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Abstract

We study the generalized trace regression with a near low-rank regression coeffi-

cient matrix, which extends notion of sparsity for regression coefficient vectors. Specif-

ically, given a matrix covariate X, the probability density function of the response

Y is f(Y |X) = c(Y ) exp (φ−1 [−Y η∗ + b(η∗)]), where η∗ = tr(Θ∗TX). This model

accommodates various types of responses and embraces many important problem se-

tups such as reduced-rank regression, matrix regression that accommodates a panel of

regressors, matrix completion, among others. We estimate Θ∗ through minimizing em-

pirical negative log-likelihood plus nuclear norm penalty. We first establish a general

theory and then for each specific problem, we derive explicitly the statistical rate of

the proposed estimator. They all match the minimax rates in the linear trace regres-

sion up to logarithmic factors. Numerical studies confirm the rates we established and

demonstrate the advantage of generalized trace regression over linear trace regression

when the response is dichotomous. We also show the benefit of incorporating nuclear

norm regularization in dynamic stock return prediction and in image classification.

1 Introduction

In modern data analytics, the parameters of interest often exhibit high ambient di-

mensions but low intrinsic dimensions that can be exploited to circumvent the curse

✯This paper is supported by NSF grants DMS-1406266, DMS-1662139, and DMS-1712591
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of dimensionality. One of the most illustrating examples is the sparse signal recovery

through incorporating sparsity regularization into empirical risk minimization (Tibshi-

rani (1996); Chen et al. (2001); Fan and Li (2001)). As shown in the profound works

(Candes and Tao (2007); Fan and Lv (2008, 2011); Zou and Li (2008); Zhang et al.

(2010), among others), the statistical rate of the appropriately regularized M-estimator

has mere logarithmic dependence on the ambient dimension d. This implies that con-

sistent signal recovery is feasible even when d grows exponentially with respect to the

sample size n. In econometrics, sparse models and methods have also been intensively

studied and are proven to be powerful. For example, Belloni et al. (2012) studied esti-

mation of optimal instruments under sparse high-dimensional models and showed that

the instrumental variable (IV) estimator based on Lasso and post-Lasso methods enjoys

root-n consistency and asymptotic normality. Hansen and Kozbur (2014) and Caner

and Fan (2015) investigated instrument selection using high-dimensional regularization

methods. Kock and Callot (2015) established oracle inequalities for high dimensional

vector autoregressions and Chan et al. (2015) applied group Lasso in threshold au-

toregressive models and established near-optimal rates in the estimation of threshold

parameters. Belloni et al. (2017) employed high-dimensional techniques for program

evaluation and causal inference.

When the parameter of interest arises in the matrix form, elementwise sparsity is

not the sole way of constraining model complexity; another structure that is exclusive

to matrices comes into play: the rank. Low-rank matrices have much fewer degrees of

freedom than its ambient dimensions d1 ·d2. To determine a rank-r matrix Θ ∈ R
d1×d2 ,

we only need r left and right singular vectors and r singular values, which correspond

to r(d1 + d2 − 1) degrees of freedom, without accounting for the orthogonality. As

a novel regularization approach, low-rankness motivates matrix representations of the

parameters of interest in various statistical and econometric models. If we rearrange

the coefficient in the traditional linear model as a matrix, we obtain the so-called trace

regression model:

Y = tr(Θ∗TX) + ǫ, (1.1)

where tr(·) denotes the trace, X ∈ R
d1×d2 is a matrix of explanatory variables, Θ∗ ∈

R
d1×d2 is the matrix of regression coefficients, Y ∈ R is the response and ǫ ∈ R is the

noise. In predictive econometric applications, X can be a large panel of time series data

such as stock returns or macroeconomic variables (Stock and Watson, 2002; Ludvigson

and Ng, 2009), whereas in statistical machine learning X can be images. The rank of
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a matrix is controlled by the ℓq-norm for q ∈ [0, 1) of its singular values:

Bq(Θ∗) :=

d1∧d2∑

j=1

σj(Θ
∗)q ≤ ρ, (1.2)

where σj(Θ
∗) is the jth largest singular value of Θ∗, and ρ is a positive constant that

can grow to infinity. Note that when q = 0, it controls the rank of Θ∗ at ρ. Trace

regression is a natural model for matrix-type covariates, such as the panel data, images,

genomics microarrays, etc. In addition, particular forms of X can reduce trace regres-

sion to several well-known problem setups. For example, when X contains only a col-

umn and the response Y is multivariate, (1.1) becomes reduced-rank regression model

(Anderson (1951), Izenman (1975b)). When X ∈ R
d1×d2 is a singleton in the sense

that all entries of X are zeros except for one entry that equals one, (1.1) characterizes

the matrix completion problem in item response problems and online recommendation

systems. We will specify these problems later.

To explore the low rank structure of Θ∗ in (1.1), a natural approach is the penal-

ized least-squares with the nuclear norm penalty. Specifically, consider the following

optimization problem.

Θ̂ = argmin

{
1

n

n∑

i=1

(〈Θ,Xi〉 − Yi)
2 + λ ‖Θ‖N

}
, (1.3)

where 〈A,B〉 := tr(ATB) is the inner product of two matrices A and B which have the

same dimension and ‖Θ‖N =
d1∧d2∑
j=1

σj(Θ) is the nuclear norm of Θ. As ℓ1-norm reg-

ularization yields sparse estimators, nuclear norm regularization enforces the solution

to have sparse singular values, in other words, to be low-rank. Recent literatures have

rigorously studied the statistical properties of Θ̂. Negahban and Wainwright (2011)

and Koltchinskii et al. (2011) derived the statistical error rate of Θ̂ when ǫ is sub-

Gaussian. Fan et al. (2016) introduced a shrinkage principle to handle heavy-tailed

noise and achieved the same statistical error rate as Negahban and Wainwright (2011)

when the noise has merely bounded second moments.

However, (1.1) does not accomodate categorical responses, which is ubiquitous in

pragmatic settings. For example, in P2P microfinance, platforms like Kiva seek poten-

tial pairs of lenders and borrowers to create loans. The analysis is based on a large

binary matrix with the rows correspondent to the lenders and columns correspondent

to the borrowers. Entry (i, j) of the matrix is either checked, meaning that lender i

endorses an loan to borrower j, or missing, meaning that lender i is not interested

in borrower j or has not seen the request of borrower j. The specific amount of the
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loan is inaccessible due to privacy concern, thus leading to the binary nature of the

response (Lee et al. (2014)). Another example is the famous Netflix Challenge. There,

people are given a large rating matrix with the rows representing the customers and

the columns representing the movies. Most of its entries are missing and the aim is to

infer these missing ratings based on the observed ones. Since the Netflix adopts a five-

star movie rating system, the response is categorical with only five levels. This kind of

matrix completion problems for item response arise also frequently in other economic

surveys, similar to the aforementioned P2P microfinance. These problem setups with

categorical responses motivate us to consider the generalized trace regression model.

Suppose that the response Y follows a distribution from the following exponential

family:

fn(Y;X, β∗) =
n∏

i=1

f(Yi; η
∗
i ) =

n∏

i=1

{
c(Yi) exp

(
Yiη

∗
i − b(η∗i )

φ

)}
, (1.4)

where η∗i = tr(Θ∗TXi) = 〈Θ∗,Xi〉 is the linear predictor, φ is a constant and c(·) and
b(·) are known functions. The negative log-likelihood corresponding to (1.4) is given,

up to an affine transformation, by

Ln(Θ) =
1

n

n∑

i=1

[−Yi〈Θ,Xi〉+ b(〈Θ,Xi〉)] (1.5)

and the gradient and Hessian of Ln(Θ) are respectively

∇Ln(Θ) =
1

n

n∑

i=1

[
b′(ηi)− Yi

]
Xi =

1

n

n∑

i=1

[
b′(〈Θ,Xi〉)− Yi

]
Xi

Hn(Θ) := ∇2Ln(Θ) =
1

n

n∑

i=1

b′′(〈Θ,Xi〉)vec(Xi)vec(Xi)
T .

(1.6)

For future convenience, we denote E[Hn(Θ)] by H(Θ). To estimate Θ∗, we recruit

the following M-estimator that minimizes the negative log-likelihood plus nuclear norm

penalty.

Θ̂ = argmin
Θ∈Rd1×d2

{
1

n

n∑

i=1

[b(〈Θ,Xi〉)− Yi〈Θ,Xi〉] + λ ‖Θ‖N

}
. (1.7)

This is a high-dimensional convex optimization problem. We will discuss the algorithms

for computing (1.7) in the simulation section.

Related to our work is the matrix completion problem with binary entry, i.e., 1-

bit matrix completion, which is a specific example of our generalized trace regression
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and has direct application in predicting aforementioned P2P microfinance. Therein

entry (i, j) of the matrix is modeled as a response from a logistic regression or probit

regression with parameter Θ∗
ij and information of each responded items is related

through the low-rank assumption of Θ∗. Previous works studied the estimation of Θ∗

by minimizing the negative log-likelihood function under the constraint of max-norm

(Cai and Zhou (2013)), nuclear norm (Davenport et al. (2014)) and rank (Bhaskar and

Javanmard (2015)). There are also some works in 1-bit compressed sensing to recover

sparse signal vectors (Gupta et al., 2010; Plan and Vershynin, 2013a,b). Nevertheless,

we did not find any work in the generality that we are dealing with, which fits matrix-

type explanatory variables and various types of dependent variables.

In this paper, we establish a unified framework for statistical analysis of Θ̂ in (1.7)

under the generalized trace regression model. As showcases of the applications of

our general theory, we focus on three problem setups: generalized matrix regression,

reduced-rank regression and one-bit matrix completion. We explicitly derive statistical

rate of Θ̂ under these three problem setups respectively. It is worth noting that for

one-bit matrix completion, our statistical rate is sharper than that in Davenport et al.

(2014). We also conduct numerical experiments on both simulated and real data to

verify the established rate and illustrate the advantage of using the generalized trace

regression over the vanilla trace regression when categorical responses occur.

The paper is organized as follows. In Section 2, we specify the problem setups

and present the statistical rates of Θ̂ under generalized matrix regression, reduced-

rank regression and one-bit matrix completion respectively. In Section 3, we present

simulation results to back up our theoretical results from Section 2 and to demonstrate

superiority of generalized trace regression over the standard one. In Section 4, we use

real data to display the improvement brought by nuclear norm regularization in return

prediction and image classification.

2 Main results

2.1 Notation

We use regular letters for random variables, bold lower case letters for random vectors

and bold upper case letter for matrices. For a function f(·), we use f ′(·), f ′′(·) and

f ′′′(·) to denote its first, second and third order derivative. For sequences {ai}∞i=1

and {bi}∞i=1, we say ai = O(bi) if there exists a constant c > 0 such that ai/bi < c

for 1 ≤ i < ∞, and we say ai = Ω(bi) if there exists a constant c > 0 such that

ai/bi ≥ c for 1 ≤ i < ∞. For a random variable x, we denote its sub-Gaussian
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norm as ‖x‖Ψ2
:= supp≥1 (E |x|p)1/p /

√
p and its sub-exponential norm as ‖x‖Ψ1

=

supp≥1 (E |x|p)1/p /p. For a random vector x ∈ R
d, we denote its sub-Gaussian norm

as ‖x‖Ψ2
= supv∈Sd−1

∥∥vTx
∥∥
Ψ2

and its sub-exponential norm as ‖x‖Ψ1
= supv∈Sd−1∥∥vTx

∥∥
Ψ1

. Here, Sd−1 denotes the unit sphere in R
d. We use ej to denote a vector

whose elements are all 0 except that the jth one is 1. For a matrix X ∈ R
d1×d2 , we use

vec(X) ∈ R
d1d2 to represent the vector that consists of all the elements from X column

by column. We use r(X), ‖X‖∞, ‖X‖op, ‖X‖N to denote the rank, elementwise max

norm, operator norm and nuclear norm ofX respectively. We call {X : ‖X−Y‖∞ ≤ r}
a L∞-ball centered at Y with radius r for r > 0. Define d1 ∧ d2 := min(d1, d2) and

d1∨d2 := max(d1, d2). For matrices A and B, let 〈A,B〉 = tr(ATB). For any subspace

M⊂ R
d×d, define its orthogonal spaceM⊥ := {A : ∀M ∈M, 〈A,M〉 = 0}.

2.2 General theory

In this section, we provide a general theorem on the statistical rate of Θ̂ in (1.7).

As we shall see, the statistical consistency of Θ̂ essentially requires two conditions:

i) sufficient penalization λ; ii) localized restricted strong convexity of Ln(Θ) around

Θ∗. In high-dimensional statistics, it is well known that the restricted strong convexity

(RSC) of the loss function underpins the statistical rate of the M-estimator (Negahban

et al., 2011; Raskutti et al., 2010). In generalized trace regression, however, the fact

that the Hessian matrix Hn(Θ) depends on Θ creates technical difficulty for verifying

RSC for the loss function. To address this issue, we apply the localized analysis due to

Fan et al. (2015), where they only require local RSC (LRSC) of Ln(Θ) around Θ∗ to

derive statistical rates of Θ̂. Below we formulate the concept of LRSC. For simplicity,

from now on we assume that Θ∗ is a d-by-d square matrix. We can easily extend our

analysis to the case of rectangular Θ∗ ∈ R
d1×d2 ; the only change in the result is a

replacement of d with max(d1, d2) in the statistical rate.

