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Abstract

We study the generalized trace regression with a near low-rank regression coeffi-
cient matrix, which extends notion of sparsity for regression coefficient vectors. Specif-
ically, given a matrix covariate X, the probability density function of the response
Y is f(Y]X) = ¢(Y)exp (¢~ [=Yn* + b(n*)]), where n* = tr(©*TX). This model
accommodates various types of responses and embraces many important problem se-
tups such as reduced-rank regression, matrix regression that accommodates a panel of
regressors, matrix completion, among others. We estimate ®* through minimizing em-
pirical negative log-likelihood plus nuclear norm penalty. We first establish a general
theory and then for each specific problem, we derive explicitly the statistical rate of
the proposed estimator. They all match the minimax rates in the linear trace regres-
sion up to logarithmic factors. Numerical studies confirm the rates we established and
demonstrate the advantage of generalized trace regression over linear trace regression
when the response is dichotomous. We also show the benefit of incorporating nuclear

norm regularization in dynamic stock return prediction and in image classification.

1 Introduction

In modern data analytics, the parameters of interest often exhibit high ambient di-

mensions but low intrinsic dimensions that can be exploited to circumvent the curse
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of dimensionality. One of the most illustrating examples is the sparse signal recovery
through incorporating sparsity regularization into empirical risk minimization (Tibshi-
rani (1996); Chen et al. (2001); Fan and Li (2001)). As shown in the profound works
(Candes and Tao (2007); Fan and Lv (2008, 2011); Zou and Li (2008); Zhang et al.
(2010), among others), the statistical rate of the appropriately regularized M-estimator
has mere logarithmic dependence on the ambient dimension d. This implies that con-
sistent signal recovery is feasible even when d grows exponentially with respect to the
sample size n. In econometrics, sparse models and methods have also been intensively
studied and are proven to be powerful. For example, Belloni et al. (2012) studied esti-
mation of optimal instruments under sparse high-dimensional models and showed that
the instrumental variable (IV) estimator based on Lasso and post-Lasso methods enjoys
root-n consistency and asymptotic normality. Hansen and Kozbur (2014) and Caner
and Fan (2015) investigated instrument selection using high-dimensional regularization
methods. Kock and Callot (2015) established oracle inequalities for high dimensional
vector autoregressions and Chan et al. (2015) applied group Lasso in threshold au-
toregressive models and established near-optimal rates in the estimation of threshold
parameters. Belloni et al. (2017) employed high-dimensional techniques for program
evaluation and causal inference.

When the parameter of interest arises in the matrix form, elementwise sparsity is
not the sole way of constraining model complexity; another structure that is exclusive
to matrices comes into play: the rank. Low-rank matrices have much fewer degrees of
freedom than its ambient dimensions d; -ds. To determine a rank-r matrix @ € R%1*d
we only need r left and right singular vectors and r singular values, which correspond
to r(dy + d2 — 1) degrees of freedom, without accounting for the orthogonality. As
a novel regularization approach, low-rankness motivates matrix representations of the
parameters of interest in various statistical and econometric models. If we rearrange
the coeflicient in the traditional linear model as a matrix, we obtain the so-called trace
regression model:

Y =tr(@7TX) + ¢, (1.1)

where tr(-) denotes the trace, X € R%*4 is a matrix of explanatory variables, @* €
R%1%42 ig the matrix of regression coefficients, Y € R is the response and e € R is the
noise. In predictive econometric applications, X can be a large panel of time series data
such as stock returns or macroeconomic variables (Stock and Watson, 2002; Ludvigson

and Ng, 2009), whereas in statistical machine learning X can be images. The rank of



a matrix is controlled by the ¢;-norm for ¢ € [0,1) of its singular values:

diAdg
B,(©%) = 3 o;(©)1 <), (1.2)

=1

where 0;(©%) is the jth largest singular value of ®*, and p is a positive constant that
can grow to infinity. Note that when ¢ = 0, it controls the rank of @* at p. Trace
regression is a natural model for matrix-type covariates, such as the panel data, images,
genomics microarrays, etc. In addition, particular forms of X can reduce trace regres-
sion to several well-known problem setups. For example, when X contains only a col-
umn and the response Y is multivariate, (1.1) becomes reduced-rank regression model
(Anderson (1951), Izenman (1975b)). When X € R%*% is a singleton in the sense
that all entries of X are zeros except for one entry that equals one, (1.1) characterizes
the matrix completion problem in item response problems and online recommendation
systems. We will specify these problems later.

To explore the low rank structure of ®* in (1.1), a natural approach is the penal-
ized least-squares with the nuclear norm penalty. Specifically, consider the following

optimization problem.

n

© = argmin {i > ((©,X;) = ¥i)® + A H@HN} : (1.3)
=1

where (A, B) := tr(AT B) is the inner product of two matrices A and B which have the
diNd2

same dimension and @[y = Y 0;(0) is the nuclear norm of ®. As ¢;-norm reg-
j=1

ularization yields sparse estimators, nuclear norm regularization enforces the solution

to have sparse singular values, in other words, to be low-rank. Recent literatures have
rigorously studied the statistical properties of o. Negahban and Wainwright (2011)
and Koltchinskii et al. (2011) derived the statistical error rate of © when ¢ is sub-
Gaussian. Fan et al. (2016) introduced a shrinkage principle to handle heavy-tailed
noise and achieved the same statistical error rate as Negahban and Wainwright (2011)
when the noise has merely bounded second moments.

However, (1.1) does not accomodate categorical responses, which is ubiquitous in
pragmatic settings. For example, in P2P microfinance, platforms like Kiva seek poten-
tial pairs of lenders and borrowers to create loans. The analysis is based on a large
binary matrix with the rows correspondent to the lenders and columns correspondent
to the borrowers. Entry (i,j) of the matrix is either checked, meaning that lender 4
endorses an loan to borrower j, or missing, meaning that lender ¢ is not interested

in borrower j or has not seen the request of borrower j. The specific amount of the



loan is inaccessible due to privacy concern, thus leading to the binary nature of the
response (Lee et al. (2014)). Another example is the famous Netflix Challenge. There,
people are given a large rating matrix with the rows representing the customers and
the columns representing the movies. Most of its entries are missing and the aim is to
infer these missing ratings based on the observed ones. Since the Netflix adopts a five-
star movie rating system, the response is categorical with only five levels. This kind of
matrix completion problems for item response arise also frequently in other economic
surveys, similar to the aforementioned P2P microfinance. These problem setups with
categorical responses motivate us to consider the generalized trace regression model.
Suppose that the response Y follows a distribution from the following exponential

family:

fn<Y;X,/3*>:ilf[1 (Vi) H{c (W)} (1.4)

=1

where 1} = tr(@*7X;) = (@* X,) is the linear predictor, ¢ is a constant and ¢(-) and
b(-) are known functions. The negative log-likelihood corresponding to (1.4) is given,

up to an affine transformation, by

PIRACE SERTCE &) (15)

n

VLL(©) = - 3 [Blm) ~ ¥ %Z ¥((©.X,) - V] X
=1 ) =1 (1.6)
H,(©) := V2L,(0) = - Z V' (0, X,;))vee(X;)vee(X;)T .

i=1

For future convenience, we denote E[H, (©®)] by H(®). To estimate ®*, we recruit
the following M-estimator that minimizes the negative log-likelihood plus nuclear norm

penalty.

n

~ . 1
O = argming g, xd, {n > (O, X)) — Yi(®, X)] + A H@HN} . @)
i=1
This is a high-dimensional convex optimization problem. We will discuss the algorithms
for computing (1.7) in the simulation section.
Related to our work is the matrix completion problem with binary entry, i.e., 1-

bit matrix completion, which is a specific example of our generalized trace regression

4



and has direct application in predicting aforementioned P2P microfinance. Therein
entry (7, 7) of the matrix is modeled as a response from a logistic regression or probit
regression with parameter ('-)ffj and information of each responded items is related
through the low-rank assumption of ®*. Previous works studied the estimation of @*
by minimizing the negative log-likelihood function under the constraint of max-norm
(Cai and Zhou (2013)), nuclear norm (Davenport et al. (2014)) and rank (Bhaskar and
Javanmard (2015)). There are also some works in 1-bit compressed sensing to recover
sparse signal vectors (Gupta et al., 2010; Plan and Vershynin, 2013a,b). Nevertheless,
we did not find any work in the generality that we are dealing with, which fits matrix-
type explanatory variables and various types of dependent variables.

In this paper, we establish a unified framework for statistical analysis of © in (1.7)
under the generalized trace regression model. As showcases of the applications of
our general theory, we focus on three problem setups: generalized matrix regression,
reduced-rank regression and one-bit matrix completion. We explicitly derive statistical
rate of ©® under these three problem setups respectively. It is worth noting that for
one-bit matrix completion, our statistical rate is sharper than that in Davenport et al.
(2014). We also conduct numerical experiments on both simulated and real data to
verify the established rate and illustrate the advantage of using the generalized trace
regression over the vanilla trace regression when categorical responses occur.

The paper is organized as follows. In Section 2, we specify the problem setups
and present the statistical rates of © under generalized matrix regression, reduced-
rank regression and one-bit matrix completion respectively. In Section 3, we present
simulation results to back up our theoretical results from Section 2 and to demonstrate
superiority of generalized trace regression over the standard one. In Section 4, we use
real data to display the improvement brought by nuclear norm regularization in return

prediction and image classification.

