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Abstract—In the past decade, there is a fast-growing need for
sensing technology applications. However, the implementation of
sensing and proceeding creates a large burden on data processing.
The idea for designing stable cluster state for coupled phase
oscillator in pattern recognition is receiving significant attention.
This paper gives an overview of an oscillator neural network
(ONN) based hierarchical associative memory (AM) architecture
using oscillator synchronization and stable cluster state for
pattern recognition and how such architecture can be efficiently
used in local processing units. The ONN based AM architecture
can be easily achieved using CMOS technology on local hardware
units. Unlike cloud computing system, our architecture provides
an approach when it is under an offline mode which couldn’t get
responses from the web server. The proposed architecture can
help perform sensing and data processing efficiently on the local
device without connecting to the Internet.

Index Terms—ONN, synchronization, stable cluster state, en-
ergy efficiency, hierarchical AM, pattern recognition

I. INTRODUCTION

Technological innovations of sensors and integrated circuit
technology have resulted in wireless sensing for various ap-
plications [1], [2], [3], [4]. With the widespread deployment
of sensors and the proliferation of Internet-of-Things, there is
a critical need for in-situ energy-efficient computational units.
Cloud computing has been used to access server and database
through the internet [5] such as Amazon Web Services (AWS).
The cloud services can be easily connected to the hardware
over a web application. However, cloud computing approaches
in pattern recognition applications are based on online data
processing. While considering the possibility of an offline
mode where the server cannot respond to the request of pattern
recognition or other required tasks, the local processing unit
embedded with computational power can solve the offline data
processing problem.

In order to improve the information processing efficiency
of computers, researchers have begun to use CMOS process
devices to simulate the information processing methods of
neurons. Since the 1980s, with the development of CMOS
technology, the convergence of learning rules and very large
scale integration (VLSI) technologies, the size of the device
channel has entered a dozen or even a few nanometers and
transistor integration density has grown tremendously which
made it is possible to better simulate the nervous system
to validate the model and cultivate new biologically inspired
ideas [6]. Neuro-inspired computing CMOS architecture based

ONN for analog or non-boolean computing has been learned
for many years as the recognition tasks on local processing
unit [7]. The coupled ONN can perform the pattern recognition
tasks with ease than other scheme [8], [9]. As a result, diverse
ONN models for computing have been proposed. In recent
years, several researchers have proposed the use of multiple
coupled oscillators for pattern recognition. There have been
several studies that proposed different hardware implementa-
tions for the ONN structure to perform pattern recognition.
In [10], an AM architecture of ONN that consist of phase-
locked loop (PLL) circuit which can store and retrieve dynamic
oscillator patterns as synchronization states is performed. Fang
et. al. proposed a self-generating power computing system
based on BZ-PZ ONN for pattern recognition using the
synchronization approach [11]. In [12], CMOS ring oscillators
for pattern recognition were proposed. A non-Boolean ring
oscillator coupled with a resistor network was proposed to
function as a Hopfield network. The computing efficiency in
pattern recognition of a variety of coupled oscillator networks
has been compared in references [13]. However, the traditional
synchronization approach for classifying signal and images is
based upon the nearest neighbor theorem can only provide a
binary result for pattern recognition. In this paper, we are using
a supervised approach, cluster state is used to exhibit more
complex behavior for the coupled nonlinear oscillators to per-
form multiple stable cluster state by calculating the appropriate
weights connecting between every two oscillators. Since local
data storage and maintenance is a big challenge for the local
processing unit. Due to the fact that make improvement on the
CMOS scale is approaching the limitation in the near future.
As a result, it has become important to consider alternate
methods for data processing with higher processing speed
and lower energy consumption [14] Therefore, in this paper,
we are demonstrating a two-layer hierarchical associative
memory architecture based on ONN using traditional CMOS
technology for real-time pattern recognition.

The rest of this paper is structured as follows. In Section
II, an overview of the hierarchical system is summarized
including the hierarchical algorithm and the dynamic coupling
structures for two different layers. In section III, our image
processing unit is performed. In section IV, we describe our
hierarchical AM architecture for pattern recognition. Section
V reports the simulation result in pattern recognition. Finally,
this paper ends with a discussion and conclusion in Section
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II. OVERVIEW OF THE HIERARCHICAL SYSTEM
A. Hierarchical AM Model

In this section, we describe our two-layer hierarchical AM
architecture and algorithm. In Fig. 1, the top diagram, letter
A to P represent the pixel values of an image, the bottom
diagram is the two-layer hierarchical dendrogram. During the
pattern recognition processing, we divided the 4 x4 oscillators
in level 3 into four modules in level 2 with each module
four oscillators in level 1. Each module in level 2 represents
the synchronization output of a coupled ONN in level 1. The
outputs of level 2 are read as the inputs of level 3 in the higher
layer through clustering.

B. Method Analysis for Two Layers

The Kuramoto model is a commonly used model for study-
ing synchronization phenomenon. It provides a simple but
solvable approach to synchronization in coupled oscillators
[15]. For this hierarchical data processing, the oscillator data of
each module in the lower layer is read by the Kuramoto model
as the intrinsic frequency, and the synchronization frequency
of each module acts as the intrinsic phase of one of the
oscillators in the higher layer. A classification process is then
done by using a stable clustering algorithm to classify phase
difference between each pair of the oscillator in the higher
layer into stable 2-clusters.