Definition 1. Given a constraint set C ⊂ R
d×d, a local neighborhood N of Θ∗, a

positive constants κℓ and a tolerance term τℓ, we say that the loss function L(·) satisfies
LRSC(C,N , κℓ, τℓ) if for all ∆ ∈ C and Θ ∈ N ,

L(Θ+∆)− L(Θ)− 〈∇L(Θ),∆〉 ≥ κℓ ‖∆‖2F − τℓ. (2.1)

Note that τℓ is a tolerance term that will be specified in the main theorem. Now

we introduce the constraint set C in our context. Let Θ∗ = UDVT be the SVD of Θ∗,

where the diagonal of D is in the decreasing order. Denote the first r columns of U

6



and V by Ur and Vr respectively, and define

M := {Θ ∈ R
d×d | row(Θ) ⊆ col(Vr), col(Θ) ⊆ col(Ur)},

M⊥
:= {Θ ∈ R

d×d | row(Θ) ⊥ col(Vr), col(Θ) ⊥ col(Ur)},
(2.2)

where col(·) and row(·) denote the column space and row space respectively. For any

∆ ∈ R
d×d and Hilbert space W ⊆ R

d×d, let ∆W be the projection of ∆ onto W. We

first clarify here what ∆M, ∆M and ∆
M

⊥ are. Write ∆ as

∆ = [Ur,Ur⊥ ]

[
Γ11 Γ12

Γ21 Γ22

]
[Vr,Vr⊥ ]T ,

then the following equalities hold:

∆M = UrΓ11(V
r)T , ∆

M
⊥ = Ur⊥Γ22(V

r⊥)T ,

∆M = [Ur,Ur⊥ ]

[
Γ11 Γ12

Γ21 0

]
[Vr,Vr⊥ ]T .

(2.3)

According to Negahban et al. (2012), when λ ≥ 2‖n−1
n∑

i=1
[b′(〈Xi,Θ

∗〉)− Yi] ·Xi‖op,

regardless of what r is, ∆̂ falls in the following cone:

C(M,M⊥
,Θ∗) :=

{
∆ ∈ R

d×d : ‖∆
M

⊥‖N ≤ 3
∥∥∆M

∥∥
N
+ 4

∑

j≥r+1

σj(Θ
∗)
}
.

Now we present the main theorem that serves as a roadmap to establish the statis-

tical rate of convergence for Θ̂.

Theorem 1. Consider the model (1.4). Suppose Bq(Θ∗) ≤ ρ and

λ ≥ 2‖ 1
n

n∑

i=1

[
b′(〈Xi,Θ

∗〉)− Yi
]
·Xi‖op. (2.4)

Define N := {Θ ∈ R
d×d : ‖Θ −Θ∗‖2F ≤ C1ρλ

2−q,Θ −Θ∗ ∈ C(M,M⊥
,Θ∗)}, where

C1 is a constant andM andM are constructed as per (2.2). Suppose Ln(Θ) satisfies

LRSC(C(M,M⊥
,Θ∗),N , κℓ, τℓ), where τℓ = C0ρλ

2−q for some constant C0 and κℓ is

a positive constant. Then it holds that

‖Θ̂−Θ∗‖2F ≤ C1ρ

(
λ

κℓ

)2−q

and ‖Θ̂−Θ∗‖N ≤ C2ρ

(
λ

κℓ

)1−q

, (2.5)

where C1, C2 are constants.
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Theorem 1 points out two conditions that lead to the statistical rate of Θ̂. First,

we need λ to be sufficiently large, which has an adverse impact on the rates. Therefore,

the optimal choice of λ is the lower bound given in (2.4). The second requirement is

LRSC of Ln(Θ) around Θ∗. In the sequel, for each problem setup we will first derive

the rate of the lower bound of λ as shown in (2.4) and then verify the LRSC of Ln(Θ)

so that we can establish the statistical rate. Note that the LRSC property does

not imply any constraint on the choice of the initial values for solving the

optimization problem. It is a pure statistical assumption and used to show

that the minimizer of the penalized likelihood possesses the established

statistical property.

For notational convenience, later on when we refer to certain quantities as constants,

we mean they are independent of n, d, ρ. In the next subsections, we will apply the

general theorem to analyze various specific problem setups and derive the explicit rates

of convergence.

2.3 Generalized matrix regression

Generalized matrix regression can be regarded as a generalized linear model (GLM)

with matrix covariates. Here we assume that vec(Xi), the vectorized version of Xi, is

a sub-Gaussian random vector with bounded Ψ2-norm. Consider Θ̂ as defined in (1.7).

To derive statistical rate of Θ̂, we first establish the rate of the lower bound of λ as

characterized in (2.4).

Lemma 1. Consider the following conditions:

(C1) {vec(Xi)}ni=1 are i.i.d. sub-Gaussian vectors with ‖vec(Xi)‖Ψ2
≤ κ0 <∞;

(C2) |b′′(x)| ≤M <∞ for any x ∈ R;

Then for any ν > 0, there exists a constant γ > 0 such that as long as d/n < γ, it

holds that

P

(
‖ 1
n

n∑

i=1

(b′(〈Θ∗,Xi〉)− Yi) ·Xi‖op > ν

√
d

n

)
≤ C exp(−cd), (2.6)

where C and c are constants.

Next we verify the LRSC of Ln(Θ).

Lemma 2. Besides (C1) and (C2) in Lemma 1, assume that

(C3) λmin (H(Θ∗)) ≥ κℓ > 0;

(C4) ‖Θ∗‖F ≥ α
√
d for some constant α;
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(C5) |b′′′(x)| ≤ |x|−1 for |x| > 1.

Suppose λ ≥ ν
√

d/n, where ν is the same as in Lemma 1. Let N = {Θ ∈ R
d×d :

‖Θ −Θ∗‖2F ≤ C1ρλ
2−q,Θ −Θ∗ ∈ C(M,M⊥

,Θ∗)}. As long as ρλ1−q is sufficiently

small, Ln(Θ) satisfies LRSC(C(M,M⊥
,Θ∗),N , κ/2, τℓ) with probability at least 1 −

C1 exp (−c1d), where τℓ = C0ρλ
2−q and c1, C0 and C1 are constants.

Remark 1. Since 〈Θ,X〉 represents the signal in our model, the lower bound on ‖Θ∗‖F
in Condition (C4) guarantees sufficient strength of the signal. If ‖Θ∗‖F is too small, the

signal might be dominated by the noise. Condition (C4) is mild; even if Θ∗ is sparse

and only has O(d) non-zero entries, as long as they are of constant order, (C4) is

satisfied. When Θ∗ is extremely sparse and only has O(1) non-zero entries, Condition

(C4) requires their magnitude to be comparable to d since otherwise the signal is too

weak. In fact, if Θ∗ is extremely sparse, L1 regularization shall be better than the

nuclear norm regularization for accurate matrix recovery.

Condition (C5) requires that the third order derivative of b(·) decays sufficiently

fast. In fact, except for Poisson regression, most members in the family of generalized

linear models satisfy this condition, e.g., linear model, logistic regression, log-linear

model, etc.

Based on the above two lemmas, we apply Theorem 1 and establish the explicit

statistical rate of Θ̂ as follows.

Theorem 2. Under the conditions in Lemmas 1 and 2, choosing λ = 2ν
√

d/n, where

ν is the same as in Lemma 1, there exist constants {ci}2i=1 and {Ci}5i=1 such that once

ρ(d/n)(1−q)/2 ≤ C1, we have

‖Θ̂−Θ∗‖2F ≤ C2ρ

(
d

n

)1−q/2

, ‖Θ̂−Θ∗‖N ≤ C3ρ

(
d

n

)(1−q)/2

(2.7)

with probability at least 1− C4 exp (−c1d)− C5 exp (−c2d).

When q = 0, ρ becomes the rank of Θ∗ and there are O(ρd) free parameters. Each

of these parameters can be estimated at rate OP (1/
√
n). Therefore, the sum of squared

errors should at least be O(ρd/n). This is indeed the bound of ‖Θ̂ −Θ∗‖2F given by

(2.7), which depends on the effective dimension ρd rather than the ambient dimension

d2. The second result of (2.7) confirms this in the spectral “L1-norm”, the nuclear

norm.
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2.4 Generalized reduced-rank regression

Consider the conventional reduced-rank regression model (RRR)

yi = Θ∗xi + εi,

where xi ∈ R
d is the covariate, yi ∈ R

d is the response, Θ∗ ∈ R
d×d is a near low-rank

coefficient matrix and εi ∈ R
d is the noise. Again, we set the number of covariates to be

the same as the number of responses purely for simplicity of the presentation. Note that

in each sample there are d responses correspondent to the same covariate vector. RRR

aims to reduce the number of regression parameters in multivariate analysis. It was

first studied in detail by Anderson (1951), where the author considered multi-response

regression with linear constraints on the coefficient matrix and applied this model to

obtain points estimation and confidence regions in “shock models” in econometrics

(Marshak (1950)). Since then, there has been great amount of literature on RRR in

econometrics (Ahn and Reinsel (1994), Geweke (1996), Kleibergen and Paap (2006))

and statistics (Izenman (1975a), Velu and Reinsel (2013), Chen et al. (2013)).

Now we generalize the above reduced-rank regression to accommodate various types

of dependent variables. For any 1 ≤ i ≤ n and 1 ≤ j ≤ d, yij is generated from the

following density function.

f(yij ;xi,Θ
∗) = c(yij) exp

(yijη∗ij − b(η∗ij)

φ

)
= c(yij) exp

(yijθ∗
j
Txi − b(θ∗

j
Txi)

φ

)
, (2.8)

where θ∗
j is the jth row of Θ∗, η∗ij = θ∗

j
Txi, c(·) and b(·) are known functions. We

further assume that for any (i1, j1) 6= (i2, j2), yi1j1 ⊥⊥ yi2j2 . Note that we can recast this

model as a generalized trace regression with N = nd samples: {X(i−1)d+j = ejx
T
i ∈

R
d×d, Y(i−1)d+j = yij ∈ R : 1 ≤ i ≤ n, 1 ≤ j ≤ d}. We emphasize here that throughout

this paper we will use (xi,yi) and {(Xt, Yt)}idt=(i−1)d+1 to denote the vector and matrix

forms of the ith sample in RRR.

According to model (2.8), we solve for the nuclear norm regularized M-estimator

Θ̂ as follows.

Θ̂ = argminΘ∈Rd×d

1

N

n∑

i=1

d∑

j=1

[
b(〈Θ,X(i−1)d+j〉)− Y(i−1)d+j · 〈Θ,X(i−1)d+j〉

]
+ λ ‖Θ‖N

= argminΘ∈Rd×d

1

N

n∑

i=1

d∑

j=1

[
b(θT

j xi)− yij · θT
j xi

]
+ λ ‖Θ‖N .

(2.9)

Under the sub-Gaussian design, we are able to derive the covergence rate of Θ̂ in RRR
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with the same tool as what we used in matrix regression. Notice that there is a change

of notation introduced in this section. {xi}ni=1 and {yi}ni=1 are the original forms of

reduced-rank regression while {Xi}Ni=1 and {Yi}Ni=1 are the rephrased forms that match

our framework (N = nd). Again, we explicitly derive the rate of the lower bound of λ

in the following lemma.

Lemma 3. Suppose the following conditions hold:

(C1) {xi}ni=1 are i.i.d sub-Gaussian vectors with ‖xi‖Ψ2
≤ κ0 <∞;

(C2) b′′(·) ≤M <∞, b′′′(·) ≤ L <∞.

Then for any ν > 0, there exists a constant γ > 0 such that as long as d/n < γ, it

holds that

P
(
‖ 1
N

N∑

i=1

(b′(〈Xi,Θ
∗〉)− Yi)Xi‖op ≥ d−1

√
φMκ0d

n

)
≤ 2 exp(−cd), (2.10)

where φ is the same as in (2.8) and c is a universal constant.

The following lemma establishes the LRSC of the loss function.

Lemma 4. Besides conditions in Lemma 3, assume that

(C3) λmin (H(Θ∗)) ≥ κℓ > 0.

Choose λ = d−1
√

φMκ0d/n as in (2.10). Let N := {Θ : ‖Θ −Θ∗‖2F ≤ ρλ2−q}. For

any δ > 4, when ρ(d/n)1−q/2 log(nd) is sufficiently small, Ln(Θ) satisfies LRSC(Rd×d,

N , κℓ/(2d), 0) with probability at least 1− 2(nd)2−
δ
2 .

Combining the above lemmas with Theorem 1, we can derive the statistical rate of

Θ̂ as defined in (2.9).

Theorem 3. Suppose conditions in Lemmas 3 and 4 hold. Take λ = d−1
√

φMκ0d/n.

For any δ > 4, there exist constants {ci}2i=1 and {Ci}2i=1 such that once ρ(d/n)1−q/2

log(nd) < c1, any solution to (2.9) satisfies

∥∥∥Θ̂−Θ∗
∥∥∥
2

F
≤ C1ρ

(
d

n

)1−q/2

,
∥∥∥Θ̂−Θ∗

∥∥∥
N
≤ C2ρ

(
d

n

)(1−q)/2

(2.11)

with probability at least 1− 2 exp(−c2d)− 2(nd)2−
δ
2 .

Again, as remarked at the end of Section 2.3, the error depends on the effective

dimension ρd rather than the ambient dimension d2 for the case q = 0.