2 Main results

2.1 Notation

We use regular letters for random variables, bold lower case letters for random vectors
and bold upper case letter for matrices. For a function f(-), we use f'(-), f”(:) and
1" (-) to denote its first, second and third order derivative. For sequences {a;}32,
and {b;}3°,, we say a; = O(b;) if there exists a constant ¢ > 0 such that a;/b; < ¢
for 1 < i < oo, and we say a; = §2(b;) if there exists a constant ¢ > 0 such that

a;/b; > ¢ for 1 < i < oco. For a random variable x, we denote its sub-Gaussian



norm as [|[zy, = sup,>; (E|x]p)1/p /+/p and its sub-exponential norm as [|z|ly, =
sup,> (E x|’ )1/ P /p. For a random vector x € R%, we denote its sub-Gaussian norm
as [|x[lg, = supyegi- HVTXH\IJ2 and its sub-exponential norm as x|y, = supyega-1
HVTXH\lfl' Here, S~ denotes the unit sphere in R?. We use e; to denote a vector
whose elements are all 0 except that the jth one is 1. For a matrix X € R4*% we use
vec(X) € R%% to represent the vector that consists of all the elements from X column
by column. We use 7(X), [ X[, [IXI|op:
norm, operator norm and nuclear norm of X respectively. We call {X : | X - Y| <}
a Loo-ball centered at Y with radius r for » > 0. Define d; A da := min(d,d2) and
d1Vdsy := max(dy,ds). For matrices A and B, let (A, B) = tr(A7B). For any subspace
M C R4 define its orthogonal space M+t := {A : VM € M, (A, M) = 0}.

||X||n to denote the rank, elementwise max

2.2 General theory

In this section, we provide a general theorem on the statistical rate of © in (1.7).
As we shall see, the statistical consistency of e) essentially requires two conditions:
i) sufficient penalization \; ii) localized restricted strong convexity of £,,(®) around
©®*. In high-dimensional statistics, it is well known that the restricted strong convexity
(RSC) of the loss function underpins the statistical rate of the M-estimator (Negahban
et al., 2011; Raskutti et al., 2010). In generalized trace regression, however, the fact
that the Hessian matrix H,, (®) depends on © creates technical difficulty for verifying
RSC for the loss function. To address this issue, we apply the localized analysis due to
Fan et al. (2015), where they only require local RSC (LRSC) of £,(©®) around ©* to
derive statistical rates of ©. Below we formulate the concept of LRSC. For simplicity,
from now on we assume that ©®* is a d-by-d square matrix. We can easily extend our
analysis to the case of rectangular ®* € R%*%: the only change in the result is a

replacement of d with max(dy,ds) in the statistical rate.

Definition 1. Given a constraint set C C R¥? a local neighborhood N of ®*, a
positive constants kg and a tolerance term 1y, we say that the loss function L(-) satisfies
LRSC(C,N kg, 70) if for all A € C and ©® € N,

L(©+A) ~L(©) — (VL(O),A) > r¢ | Al — 7. (2.1)

Note that 74 is a tolerance term that will be specified in the main theorem. Now
we introduce the constraint set C in our context. Let ®* = UDVT be the SVD of ®*,

where the diagonal of D is in the decreasing order. Denote the first r columns of U



and V by U" and V" respectively, and define

M :={© € R | row (@) C col(V"),col(®) C col(U")},

1

M ={O® ¢ R*d | row(®) L col(V"),col(®) L col(U")}, 22

where col(-) and row(-) denote the column space and row space respectively. For any
A € R¥™4 and Hilbert space W C R4, let Ay be the projection of A onto W. We
first clarify here what A, Az; and Aml are. Write A as

I'i T2

A=[U",U"]
Ty I'yp

[VT" \/’T‘L]T7

then the following equalities hold:

Apm=UTy(V), A = U TV,

ry, T (2.3)
Ay =[Ur,ury| TR v v
Ty 0

According to Negahban et al. (2012), when A > 2||n=t 3 [V ((X;, ©%)) — Yi] - Xillops
i=1
regardless of what r is, A falls in the following cone:

Tt o dxd
C(M,M",0%) = {A eR” Ay <3 Ag]y+4 Y aj(@*)}.
j>r+l
Now we present the main theorem that serves as a roadmap to establish the statis-

tical rate of convergence for o.
Theorem 1. Consider the model (1.4). Suppose By(©®*) < p and

n

]' *
A2 2 [V (X5, ©%) — Vi - Xillop. (24)
i=1
Define N := {® € R ||®@ — @*||2 < C1pA271,0 — O* ¢ C(M,ML,@*)}, where
C1 is a constant and M and M are constructed as per (2.2). Suppose L,(©) satisfies
LRSC(C(M,ML, O*), N, ke, 1), where 7p = CopA2~7 for some constant Cy and Ky is
a positive constant. Then it holds that
R 9 A 2—q R by 1—q

16 - 0|3 < Crp (Z> and ® - Oy < Cap ( ) o @5)

Ke

where Cp,Cy are constants.



Theorem 1 points out two conditions that lead to the statistical rate of e. First,
we need A to be sufficiently large, which has an adverse impact on the rates. Therefore,
the optimal choice of A is the lower bound given in (2.4). The second requirement is
LRSC of £,(®) around ®*. In the sequel, for each problem setup we will first derive
the rate of the lower bound of A as shown in (2.4) and then verify the LRSC of £,,(©)
so that we can establish the statistical rate. Note that the LRSC property does
not imply any constraint on the choice of the initial values for solving the
optimization problem. It is a pure statistical assumption and used to show
that the minimizer of the penalized likelihood possesses the established
statistical property.

For notational convenience, later on when we refer to certain quantities as constants,
we mean they are independent of n,d, p. In the next subsections, we will apply the
general theorem to analyze various specific problem setups and derive the explicit rates

of convergence.

2.3 Generalized matrix regression

Generalized matrix regression can be regarded as a generalized linear model (GLM)
with matrix covariates. Here we assume that vec(X;), the vectorized version of X, is
a sub-Gaussian random vector with bounded Wo-norm. Consider © as defined in (1.7).
To derive statistical rate of (:), we first establish the rate of the lower bound of A as
characterized in (2.4).

Lemma 1. Consider the following conditions:

(C1) {vec(X;)}ioy are i.i.d. sub-Gaussian vectors with ||vec(X;)|y, < ko < 00;
(C2) |b'(z)] < M < oo for any x € R;

Then for any v > 0, there exists a constant v > 0 such that as long as d/n < =, it
holds that

1 & d
P I|l- VO, X)) - Y - X;llo \/7 <C —cd), 2.6
(IIn;( (®%, X)) = Yi) - Xillop > v n) < Cexp(—cd) (2.6)
where C' and ¢ are constants.

Next we verify the LRSC of £, (®).

Lemma 2. Besides (C1) and (C2) in Lemma 1, assume that

(C3) Amin (H(©®%)) > Ky > 0;
(C4) |©*|| > aV/d for some constant o;



(C5) |b"(x)| < |a| ™" for [a] > 1.

Suppose A\ > l/\/%, where v is the same as in Lemma 1. Let N = {® € R .
|© — @*||2 < C1pA*71,0 — O € C(M,ML,@*)}. As long as pAt~? is sufficiently
small, L,(O©) satisfies LRSC(C(M,ML, O*), N, k/2,7;) with probability at least 1 —
C1exp (—c1d), where 7y = CopA*~9 and c1,Cy and Cy are constants.

Remark 1. Since (©,X) represents the signal in our model, the lower bound on || ®*||p
in Condition (C4) guarantees sufficient strength of the signal. If ||©*||F is too small, the
signal might be dominated by the noise. Condition (C4) is mild; even if @ is sparse
and only has O(d) non-zero entries, as long as they are of constant order, (C4) is
satisfied. When ©* is extremely sparse and only has O(1) non-zero entries, Condition
(C4) requires their magnitude to be comparable to d since otherwise the signal is too
weak. In fact, if ©F is extremely sparse, L1 regqularization shall be better than the
nuclear norm regularization for accurate matriz recovery.

Condition (C5) requires that the third order derivative of b(-) decays sufficiently
fast. In fact, except for Poisson regression, most members in the family of generalized
linear models satisfy this condition, e.g., linear model, logistic regression, log-linear

model, etc.

Based on the above two lemmas, we apply Theorem 1 and establish the explicit

statistical rate of © as follows.

Theorem 2. Under the conditions in Lemmas 1 and 2, choosing A = 2v+/d/n, where
v is the same as in Lemma 1, there exist constants {c;}?7_; and {C;}>_, such that once
p(d/n)1=9/2 < C1, we have

~ , PN g\ (0-0)/2
©-erscn(s) . 18-ely=cu(l) 27)

with probability at least 1 — Cyexp (—c1d) — Cs exp (—cad).

When ¢ = 0, p becomes the rank of ®* and there are O(pd) free parameters. Each
of these parameters can be estimated at rate Op(1/4/n). Therefore, the sum of squared
errors should at least be O(pd/n). This is indeed the bound of ||C:) — ©*||% given by
(2.7), which depends on the effective dimension pd rather than the ambient dimension
d?. The second result of (2.7) confirms this in the spectral “Li-norm”, the nuclear

normi.



2.4 Generalized reduced-rank regression

Consider the conventional reduced-rank regression model (RRR)
Yi = @*X’L + €4,

where x; € R? is the covariate, y; € R? is the response, ®* € R%*? is a near low-rank
coefficient matrix and g; € R? is the noise. Again, we set the number of covariates to be
the same as the number of responses purely for simplicity of the presentation. Note that
in each sample there are d responses correspondent to the same covariate vector. RRR
aims to reduce the number of regression parameters in multivariate analysis. It was
first studied in detail by Anderson (1951), where the author considered multi-response
regression with linear constraints on the coefficient matrix and applied this model to
obtain points estimation and confidence regions in “shock models” in econometrics
(Marshak (1950)). Since then, there has been great amount of literature on RRR in
econometrics (Ahn and Reinsel (1994), Geweke (1996), Kleibergen and Paap (2006))
and statistics (Izenman (1975a), Velu and Reinsel (2013), Chen et al. (2013)).

Now we generalize the above reduced-rank regression to accommodate various types
of dependent variables. For any 1 < ¢ < mn and 1 < j < d, y;; is generated from the

following density function.

i YigNi; —
f(yij; i, © )ZC(yz'j)eXP< =

b
)

i
= c(yi5) eXP( “

where 07 is the jth row of ®%, n; = B;Txi, ¢(-) and b(-) are known functions. We
further assume that for any (i1, 1) # (42, j2), ¥irj1 AL Yinjo. Note that we can recast this
model as a generalized trace regression with N = nd samples: {X(;_1)41; = ejxiT €
Rdxd Yi—1)arj =¥y €R:1<i<n,1<j<d}. We emphasize here that throughout
this paper we will use (x;,y;) and {(Xq, Yt)}t (i—1)d+1 1O denote the vector and matrix
forms of the i¢th sample in RRR.

