0) = 0, the inequality above yields

0 < E{[t/(e™ + fT4M 1 upM) — ¥/ (o™ + fT4M)upM} = BM E[ub’ (oM + £T4M + upM))],

which contradicts (C.8).

C.4 Proof of Theorem 4.2

An adaptation of the proof of Theorem 4.1 yields

18 — B < (@5, 8,737 ) = (7,857 2 < C'lles 2/,

V3.
Lemma 4.2 show that |5;| > | E(u;y)|/(M - Eu?) Hence
< min | E(u; M -Eu?),
€<p _min|E(uwy)/(M-Eud)
max ||€;|l2 =o0 min E(u; Eu?
max e = on( _min [ B(uj)l/Bid)
lead to § < pminjegupp(g+) |B3;] and
max B-—ﬂ < (" max €ille/k =op( min |B;]),
jesupp(ﬁ*)| ! i jESupp(ﬁ*)” ill/ (jESupp(ﬂ*) i)

from where we get supp(8*) C S.
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