11



2.5 One-bit matrix completion

Another important example of the generalized trace regression is the one-bit matrix

completion problem, which appears frequently in the online item response question-

naire and recommendation system. The showcase example is the aforementioned Kiva

platform in P2P microfinance, in which we only observe sparse binary entries of lenders

and borrowers. Suppose that we have d1 users that answer a small fraction of d2 binary

questions. For simplicity of presentation, we again assume that d1 = d2 = d. Specif-

ically, consider the following logistic regression model with Xi = ea(i)e
T
b(i) ∈ R

d×d.

Namely, the ith data records the a(i)th user answers the binary question b(i). The

problem is also very similar to the aforementioned Netflix problem, except that only

dichotomous responses are recorded here.

The logistic regression model assumes that

log
P (Yi = 1 |Xi)

P (Yi = 0 |Xi)
= tr(Θ∗TXi) = Θ∗

a(i),b(i). (2.12)

Note that this model can be derived from generalized trace regression (1.4) with

b′(η∗i ) = (1 + exp(−η∗i ))−1. (2.12) says that given Xi = ea(i)e
T
b(i) ∈ R

d×d, Yi is a

Bernoulli random variable with P(Yi = 1 |Xi) = (1 + exp(−Θ∗
a(i),b(i)))

−1. We assume

that {(a(i), b(i))}Ni=1 are randomly and uniformly distributed over {(j, k)}1≤j≤d,1≤k≤d.

We further require Θ∗ to be non-spiky in the sense that ‖Θ∗‖∞ = O(1) and thus

‖Θ∗‖F = O(d). This condition ensures consistent estimation as elucidated in Ne-

gahban and Wainwright (2012). For ease of theoretical reasoning, from now on we

will rescale the design matrix Xi and the signal Θ∗ such that Xi = dea(i)e
T
b(i) and

‖Θ∗‖F ≤ 1. Based on such setting, we estimate Θ∗ through minimizing negative

log-likelihood plus nuclear norm penalty under an element-wise max-norm constraint:

Θ̂ = argmin‖Θ‖∞≤R/d

{
1

n

n∑

i=1

[log(1 + exp(〈Θ,Xi〉))− Yi〈Θ,Xi〉] + λ‖Θ‖N
}
,

(2.13)

where λ and R are tuning parameters.

Again, we first derive the rate of the lower bound for λ as shown in Theorem 1. For

this specific model, simple calculation shows that the lower bound (2.4) reduces to

‖n−1
n∑

i=1

[exp(〈Θ∗,Xi〉)/(1 + exp(〈Θ∗,Xi〉))− Yi] ·Xi‖op.

Lemma 5. Under the following conditions:

(C1) ‖Θ∗‖F ≤ 1, ‖Θ∗‖∞ ≤ R/d where 0 < R <∞;

12



(C2) {Xi}ni=1 are uniformly sampled from
{
deje

T
k

}
1≤j,k≤d

;

For any δ > 1, there exists γ > 0 such that as long as d log d/n < γ, the following

inequality holds for some constant ν > 0:

P

(
‖ 1
n

n∑

i=1

( exp (〈Θ∗,Xi)〉
exp (〈Θ∗,Xi〉) + 1

− Yi
)
Xi‖op > ν

√
δd log d

n

)
≤ 2d1−δ. (2.14)

Next we study the LRSC of the loss function. Following Negahban and Wainwright

(2012), besides C(M,M⊥
,Θ∗), we define another constraint set

C′(c0) :=
{
∆ ∈ R

d×d,∆ 6= 0 :
‖∆‖∞
‖∆‖F

· ‖∆‖N‖∆‖F
≤ 1

c0d

√
n

d log d

}
. (2.15)

Here ‖∆‖∞/‖∆‖F and ‖∆‖N/‖∆‖F are measures of spikiness and low-rankness of ∆.

Let N = {Θ : ‖Θ−Θ∗‖∞ ≤ 2R/d}. Note that N is not the same as in Theorem 1 any

more. As we shall see later, instead of directly applying Theorem 1, we need to adapt

the proof of Theorem 1 to the matrix completion setting to derive statistical rate of

Θ̂. The following lemma establishes LRSC(C′(c0),N , κℓ, 0) of Ln(Θ) for some κℓ > 0.

Lemma 6. There exist constants C1, C2, c1, c2 such that as long as n > C1d log d

and R ≤ c1, it holds with probability greater than 1 − C2 exp (−c2d log d) that for all

∆ ∈ C′(c0) and Θ ∈ N ,

vec(∆)THn(Θ)vec(∆) ≥ ‖∆‖2F
512(exp(R) + exp(−R) + 2)

. (2.16)

Now we are ready to establish the statistical rate of Θ̂ in (2.13).

Theorem 4. Let Θ̂ be defined by (2.13). Suppose the conditions (C1) and (C2) in

Lemma 5 hold for a sufficiently small R and Bq(Θ∗) ≤ ρ. Consider any solution Θ̂ to

(2.13) with parameter λ = 2ν
√

δd log d/n, where δ > 1. There exist constants {Ci}4i=0

such that as long as n > C0d log d,

∥∥∥Θ̂−Θ∗
∥∥∥
2

F
≤ C1max

{
ρ

(√
d log d

n

)2−q

,
R2

n

}

∥∥∥Θ̂−Θ∗
∥∥∥
N
≤ C2max

{
ρ

(√
d log d

n

)1−q

,

(
ρ

(
R2

n

)1−q
) 1

2−q}
(2.17)

with probability at least 1− C3 exp (−C4d log d)− 2d1−δ.

Remark 2. In Davenport et al. (2014), they derived that
∥∥∥Θ̂−Θ∗

∥∥∥
2

F
= OP (

√
ρd/n)
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when Θ∗ is exactly low-rank. This is slower than our rate OP (ρd log d/n). Moreover,

we provide an extra bound on the nuclear norm of the error.

3 Simulation study

3.1 Generalized matrix regression

In this section, we verify the statistical rates derived in (2.7) through simulations. We

let d = 20, 40 and 60. For each dimension, we take n to be 1800, 3600, 5400, 7200, 9000

and 10800. We set Θ∗ ∈ R
d×d with r(Θ∗) = 5 and all the nonzero singular values

of Θ∗ equal to 1. Each design matrix Xi has i.i.d. entries from N (0, 1) and Yi ∼
Bin(0, exp(η∗i )/(1 + exp(η∗i ))), where η∗i = 〈Θ∗,Xi〉. We choose λ ≍

√
d/n and tune

the constant before the rate for optimal performance.

Our simulation is based on 100 independent replications, where we record the esti-

mation error in terms of the logarithmic Frobenius norm log‖Θ̂−Θ∗‖F . The averaged
statistical error is plotted against the logarithmic sample size in Figure 1. As we can
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Figure 1: log‖Θ̂−Θ∗‖F versus log(n) for different dimension d.

observe from the plot, the slope of curve is almost −1/2, which is consistent with the

order of n in the statistical rate we derived for Θ̂. The intercept also matches the

order of d in our theory. For example, in the plot, the difference between the green and

red lines predicted by the theory is (log(60)− log(40))/2 = 0.20, which is in line with

the empirical plot. Similarly, the difference between the red and black lines should be

around (log(40)− log(20))/2 = 0.35, which is also consistent with the plot.
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To solve the optimization problem (1.7), we exploit an iterative Peaceman-Rachford

splitting method. We start from Θ̂
(0)

= 0. In the kth step, we take the local quadratic

approximation of Ln(Θ) at Θ = Θ(k−1):

L(k)n (Θ) =
1

2
vec(Θ−Θ(k−1))T∇2

ΘLn(Θ(k−1))vec(Θ−Θ(k−1))

+ 〈∇ΘLn(Θ(k−1)),Θ−Θ(k−1)〉+ Ln(Θ(k−1)).
(3.1)

and then solve the following optimization problem to obtain Θ̂
(k)

:

Θ̂
(k)

= argminΘ L(k)n (Θ) + λ ‖Θ‖N . (3.2)

We borrow the algorithm from Fan et al. (2016) to solve the optimization problem

(3.2). In Section 5.1 of Fan et al. (2016), they applied a contractive Peaceman-Rachford

splitting method to solve a nuclear norm penalized least square problem:

Θ̂ = argminΘ

{
1

n

n∑

i=1

(Yi − 〈Θ,Xi〉)2 + λ ‖Θ‖N

}

= argminΘ

{
vec(Θ)T

1

n

n∑

i=1

vec(Xi)vec(Xi)
Tvec(Θ) + 〈 2

n

n∑

i=1

YiXi,Θ〉+ λ ‖Θ‖N

}
.

(3.3)

Construct

X̃
(k)
i =

√
b′′(〈Θ̂(k−1)

,Xi〉)Xi

and

Ỹ
(k)
i = b′′(〈Θ̂(k−1)

,Xi〉)−
1
2

[
Yi − b′(〈Θ̂(k−1)

,Xi〉)
]
.

Some algebra shows that the following nuclear norm penalized least square problem is

equivalent to (3.2)

Θ̂
(k)

= argminΘ

{1
2
vec(Θ− Θ̂

(k−1)
)T

1

n

n∑

i=1

vec(X̃
(k)
i )vec(X̃

(k)
i )Tvec(Θ− Θ̂

(k−1)
)

+ 〈 1
n

n∑

i=1

Ỹ
(k)
i X̃

(k)
i ,Θ− Θ̂

(k−1)〉+ λ ‖Θ‖N
}
.

(3.4)

We can further write (3.4) as an optimization problem of minimizing the sum of two
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convex functions:

minimize
x

1

2n

n∑

i=1

(
Ỹ

(k)
i − 〈Θx, X̃

(k)
i 〉
)2

+ λ ‖Θy‖N

subject to Θx −Θy = −Θ(k−1).

It has been explicitly explained in Fan et al. (2016) on how to solve the above optimiza-

tion problem using the Peaceman-Rachford splitting method. We provide the algorithm

that is specific to our problem here. Here we first define the singular value soft thresh-

olding operator Sτ (·). For any X ∈ R
d×d, let X = UDVT be its SVD, where U and

V are two orthonormal matrices and D = diag(σ1, . . . , σd) with σ1 ≥ . . . ≥ σd. Then

Sτ (X) := UD̃VT , where D̃ := diag(max(σ1− τ, 0),max(σ2− τ, 0), . . . ,max(σd− τ, 0)).

Let X(k) be an n×d2 matrix whose rows are vec(X̃
(k)
i ) and Y

(k) be the response vector

Ỹ (k). For ℓ = 0, 1, . . .,





θ(ℓ+1)
x = (2X(k)⊤

X
(k)/n+ β · I)−1(β · (θ(ℓ)

y − vec(Θ̂
(k−1)

)) + ρ(ℓ) + 2X(k)⊤
Y
(k)/n),

ρ(ℓ+ 1
2
) = ρ(ℓ) − αβ(θ(ℓ+1)

x − θ(ℓ)
y + vec(Θ̂

(k−1)
)),

θ(ℓ+1)
y = vec(S2λ/β(mat(θx + vec(Θ̂

(k−1)
)− ρ(ℓ+ 1

2
)/β))),

ρ(ℓ+1) = ρ(ℓ+ 1
2
) − αβ(θ(ℓ+1)

x + vec(Θ̂
(k−1)

)− θ(ℓ+1)
y ),

(3.5)

where we choose α = 0.9 and β = 1. θ
(ℓ)
x ,θ

(ℓ)
y ∈ R

d2 for ℓ ≥ 0 and we can initialize

them by θ
(0)
x = θ

(0)
y = 0. Since both the objective function and the feasible set

are convex, any initializer should work well theoretically. In practice, we

can incorporate prior knowledge if any to choose the initializer for faster

convergence. When θ
(ℓ)
x and θ

(ℓ)
y converge, we reshape θ

(ℓ)
y as a d × d matrix and

return it as Θ̂
(k)

. We iterate this procedure until ‖Θ̂(k)−Θ̂(k−1)‖F is smaller than 10−3

and return Θ̂
(k)

as the final estimator of Θ∗. The algorithm is concluded as follows in

Algorithm 1.

3.2 Generalized reduced-rank regression

In this section, we let d = 20, 40, 60, 80 and 100. For each dimension, we take n to

be 1800, 3600, 5400, 7200, 9000 and 10800. We set the rank of Θ∗ to be 5 and let

‖Θ∗‖F = 1. For 1 ≤ i ≤ n and 1 ≤ j ≤ d, we let the covariate xi have i.i.d. entries

from N (0, 1) and let yij follow Bin(0, exp(η∗)/(1 + exp(η∗))) where η∗ = 〈Θ∗
j ,xi〉. We

choose λ ≍
√

d/n and tune the constant before the rate for optimal performance.