According to model (2.8), we solve for the nuclear norm regularized M-estimator

© as follows.

O = argmingcgaxd Z Z (0, X(i—1yats) — Yi—nyars - (0, X—1yar) ] + A 1Oy
=1 j=1

= argmingegdxd —— Z Z 9 Xi) = Yij - G?Xz‘} + A0y -
=1 j=1

(2.9)

Under the sub-Gaussian design, we are able to derive the covergence rate of © in RRR
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with the same tool as what we used in matrix regression. Notice that there is a change
of notation introduced in this section. {x;}!"; and {y;}, are the original forms of
reduced-rank regression while {X;} ; and {Y;}}¥, are the rephrased forms that match
our framework (N = nd). Again, we explicitly derive the rate of the lower bound of A

in the following lemma.

Lemma 3. Suppose the following conditions hold:

(C1) {xi}j—y are i.i.d sub-Gaussian vectors with ||x;||y, < ko < 00;
(C2) b () <M < o0, V() <L < 0.

Then for any v > 0, there exists a constant v > 0 such that as long as d/n < =, it
holds that

1 Y dMrod
Plly (X0 0) = ¥Xilly 2 47 S5 < 2esped). (210
where ¢ is the same as in (2.8) and c is a universal constant.
The following lemma establishes the LRSC of the loss function.

Lemma 4. Besides conditions in Lemma 3, assume that
(03) Amin (H(Q*)) > ke > 0.

Choose A = d~'\/dMrkod/n as in (2.10). Let N := {© : ||© — ©*||2 < pA2~9}. For
any & > 4, when p(d/n)*=4?1log(nd) is sufficiently small, L, (®) satisfies LRSC(R¥,
N, ke/(2d),0) with probability at least 1 — 2(nd)2_g.

Combining the above lemmas with Theorem 1, we can derive the statistical rate of
© as defined in (2.9).

Theorem 3. Suppose conditions in Lemmas 3 and 4 hold. Take X = d=*\/¢Mrod/n.
For any & > 4, there exist constants {c;}?_, and {C;}2_, such that once p(d/n)'~/?
log(nd) < c1, any solution to (2.9) satisfies

9 d\ 1-4/2 N a4\ 1—9)/2
< < — el < h ,
L <Cp <n> : He 0| < Cuw <n> (2.11)

with probability at least 1 — 2 exp(—cad) — 2(nd)2_%.

Hé—@*

Again, as remarked at the end of Section 2.3, the error depends on the effective

dimension pd rather than the ambient dimension d? for the case ¢ = 0.
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2.5 One-bit matrix completion

Another important example of the generalized trace regression is the one-bit matrix
completion problem, which appears frequently in the online item response question-
naire and recommendation system. The showcase example is the aforementioned Kiva
platform in P2P microfinance, in which we only observe sparse binary entries of lenders
and borrowers. Suppose that we have dy users that answer a small fraction of do binary
questions. For simplicity of presentation, we again assume that d; = do = d. Specif-
ically, consider the following logistic regression model with X; = ea(i)ebT(i) e R4,
Namely, the ith data records the a(i)th user answers the binary question b(i). The
problem is also very similar to the aforementioned Netflix problem, except that only
dichotomous responses are recorded here.

The logistic regression model assumes that

PY; =1]X;)

IOg]P)(YZ- —0[X,)

= tr(®7X;) = O} ;) (i) (2.12)
Note that this model can be derived from generalized trace regression (1.4) with
V(nf) = (1 + exp(—nf))~L. (2.12) says that given X; = ea(i)e;{(i) € R4 Y is a
Bernoulli random variable with P(Y; = 1| X;) = (1 + exp(—@;(i%b(i)))_l. We assume
that {(a(i),b(i))};2; are randomly and uniformly distributed over {(j, %)} 1<j<da,1<k<a-
We further require ®* to be non-spiky in the sense that ||©®*|| = O(1) and thus
|®*||r = O(d). This condition ensures consistent estimation as elucidated in Ne-
gahban and Wainwright (2012). For ease of theoretical reasoning, from now on we
will rescale the design matrix X; and the signal ®* such that X; = dea(i)ebT(i) and
|©*]|z < 1. Based on such setting, we estimate ®* through minimizing negative

log-likelihood plus nuclear norm penalty under an element-wise max-norm constraint:

~ . 1 —
O = argmln”@HoogR/d {n Z [log(l + exp((@,Xﬁ)) - Y;<@,Xz>] + )\H@HN} N
i=1
(2.13)

where A and R are tuning parameters.
Again, we first derive the rate of the lower bound for A as shown in Theorem 1. For

this specific model, simple calculation shows that the lower bound (2.4) reduces to

[0~ 3 lexp((©7, X)) /(1 + exp((©7, X)) — Yi] - Xillop.
i=1

Lemma 5. Under the following conditions:

(C1) |05 <1, |07, < R/d where 0 < R < oo;

12



(C2) {X;}l are uniformly sampled from {dejeg}lgj,kgd;

For any 6 > 1, there exists v > 0 such that as long as dlogd/n < =, the following

inequality holds for some constant v > 0:

P (II}Z ;(exixagf’);f;)i = Y)Xillp > 1y Mfgd) <2d0.  (2.14)

(2

Next we study the LRSC of the loss function. Following Negahban and Wainwright
(2012), besides C (M,ML, ®"), we define another constraint set

NN R
! = J A c R A 0;” SH N o . 2.1
¢le) { SRTLAZOAL TAlr S @d\ diogd (2.15)

Here ||A||loo/||Al|F and ||A]|n/||Al| F are measures of spikiness and low-rankness of A.
Let N ={© : ||© —O*||, < 2R/d}. Note that N is not the same as in Theorem 1 any

more. As we shall see later, instead of directly applying Theorem 1, we need to adapt

the proof of Theorem 1 to the matrix completion setting to derive statistical rate of

©. The following lemma establishes LRSC(C'(co), N, kg, 0) of £,,(®) for some ry > 0.

Lemma 6. There exist constants Ci,Co,cy,co such that as long as n > Cidlogd
and R < ¢y, it holds with probability greater than 1 — Cqexp (—cadlogd) that for all
A €' (cp) and ® € N,

. A2
vec(A)" Hy,(©®)vec(A) > 512(exp(R) + e;:p(fR) +2)

(2.16)

Now we are ready to establish the statistical rate of © in (2.13).

Theorem 4. Let © be defined by (2.13). Suppose the conditions (C1) and (C2) in
Lemma 5 hold for a sufficiently small R and By(©*) < p. Consider any solution © to

(2.13) with parameter X = 2v\/ddlogd/n, where § > 1. There exist constants {C;}1,
such that as long as n > Cydlogd,

2—q
2 dlogd R?
< -
! < cumfo (4/229) " 1

1—q 1—¢\ 7—¢
dlogd R2\ "1\ *
Nf@m“@< 71> 7G(n> ) }

with probability at least 1 — Csexp (—Cydlogd) — 2d' 0.

H@—@*

Hé—e*

~ 2
Remark 2. In Davenport et al. (2014), they derived that H@ — O o

Op(y/pd/n)
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when O is exactly low-rank. This is slower than our rate Op(pdlogd/n). Moreover,

we provide an extra bound on the nuclear norm of the error.

3 Simulation study

3.1 Generalized matrix regression

In this section, we verify the statistical rates derived in (2.7) through simulations. We
let d = 20,40 and 60. For each dimension, we take n to be 1800, 3600, 5400, 7200, 9000
and 10800. We set ®* € R¥*? with r(®*) = 5 and all the nonzero singular values
of ®* equal to 1. Each design matrix X; has i.i.d. entries from N(0,1) and Y; ~
Bin(0, exp(n})/(1 + exp(n}))), where i = (0% X;). We choose A < \/d/n and tune
the constant before the rate for optimal performance.

Our simulation is based on 100 independent replications, where we record the esti-
mation error in terms of the logarithmic Frobenius norm logH(:) — ©*||p. The averaged

statistical error is plotted against the logarithmic sample size in Figure 1. As we can

© |
S R — d=20
< --- d=40
Sl T, » d=60
o Tl -
S
£
S oo
c S
: \
@ |
[e2] °
o
< \
T °\
| °\°
~.
Q
S 1
T T T T
7.5 8.0 8.5 9.0

log(n)

Figure 1: log||© — ©*||y versus log(n) for different dimension d.

observe from the plot, the slope of curve is almost —1/2, which is consistent with the
order of n in the statistical rate we derived for ©. The intercept also matches the
order of d in our theory. For example, in the plot, the difference between the green and
red lines predicted by the theory is (log(60) — log(40))/2 = 0.20, which is in line with
the empirical plot. Similarly, the difference between the red and black lines should be
around (log(40) — log(20))/2 = 0.35, which is also consistent with the plot.
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To solve the optimization problem (1.7), we exploit an iterative Peaceman-Rachford
splitting method. We start from (:)(O) = 0. In the kth step, we take the local quadratic
approximation of £,(0) at © = @+~

1
£k (@) =5 vec(© — O*-NTyZ £, (0F V)yvec(® — @F)

n

(3.1)
+ <V@£n(@(k71))’ ®_ @(k71)> n En(g(kfl)).
and then solve the following optimization problem to obtain @(k);
0" = argming £V (©) £ A||O] - (3.2)

We borrow the algorithm from Fan et al. (2016) to solve the optimization problem
(3.2). In Section 5.1 of Fan et al. (2016), they applied a contractive Peaceman-Rachford

splitting method to solve a nuclear norm penalized least square problem:
~ 1 &
o= i DY - (0, X))+ )\ ||e
argmiing {n > (i~ (@ X Al HN}
, 1< P
= argming {Vec(@)Tn > vee(Xi)vee(Xq)  vee(®) + (- 2 YiX;, ©) + A ||@|N} .
3

i=1
(3-3)

Construct

and
- ~ (k1)

Y(k) _ b”(<® ~ (k—1)

X)) [E‘—bl((@ X)) | -

Some algebra shows that the following nuclear norm penalized least square problem is

equivalent to (3.2)