The experiment is repeated for 100 times and the logarithmic Frobenius norm of the
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Algorithm 1 Deriving the estimator in generalized matrix regression

1: Take Θ̂
(0)

= 0 ∈ R
d×d, k ← 1

2: loop 1 :

3: X̃
(k)
i =

√
b′′(〈Θ̂(k−1)

,Xi〉)Xi for 1 ≤ i ≤ n

4: X(k) =
(
vec(X̃

(k)
1 )T , vec(X̃

(k)
2 )T , ..., vec(X̃

(k)
n )T

)T
∈ R

n×d2

5: Ỹ
(k)
i = b′′(〈Θ̂(k−1)

,Xi〉)−
1
2

[
Yi − b′(〈Θ̂(k−1)

,Xi〉)
]
for 1 ≤ i ≤ n

6: Y(k) =
(
Ỹ

(k)
1 , Ỹ

(k)
2 , ..., Ỹ

(k)
n

)T

7: Take θ(0)
x = θ(0)

y = 0 ∈ R
d2 , α = 0.9, β = 1, ℓ← 0

8: loop 2 :

9: θ(ℓ+1)
x = (2X(k)⊤

X
(k)/n+ β · I)−1(β · (θ(ℓ)

y − vec(Θ̂
(k−1)

)) + ρ(ℓ) + 2X(k)⊤
Y

(k)/n)

10: ρ(ℓ+ 1
2
) = ρ(ℓ) − αβ(θ(ℓ+1)

x − θ(ℓ)
y + vec(Θ̂

(k−1)
))

11: θ(ℓ+1)
y = vec(S2λ/β(mat(θx + vec(Θ̂

(k−1)
)− ρ(ℓ+ 1

2
)/β)))

12: ρ(ℓ+1) = ρ(ℓ+ 1
2
) − αβ(θ(ℓ+1)

x + vec(Θ̂
(k−1)

)− θ(ℓ+1)
y )

13: If
∥∥∥θ(ℓ+1)

y − θ(ℓ)
y

∥∥∥
F
< ǫ1, close

14: ℓ← ℓ+ 1, goto loop 2

15: Take Θ̂
(k)

= mat(θ
(ℓ)
y ) ∈ R

d×d

16: If
∥∥∥Θ̂

(k) − Θ̂
(k−1)

∥∥∥
F
< ǫ2, close

17: k ← k + 1, goto loop 1

18: return Θ̂
(k)
.

estimation error is recorded in each repetition. We plot the averaged statistical error

in Figure 2.

We can see from the figure that the logarithmic error decays as logarithmic sample

size grows and the slope is almost −1/2.
As for the implementation, we again use the iterative Peaceman-Rachford splitting

method to solve for the estimator. We start from Θ̂
(0)

= 0. In the kth step (k ≥ 1),

let

S(k) =
1

nd

n∑

i=1

d∑

j=1

exp(〈Θ̂(k−1)

j ,xi〉)
(1 + exp(〈Θ̂(k−1)

j ,xi〉))2
xix

T
i ,

ỹ
(k)
ij = yij −

exp(〈Θ̂(k−1)

j ,xi〉)
1 + exp(〈Θ̂(k−1)

j ,xi〉)
and T(k) =

n∑

i=1

xiỹ
T
i .
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Figure 2: log‖Θ̂−Θ∗‖F versus log(n) for different dimension d.

We iterate the following algorithm to solve for Θ̂
(k)

. Here α = 0.9 and β = 1.





Θ(ℓ+1)
x = (2S(k)/n+ β · I)−1(β · (Θ(ℓ)

y − Θ̂
(k−1)

) + ρ(ℓ) + 2T(k)/n),

ρ(ℓ+ 1
2
) = ρ(ℓ) − αβ(Θ(ℓ+1)

x + Θ̂
(k−1) −Θ(ℓ)

y ),

Θ(ℓ+1)
y = S2λ/β(Θx + Θ̂

(k−1) − ρ(ℓ+ 1
2
)/β),

ρ(ℓ+1) = ρ(ℓ+ 1
2
) − αβ(Θ(ℓ+1)

x + Θ̂
(k−1) −Θ(ℓ+1)

y ).

(3.6)

Here, Sτ (·) is the singular value soft thresholding function we introduced in Section

3.1. Note that Θ
(ℓ)
x ,Θ

(ℓ)
y ∈ R

d×d for all ℓ ≥ 0 and they are irrelevant to Θ̂
(k)

though

they share similar notations. We start from Θ
(0)
x = Θ

(0)
y = 0 and iterate this procedure

until they converge. We return the last Θ
(ℓ)
y to be Θ̂

(k)
.

We repeat the above algorithm until ‖Θ̂(k) − Θ̂
(k−1)‖F is smaller than 10−3 and

take Θ̂
(k)

as the final estimator of Θ∗. The algorithm is concluded in Algorithm 2.

3.3 One-bit matrix completion

3.3.1 Statistical consistency

We consider Θ∗ ∈ R
d×d with dimension d = 20, 40, 60 and 80. For each dimension, we

consider 6 different values for n such that n/(d log d) = 30, 60, 90, 120, 150 and 180. We

let r(Θ∗) = 5, ‖Θ∗‖F = 1 and R = 2 ‖Θ∗‖∞. The design matrix Xi is a singleton and

it is uniformly sampled from {ejeTk }1≤j,k≤d. We choose λ ≍
√

d log(d)/n and tune the
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Algorithm 2 Deriving the estimator in reduced-rank regression

1: Take Θ̂
(0)

= 0 ∈ R
d×d, k ← 1

2: loop 1 :

3: S(k) = 1
nd

n∑
i=1

d∑
j=1

exp(〈Θ̂
(k−1)
j ,xi〉)

(1+exp(〈Θ̂
(k−1)
j ,xi〉))2

xix
T
i

4: ỹ
(k)
ij = yij − exp(〈Θ̂

(k−1)
j ,xi〉)

1+exp(〈Θ̂
(k−1)
j ,xi〉)

5: T(k) =
n∑

i=1

xiỹ
T
i

6: Take Θ(0)
x = Θ(0)

y = 0 ∈ R
d×d, α = 0.9, β = 1, ℓ← 0

7: loop 2 :

8: Θ(ℓ+1)
x = (2S(k)/n+ β · I)−1(β · (Θ(ℓ)

y − Θ̂
(k−1)

) + ρ(ℓ) + 2T(k)/n)

9: ρ(ℓ+ 1
2
) = ρ(ℓ) − αβ(Θ(ℓ+1)

x + Θ̂
(k−1) −Θ(ℓ)

y )

10: Θ(ℓ+1)
y = S2λ/β(Θx + Θ̂

(k−1) − ρ(ℓ+ 1
2
)/β)

11: ρ(ℓ+1) = ρ(ℓ+ 1
2
) − αβ(Θ(ℓ+1)

x + Θ̂
(k−1) −Θ(ℓ+1)

y )

12: If
∥∥∥Θ(ℓ+1)

y −Θ(ℓ)
y

∥∥∥
F
< ǫ1, close

13: ℓ← ℓ+ 1, goto loop 2

14: Take Θ̂
(k)

= Θ
(ℓ)
y ∈ R

d×d

15: If
∥∥∥Θ̂

(k) − Θ̂
(k−1)

∥∥∥
F
< ǫ2, close

16: k ← k + 1, goto loop 1

17: return Θ̂
(k)
.

constant before the rate for optimal performance. The experiment is repeated for 100

times and the logarithmic Frobenius norm of the estimation error is recorded in each

repetition. We plot the averaged statistical error against the logarithmic sample size

in Figure 3.

We can see from the left panel in Figure 3 that log‖Θ̂−Θ∗‖F decays as log n grows

and the slope is almost −1/2. Meanwhile, Theorem 4 says that log‖Θ̂−Θ∗‖F should

be proportional to log(d log d/n). The right panel of Figure 3 verifies this rate: it shows

that the statistical error curves for different dimensions are well-aligned if we adjust

the sample size to be n/d log d.

To solve the optimization problem in (2.13), we exploit the ADMM method used

in Section 5.2 in Fan et al. (2016). In Fan et al. (2016), they minimized a quadratic

loss function with a nuclear norm penalty under elementwise max norm constraint.

Our goal is to replace the quadratic loss therein with negative log-likelihood and solve

the optimization problem. Here we iteratively call the ADMM method in Fan et al.
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Figure 3: log‖Θ̂−Θ∗‖F versus log(n) and log(n/d log d).

(2016) to solve a series of optimization problems whose loss function is local quadratic

approximation of the negative log-likelihood. We initialize Θ with Θ̂
(0)

= 0 and

introduce the algorithm below.

In the kth step, we take the local quadratic approximation of Ln(Θ) at Θ = Θ̂
(k−1)

:

L(k)n (Θ) =
1

2
vec(Θ− Θ̂

(k−1)
)T∇2

ΘLn(Θ̂
(k−1)

)vec(Θ− Θ̂
(k−1)

)

+ 〈∇ΘLn(Θ̂
(k−1)

),Θ− Θ̂
(k−1)〉+ Ln(Θ̂

(k−1)
).

(3.7)

and solve the following optimization problem to obtain Θ̂
(k)

:

Θ̂
(k)

= argminΘ L(k)n (Θ) + λ ‖Θ‖N . (3.8)

To solve the above optimization problem, we borrow the algorithm proposed in Fang

et al. (2015). Let L,R,W ∈ R
2d×2d be the variables in our algorithm and let L(0) =

R(0) = 0. Define

Θa
jk =

n∑

i=1

exp(〈Θ,Xi〉)
(1 + exp(〈Θ,Xi〉))2

✶{Xi=eje
T
k },

Θb
jk =

n∑

i=1

[
Yi −

exp(〈Θ,Xi〉)
1 + exp(〈Θ,Xi〉)

]
✶{Xi=eje

T
k }.

We introduce the algorithms of the variables in our problem and interested readers

can refer to Fang et al. (2015) for the technical details in the derivation and stopping
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criteria of the algorithm. For ℓ ≥ 0,





L(ℓ+1) = ΠS2d
+



R(ℓ) +


 0 Θ̂

(k−1)

Θ̂
(k−1)

0


− ρ−1(W(ℓ) + 2λI)





=

(
[L(ℓ+1)]11 [L(ℓ+1)]12

[L(ℓ+1)]21 [L(ℓ+1)]22

)
,

C =

(
C11 C12

C21 C22

)
= L(ℓ+1) −


 0 Θ̂

(k−1)

Θ̂
(k−1)

0


+W(ℓ)/ρ,

R12
jk = Π[−R,R]

{
(ρC12

jk + 2Θb
jk/n)/(ρ+ 2Θa

jk/n)
}
, 1 ≤ j ≤ d, 1 ≤ k ≤ d,

R(ℓ+1) =

(
C11 R(12)

(R12)T C22

)
,

W(ℓ+1) = W(ℓ) + γρ(L(ℓ+1) −R(ℓ+1) −


 0 Θ̂

(k−1)

Θ̂
(k−1)

0


).

(3.9)

In the algorithm, ΠS2d
+
(·) represents the projection operator onto the space of positive

semidefinite matrices S2d+ , ρ is taken to be 0.1 and γ is the step length which is set to

be 1.618. When the algorithm converges and stops, we elementwise truncate L12 at the

level of R and return the truncated L̃12 as Θ̂
(k)

. Specifically, L̃12
jk = sgn(L12

jk)(|L12
jk|∧R)

for 1 ≤ j ≤ d, 1 ≤ k ≤ d.

When ‖Θ̂(k)− Θ̂
(k−1)‖F is smaller than 10−3, we return Θ̂

(k)
as our final estimator

of Θ∗. We summarize the algorithm in Algorithm 3.

3.3.2 Comparison between GLM and linear model

As we mentioned in the introduction, the motivation of generalizing trace regression is

to accommodate the dichotomous response in recommending systems such as Netflix

Challenge, Kiva, etc. In this section, we compare the performance of generalized trace

regression and standard trace regression in predicting discrete ratings.

The setting is very similar to the last section. We set Θ∗ to be a square matrix

with dimension d = 20, 40, 60 and 80. We let r(Θ∗) = 5 and its eigenspace be that

of the sample covariance matrix of 100 random vectors following N (0, Id). For each

dimension, we consider 10 different values for n such that n/d log d = 1, 2, ..., 10. and
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Algorithm 3 Deriving the estimator in 1-bit matrix completion

1: Take Θ̂
(0)

= 0 ∈ R
d×d, k ← 1

2: loop 1 :

3: Θa
jk =

n∑
i=1

exp(〈Θ,Xi〉)
(1+exp(〈Θ,Xi〉))2

✶{Xi=eje
T
k }

4: Θb
jk =

n∑
i=1

[
Yi − exp(〈Θ,Xi〉)

1+exp(〈Θ,Xi〉)

]
✶{Xi=eje

T
k }

5: Take L(0) = R(0) = 0 ∈ R
2d×2d, ρ = 0.1, γ = 1.618, ℓ← 0

6: loop 2 :

7: L(ℓ+1) = ΠS2d
+



R(ℓ) +


 0 Θ̂

(k−1)

Θ̂
(k−1)

0


− ρ−1(W(ℓ) + 2λI)



 =

(
[L(ℓ+1)]11 [L(ℓ+1)]12

[L(ℓ+1)]21 [L(ℓ+1)]22

)

8: C =

(
C11 C12

C21 C22

)
= L(ℓ+1) −


 0 Θ̂

(k−1)

Θ̂
(k−1)

0


+W(ℓ)/ρ

9: R12
jk = Π[−R,R]

{
(ρC12

jk + 2Θb
jk/n)/(ρ+ 2Θa

jk/n)
}
, 1 ≤ j ≤ d, 1 ≤ k ≤ d

10: R(ℓ+1) =

(
C11 R(12)

(R12)T C22

)

11: W(ℓ+1) = W(ℓ) + γρ(L(ℓ+1) −R(ℓ+1) −


 0 Θ̂

(k−1)

Θ̂
(k−1)

0


)

12: If
∥∥L(ℓ+1) − L(ℓ)

∥∥
F
< ǫ1, close

13: ℓ← ℓ+ 1, goto loop 2

14: Take Θ̂
(k)

= [L̃(ℓ+1)]12 ∈ R
d×d

15: If
∥∥∥Θ̂

(k) − Θ̂
(k−1)

∥∥∥
F
< ǫ2, close

16: k ← k + 1, goto loop 1

17: return Θ̂
(k)
.

generate the true rating matrix T in the following way:

Ti,j =




1 w.p.

exp(Θ∗
ij)

1+exp (Θ∗
ij)

0 w.p. 1
1+exp (Θ∗

ij)

1 ≤ i ≤ d, 1 ≤ j ≤ d.

We will show that generalized trace regression outperforms the linear trace regression

in prediction.

We predict the ratings in two different ways. We first estimate the underlying Θ∗
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with nuclear norm regularized logistic regression model. We set λ = 0.2
√

d log d/n

and derive the estimator Θ̂
(1)

according to (2.13). We estimate the rating matrix T

by T̂(1) as defined below:

T̂
(1)
ij =




1 if Θ̂

(1)

ij ≥ 0

0 else
.

The second method is to estimate Θ∗ with nuclear norm regularized linear model.

Again, we take the tuning parameter λ = 0.2
√
d log d/n and derive the estimator Θ̂

(2)

as follows:

Θ̂
(2)

= argmin‖Θ‖∞≤R

{
1

n

n∑

i=1

(Yi − 〈Θ∗,Xi〉)2 + λ ‖Θ‖N

}
. (3.10)

To estimate the rating matrix T, we use

T̂
(2)
ij =




1 if Θ̂

(2)

ij ≥ 0.5

0 else
.

The experiment is repeated for 100 times. In each repetition, we record the prediction

accuracy as 1 − ‖T̂(k) − T‖2F /d2 for k = 1 and 2, which is the proportion of correct

predictions. We plot the average prediction accuracy in Figure 4.

We use solid lines to denote the prediction accuracy achieved by regularized GLM

and we use dotted lines to denote the accuracy achieved by regularized linear model.

We can see from Figure 4 that no matter how the dimension changes, the solid lines are

always above the dotted lines, showing that the generalized model always outperforms

the linear model with categorical response. This validates our motivation to use the

generalized model in matrix recovery problems with categorical outcomes.

4 Real data analysis

In this section, we apply generalized trace regression with nuclear norm regularization

to stock return prediction and image classification. The former can be regarded as a

reduced rank regression and the latter can be seen as the categorical responses with

matrix inputs. The results demonstrate the advantage of recruiting nuclear norm

penalty compared with no penalty or using ℓ1-norm regularization.
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Figure 4: Prediction accuracy 1− ‖T̂−T‖2F/d2 in matrix completion for various dimension
d.

4.1 Stock return prediction

In this subsection, we aim to predict the sign of the one-day forward stock return, i.e.,

whether the price of the stock will rise or fall in the next day. Through nuclear norm

regularization, we try to learn a small number of eigen-portfolios whose

historical returns have prediction power in the future return direction of

all the stocks of interest. For readers who are interested in predicting stock

directions, either long-term or short-term, please also refer to Pesaran and

Timmermann (2002, 2004); Lunde and Timmermann (2004); Huang et al.
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(2005); Kara et al. (2011), among others.

We pick 19 individual stocks as our objects of study: AAPL, BAC, BRK-B, C, COP,

CVX, DIS, GE, GOOGL, GS, HON, JNJ, JPM, MRK, PFE, UNH, V, WFC and XOM. These

are the largest holdings of Vanguard ETF in technology, health care, finance, energy,

industrials and consumer. We also include S&P500 in our pool of stocks since it repre-

sents the market portfolio and should help the prediction. Therefore, we have d1 = 20

stocks in total. We collect the daily returns of these stocks from 01/01/13 to 8/31/2017

and divide them into the training set (2013-2014), the evaluation set (2015) and the

testing set (2016-2017). The sample sizes of the training, evaluation and testing sets

are n1 = 504, n2 = 252 and n3 = 420 respectively.

We fit a generalized reduced-rank regression model (2.8) based on the moving av-

erage (MA) of returns of each stock in the past 1 day, 3 days, 5 days, 10 days and 20

days. Hence, the dimension of xi is 20× 5 = 100. Let yi ∈ R
20 be the sign of returns

of the selected stocks on the (i + 1)th day. We assume that Θ∗ ∈ R
20×100 is a near

low-rank matrix, considering high correlations across the returns of the selected stocks.

We tune λ for the best performance on the evaluation data. When we predict on the

test set, we will update Θ̂ on a monthly basis, i.e., for each month in the testing set,

we refit (2.8) based on the data in the most recent three years. Given an estimator Θ̂,

our prediction ŷj are the signs of (Θ̂
T
xj).

We have two baseline models in our analysis. The first one is the deterministic bet

(DB): if a stock has more positive returns than negative ones in the training set, we

always predict positive returns; otherwise, we always predict negative returns. The sec-

ond one is the generalized RRR without any nuclear norm regularization. We use this

baseline to demonstrate the advantage of incorporating nuclear norm regularization.

From Table 1, we can see that the nuclear norm penalized model yields an average

accuracy of 53.89% while the accuracy of the unpenalized model and DB are 52.74%

and 51.62%. Note that the penalized model performs the same as or better than the

unpenalized model in 18 out of 20 stocks. When compared with the DB, the penalized

model performs better in 15 out of the 20 stocks. The improvement in the overall

performance illustrates the advantage of using generalized RRR with nuclear norm

regularization.

4.2 CIFAR10 Dataset

Besides the application in finance, we also apply our model to the well-known CIFAR10

dataset in image classification. The CIFAR10 dataset has 60,000 colored 32×32 images

in 10 classes: the airplane, automobile, bird, cat, dog, deer, dog, frog, horse, ship and

truck. Each figure has three channels (red, green and blue) and hence is stored as
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Stock DB
Prediction Accuracy
with Regularization

Prediction Accuracy
without Regularization

AAPL 55.13 51.07 51.07
BAC 47.26 49.88 49.64

BRK-B 54.18 59.90 59.90
C 52.98 51.55 51.07

COP 47.49 54.18 54.18
CVX 48.69 55.37 54.18
DIS 49.40 56.80 56.80
GE 48.45 55.61 56.09

GOOGL 53.94 52.74 52.74
GS 52.74 53.22 47.49
HON 56.09 51.55 51.31
JNJ 51.79 54.65 53.70
JPM 52.27 53.94 47.02
MRK 51.55 51.31 51.31
PFE 49.40 52.27 49.40
UNH 52.74 53.70 52.74
V 56.09 58.00 58.23

WFC 49.16 52.74 50.12
XOM 48.21 54.42 53.46
SPY 54.89 54.89 54.42

Average 51.62 53.89 52.74

Table 1: Prediction Result of 20 selected stocks.(Unit: %)

a 32 × 96 matrix. We represent the 10 classes with the numbers 0,1, . . . , 9. The

training data contains 50,000 figures and the testing data contains 10,000 figures. In

our work, we only use 10,000 samples to train the model since we intend

to illustrate how the regularizations alleviate the overfitting problem; after

all, overfitting would not be a problem when the sample size was large.

We construct and train a convolutional neural network (CNN) with ℓ1

norm and nuclear norm regularization on Θ respectively to learn the pat-

tern of the figures. The näıve GLM is inappropriate for image classification,

since pixel values are meaningless features as regard to the content of the

picture. For example, two different images in the class “truck” might have

trucks in different positions or colors, leading to dramatically different pixel

values of the pictures. To extract useful features from pictures, we resort

to the CNN. The structure of the CNN follows the online tutorial from
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TensorFlow✯. It extracts a 384-dimensional feature vector from each image

and maps it to 10 categories through logistic regression with a 384×10 coeffi-

cient matrix. Here to exploit potential matrix structure of the features, we

reshape this 384-dimensional feature vector into a 24 × 16 matrix and map

it to one of the ten categories through generalized trace regression with

ten 24 × 16 coefficient matrices. We penalize these coefficient matrices by

their nuclear norm and ℓ1-norm respectively and we summarize our results

in Table 2 below.

λ 0 0.02 0.05 0.1 0.2 0.3
nuclear penalty 74.30% 76.04% 76.17% 75.29% 74.45% 73.46%

λ 0 0.001 0.002 0.005 0.008 0.01
ℓ1 penalty 74.30% 75.70% 75.90% 75.53% 75.37% 75.22%

Table 2: Prediction accuracy in CIFAR10 under different λ with different penalties with
convolutional neural network.

The results show that both regularization methods promote the prediction accuracy

while nuclear norm regularization again outperforms ℓ1 norm.

5 Discussion

Our theory is established upon assumptions of i.i.d. samples. It is possible

to relax this i.i.d. assumption under the existing framework. As shown in

Theorem 1, the statistical error rate of Θ̂ depends on two conditions on

the tuning parameter λ and LRSC respectively. When the samples are not

i.i.d., we need to verify these two conditions accordingly. For example, if

we have Markov chain samples, we might recruit concentration results in

Lezaud (1998), Paulin (2015) or Fan et al. (2018) to verify the required

two conditions. However, to our best knowledge, probabilistic tools such

as the matrix Bernstein’s inequality with Markov Chain samples are not

well-established yet. Therefore, we do not intend to discuss the non-i.i.d.

case in this paper and we leave the problem to future work.

✯The code can be downloaded from https://github.com/tensorflow/models/tree/master/

tutorials/image/cifar10. The tutorial can be found at https://www.tensorflow.org/tutorials/

deep_cnn
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6 Proofs and Technical Lemmas

6.1 Proof for Theorem 1

We follow the proof scheme of Lemma B.4 in Fan et al. (2015). We first construct a

middle point Θ̂η = Θ∗ + η(Θ̂−Θ∗) such that we choose η = 1 when ‖Θ̂−Θ∗‖F ≤ ℓ

and η = ℓ/‖Θ̂−Θ∗‖F when ‖Θ̂−Θ∗‖F > ℓ. For simplicity, we let ∆̂ = Θ̂−Θ∗ and

∆̂η = Θ̂η −Θ∗ in the remainder of the proof.

According to Negahban et al. (2012), when λ ≥ 2‖n−1
n∑

i=1
[b′(〈Xi,Θ

∗〉)− Yi]·Xi‖op,

∆̂ falls in the following cone:

C(M,M⊥
,Θ∗) :=

{∥∥∥∆
M

⊥

∥∥∥
N
≤ 3

∥∥∆M

∥∥
N
+ 4

∑

j≥r+1

σj(Θ
∗)
}
.

Since ∆̂η is parallel to ∆̂, ∆̂η also falls in this cone. Given ‖∆̂η‖N ≤ ℓ and LRSC(C,N ,

κℓ, τℓ) of Ln(Θ), we have

κℓ‖∆̂η‖2F − τℓ ≤ 〈∇Ln(Θ̂η)−∇Ln(Θ), ∆̂η〉 =: DL(Θ̂η,Θ
∗), (6.1)

where DL(Θ1,Θ2) = Ln(Θ1)−Ln(Θ2)−〈∇Ln(Θ2),Θ1−Θ2〉 is the symmetric Breg-

man divergence. By Lemma F.4 in Fan et al. (2015), DL(Θ̂η,Θ
∗) ≤ η · DL(Θ̂,Θ∗).

We thus have

κℓ‖∆̂η‖2F − τℓ ≤ DL(Θ̂η,Θ
∗) ≤ ηDL(Θ̂,Θ∗) = 〈∇Ln(Θ̂)−∇Ln(Θ∗), ∆̂η〉. (6.2)

Since Θ̂ is the minimizer of the loss, we shall have the optimality condition ∇L(Θ̂) +

λξ = 0 for some subgradient ξ of the ‖Θ‖N at Θ = Θ̂. Therefore, (6.2) simplifies to

κℓ‖∆̂η‖2F − τℓ ≤ −〈∇L(Θ∗) + λξ, ∆̂η〉 ≤ 1.5λ‖∆̂η‖N
≤ 6λ

√
2r
∥∥∥(∆̂η)M

∥∥∥
F
+ 6λ

∑

j≥r+1

σj(Θ
∗) ≤ 6λ

√
2r
∥∥∥∆̂η

∥∥∥
F
+ 6λ

∑

j≥r+1

σj(Θ
∗).

(6.3)

For a threshold τ > 0, we choose r = #{j ∈ {1, 2, . . . , d}|σj(Θ∗) ≥ τ}. Then it follows

that

∑

j≥r+1

σj(Θ
∗) ≤ τ

∑

j≥r+1

σj(Θ
∗)

τ
≤ τ

∑

j≥r+1

(σj(Θ∗)

τ

)q ≤ τ1−q
∑

j≥r+1

σj(Θ
∗)q ≤ τ1−qρ.

(6.4)

On the other hand, ρ ≥ ∑
j≤r

σj(Θ
∗)q ≥ rτ q, so r ≤ ρτ−q. Choose τ = λ/κℓ. Given

(6.3), (6.4) and τℓ = C0ρλ
2−q/κ1−q

ℓ yields that for some constant C1, ‖∆̂η‖F ≤
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C1
√
ρ(λ/κℓ)

1−q/2. If we choose ℓ > C1
√
ρ(λ/κℓ)

1−q/2 in advance, we have ∆η = ∆.