(k) > A (k=1)

~ 1 (e 1 & -
O ' = argming {§Vec((~) _o" 1))T; g vec(XEk))Vec(ng))Tvec(G -0 )
i=1

1 o (k) (k A~ (k=1)
+ (=Y vxP e -0 ) +alely .
i=1
(3.4)

We can further write (3.4) as an optimization problem of minimizing the sum of two

15



convex functions:

2
minimize — Z ( — (O, X( )>) + A Oyl 5
subject to @, — @, = —@k-1),

It has been explicitly explained in Fan et al. (2016) on how to solve the above optimiza-
tion problem using the Peaceman-Rachford splitting method. We provide the algorithm
that is specific to our problem here. Here we first define the singular value soft thresh-
olding operator S,(-). For any X € R%? let X = UDVT be its SVD, where U and
V are two orthonormal matrices and D = diag(oy,...,04) with o1 > ... > 04. Then
S;(X) := UDVT, where D := diag(max (o1 — 7,0), max(cy — 7,0), . . . ,max(cg — 7, 0)).
Let X*) be an n x d? matrix whose rows are vec(f(l(-k)) and Y®) be the response vector

Y®) For¢=0,1,...,

(g(t+1) — (zxﬂf TXE) /4 81713 - (09 = vee®" ™)) + p 4 2XBTY®) /),
p(€+%) — aB(e¢tY 0“)+vec((:)( _1)))’

1)

0;”1) = VeC(SQ)\/B(mat(H + vec(@( ) — p(Z+ /8))),

\p(z+1) _ p(e+§) _ aﬁ(egﬂ) + vec((:)(kf )) _ 0?(f+1))7
(3.5)
where we choose o = 0.9 and § = 1. e(f), 0(6) € R? for £ > 0 and we can initialize

them by 0( ) = 0(0) 0. Since both the objective function and the feasible set
are convex, any initializer should work well theoretically. In practice, we
can incorporate prior knowledge if any to choose the initializer for faster

(£)

convergence. When 0§f) and Oy) converge, we reshape 0y
(k)_(:)(kfl)

and return @(k) as the final estimator of ®*. The algorithm is concluded as follows in
Algorithm 1.

as a d X d matrix and

~(k ~
return it as ('-)( ). We iterate this procedure until ||© || is smaller than 103

3.2 Generalized reduced-rank regression

In this section, we let d = 20,40,60,80 and 100. For each dimension, we take n to
be 1800, 3600, 5400, 7200,9000 and 10800. We set the rank of ®* to be 5 and let
|©*|Fp =1. For 1 <i<nand1l<j<d, welet the covariate x; have i.i.d. entries
from N(0, 1) and let y;; follow Bin(0, exp(n*)/(1 + exp(n*))) where n* = (@7,%;). We
choose \ = \/d/in and tune the constant before the rate for optimal performance.

The experiment is repeated for 100 times and the logarithmic Frobenius norm of the

16



Algorithm 1 Deriving the estimator in generalized matrix regression

I: Take 7 — 0 e R | 1

10:
11:
12:
13:
14:
15:
16:
17:
18:

loop 1:
X( — @™, ))X for1<i<n
)= (e vee(XP)T . vee(XI)T) € R
y}’f —((® k_l),Xi))—% vi— (@ x| for 1 <i <
vy (y(k) UG %’“)T
Take 8 =0 =0 € R” 0 =0.9,8=1,(+0
loop 2:
o\ = (2x<k TX® 4+ 5-1)7HB - (0 — vece(@®" 7)) + p + 2XWTY® /)
pd) = p® — (el — ) + Vec(@ =y
0, = Vec(SzA/ﬁ(mat(O +vec(@" ) = plr2)/5)))
Pt = pl+3) — o3+ —i—Vec(G)(k 1)> U+
If HO (e+1) O(Z H < €1, close
€<—€—|—1 goto loop 2
Take @ = mat(6") € RIx
If H@ — @ (=t )) < €3, close
k<—k+1 goto loap 1
return @

estimation error is recorded in each repetition. We plot the averaged statistical error

in Figure 2.

We can see from the figure that the logarithmic error decays as logarithmic sample

size grows and the slope is almost —1/2.

As for the implementation, we again use the iterative Peaceman-Rachford splitting

~ (0
method to solve for the estimator. We start from (-3( - 0. In the kth step (k > 1),

let

n ~ (k—1)
W Ly~ ee(® x)

nd = 1<1+exp<<@ D k)2

A (k—

(k) eXp(<®]
Yij- = Yig — ~
1+ exp(<®

and T® = inyf.
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Figure 2: log||© — ©* || versus log(n) for different dimension d.

~ (k
We iterate the following algorithm to solve for @( ). Here = 0.9 and 5 = 1.

O+ — (8% /n+ 5-1)7(8- () - 8“7

(k—1) ?

+p +21® /),

p(e+§) = p® — ap@¢h 4 ) 56
A (k1) 1 '
Ot = S5\ /5(@, +6 ' —pt2)/),

p(£+1) _ p(z+%) _ aﬁ(@g(ﬁ@rl) + O

\

Here, S;(-) is the singular value soft thresholding function we introduced in Section

~ (k
3.1. Note that G)Sf), @gf) € R4 for all £ > 0 and they are irrelevant to G)( ) though
they share similar notations. We start from @f,?) = @1(/0) = 0 and iterate this procedure

~ (k
until they converge. We return the last ('-)g(,e) to be ('-)( ).

We repeat the above algorithm until ||(:)(k) — (:)(k_l)HF is smaller than 103 and
take C:)(k) as the final estimator of ®*. The algorithm is concluded in Algorithm 2.

3.3 One-bit matrix completion

3.3.1 Statistical consistency

We consider ®* € R4 with dimension d = 20, 40, 60 and 80. For each dimension, we
consider 6 different values for n such that n/(dlogd) = 30,60, 90, 120, 150 and 180. We
let 1(®@*) =5, |©*||p =1 and R = 2||®"|| . The design matrix X, is a singleton and
it is uniformly sampled from {ejel }1<;r<4. We choose A < y/dlog(d)/n and tune the

18



Algorithm 2 Deriving the estimator in reduced-rank regression

I: Take 7 — 0 e R | 1

10:
11:
12:
13:
14:
15:
16:
17:

loop 1:

k) en(®) X))
Vi =0 (@ V)
Tk = Z:XzyZ

Take ©© = @) — 0 e R4, o = 0.9, B=1, (0

x Y

loop 2:

e+ = ( (’“)/n+6- D78 (O 0" ) 4 p 2T )
pH3) = pl© _ 450D Lo o)

1) 1
el = Szw( ,+6' P2 /)
pH) = plt+3) — o B(@ED 4 ol
It H@ée+1) — @gf H < €1, close

F

{ <+ (41, goto loop 2

(e+1)
-0,)

Take @(’“) 6l ¢ Rixd
If H@ S
k:<—k+1 goto loop 1

A (k1)

< €9, close

return @

constant before the rate for optimal performance. The experiment is repeated for 100
times and the logarithmic Frobenius norm of the estimation error is recorded in each
repetition. We plot the averaged statistical error against the logarithmic sample size
in Figure 3.

We can see from the left panel in Figure 3 that 1og||(:) — O||p decays as log n grows
and the slope is almost —1/2. Meanwhile, Theorem 4 says that logHC:) — ©||F should
be proportional to log(dlogd/n). The right panel of Figure 3 verifies this rate: it shows
that the statistical error curves for different dimensions are well-aligned if we adjust
the sample size to be n/dlogd.

To solve the optimization problem in (2.13), we exploit the ADMM method used
in Section 5.2 in Fan et al. (2016). In Fan et al. (2016), they minimized a quadratic
loss function with a nuclear norm penalty under elementwise max norm constraint.
Our goal is to replace the quadratic loss therein with negative log-likelihood and solve

the optimization problem. Here we iteratively call the ADMM method in Fan et al.
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Figure 3: log||® — ©*||p versus log(n) and log(n/dlog d).

(2016) to solve a series of optimization problems whose loss function is local quadratic

~ (0
approximation of the negative log-likelihood. We initialize © with (9( ) = 0 and
introduce the algorithm below.
~ (k—
In the kth step, we take the local quadratic approximation of £, (©) at ©® = 6( 1):

£H(©) =jvec(© ~ 8" 195, 8" V)vec(@ - 67 (3.7)
3.7
+ <V@£n(@(k71))’ o_ @(k71)> n ﬁn(@(k—l))'
and solve the following optimization problem to obtain C:)(k):
6" — argming £
© ' = argming £, (@) + A [|O]| . (3.8)

To solve the above optimization problem, we borrow the algorithm proposed in Fang
et al. (2015). Let L, R, W € R??*2¢ he the variables in our algorithm and let L(®) =
R = 0. Define

o N~ oxp((©.X))
2.G

e =1 + eXp((@, X,L)))z {Xi=eje;{}7

[y ep((0.X5)
9"’“_;[” T+ exp(©, X)) | | Ximesel s

We introduce the algorithms of the variables in our problem and interested readers

can refer to Fang et al. (2015) for the technical details in the derivation and stopping
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criteria of the algorithm. For ¢ > 0,

~ (k—1)
0 Q)
LD = Mg { RO + — p LW 1 2x1)
¥ ~ (k—1)
Q) 0
[L(z+1)]11 [L(e+1)]12
- <[L(e+1)]21 [L(£+1)]22> ’
11 12 S k1)
c_ (¢ S \_pen_ [ O °© WO,
021 022 A(k—l) 0 ’ (39)
RZ =TI C!2 20 20 1<j<d1<k<d
ik — *—R,R] (p ]k+ ]k/n)/(p+ gk/n) 1>)J>a,l >Rk >a,
11 12
R(f-‘rl) _ C R( )
B (R12)T 22 ’
=~ (k—1)
W(erl) _ W(Z) + ,yp(L(€+1) o R(erl) - 0 © )
e o

In the algorithm, IT Serd(-) represents the projection operator onto the space of positive
semidefinite matrices S?rd, p is taken to be 0.1 and « is the step length which is set to
be 1.618. When the algorithm converges and stops, we elementwise truncate L2 at the
level of R and return the truncated L'2 as (:)(k). Specifically, I:;,% = sgn(L},%)ﬂL},%] AR)
for1<j<d,1<k<d.