Note that rank(∆̂M) ≤ 2r; we thus have

‖∆̂‖N ≤ ‖(∆̂)M‖N + ‖(∆̂)
M

⊥‖N ≤ 4‖(∆̂)M‖N + 4
∑

j≥r+1

σj(Θ
∗)

≤ 4
√
2r‖∆̂‖F + 4

∑

j≥r+1

σj(Θ
∗) ≤ 4

√
ρτ−

q
2 ‖∆‖F + 4ρ

( λ

κℓ

)1−q

≤ (4C1 + 4)ρ
( λ

κℓ

)1−q
.

(6.5)

6.2 Proof for Lemma 1

Let ηi = 〈Θ∗,Xi〉 and η = 〈Θ∗,X〉.
∥∥∥∥∥
1

n

n∑

i=1

(b′(ηi)− Yi)Xi

∥∥∥∥∥
op

=

∥∥∥∥∥
1

n

n∑

i=1

(b′(ηi)− Yi)Xi − E[(b′(η)− Y )X] + E[(b′(η)− Y )X]

∥∥∥∥∥
op

=

∥∥∥∥∥
1

n

n∑

i=1

(b′(ηi)− Yi)Xi − E[(b′(η − Y )X)] + E[b′(η)− Y ] · EX
∥∥∥∥∥
op

=

∥∥∥∥∥
1

n

n∑

i=1

(b′(ηi)− Yi)Xi − E[(b′(η)− Y )X]

∥∥∥∥∥
op

(6.6)

The last step is true because EY = b′(η), which is proved in Chapter 2 in McCullagh

and Nelder (1989). Now, we use the covering argument to bound the above operator

norm.

Let Sd−1 =
{
u ∈ R

d : ‖u‖2 = 1
}
, N d be the 1/4 covering on Sd−1 and Φ(A) =

sup
u∈N d

v∈N d

uTAv for ∀A ∈ R
d×d.

We claim that

‖A‖op ≤
16

7
Φ(A). (6.7)

To establish the above inequality, we shall notice that since N d1−1 is a 1/4 covering,

for any given u ∈ Sd−1,v ∈ Sd−1, there is a ũ ∈ N d and ṽ ∈ N d such that ‖u− ũ‖ ≤
1/4 and ‖v − ṽ‖ ≤ 1/4. Therefore,

uTAv =ũTAṽ + ũTA(v − ṽ) + (u− ũ)TAṽ + (u− ũ)A(v − ṽ)

≤Φ(A) +
1

4
‖A‖op +

1

4
‖A‖op +

1

16
‖A‖op
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=Φ(A) +
9

16
‖A‖op

Take the supremum over all possible u ∈ Sd−1,v ∈ Sd−1, we have

‖A‖op = sup
u∈Sd−1

v∈Sd−1

uTAv ≤ Φ(A) +
9

16
‖A‖op

and this leads to (6.7).

In the remaining of this proof, for fixed u ∈ N d and v ∈ N d, denote uTXiv by

Zi and uTXv by Z for convenience. According to the definition of sub-gaussian norm

and sub-exponential norm, given the independence between the two terms, we have

‖[b′(ηi)− Yi]Zi‖Ψ1
≤ ‖b′(ηi)− Yi‖Ψ2

‖Zi‖Ψ2
≤ Mκ0. By Proposition 5.16 (Bernstein-

type inequality) in Vershynin (2010), it follows that for sufficiently small t,

P

(∣∣∣∣∣
1

n

n∑

i=1

(b′(ηi)− Yi)Zi − E[(b′(η)− Yi)Z]

∣∣∣∣∣ > t

)
≤ 2 exp

(
− c1nt

2

M2κ20

)
(6.8)

where c1 is a positive constant. Here M is an upper bound for ‖b′(ηi)− Yi‖Ψ2
. It is

upper bounded since the variance of the response Y is bounded according to condition

(C5).

Then the combination of the union bound over all points on N d × N d and (6.7)

delivers

P



∥∥∥∥∥
1

n

n∑

i=1

(b′(ηi)− Yi)Zi − E[(b′(η)− Y )Z]

∥∥∥∥∥
op

>
16

7
t


 ≤ 2 exp

(
d log 8− c1nt

2

M2κ20

)
.

(6.9)

In conclusion, if we choose t ≍
√
d/n, we can find a constant γ > 0 such that as

long as d/n < γ, it holds that

P



∥∥∥∥∥
1

n

n∑

i=1

(b′(ηi)− Yi)Xi

∥∥∥∥∥
op

> ν

√
d

n


 ≤ c1 · e−c2d. (6.10)

where c1 and c2 are constants.

6.3 Proof for Lemma 2

In this proof, we will first show the RSC of Ln(Θ) at Θ = Θ∗ over the cone

C(Mr,M⊥
r ,Θ

∗) =
{
∆ ∈ R

d×d :
∥∥∥∆

M
⊥
r

∥∥∥
N
≤ 3

∥∥∆Mr

∥∥
N
+ 4

∑

j≥r+1

σj(Θ
∗)
}
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for some 1 ≤ r ≤ d. Then, we will prove the LRSC of Ln(Θ) in a nuclear-norm

neighborhood of Θ∗ with respect to the same cone.

1. An important inequality that leads to RSC of Ln(Θ) at Θ = Θ∗.

We first prove that the following inequality holds for all ∆ ∈ R
d×d with proba-

bility greater than 1− exp(−c1d):

vec(∆)T · Ĥ(Θ∗) · vec(∆) ≥ κ · ‖∆‖2F − C0

√
d

n
‖∆‖2N . (6.11)

Let ∆ = UDVT be the SVD of ∆. Then ‖vec(D)‖2 = ‖∆‖F and ‖vec(D)‖1 =

‖∆‖N . It follows that

vec(∆)T · Ĥ(Θ∗) · vec(∆)

=
1

n

n∑

i=1

vec(∆)T · b′′(〈Θ∗,Xi〉) · vec(Xi) · vec(Xi)
T · vec(∆)

=
1

n

n∑

i=1

tr(
√

b′′(〈Θ∗,Xi〉)XT
i ∆)2 =

1

n

n∑

i=1

tr(
√
b′′(〈Θ∗,Xi〉)XT

i UDVT )2

=
1

n

n∑

i=1

tr(
√

b′′(〈Θ∗,Xi〉)VTXT
i UD)2 =

1

n

n∑

i=1

tr(X̃T
i D)2

=vec(D)T ·Σ
X̃X̃
· vec(D) + vec(D)T · (Σ̂

X̃X̃
−Σ

X̃X̃
) · vec(D).

(6.12)

Here, X̃i =
√

b′′(〈Θ∗,Xi〉)UTXiV, Σ̂
X̃X̃

= n−1
n∑

i=1
vec(X̃i)·vec(X̃i)

T andΣ
X̃X̃

=

EΣ̂
X̃X̃

.

To derive a lower bound for (6.12), we bound the first term from below and bound

the second one from above.

λmin(ΣX̃X̃
) = inf

W1,W2∈Rd×d

‖W1‖F=‖W2‖F=1

vec(W1)
T ·Σ

X̃X̃
· vec(W2)

= inf
W1,W2∈Rd×d

‖W1‖F=‖W2‖F=1

E
[
b′′(〈Θ∗,Xi〉) · tr(WT

1 U
TXiV) · tr(WT

2 U
TXiV)

]

= inf
W1,W2∈Rd×d

‖W1‖F=‖W2‖F=1

E
[
b′′(〈Θ∗,Xi〉) · tr(VWT

1 U
TXi) · tr(VWT

2 U
TXi)

]

= inf
W1,W2∈Rd×d

‖W1‖F=‖W2‖F=1

vec(UW1V) ·H(Θ∗) · vec(UW2V)

=λmin(H(Θ∗)) = κ

(6.13)
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Hence,

vec(∆)T · Σ̂XX · vec(∆) ≥ κ ‖∆‖2F −
∥∥∥Σ̂

X̃X̃
−Σ

X̃X̃

∥∥∥
∞
‖∆‖2N . (6.14)

Meanwhile, for some appropriate constants c3, c4 and C1, we establish the follow-

ing inequality, which serves as the key step to bound ‖Σ̂
X̃X̃
−Σ

X̃X̃
‖∞.

P



∣∣∣ sup
u1,u2∈Sd

v1,v2∈Sd

vec(u1v
T
1 )

T (Σ̂
X̃X̃
−Σ

X̃X̃
)vec(u2v

T
2 )
∣∣∣ > C1

√
d

n


 ≤ c3 exp(−c4d).

(6.15)

We apply the covering argument to prove the claim above. Denote the 1/8−net
of Sd by N d. For any A ∈ R

d2×d2 , define

Φ(A) := sup
u1,u2∈Sd

v1,v2∈Sd

vec(u1v
T
1 )

TAvec(u2v
T
2 )

and

ΦN (A) := sup
u1,u2∈N d

v1,v2∈N d

vec(u1v
T
1 )

TAvec(u2v
T
2 ).

Note that for any u1,v1,u2,v2 ∈ Sd, there exist u1,v1,u2,v2 ∈ N d such that

‖ui − ui‖2 ≤ 1/8 and ‖vi − vi‖2 ≤ 1/8 for i = 1, 2. Then it follows that

vec(u1v
T
1 )

TAvec(u2v
T
2 )

= vec(u1v
T
1 )

TAvec(u2v
T
2 ) + vec(u1(v1 − v1)

T )TAvec(u2v
T
2 ) + vec((u1 − u1)v

T
1 )

T

Avec(u2v
T
2 ) + vec(u1v

T
1 )

TAvec(u2(v2 − v2)
T ) + vec(u1v

T
1 )

TAvec((u2 − u2)v
T
2 )

+ vec((u1 − u1)v
T
1 )

TAvec((u2 − u2)v
T
2 ) + vec(u1(v1 − v1)

T )TAvec((u2 − u2)v
T
2 )

+ vec((u1 − u1)v
T
1 )

TAvec(u2(v2 − v2)
T ) + vec(u1(v1 − v1)

T )TAvec(u2(v2 − v2)
T )

≤ ΦN (A) +
1

2
Φ(A) +

1

16
Φ(A).

(6.16)

So we have Φ(A) ≤ (16/7)ΦN (A). For any u1,u2 ∈ Sd and v1,v2 ∈ Sd, we know
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from Lemma 5.14 in Vershynin (2010) that

‖〈u1v
′
1, X̃i〉〈u2v

′
2, X̃i〉‖Ψ1 ≤

1

2
(‖〈u1v

′
1, X̃i〉2‖Ψ1 + ‖〈u2v

′
2, X̃i〉2‖Ψ1)

≤
∥∥∥〈u1v

T
1 ,
√

b′′(〈Θ∗,Xi〉)UTXiV〉
∥∥∥
2

Ψ2

+
∥∥∥〈u2v

T
2 ,
√

b′′(〈Θ∗,Xi〉)UTXiV〉
∥∥∥
2

Ψ2

≤ 2Mκ20.

(6.17)

Applying Bernstein Inequality yields

P

(∣∣∣vec(u1v
T
1 )

T (Σ̂
X̃X̃
−Σ

X̃X̃
)vec(u2v

T
2 )
∣∣∣ > t

)
≤ 2 exp

(
−cmin

( nt2

M2κ40
,

nt

Mκ20

))
.

Finally, by the union bound over (u1,u2,v1,v2) ∈ N d×N d×N d×N d, we have

P



∣∣∣ sup
u1,u2∈Sd

v1,v2∈Sd

vec(u1v
T
1 )

T (Σ̂
X̃X̃
−Σ

X̃X̃
)vec(u2v

T
2 )
∣∣∣ > t




≤ exp

(
2d log 8− cmin

( nt2

M2κ40
,

nt

Mκ20

))
.

(6.18)

Take t ≍
√

d/n, we derive the inequality (6.15). By combining (6.14) and (6.15),

we successfully prove (6.11).

2. RSC at Ln(Θ∗) over C(Mr,M⊥
r ,Θ

∗)

For all

∆ ∈ C(Mr,M⊥
r ,Θ

∗) =



∆ ∈ R

d×d :
∥∥∥∆

M
⊥
r

∥∥∥
N
≤ 3

∥∥∆Mr

∥∥
N
+ 4

∑

j≥r+1

σj(Θ
∗)



 ,

where 1 ≤ r ≤ d, we have

‖∆‖N ≤
∥∥∆Mr

∥∥
N
+
∥∥∥∆

M
⊥
r

∥∥∥
N
≤ 4

∥∥∆Mr

∥∥
N
+ 4

∑

j≥r+1

σj(Θ
∗)

≤ 4
√
2r ‖∆‖F + 4

∑

j≥r+1

σj(Θ
∗).

(6.19)

Let κ̃ = (1/8)κ. As we did in the proof for Theorem 1, we take τ = λ/κ̃ and let
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r = #{j ∈ {1, 2, ..., d}|σj(Θ∗) > τ}. Then,

∑

j≥r+1

σj(Θ
∗) = τ ·

∑

j≥r+1

σj(Θ
∗)

τ
≤ τ ·

∑

j≥r+1

σj(Θ
∗)

τ

q

≤ τ1−qρ = λ1−qκ̃q−1ρ

(6.20)

On the other hand, ρ >
∑

j≤r σ(Θ
∗)q ≥ rτ q so that r ≤ ρτ−q = ρκ̃qλ−q. Plugging

these results into (6.19), we have

‖∆‖N ≤ 4
√
2ρλ−q/2κ̃q/2 ‖∆‖F + 4λ1−qκ̃q−1ρ. (6.21)

Since λ = 2ν
√

d/n, there exist constants c5 and c6 such that as long as ρ(d/n)(1−q)/2

≤ c4, combining (6.14) and (6.21) we have

vec(∆)T Ĥ(Θ∗)vec(∆) ≥ κ̃ ‖∆‖2F − c5ρλ
2−q. (6.22)

with high probability.

In the first two parts of this proof, we not only verify the RSC of Ln(Θ∗), but

also provide the complete procedure of how to verify the RSC of the empirical

loss given the RSC of the population loss. This is very important in Part 3 of

this proof.

3. LRSC of Ln(Θ) around Θ∗

In the remaining proof, we verify the LRSC by showing that there exists a positive

constant κ̃′ such that

vec(∆̂)T Ĥ(Θ)vec(∆̂) ≥ κ̃′
∥∥∥∆̂
∥∥∥
2

F
− c6ρλ

2−q. (6.23)

holds for all ∆̂ ∈ C(Mr,M⊥
r ,Θ

∗) and Θ such that ‖Θ −Θ∗‖F ≤ c7
√
ρλ(1−q)/2

for some positive constant c7. Note that given Θ−Θ∗ ∈ C(M,M⊥
,Θ∗), by

(6.21) we have ‖Θ−Θ∗‖N ≤ c8ρλ
1−q =: ℓ for some constant c8.

Define functions

ĥ(Θ) := n−1
n∑

i=1

b′′(〈Θ,Xi〉) · ✶{|〈Θ∗,Xi〉|>τ‖Xi‖op≥τγ} · vec(Xi)vec(Xi)
T

and

h(Θ) := E(ĥ(Θ))

for constants τ and γ to be determined. Recall that Ĥ(Θ∗) = n−1
n∑

i=1
b′′(〈Θ∗,Xi〉)

vec(Xi)vec(Xi)
T . The only difference between h(·) and H(·) is the indicator
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function so that Ĥ(·) � ĥ(·).
We will finish the proof of LRSC in two steps. Firstly, we show that h(Θ∗) is

positive definite over the restricted cone. Then by following the procedure of

showing (6.22), we can prove that ĥ(Θ∗) is positive definite over the cone with

high probability. Secondly, we bound the difference between vec(∆̂)T ĥ(Θ)vec(∆̂)

and vec(∆̂)T ĥ(Θ∗)vec(∆̂) and show that ĥ(Θ) is locally positive definite around

Θ∗. This naturally lead to the LRSC of Ln(Θ) around Θ∗.

We establish the following lemma before proceeding.

Lemma 7. When ‖Θ∗‖F ≥ α
√
d and {vec(Xi)}ni=1 are sub-Gaussian, there exist

universal constants τ > 0 and γ > 0 such that λmin(h(Θ
∗)) ≥ κ1 where κ1 is a

positive constant.

We select appropriate τ and γ to make h(Θ∗) positive definite. Follow the same

procedure in Part 1 and Part 2 of this proof, we derive that

vec(∆̂)T · ĥ1(Θ) · vec(∆̂) ≥ κ̃1

∥∥∥∆̂
∥∥∥
2

F
− c6ρλ

2−q. (6.24)

for a positive κ̃1 with high probability.

Meanwhile,

∣∣∣vec(∆̂)T · ĥ(Θ∗) · vec(∆̂)− vec(∆̂)T · ĥ(Θ) · vec(∆̂)
∣∣∣

≤ · 1
n

n∑

i=1

∣∣b′′(〈Θ∗,Xi〉)− b′′(〈Θ,Xi〉)
∣∣ · ✶{|〈Θ∗,Xi〉|>τ‖Xi‖op≥τγ} · (vec(Xi)

Tvec(∆̂))2

=
1

n

n∑

i=1

∣∣∣b′′′(〈Θ̃,Xi〉)〈Θ−Θ∗,Xi〉
∣∣∣ · ✶{|〈Θ∗,Xi〉|>τ‖Xi‖op≥τγ}(vec(Xi)

Tvec(∆̂))2

(6.25)

Here Θ̃ is a middle point between Θ∗ and Θ, thus it is also in the nuclear

ball centered at Θ∗ with radius ℓ. We know that
∣∣∣〈Θ̃,Xi〉

∣∣∣ ≥ |〈Θ∗,Xi〉| −∣∣∣〈Θ∗ − Θ̃,Xi〉
∣∣∣ ≥ (τ − ℓ) ‖Xi‖op when the indicator function equals to 1. If

(τ − ℓ) ‖Xi‖op > 1,

∣∣∣b′′′(〈Θ̃,Xi〉)〈Θ−Θ∗,Xi〉
∣∣∣ ≤ 1

(τ − ℓ) ‖Xi‖op
‖Xi‖op ‖Θ−Θ∗‖N ≤

ℓ

τ − ℓ
.

Otherwise, ‖Xi‖op is bounded by 1/(τ − ℓ) and
∣∣∣b′′′(〈Θ̃,Xi〉)〈Θ−Θ∗,Xi〉

∣∣∣ ≤
C · ℓ

τ−ℓ where C is the upper bound of b′′′(x) for |x| > (τ − ℓ) ‖Xi‖op > (τ − ℓ)γ.
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In summary,

(6.25) ≤ vec(∆̂)T · Cℓ

n(τ − ℓ)

n∑

i=1

vec(Xi)vec(Xi)
T · vec(∆̂) (6.26)

Denote Σ̂XX = n−1
n∑

i=1
vec(Xi)vec(Xi)

T and ΣXX = EΣ̂XX. Suppose the eigen-

values of ΣXX is upper bounded by K < ∞, with a similar result to (6.11) and

(6.21), as long as ρ(d/n)1−q/2 ≤ c5, we shall have

vec(∆̂)T · Cℓ

n(τ − ℓ)

n∑

i=1

vec(Xi)vec(Xi)
T · vec(∆̂)

≤ Cℓ

(τ − ℓ)

(
K
∥∥∥∆̂
∥∥∥
2

F
+ C

√
d

n

∥∥∥∆̂
∥∥∥
2

N

)

≤2KCℓ

τ − ℓ

∥∥∥∆̂
∥∥∥
2

F

(6.27)

As long as the constant ℓ is sufficiently small such that 2KCℓ/(τ − ℓ) < κ̃1/2,

vec(∆̂)T · ĥ(Θ) · vec(∆̂) ≥ κ̃2‖∆̂‖2F holds with κ̃2 = κ̃1/2. This delivers that

ĥ(Θ) is locally positive definite around Θ∗. Recall that H(·) � h(·), we have

verified that Ĥ(Θ) is also locally positive definite around Θ∗. In summary, there

exist some constant ℓ > 0 such that for any ‖Θ−Θ∗‖N ≤ ℓ,

vec(∆̂)T · 1
n

n∑

i=1

b′′(〈Θ,Xi〉)vec(Xi)vec(Xi)
T · vec(∆̂) ≥ κ̃2

∥∥∥∆̂
∥∥∥
2

F
− c6ρλ

2−q.

(6.28)

for all ∆̂ ∈ C(Mr,M⊥
r ,Θ

∗). This finalized our proof of the LRSC of Ln(Θ)

around Θ∗.

Below we provide the proof of Lemma 7.

Proof for Lemma 7

We first show that for any p0 ∈ (0, 1), there exist constants τ and γ such that

P(|〈Θ∗,Xi〉| > τ ‖Xi‖op ≥ τγ) ≥ p0.

It is sufficient to show that P(|〈Θ,Xi〉| > τ ‖Xi‖op) ≥ (p0+1)/2 and P(‖Xi‖op >

γ) ≥ (p0+1)/2 for some positive constants τ and γ. Then according to Bonferroni

Inequality, P(|〈Θ,Xi〉| > τ ‖Xi‖op > τγ) ≥ (p0 + 1)/2 + (p0 + 1)/2− 1 = p0.

The second inequality is easy to show.

‖Xi‖op = max
u∈Sd−1,v∈Sd−1

∣∣uTXiv
∣∣ ≥ ‖Xi‖∞ (6.29)
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Hence P(‖Xi‖op > γ) ≥ P(‖Xi‖∞ > γ). Since vec(Xi) is a sub-Gaussian vector

with dimension d2, P(‖Xi‖∞ > γ) monotonically goes to 1 as d grows. Let γ be

sufficiently small so that P(‖Xi‖∞ > γ) = (p0 + 1)/2 when Xi ∈ R
2×2, it would

be true that P(‖Xi‖∞ > γ) ≥ (p0 + 1)/2 for all d ≥ 2.

To prove the first inequality, we again divide it into two inequalities and combine

them with Bonferroni Inequality. We would show that P(|〈Θ,Xi〉| > c1
√
d) ≥

(p0+3)/4 and P(‖Xi‖op ≤ c2
√
d) ≥ (p0+3)/4 for some positive constants c1 and

c2. Then

P(|〈Θ,Xi〉| > c1/c2 ‖Xi‖op) ≥ (p0 + 3)/4 + (p0 + 3)/4− 1 = (p0 + 1)/2 (6.30)

On one hand, 〈Θ,Xi〉 is a sub-Gaussian variable since it is a linear transformation

of a sub-Gaussian vector. Its mean is 0 and its sub-Gaussian norm is bounded

by κ0 ‖Θ‖F . Since ‖Θ‖F ≥ α
√
d, take c1 to be sufficiently small, we have

P(|〈Θ,Xi〉| > c1
√
d) ≥ P(|x| > c1/α) ≥

p0 + 3

4
(6.31)

where x is a sub-Gaussian variable and ‖x‖Ψ2
≤ κ0.

On the other hand,

‖Xi‖op = max
u∈Sd−1,v∈Sd−1

∣∣uTXiv
∣∣ = max

u∈Sd−1,v∈Sd−1

∣∣tr(uTXiv)
∣∣

= max
u∈Sd−1,v∈Sd−1

∣∣tr(vuTXi)
∣∣ = max

u∈Sd−1,v∈Sd−1

∣∣〈uvT ,Xi〉
∣∣ .

(6.32)

Recall the covering argument in the proof of Lemma 1. Denote N d as a 1/4-net

on Sd−1, then

max
u∈Sd−1,v∈Sd−1

∣∣〈uvT ,Xi〉
∣∣ ≤ 16

7
max

u∈N d,v∈N d

∣∣〈uvT ,Xi〉
∣∣ (6.33)

For any u1 ∈ N d, v1 ∈ N d, given ‖Xi‖Ψ2
≤ κ0, we have

∥∥〈u1v
T
1 ,Xi〉

∥∥
Ψ1
≤ κ0.

According to Bernstein-type inequality in Vershynin (2010), it follows that for

sufficiently small t and some positive constant C,

P(
∣∣〈u1v

T
1 ,Xi〉

∣∣ > t) ≤ 2 exp

(
−Ct2

κ20

)
(6.34)

Therefore, the overall union bound follows:
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P( max
u∈Sd−1,v∈Sd−1

∣∣〈uvT ,Xi〉
∣∣ > t) ≤ 2 exp

(
2d log 4− Ct2

κ20

)
(6.35)

Let t = c2
√
d for some positive constant c2 >

√
4 log 4κ20/C, the above probability

decays. This means that with high probability (which is greater than (p0 +3)/4)

‖Xi‖op is less than c2
√
d. This finalize our proof of (6.30).

Now we look at

h(Θ) = n−1
E

[
n∑

i=1

b′′(〈Θ,Xi〉) · ✶{|〈Θ∗,Xi〉|>τ‖Xi‖op≥τγ} · vec(Xi)vec(Xi)
T

]
.

Denote {|〈Θ∗,Xi〉| > τ ‖Xi‖op ≥ τγ} as an event Ai with probability sufficiently

close to 1. For any v ∈ R
d2 ,

nvTh(Θ∗)v =E

[
n∑

i=1

b′′(〈Θ∗,Xi〉)(vec(Xi)
Tv)2

]

−E
[

n∑

i=1

b′′(〈Θ∗,Xi〉) · ✶Ac
i
· (vec(Xi)

Tv)2

]

≥nκ ‖v‖22 −

√√√√E

[
n∑

i=1

b′′(〈Θ∗,Xi〉)2 (vec(Xi)Tv)
4

]
·

√√√√E

n∑

i=1

✶Ac
i

≥nκ ‖v‖22 − nMK
√
1− p0 ‖v‖22

(6.36)

Here, M is an global upper bound of b′′(·) and K is the largest eigenvalue of the

fourth moment of Xi. Since Xi is sub-Gaussian, the fourth moment is bounded.

We let 1 − p0 be sufficiently small so that nMK
√
1− p0 ≤ κ/2, then we proved

that λmin(h(Θ
∗)) ≥ κ/2 > 0 and thus h(Θ∗) is positive definite.

6.4 Proof of Lemma 3

1

N

N∑

i=1

(b′(〈Xi,Θ
∗〉)− Yi)Xi =

1

n

n∑

i=1

1

d

d∑

j=1

(b′(θ∗
j
Txi)− yij)xie

T
j =

1

d
· 1
n

n∑

i=1

xiz
T
i ,

where zi satisfies that zij = b′(θ∗
j
Txi)− yij . Note that given xi, ‖zij‖Ψ2 ≤ φM . To see
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why, let ηij = xT
i θ

∗
j . We have

E exp(tzij | xi) =

∫

y∈Y
c(y) exp

(ηijy − b(ηij)

φ

)
exp(t(y − b′(ηij)))dy

=

∫

y∈Y
c(y) exp

((ηij + φt)y − b(ηij + φt) + b(ηij + φt)− b(ηij)− φtb′(ηij)

φ

)
dy

= exp
(b(ηij + φt)− b(ηij)− φtb′(ηij)

φ

)
≤ exp

(φMt2

2

)
.