When [0 — 8"

of ®*. We summarize the algorithm in Algorithm 3.

~ (k
)H F is smaller than 1073, we return 8" as our final estimator

3.3.2 Comparison between GLM and linear model

As we mentioned in the introduction, the motivation of generalizing trace regression is
to accommodate the dichotomous response in recommending systems such as Netflix
Challenge, Kiva, etc. In this section, we compare the performance of generalized trace
regression and standard trace regression in predicting discrete ratings.

The setting is very similar to the last section. We set ®* to be a square matrix
with dimension d = 20, 40,60 and 80. We let (®*) = 5 and its eigenspace be that
of the sample covariance matrix of 100 random vectors following N'(0,1;). For each

dimension, we consider 10 different values for n such that n/dlogd = 1,2, ...,10. and
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Algorithm 3 Deriving the estimator in 1-bit matrix completion

I: Take 7 — 0 e R | 1

2: loop 1:

o _ = exp((©X,)
3 O = X exp((® X077 LX)

Qb exp((©,X,))
4: ®]k Zzzl }/; o 1+e}))(p(<® X))i| ]l{X =ejel}
5 Take LO = RO =0 ¢ R?** 5 =0.1, v = 1.618, ¢ < 0
6: loop 2:
(e+1) 0 0 @(k_l) —1w(0)
7 L = Hsid RY + @(kq) — p (WW 4+ 21)
0
[L(E-I-l)]ll [L(E—H)]l?
([L(ZJrl)]Zl [L(€+1)]22>
11 (12 e
8: C = C C — L)
C21 022 k 1)

9: RIZ =TI_g g {(pC}} +2@bk/n)/ +2@ak/n },1<j<d1<k<d
11 (12)
10: R = < c R )

(R12)T C22
0 @(k‘—l)
11: WED = WO 4 4p(LED — R — o ) )
12: If ||L(€“) - L(e)HF < €, close
13: { <+ (+1, goto loop 2
14: Take (:)(k) [LED]12 ¢ Rixd
(k—

15: If H@ @ Y < €9, close

16: k< k+ 1 goto loap 1
17: return @ ).

generate the true rating matrix T in the following way:
1 w.p exp(O®F.)
T]{ el 1<i<di<i<a
0 WP Trexp(@%)

We will show that generalized trace regression outperforms the linear trace regression
in prediction.

We predict the ratings in two different ways. We first estimate the underlying @*
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with nuclear norm regularized logistic regression model. We set A\ = 0.24/dlogd/n
~ (1
and derive the estimator G)( ) according to (2.13). We estimate the rating matrix T
by T as defined below:
oAl

0 else

The second method is to estimate ®* with nuclear norm regularized linear model.
~ (2
Again, we take the tuning parameter A = 0.21/dlogd/n and derive the estimator @( )

as follows:

~

2) : 1 ¢ .
© " = argminjg|_<p {nZ(Y — (@, X))* 4+ A \@HN}. (3.10)

=1

To estimate the rating matrix T, we use

~ (2
o [1 i 87 =05
TV — J
ij
0 else
The experiment is repeated for 100 times. In each repetition, we record the prediction
accuracy as 1 — | T®) — T|%/d? for k = 1 and 2, which is the proportion of correct
predictions. We plot the average prediction accuracy in Figure 4.

We use solid lines to denote the prediction accuracy achieved by regularized GLM
and we use dotted lines to denote the accuracy achieved by regularized linear model.
We can see from Figure 4 that no matter how the dimension changes, the solid lines are
always above the dotted lines, showing that the generalized model always outperforms
the linear model with categorical response. This validates our motivation to use the

generalized model in matrix recovery problems with categorical outcomes.

4 Real data analysis

In this section, we apply generalized trace regression with nuclear norm regularization
to stock return prediction and image classification. The former can be regarded as a
reduced rank regression and the latter can be seen as the categorical responses with
matrix inputs. The results demonstrate the advantage of recruiting nuclear norm

penalty compared with no penalty or using #;-norm regularization.
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Figure 4: Prediction accuracy 1 — ||'/I\‘ — T||%/d?
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in matrix completion for various dimension

In this subsection, we aim to predict the sign of the one-day forward stock return, i.e.,

whether the price of the stock will rise or fall in the next day. Through nuclear norm

regularization, we try to learn a small number of eigen-portfolios whose

historical returns have prediction power in the future return direction of

all the stocks of interest. For readers who are interested in predicting stock

directions, either long-term or short-term, please also refer to Pesaran and
Timmermann (2002, 2004); Lunde and Timmermann (2004); Huang et al.
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(2005); Kara et al. (2011), among others.

We pick 19 individual stocks as our objects of study: AAPL, BAC, BRK-B, C, COP,
CVX, DIS, GE, GOOGL, GS, HON, JNJ, JPM, MRK, PFE, UNH, V, WFC and XOM. These
are the largest holdings of Vanguard ETF in technology, health care, finance, energy,
industrials and consumer. We also include S&P500 in our pool of stocks since it repre-
sents the market portfolio and should help the prediction. Therefore, we have d; = 20
stocks in total. We collect the daily returns of these stocks from 01/01/13 to 8/31/2017
and divide them into the training set (2013-2014), the evaluation set (2015) and the
testing set (2016-2017). The sample sizes of the training, evaluation and testing sets
are ny = 504, ny = 252 and nz = 420 respectively.

We fit a generalized reduced-rank regression model (2.8) based on the moving av-
erage (MA) of returns of each stock in the past 1 day, 3 days, 5 days, 10 days and 20
days. Hence, the dimension of x; is 20 x 5 = 100. Let y; € R?° be the sign of returns
of the selected stocks on the (i + 1)th day. We assume that ®* € R20%100 j5 3 near
low-rank matrix, considering high correlations across the returns of the selected stocks.
We tune A for the best performance on the evaluation data. When we predict on the
test set, we will update ©® on a monthly basis, i.e., for each month in the testing set,
we refit (2.8) based on the data in the most recent three years. Given an estimator @,
our prediction y; are the signs of (@ij).

We have two baseline models in our analysis. The first one is the deterministic bet
(DB): if a stock has more positive returns than negative ones in the training set, we
always predict positive returns; otherwise, we always predict negative returns. The sec-
ond one is the generalized RRR without any nuclear norm regularization. We use this
baseline to demonstrate the advantage of incorporating nuclear norm regularization.

From Table 1, we can see that the nuclear norm penalized model yields an average
accuracy of 53.89% while the accuracy of the unpenalized model and DB are 52.74%
and 51.62%. Note that the penalized model performs the same as or better than the
unpenalized model in 18 out of 20 stocks. When compared with the DB, the penalized
model performs better in 15 out of the 20 stocks. The improvement in the overall
performance illustrates the advantage of using generalized RRR with nuclear norm

regularization.

4.2 CIFAR10 Dataset

Besides the application in finance, we also apply our model to the well-known CIFAR10
dataset in image classification. The CIFAR10 dataset has 60,000 colored 32 x 32 images
in 10 classes: the airplane, automobile, bird, cat, dog, deer, dog, frog, horse, ship and

truck. Each figure has three channels (red, green and blue) and hence is stored as
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Prediction Accuracy | Prediction Accuracy

Stock bB with Regularization | without Regularization
AAPL | 55.13 51.07 51.07
BAC 47.26 49.88 49.64
BRK-B | 54.18 59.90 59.90
C 52.98 51.55 51.07
COP 47.49 54.18 54.18
CVX | 48.69 55.37 54.18
DIS 49.40 56.80 56.80
GE 48.45 55.61 56.09
GOOGL | 53.94 52.74 52.74
GS 52.74 53.22 47.49
HON | 56.09 51.55 51.31
JNJ 51.79 54.65 53.70
JPM 52.27 53.94 47.02
MRK 51.55 51.31 51.31
PFE 49.40 52.27 49.40
UNH | 52.74 53.70 52.74
\Y 56.09 58.00 58.23
WFC | 49.16 52.74 50.12
XOM 48.21 54.42 53.46
SPY 54.89 54.89 54.42
Average | 51.62 53.89 52.74

Table 1: Prediction Result of 20 selected stocks.(Unit: %)

a 32 x 96 matrix. We represent the 10 classes with the numbers 0,1, ..., 9. The
training data contains 50,000 figures and the testing data contains 10,000 figures. In
our work, we only use 10,000 samples to train the model since we intend
to illustrate how the regularizations alleviate the overfitting problem; after
all, overfitting would not be a problem when the sample size was large.
We construct and train a convolutional neural network (CNN) with ¢;
norm and nuclear norm regularization on ©® respectively to learn the pat-
tern of the figures. The naive GLM is inappropriate for image classification,
since pixel values are meaningless features as regard to the content of the
picture. For example, two different images in the class “truck” might have
trucks in different positions or colors, leading to dramatically different pixel
values of the pictures. To extract useful features from pictures, we resort
to the CNN. The structure of the CNN follows the online tutorial from
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TensorFlow*. It extracts a 384-dimensional feature vector from each image
and maps it to 10 categories through logistic regression with a 384 x 10 coeffi-
cient matrix. Here to exploit potential matrix structure of the features, we
reshape this 384-dimensional feature vector into a 24 x 16 matrix and map
it to one of the ten categories through generalized trace regression with
ten 24 x 16 coefficient matrices. We penalize these coefficient matrices by
their nuclear norm and /;-norm respectively and we summarize our results
in Table 2 below.

A 0 0.02 0.05 0.1 0.2 0.3
nuclear penalty | 74.30% | 76.04% | 76.17% | 75.29% | 74.45% | 73.46%
A 0 0.001 0.002 0.005 0.008 0.01
(1 penalty 74.30% | 75.70% | 75.90% | 75.53% | 75.37% | 75.22%

Table 2: Prediction accuracy in CIFAR10 under different A with different penalties

convolutional neural network.

The results show that both regularization methods promote the prediction accuracy

while nuclear norm regularization again outperforms #; norm.

5 Discussion

Our theory is established upon assumptions of i.i.d. samples. It is possible
to relax this i.i.d. assumption under the existing framework. As shown in
Theorem 1, the statistical error rate of e) depends on two conditions on
the tuning parameter A and LRSC respectively. When the samples are not
i.i.d., we need to verify these two conditions accordingly. For example, if
we have Markov chain samples, we might recruit concentration results in
Lezaud (1998), Paulin (2015) or Fan et al. (2018) to verify the required
two conditions. However, to our best knowledge, probabilistic tools such
as the matrix Bernstein’s inequality with Markov Chain samples are not
well-established yet. Therefore, we do not intend to discuss the non-i.i.d.

case in this paper and we leave the problem to future work.

with

*The code can be downloaded from https://github.com/tensorflow/models/tree/master/
The tutorial can be found at https://www.tensorflow.org/tutorials/

tutorials/image/cifar10.

deep_cnn
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6 Proofs and Technical Lemmas

6.1 Proof for Theorem 1

We follow the proof scheme of Lemma B.4 in Fan et al. (2015). We first construct a
middle point @n = 0"+ 17(@ — ©%) such that we choose n = 1 when ||@ — O </
and n = £/||(:) — ©"|p when HC:) — ©%||rp > ¢. For simplicity, we let A =0 -0"and
377 = (:)77 — O in the remainder of the proof.

According to Negahban et al. (2012), when A > 2|ln=! 3 [/ ((X;, ©*)) — Y;]- X, |l op,
i=1
A falls in the following cone:

C(M, M, ©%) = {HAﬂ

<3HAMHN+4 Z Tj 9*)}

j>r+1

Since 377 is parallel to A, 3,7 also falls in this cone. Given ||B77HN < ¢ and LRSC(C, N,
ke, 1¢) of L,(©), we have

kel| A% — 70 < (VL(O,) — VL (), A,) =: Dr(©,,0%), (6.1)

where Dy (©1,02) = L,(01) — L,(O2) — (VL,(O2), 01 — O3) is the symmetric Breg-
man divergence. By Lemma F.4 in Fan et al. (2015), Dg(@n, 0" <n- Dﬁ(@, o).
We thus have

kel Ay} — 7 < De(©,,0%) <1D(©,0%) = (VL () — VL, (©%),A,). (6.2)

Since © is the minimizer of the loss, we shall have the optimality condition VE(@) +
A¢ = 0 for some subgradient £ of the [|©||y at © = ©. Therefore, (6.2) simplifies to

ke Agld — 70 < —(VLO) + A&, A,) < LA A, |lv

<6av2r|( MH +6A Z 0;(©) < 6327 ||A H 16 Y o). (63

j>r+1

For a threshold 7 > 0, we choose r = #{j € {1,2,...,d}|0;(©®*) > 7}. Then it follows
that

IIRZACHESEY Uj(Te*)sf > (Uj(f)* <t N gp(@%)1 < 71,

jzr+1 j=r+l j=r+1 jzr+1
(6.4)
On the other hand, p > > 0;(®*)¢ > r79, so r < pr~%. Choose T = A/k¢. Given

j<r
(6.3), (6.4) and 7, = Cop)\%q//i;_q yields that for some constant Ci, ||A,llr <
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C1/p(N/ k)92 If we choose £ > C1,/p(\/k)'~%? in advance, we have A, = A.

~

Note that rank(Av;) < 2r; we thus have

IAIN < 1A gglly + 1(A) g v < 4 (A)grllw +4 D 0;(07)

j>rt1
~ " _4q Ay 1-g
<a|Alr+4 Y 0(0) < 4yprtAllr +ap( ) (6.5)
j>r+l e
A\ 1-4g
< (4 Dpl — .
< (4Cy + )p<f€z)

6.2 Proof for Lemma 1

Let n; = (©*,X;) and n = (©*,X).

LY W) - X,
=1

op

= % Z(b’(m) —Y)X; — E[(t/(n) = Y)X] + E[(t/ () — Y)X]

n o (6.6)
= % > () = Yi)X; — E[(¥ (n - Y)X)] + E[Y'(n) - Y]-EX
=1

op

_ % ST () - Y X — E[(¥ (n) — Y)X]
=1

op

The last step is true because EY = b/(n), which is proved in Chapter 2 in McCullagh
and Nelder (1989). Now, we use the covering argument to bound the above operator
norm.

Let ST = {ueR?: |lul|, =1}, N be the 1/4 covering on S*~! and ®(A) =
sup ul'Av for VA € R4,

ueN?
veNd
We claim that 16
HAHop < 7(I)(A) (67)

To establish the above inequality, we shall notice that since N4 ~! is a 1/4 covering,
for any given u € S !, v € S¥1, there is a 1 € N and v € N such that |ju —a <
1/4 and ||v — v|| < 1/4. Therefore,

u'Av =a" AV + @TA(V - V) + (u-)TAV + (u - D)A(v — V)

1 1 1
<®(A)+ - ||A - ||A — |A
<OA) + 5 (Al + 5 1Al + 16 AT,
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9
:@(A) + E ”AHop
Take the supremum over all possible u € S 1, v € S4 1, we have

4l = sup oAV < 2(A) + 5 AL,
vesd-t

and this leads to (6.7).

In the remaining of this proof, for fixed u € N4 and v € N¢, denote u”X;v by
Z; and uT Xv by Z for convenience. According to the definition of sub-gaussian norm
and sub-exponential norm, given the independence between the two terms, we have
116 (i) — Yi] Zillg, < V(i) = Yillg, 1 Zilly, < Mko. By Proposition 5.16 (Bernstein-
type inequality) in Vershynin (2010), it follows that for sufficiently small ¢,

= (¥ (m) = Yi)Z — E[(¥ (n) - Vi) 2]

clnt2
P >t <2 — 6.8
2 Jern(cim) o

where c; is a positive constant. Here M is an upper bound for [|0(n;) — Yilly,. It is

1 n

upper bounded since the variance of the response Y is bounded according to condition
(C5).
Then the combination of the union bound over all points on N x A and (6.7)

delivers

1 t2
P >76t SQexp(dlogS—Cln >

M2}
(6.9)
In conclusion, if we choose t < y/d/n, we can find a constant v > 0 such that as

long as d/n < 7, it holds that
d —cad
>y <cp-e P (6.10)

op

%ZW(W) ~Yi)Z; — E[(t/(n) — Y)Z]
=1

op

LS - YXs

i=1

P

where ¢; and ¢y are constants.

6.3 Proof for Lemma 2

In this proof, we will first show the RSC of £,,(®) at ® = ©* over the cone

C(M,, M, 0% = {A e RIxd . HAW

L <311A% [y +4 3 o0}
j>r+1
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for some 1 < r < d. Then, we will prove the LRSC of £,(®) in a nuclear-norm

neighborhood of ®* with respect to the same cone.

1. An important inequality that leads to RSC of £,(©) at ® = ©*.

We first prove that the following inequality holds for all A € R?*¢ with proba-
bility greater than 1 — exp(—c1d):

. d
vec(A) - H(O%) - vec(A) > k- || A% — co\/; 1A% - (6.11)

Let A = UDVT be the SVD of A. Then |vec(D)|, = ||Al| and ||[vec(D)|, =
|A|ly- It follows that

vec(A)T - H(O%) - vec(A)

:% Zvec(A)T (O, X)) - vee(X;) - Vec(Xi)T -vec(A)
i=1

IS e X A = Ly w/mien xpxubv?)? 6z
i=1 i=1

Here, X; = /0 ((©*,X;))UTX,V, 25(5( =n"1Y vee(X;)vec(X;) T and g ¢ =
i=1

ESzx.
To derive a lower bound for (6.12), we bound the first term from below and bound

the second one from above.

. ~ o~ —_— 3 T . T~
Amin(Zgx) = Wl,V%/I;ERdXd vec(W1)" - Xgx - vec(Wa)
Wil p=[W2|| p=1

= inf E [0"((©*,X;)) - tr(W] UTX; V) - tr(W] U X, V)]
W1, WocRdxd
W1 =W =1

= inf E [0"((©*,X;)) - tr(VW{ UTX,) - tr(VWL UTX;)] (6.13)
Wi, WoecRdxd
Wl p=[Wal| =1
= inf vec(UW V) -H(O") - vec(UW;3 V)

Wi, WoeRdxd
(Wil =Wzl p=1

=Amin(H(®")) =&
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Hence,
veo(A)T - Sxx - veo(A) > n Al - ||Bxx — Bxx|| Al (614)

Meanwhile, for some appropriate constants cs, c4 and C1, we establish the follow-

ing inequality, which serves as the key step to bound ”25(5( — Xz % loo-

N d
P ‘ sup  vec(uyvi )’ (Egx — ZXX)VeC(uQvg)‘ > C’l\/7 < czexp(—cqd).
up,us€S? n
v1,v2€8

(6.15)
We apply the covering argument to prove the claim above. Denote the 1/8—net
of 8¢ by N¢. For any A € R¥*% define

®(A):= sup vec(u;v?)? Avec(ugvl)
up,us€S?
vi,v2€8?

and
Dy(A):= sup  vec(urvl)T Avec(ugvl).
ul,uQGNd
vl,vgeNd
Note that for any uj,vi,us,ve € Sd, there exist Uy, Vi, Uo, Vo € N9 such that
|lu; —@ill2 < 1/8 and ||v; — V4|2 < 1/8 for i = 1,2. Then it follows that

vec(u;vi)T Avec(ugvl)

= vec(@;v1 )T Avec(Tavh ) + vec(uy (vy — vi) )T Avec(Tovy ) + vec((u; — ay)vi )T

Avec(tavi ) 4 vec(uyvi)T Avec(ug(ve — ¥2)T) + vec(uy vl )T Avec((uy — 2)¥3)
+vec((uy —1p)vi)T Avec((ug — )% ) + vec(uy (vi — ¥1)7)T Avec((ug — T2)¥4)

+ VGC((U1 — ﬁl)vlT)TAveC(ug (V2 — VQ)T) + V6C(ll1 (Vl — Vl)T)TAVGC(UQ(VQ — VQ)T)

< By(A) + 5P(A) + %@(A).
(6.16)

So we have ®(A) < (16/7)®x(A). For any u;, us € S? and vy, vy € S, we know
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from Lemma 5.14 in Vershynin (2010) that

- S 1
{ur v, X (v, X ey < S (1 (v, Xa)? [, + [ {u2vs, Xi)lw,)

< H (uvT, VO (07, X)) UTX, V) H i H (usv?, /OO, X)) UTX, V) ’

< QMKZO.