Besides, yij ⊥⊥ yik for j 6= k given xi. Therefore, ‖zi‖Ψ2 ≤ φM . Since E zix
T
i = 0, by

the standard covering argument (Theorem 5.39 and Remark 5.40 in Vershynin (2010)),

there exists γ > 0 such that when n > γd, it holds for some universal constant c > 0,

P
(
‖ 1
n

n∑

i=1

xiz
T
i ‖op ≥

√
φMκ0d

n

)
≤ 2 exp(−cd).

6.5 Proof of Lemma 4

vec(∆̂)T Ĥ(Θ∗)vec(∆̂) =
1

N

N∑

i=1

b′′(〈Xi,Θ
∗〉)〈∆̂,Xi〉2 =

1

N

n∑

i=1

d∑

j=1

b′′(xT
i θ

∗
j )〈∆̂,xje

T
i 〉2

=
1

N

n∑

i=1

d∑

j=1

b′′(xT
i θ

∗
j ) tr(x

T
i ∆̂ej)

2 =
1

N

n∑

i=1

d∑

j=1

b′′(xT
i θ

∗
j )(x

T
i ∆̂j)

2.

(6.37)

Note that for any 1 ≤ j ≤ d, ‖
√

b′′(xT
i θj)xi‖Ψ2 ≤

√
Mκ0. By Theorem 5.39 in

Vershynin (2010), there exists some γ > 0 such that if n > γd, we have for some

universal constant c > 0,

P

(
‖ 1
n

n∑

i=1

b′′(xT
i θ

∗
j )xix

T
i − E(b′′(xT

i θ
∗
j )xix

T
i )‖op ≥ κ0

√
Md

n

)
≤ 2 exp(−cd). (6.38)

Denote this event by E0. By the union bound, it holds that

P

(
max
1≤j≤d

‖ 1
n

n∑

i=1

b′′(xT
i θ

∗
j )xix

T
i −H(Θ∗)‖op ≥ κ0

√
Md

n

)
≤ 2d exp(−cd).

In addition, for any Θ ∈ R
d×d such that ‖Θ−Θ∗‖F ≤ r, ‖θj − θ∗

j‖2 ≤ r holds for all

1 ≤ j ≤ d. Given that ‖xi‖Ψ2 ≤ κ0,

P( max
1≤i≤n,1≤j≤d

|xT
i (θj − θ∗

j )| ≥ t) ≤ 2nd exp
(
− t2

2κ20r
2

)
.
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Substituting t = κ0r
√

δ log(nd) into the inequality above, we have

P( max
1≤i≤n,1≤j≤d

|xT
i (θj − θ∗

j )| ≥ κ0r
√
δ log(nd)) ≤ 2(nd)1−

δ
2 .

Denote the above event by E1. Therefore, under Ec1 ,

‖ 1
n

n∑

i=1

(b′′(xT
i θj)− b′′(xT

i θ
∗
j ))xix

T
i ‖op ≤ L‖ 1

n

n∑

i=1

(xT
i (θj − θ∗

j ))xix
T
i ‖op

≤ Lκ0r
√
δ log(nd) · ‖ 1

n

n∑

i=1

xix
T
i ‖op.

(6.39)

Again by Theorem 5.39 in Vershynin (2010), when n/d is sufficiently large,

P

(
‖ 1
n

n∑

i=1

xix
T
i −Σxx‖op ≥ κ0

√
d

n

)
≤ 2 exp(−cd).

Therefore, when n/d is sufficiently large, ‖n−1
n∑

i=1
xix

T
i ‖op ≤ 2κ0 with high probability.

Denote this event by E2. Combining this with (6.38) and (6.39), we have under Ec1 ∩Ec2 ,

‖ 1
n

n∑

i=1

(b′′(xT
i θj)− b′′(xT

i θ
∗
j ))xix

T
i ‖op ≤ 2Lκ20r

√
δ log(nd).

Finally, for sufficiently large n/d, it holds with probability at least 1− 2(nd)1−
δ
2 for all

θ such that ‖Θ−Θ∗‖F ≤ r,

λmin

( 1
n

n∑

i=1

b′′(xT
i θj)xix

T
i

)
≥ κℓ − 2Lκ20r

√
δ log(nd).

By a union bound across j = 1, . . . , d, we can deduce that for any δ > 4, it holds with

probability at least 1− 2(nd)2−
δ
2 that for all ∆ ∈ R

d×d and all Θ ∈ N ,

vec(∆)T Ĥ(Θ)vec(∆) ≥ 1

d
(κℓ − 2Lκ20r

√
δ log(nd))‖∆‖2F .

Since r ≍ √ρλ1−q/2, as long as ρ(d/n)1−q/2 log(nd) is sufficiently small, LRSC(C,N ,

(1/2)κℓ, 0) holds.
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6.6 Proof for Lemma 5

Here, we take advantage of the singleton design of X and apply the Matrix Bernstein

inequality (Theorem 6.1.1 in Tropp(2015)) to bound the operator norm of the gradient

of the loss function.

Denote Zi = [exp (〈Θ∗,Xi〉)/(1 + exp (〈Θ∗,Xi〉))− Yi]·Xi ∈ R
d×d. ∀u ∈ Sd−1,v ∈

Sd−1,

uTZiv ≤
∣∣∣∣∣

e〈Θ
∗,Xi〉

e〈Θ
∗,Xi〉 + 1

− Yi

∣∣∣∣∣ · d ≤ d.

Thus ‖Zi‖op ≤ d. Meanwhile,

∥∥EZiZ
T
i

∥∥
op

=

∥∥∥∥∥∥
E



(

e〈Θ
∗,Xi〉

e〈Θ
∗,Xi〉 + 1

− Yi

)2

XiX
T
i



∥∥∥∥∥∥
op

≤
∥∥E
[
XiX

T
i

]∥∥
op

=d2 ·
∥∥∥E
[
ea(i)e

T
a(i)

]∥∥∥
op

= d2 · 1
d
= d

(6.40)

Similarly, we have
∥∥EZT

i Zi

∥∥
op
≤ d. Therefore, max

{∥∥EZiZ
T
i

∥∥
op

,
∥∥EZT

i Zi

∥∥
op

}
≤

d.

According to Matrix Bernstein inequality,

P



∥∥∥∥∥
1

n

n∑

i=1

Zi

∥∥∥∥∥
op

≥ t


 ≤ 2d · exp ( −nt

2/2

d+ dt/3
) (6.41)

Let t = ν
√

δd log d/n, then

P



∥∥∥∥∥
1

n

n∑

i=1

Zi

∥∥∥∥∥
op

≥ ν

√
δd log d

n


 ≤2d · exp ( −ν2δd log d

2d+ 2ν
√

d2δd log d
n /3

)

=2d
1− ν2δ

2+2ν
√
d·δ·log d/3

√
n

≤2d1−δ

(6.42)

for some constant ν as long as d log d/n ≤ γ for some constant γ.

6.7 Proof for Lemma 6

We aim to show that the loss function has LRSC property in a L∞-ball centered at Θ∗

with radius 2R/d.
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For all Θ̃ ∈ R
d×d satisfying

∥∥∥Θ̃−Θ∗
∥∥∥
∞
≤ 2R/d, let us denote f(Θ) = exp (〈Θ,Xi〉)

/(1 + exp (〈Θ,Xi〉))2. Then

vec(∆)T [Ĥ(Θ̃)− Ĥ(Θ∗)]vec(∆)

=vec(∆)T · 1
n

n∑

i=1

[
f
(
〈Θ̃,Xi〉

)
− f (〈Θ∗,Xi〉)

]
vec(Xi)vec(Xi)

T · vec(∆)

≤vec(∆)T · 1
n

n∑

i=1

f ′
(
〈Θ̄i,Xi〉

)
〈Θ̃−Θ∗,Xi〉vec(Xi)vec(Xi)

T · vec(∆)

(6.43)

Here Θ̄i is a middle point between Θ̃ and Θ∗. Due to the singleton design of Xi,

〈Θ̃−Θ∗,Xi〉 ≤ d ·
∥∥∥Θ̃−Θ∗

∥∥∥
∞
≤ 2R. Given that the derivative of f(·) is bounded by

0.1, we have

vec(∆)T [Ĥ(Θ̃)− Ĥ(Θ∗)]vec(∆) ≤R

5
· vec(∆)T · 1

n

n∑

i=1

vec(Xi)vec(Xi)
T · vec(∆)

=:
R

5n

∥∥∥X̃n(∆)
∥∥∥
2

2

(6.44)

It is proved in the proof of Theorem 1 in Negahban and Wainwright (2012) that as

long as n > c6d log d,

∣∣∣∣∣∣

∥∥∥X̃n(∆)
∥∥∥
2√

n
− ‖∆‖F

∣∣∣∣∣∣
≥ 7

8
‖∆‖F +

16d ‖∆‖∞√
n

(6.45)

for all ∆ ∈ C′(c0) with probability at most c7 exp (−c8d log d). Therefore, since ∆ ∈
C′(c0) and 128d ‖∆‖∞ /

√
n ‖∆‖F ≤ 1/2, we shall have

∥∥∥X̃n(∆)
∥∥∥
2√

n
≤ 15

8
‖∆‖F +

16d ‖∆‖∞√
n

≤
(
15

8
+

1

16

)
‖∆‖F ≤ 2 ‖∆‖F (6.46)

with probability greater than 1 − c7 exp (−c8d log d). When (6.46) holds, plug it into

(6.44), we shall have

vec(∆)T [Ĥ(Θ̃)− Ĥ(Θ∗)]vec(∆) ≤ R

5
· 4 ‖∆‖2F ≤

‖∆‖2F
512(eR + e−R + 2)

(6.47)
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for sufficiently small R > 0. The following inequality thus holds for all Θ̃ satisfying∥∥∥Θ̃−Θ∗
∥∥∥
∞
≤ 2R/d:

vec(∆)T Ĥ(Θ̃)vec(∆) ≥ ‖∆‖2F
512(eR + e−R + 2)

(6.48)

6.8 Proof for Theorem 4

In this proof, we define an operator X̃n : Rd×d → R
n such that [X̃n(Γ)]i = 〈Γ,Xi〉 for

all Γ ∈ R
d×d.

Denote ∆̂ = Θ̂−Θ∗. If ∆̂ /∈ C′(c0), according to Case 1 in the proof for Theorem

2 in Negahban and Wainwright (2012), we shall have

∥∥∥∆̂
∥∥∥
2

F
≤ 2c0R

√
d log d

n
·



8
√
r
∥∥∥∆̂
∥∥∥
F
+ 4

d∑

j=r+1

σj(Θ
∗)



 (6.49)

for any 1 ≤ r ≤ d. Following the same strategy we used in the proof for Theorem 1,

we will have
∥∥∥∆̂
∥∥∥
F
≤ C1

√
ρ

(
2C1R

√
d log d

n

)1−q/2

for some constant C1.

If ∆̂ ∈ C′(c0), when (2.16) in Lemma 1 holds, on one hand, if 128d
∥∥∥∆̂
∥∥∥
∞
/
√
n
∥∥∥∆̂
∥∥∥
F

> 1/2, we have

∥∥∥∆̂
∥∥∥
F
≤

256d
∥∥∥∆̂
∥∥∥
∞√

n
≤ 512R√

n
(6.50)

As what we did in the proof for Theorem 1, we take τ =
(
R2/ρn

) 1
2−q and we have

∥∥∥∆̂
∥∥∥
N
≤ C2

(
ρ

(
R2

n

)1−q
) 1

2−q

(6.51)

for some constant C2.

On the other hand, if 128d
∥∥∥∆̂
∥∥∥
∞
/
√
n
∥∥∥∆̂
∥∥∥
F
≤ 1/2, we have

∥∥∥Xn(∆̂)
∥∥∥
2√

n
≥

∥∥∥∆̂
∥∥∥
F

16(eR/2 + e−R/2)
i.e.,

∥∥∥Xn(∆̂)
∥∥∥
2

2

n
≥

∥∥∥∆̂
∥∥∥
2

F

256(eR + e−R + 2)
(6.52)
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Thus by Lemma 1 and 2 it naturally holds that

∥∥∥Θ̂−Θ
∥∥∥
2

F
≤ C3ρ

(√
d log d

n

)2−q

,
∥∥∥Θ̂−Θ

∥∥∥
N
≤ C4ρ

(√
d log d

n

)1−q

.

In summary, as long as n/(d log d) is sufficiently large, we shall have

∥∥∥Θ̂−Θ∗
∥∥∥
2

F
≤ C5max



ρ

(√
d log d

n

)2−q

,
R2

n



 ,

∥∥∥Θ̂−Θ∗
∥∥∥
N
≤ C6max



ρ

(√
d log d

n

)1−q

,

(
ρ

(
R2

n

)1−q
) 1

2−q





(6.53)

with probability greater than 1−C7 exp (−c1d log d)−2d1−δ, where {Ci}7i=5 and c1 are

constants.
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