P

(6.17)

Applying Bernstein Inequality yields

-~ . ( nt?  nt
P (‘vec(ulvl T (Zxx — Exx)vec(uava )‘ > t) < 2exp <—cm1n<W, W)> :
0 0

Finally, by the union bound over (uy,uz, vy, va) € N4 x N4 x N4 x N, we have

P ‘ sup vec(ulv{)T(fJXX - EXX)vec(ugvg)‘ >t
up,u2eS?
vi,vjesd (618)
t2 t
< exp (2d log 8 — cmm(}\;2 ]\;K’O))

Take ¢t < \/d/n, we derive the inequality (6.15). By combining (6.14) and (6.15),

we successfully prove (6.11).

. RSC at £,(©%) over C(M,, M, ©%)
For all

A €C(M, M+, 0% ={ A e R, HAM

N1V R S OR
j>r+1

where 1 < r < d, we have

1Ay < [[Ax,

A

<Ay Y @)
j>r+1 (6.19)

<AV Al +4 Y (0.

j>r+1

Let & = (1/8)k. As we did in the proof for Theorem 1, we take 7 = /i and let
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r= #{.7 € {1727 7d}‘0'](®*) > 7'}. Then,

1Ch (@*)1
> 0@ =73 O—J(T) <7t UJ(T) < im0y = \TaRIT)
Jer jzrsl j>r 4
(6.20)

On the other hand, p > 37, 0(©)7 > r7so that r < pr~7 = pRIA~9. Plugging

these results into (6.19), we have
AN < 44/2pA" 2592 | Al p 4 4N TR, (6.21)

Since A = 2v1/d/n, there exist constants c5 and cg such that as long as p(d/n)(=9/2
< ¢4, combining (6.14) and (6.21) we have

vec(A)TH(@%)vec(A) > & || A% — espA> 1. (6.22)

with high probability.

In the first two parts of this proof, we not only verify the RSC of £, (©%), but
also provide the complete procedure of how to verify the RSC of the empirical
loss given the RSC of the population loss. This is very important in Part 3 of
this proof.

. LRSC of £,,(®) around ©*
In the remaining proof, we verify the LRSC by showing that there exists a positive

constant &’ such that

s ~ 2
vec(A)TH(®)vec(A) > &/ AHF — cepAT. (6.23)

holds for all A € C(MT,HTL, ©*) and © such that |© — ©*||p < c7,/pA1~9/2
for some positive constant c¢;. Note that given ® — @* € C(M,ﬂﬁ@*), by
(6.21) we have ||© — @*||y < cgpA! ™9 =: £ for some constant cg.

Define functions

~

h(@) = ’I’L_1 Z b//(<@, X2>) : ]]'{‘<@*7X7,>|>T||X1H >t} VEC(XZ')VGC(XZ')T
1=1

op=

and

for constants 7 and 7 to be determined. Recall that H(©*) = n~! 3 b ((©*,X;))
i=1
vec(X;)vec(X;)". The only difference between h(:) and H(-) is the indicator
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function so that }AI() - ﬂ()
We will finish the proof of LRSC in two steps. Firstly, we show that h(®%) is

positive definite over the restricted cone. Then by following the procedure of
showing (6.22), we can prove that h(@©*) is positive definite over the cone with
high probability. Secondly, we bound the difference between vec(&)Tﬁ(G))vec(A)
and vec(A)Th(©*)vec(A) and show that h(®) is locally positive definite around
®©*. This naturally lead to the LRSC of £,,(®) around ©*.

We establish the following lemma before proceeding.
Lemma 7. When |©*|, > avd and {vec(X;)}, are sub-Gaussian, there exist

universal constants T > 0 and v > 0 such that Apin(h(©®*)) > k1 where k1 is a

positive constant.

We select appropriate 7 and v to make h(®*) positive definite. Follow the same

procedure in Part 1 and Part 2 of this proof, we derive that

-~ ~

vee(A)T - 51(©) - vee(A) > iy HBH? — epA2. (6.24)

for a positive K1 with high probability.
Meanwhile,

~ ~ ~

]vec(A)T " h(©%) - vee(A) — vee(A)T - h(©) - vec(ﬁ)]

1< . .
<= Z b"((©*, X)) — b"((©,Xy))| L@ X > 7lIXill >} (vec(X;) vec(A))?
=1
1< . . ~
= D0, X)) (0 — O, X)) | - Tyjier X157, >} (Vee(Xi) T vec(A))?

(6.25)

Here © is a middle point between ©* and ©, thus it is also in the nuclear
ball centered at @* with radius ¢. We know that ‘(@,XZ) > (@, X;)| —

’((—)* - (':),Xi>’ > (1 — £) | X]l,, when the indicator function equals to 1. If
(7— - E) HXZ'Hop > 17

1 14

- XZ||0 ®—-—0%y< —.
o, il N

V" ((0,X;)(® — 0, X;)| < —

Otherwise, | X;|,,, is bounded by 1/(7 — £) and )b/’/(<é,xi>)<@) - G)*,XZ->’ <
C - -4, where C is the upper bound of b (z) for |z| > (7 — () 1 Xillop > (7= )y
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In summary;,

(6.25) < vec(A Zvec Jvee(X;) T - vec(A) (6.26)

~ n ~

Denote Xxx =n"' Y vec(Xi)vec(Xi)T and Yxx = EXxx. Suppose the eigen-
i=1

values of ¥xx is upper bounded by K < oo, with a similar result to (6.11) and

(6.21), as long as p(d/n)'~9/? < c5, we shall have

vec(A Zvec Jvec(X;) T - vec(A)
(KHAH wf al) o
SQTK_CK ],

As long as the constant /¢ is sufficiently small such that 2KC?¢/(t — {) < K1/2,
VGC(&)T : fl(@) -Vec(A) > /%QHAH% holds with K3 = K1/2. This delivers that
h(®) is locally positive definite around ©*. Recall that H(-) = h(-), we have
verified that ﬁ(@) is also locally positive definite around ®*. In summary, there

exist some constant £ > 0 such that for any ||© — ©*|\ < ¢,

veo(A)T - %Z Y (@, Xi))vee(Xs)vee(X)T - vec(A) > i

2 )
‘AH — cgpA“TY.
; F
i=1

(6.28)
for all A € C(MT,M#@*). This finalized our proof of the LRSC of £,(®)

around ©*.
Below we provide the proof of Lemma 7.

Proof for Lemma 7

We first show that for any pg € (0,1), there exist constants 7 and vy such that
PO, X)| > 7[[Xillp = 77) = po-

It is sufficient to show that P(|(®, X;)| > 7 [|X||,,) = (po+1)/2 and P([|X;[,, >
v) > (po+1)/2 for some positive constants 7 and . Then according to Bonferroni
Inequality, P((©,X;)| > 7 (| Xillop, > 77) = (o +1)/2+ (po +1)/2 — 1 = po.
The second inequality is easy to show.

T
1Xillop = et G lu' Xiv| > [ Xill (6.29)
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Hence P(|[X;l|,, > 7) > P( X[, > 7). Since vec(X;) is a sub-Gaussian vector
with dimension d?, P(||X;||,, > 7) monotonically goes to 1 as d grows. Let v be
sufficiently small so that P(||X;||., > ) = (po + 1)/2 when X; € R?*?, it would
be true that P(||X;||, > ) > (po +1)/2 for all d > 2.

To prove the first inequality, we again divide it into two inequalities and combine
them with Bonferroni Inequality. We would show that P(|(©,X;)| > ¢1V/d) >
(po+3)/4 and P(||X;]|,, < coV/d) > (po+3)/4 for some positive constants c; and

op —
¢o. Then

P((©,Xi)| > c1/c2 I Xillop) = (o +3)/4 + (po +3)/4 =1 = (po + 1)/2 (6.30)

On one hand, (®, X;) is a sub-Gaussian variable since it is a linear transformation
of a sub-Gaussian vector. Its mean is 0 and its sub-Gaussian norm is bounded
by ko ||®] . Since ||®]| > aV/d, take ¢; to be sufficiently small, we have

+3
P((©,X,)| > e1Vd) > P(|z| > c1/a) > p04 (6.31)
where 7z is a sub-Gaussian variable and ||z|, < Ko.
On the other hand,
) — Ty | — T~ .
R
= max ‘tr(vuTXi)’ = max ’(uvT, XZ)‘ . .

ucesSd-1 vesd-1 ueSd—1 vesSd-1

Recall the covering argument in the proof of Lemma 1. Denote N'¢ as a 1/4-net
on 8% 1, then

16

T T

max uv’  X;)| < — max uv' , X; 6.33
uesSi-1 vesi-1 ‘< Z>‘ T T ueNdveNd ‘< Z>‘ ( )
For any u; € N4, vi € N, given [Xilly, < ko, we have H<111V1T,Xi>H\I,1 < K.
According to Bernstein-type inequality in Vershynin (2010), it follows that for

sufficiently small ¢ and some positive constant C,

P([(mv],X;)| >t) < 2exp (-i?) (6.34)

Therefore, the overall union bound follows:
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Ct?
T ) L
P(uesdgrllfgie - [(uv?, X;)| > t) < 2exp <2d log 4 2 > (6.35)

Let t = c9v/d for some positive constant ¢ > /4 log 4&% /C, the above probability
decays. This means that with high probability (which is greater than (po + 3)/4)
[ Xllop is less than coV/d. This finalize our proof of (6.30).

Now we look at

h(®) =n"'E

2V ((0,X4) - Lyjer x>l > 'VeC(Xi)vec(Xz-)T] :
=1

Denote {|(®%,X;)| > 7[|X;|,, = 77} as an event A; with probability sufficiently
close to 1. For any v € ]RdQ,

nvi h(®*)v =E

> ov'(e, Xi>)(vec(Xi)Tv)2]

=1

—E | Y 0 (©, X)) L - (vec(Xi)Tv)Ql
=1
>nk V)3 — | E D007, X))2 (vee(X)Tv)! | - |EY Lue
i=1 i=1

>nk||vi[; = nME\/T—po vl
(6.36)

Here, M is an global upper bound of b”(-) and K is the largest eigenvalue of the
fourth moment of X;. Since X; is sub-Gaussian, the fourth moment is bounded.
We let 1 — pg be sufficiently small so that nM K+/1 — py < £/2, then we proved
that Apin(h(©®7)) > k/2 > 0 and thus h(©%) is positive definite.

6.4 Proof of Lemma 3

N n d

1 . 1 1 . 1 1

N E V'((X;:,©)) = Yi)X; = o E P E (b/(ngXi) - yz’j)xief ~d n § :Xizva
=1 =1 j=1 =1
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why, let n;; = xiTOj. We have

Bexp(tzy |x) = [ el xp (1Y =)y ooty — ()

yey 10)
= /Ey cly) ex ((nw + ¢t)y — b(nij + o) + énij + ¢t) — b(ni;) — HtY () )dy
= exp(b(mj + ot) — bg(;?z'j) - ¢tb’(771;j)) < exp(d)]\gﬁ).

Besides, y;; L yix for j # k given x;. Therefore, |z;||w, < ¢M. Since Ez;x} = 0, by
the standard covering argument (Theorem 5.39 and Remark 5.40 in Vershynin (2010)),

there exists v > 0 such that when n > ~d, it holds for some universal constant ¢ > 0,

1 M rod
P(Hﬁ ZXiZzTHOp > \/T) < 2exp(—cd).
i=1

6.5 Proof of Lemma 4

N n d
~ ~ % -~ 1 * ™~ 1 * N
vee(A)TH(O")vec(A) = > 1" (X;, @)(A, Xi)? = 3 S H/(xT6;)(A, xel)?
=1 =1 j=1
722[)// Ta* tr TAe] — Zzb// Ta* ) .
i=1 j=1 i=1 j=1

(6.37)
Note that for any 1 < j < d, ||1/b"(x]0,)xi|lw, < VMko. By Theorem 5.39 in
Vershynin (2010), there exists some 7 > 0 such that if n > ~d, we have for some

universal constant ¢ > 0,

1 & Md
IP’(II; Zb"(xin’}*)Xix B (x] 07)xix] )|lop > Ko/ 7) < 2exp(—cd). (6.38)
=1

Denote this event by &. By the union bound, it holds that

Md
- // T * * > < o )
<f??§d”n § :b 0;)xix] —H(0")|op > k(| = ) < 2d exp(—cd)

In addition, for any ® € R?*? such that |© — ©*||p <7, ||0, — 072 < r holds for all
1 <j <d. Given that ||x;|lw, < Ko,

2

t
— 0* > < — ).
P<1§z‘£i§j<d‘x (6; — 6} )| t) 2ndexp( 2/{%7‘2>

43



Substituting ¢t = kor/0 log(nd) into the inequality above, we have

T. — 0 < 1-5
P<1§i$i§j§d|xz (0; — 07)| > Kory/dlog(nd)) < 2(nd) 2.

Denote the above event by &;. Therefore, under £f,

n n

1 * 1 *
I~ > (0 (x]6;) — V' (x] 05)xix] [lop < Lj~ D (7 (05— 05)xix] lop
=1 =1 (6.39)

1 n
< Lkory/dlog(nd) - Hﬁ inx’f”op.
i=1

Again by Theorem 5.39 in Vershynin (2010), when n/d is sufficiently large,
e o d
P(Hﬁ inxi - EXXHOp > Ko H) < 26Xp(—cd).
i=1

n
Therefore, when n/d is sufficiently large, [n=! 3" x;x7 ||,p < 2k0 with high probability.
,L'_

=1
Denote this event by &. Combining this with (6.38) and (6.39), we have under E{NES,

1 V' (x70;) — b"(x70%))x;x] ||op < 2LK2r+/61log(nd).
n ] ] 7 llop 0

i=1
Finally, for sufficiently large n/d, it holds with probability at least 1 — Z(nd)l_g for all
0 such that ||© — O*||p < r,

n

1
Amin (ﬁ Z b”(XZTOj)XiXiT> > Kp — QLK(Q)T\/ d log(nd).

=1

By a union bound across j = 1,...,d, we can deduce that for any ¢ > 4, it holds with
probability at least 1 — 2(nd)2_g that for all A € R¥4 and all ©® € N,

~

veo(A)H(O)vec(A) > %(w — 9Lir/Slog(nd) | A2

Since r < \/pAl"%/2, as long as p(d/n)'~%/%log(nd) is sufficiently small, LRSC(C, N,
(1/2)k¢,0) holds.
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6.6 Proof for Lemma 5

Here, we take advantage of the singleton design of X and apply the Matrix Bernstein
inequality (Theorem 6.1.1 in Tropp(2015)) to bound the operator norm of the gradient
of the loss function.

Denote Z; = [exp (0", X,))/(1 + exp (€7, X)) ~ ¥i|-X; € R vu € §71,v €
Sd_l,

T < (@ X0) <
Thus ||Z;||,, < d. Meanwhile,
6<@*7Xi> 2
B2.20)),, ~ & | (o — ) XXT|| < [E[XX]]
i llop e(@"X;) 41 ¢ ¢ Jllop
o (6.40)
1
- [elocrt]] = =
ea(z)ea(z) op d

Similarly, we have HIEZZ-TZ,'HOp < d. Therefore, maX{HIEZ,-ZiTHOp , HEZZTZZ'HOP} <
d.

According to Matrix Bernstein inequality,

1< —nt?/2
Pl|— Z; >t <2d- _— 6.41
nz; Z | = 2d-ep (G (6-41)
= op
Let t = vy/ddlogd/n, then
" ddlogd —v25dlogd

<2d - exp (

. =24 n 2d + 2u d26dlogd/3)
O
’ V.. (6.42)

25
:2d1_ 2+2V\/d»l:5-log d/3v/n

<oq—?

for some constant v as long as dlogd/n < ~ for some constant ~.

6.7 Proof for Lemma 6

We aim to show that the loss function has LRSC property in a Ly-ball centered at ®*
with radius 2R/d.
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For all © € R4 gatisfying H(:) - O
/(1 +exp ((©,X;)))%. Then

< 2R/d, let us denote f(©) = exp ((®,X;))

vec(A)[H(O) — H(O*)]vec(A)

—vee(A) - 237 [1(10.X0) — 7 (07, X1)] vee(X;pvee(X) - vee(A)

=1

3

(6.43)

3

1

<vec(A) - - > 1 ((85,X5)) (8 — 8%, X)vee(X;)vec(X;) " - vec(A)

=1

Here ©; is a middle point between ® and ®*. Due to the singleton design of X,
(©—-0",X,)<d- H(:) —®*|| < 2R. Given that the derivative of f(-) is bounded by

0.1, we have =
T~ PN R T
vec(A)' [H(®) — H(®")]vec(A) §g - vec( Zvec Jvec(X;)" - vec(A)
R |- 2
"5n 36TL(A)HQ

(6.44)

It is proved in the proof of Theorem 1 in Negahban and Wainwright (2012) that as
long as n > cgdlogd,

Hx"é?”? - lal] 2 Tl + 2L

for all A € C'(cp) with probability at most ¢7 exp (—csdlogd). Therefore, since A €
C'(co) and 128d || Al /v ||A]lz < 1/2, we shall have

(6.45)

£, 16d]Al, _ (15 1
A x <L Al <2]|A 6.46
s a2k < (Fh Y 1Al <218l @a0)

with probability greater than 1 — ¢y exp (—cgdlogd). When (6.46) holds, plug it into
(6.44), we shall have

?U

1A%
—.4]A
=3 | HF_512(€R+€_R+2)

(6.47)
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for sufficiently small R > 0. The following inequality thus holds for all @ satisfying
Hé — e <2r/:
oo

g Al
. oAl
vec(A)" H(®)vec(A) > B12(cF 1 c-F 1 2)

(6.48)

6.8 Proof for Theorem 4

In this proof, we define an operator X, : R?¢ — R™ such that [X,(T)]; = (T, X;) for
all T' € RIx4,

Denote A = © — @*. If A ¢ C'(cy), according to Case 1 in the proof for Theorem
2 in Negahban and Wainwright (2012), we shall have

d
~ 12 dlogd ~ *
HAHF < 2Ry 2 8\/77HAHF n 4j_§r+1aj(@ ) (6.49)

for any 1 < r < d. Following the same strategy we used in the proof for Theorem 1,

dlogd) *
~ og

AH <17 | 201Ry/

H F 1\/5 ( ! n >

for some constant Cf.

If A € C'(co), when (2.16) in Lemma 1 holds, on one hand, if 128d HEH N H&HF
> 1/2, we have =

we will have

2564 |A| 5108
< < 6.50
F Vn — n (6.50)

1
As what we did in the proof for Theorem 1, we take 7 = (R?/pn)?= and we have

R RQ 1—¢q 2T1q
la], < (o (%) osn
for some constant Cs.

On the other hand, if 128d HAH N H&HF < 1/2, we have
o0

|

4]

2 2
] N 2

= 16(eR/2 y B2y n — 256(eR e R+2)

w®, A, ]
n

NG (6.52)
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Thus by Lemma 1 and 2 it naturally holds that

_ 2 dlogd)" " A dlogd) *
fo-of <cun(y/™ET) . Jo-ef <ew(y )

n n

In summary, as long as n/(dlogd) is sufficiently large, we shall have

2—q
N 2 dlogd 2
|&-e| <csmax p( Og) R
F n n
(6.5
1—q 1—q\ 722
N dl 2 q\ 2—¢q
HG) —O"|| < Cgmax{ p < 0gd> , <p <R> )
N n n

with probability greater than 1 — Cyexp (—cidlogd) —2d' %, where {C;}1_; and ¢; are

constants.
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