III. IMAGE PREPROCESSING UNIT

Our result use human face from ATT Cambridge Database
[16]. In our ONN, the image pixel value is stored as the
intrinsic frequency of oscillators. When a new photograph
is coming, we convert it to the same pixel amount as our
stored pattern. Fig. 2 shows how the image pixel values are
stored in oscillators and forming the ONN. We assume that
each oscillator is connected to a pixel. The ATT Cambridge
Database contains 40 person’s face image and 10 pictures for

each person. However not all of them are suitable for our
Algorithm. So we pick three individuals with two photographs
for each of them as storage patterns and with one for each as
recognition pattern. Fig. 3 shows three images for each of two
individuals from the datasets.
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Fig. 2. Image preprocessing unit of the proposed ONN for clustering
applications. Oscillator 7 and oscillator 5 are connected with pixel ¢ value
and pixel j value, respectively. Oscillator % and oscillator j are coupled with
K, which is one in this system.

Fig. 3. Three sample images for each individuals. In each row, the first and
the second are storage patterns, the third is the recognition pattern.

IV. PATTERN RECOGNITION ARCHITECTURE

The behavior of our ONN is governed by the following
equation:

d(bl

dt J=wit Z ()

In general, by choosing appropriate coupling function H,j,
any arbitrarily complex behavior can achieve a stable clus-
ter state. In particular, when H;; [¢;(t) — ¢;(t)] is equal
to sin[p;(t) — ¢i(t)], then the system becomes Kuramoto
model. the oscillator data of each module in the lower layer
is read by the Kuramoto model as the intrinsic frequency.
Kuramoto model can only show whether a pattern is syn-
chronized or not. While our clustering can provide more than
one stable state, it also provides another stable state of pattern
compared to the single decision from the Kuramoto model. For
a higher layer of the dynamics of weakly coupled oscillators
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exhibit complex chaotic behavior which cannot be obtained by
Kuramoto model using simple sinusoidal coupling function.
By choosing appropriate coupling function H;;, the stable
cluster state can be achieved. The algorithm below shows how
to design stable 2-cluster [17]. Any H;; can be represented as
a Fourier series and choosing a suitable coefficient, the Fourier
expansion of H;; to the L-th harmonics is given by,

L
H;; = Z[ul cos(lg) + v sin(l¢)] (2)
1=1
Consider a cluster state with M cluster. For stable cluster
states, both the tangential eigenvalues and the transverse eigen-
values have to be on the left- half complex plane, which can be
satisfied by changing the coefficient uq, vy, us, vo in equation
(2). By fixing the cluster phase difference ¢; = 2km, ¢o =
(k-+3)m, and the cluster size a1, a2, N = ai+az, uy, vi, uz, v
can be calculated for each storage pattern.

Based on these oscillators, we can design and build an AM
circuit for each stored pattern. When the new pattern is com-
ing. The pattern will compare to all stored patterns to search
the closest match. The hierarchical clustering greatly reduced
the pattern that needs to be stored through multiple layered
processing. In this approach, our AM architecture reduces the
time complexity by increasing the space complexity.

A binary pattern &,
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can be designed as a stable 2-cluster and stored into the ONN
while the higher layer achieving stable 2-cluster. When the
phase difference is 2k7 , &; is equal to 1. On the other hand,
while the phase difference is (k + 3), &; is equal to -1.
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V. SIMULATION RESULTS
In the higher layer of our system, we assume the topology

of this system is cross-connect topology with coupling weight
K;; = 1. For the coupling function H;;, the parameter

up = §,v1 = —3a5,uz = §,v2 = ¢ was calculated and
designed for the first individual. to achieve stable 2-cluster,

— 150 15 % was calculated
and designed as stored pattern for the second individual. And
Uy = §,01 = —155,U2 = 5,02 = 105 was calculated and
designed as stored pattern for the third individual.

We have stored each individuals’ image with 64 x 64
oscillators. The first and second images are stored as storage
pattern, the third image is acting as a recognition pattern shown
in Fig 3. For each image, in the lower layer, 8 x 8 oscillators are
stored in each module. 8 x 8 modules are stored in the higher
layer. The output of each module in the lower layer is read as
the input of the higher layer. For hierarchical sensing process,

each oscillator data is read by the Kuramoto model as the
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Fig. 4. The simulation results are shown as the first individual third image
using the first individual’s H;; function which is as a particular stable 2-
cluster partitions, where each curve represents the phase difference ¢; — ¢1
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Fig. 5. The simulation results are shown as the first individual third image
using the second individual’s H;; function which is unstable cluster partitions,
where each curve represents the phase difference ¢; — ¢1

intrinsic frequency in the lower layer, and the synchronization
frequency of each module acts as the intrinsic phase of the
oscillator in the higher layer. Apparently from the simulation
result shown in Fig. 4 to Fig. 6, the first storage pattern in Fig.
4 achieves the best matching. A part of the oscillators approach
one cluster with phase difference 2kw(k = 0 or 1), when
k=0,¢1 —¢1 =0, when k =1,¢; — ¢1 = 2m(j # 1) and
the rest of the patterns approach the other cluster with phase
difference close to (k + %)w, which means this two groups
of oscillators are converged to phase difference (k + %)7‘(‘ and
27, respectively. We call it stable 2-cluster. In Fig. 5 when the
first individual third image using the second individual’s H;;
function is perform unstable cluster partitions. Fig. 6 shows
the status for the first individual third image using the third
individual’s H;; function.

VI. DISCUSSION

Table I shows a comparison of the hierarchical AM model
used in this work with a single AM model. The coupling
weights are corresponding to the connections of each two
oscillators. A simple ONN based AM model implemented
in software costs too much time for training as the number
of neurons increases [18]. When the number of oscillators is
increasing, the hierarchical model uses much fewer connec-
tions compared with the single AM model, which is a big
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Fig. 6. The simulation results are shown as the first individual third image
using the third individual’s H;; function which is unstable cluster partitions,
where each curve represents the phase difference ¢; — ¢1

advantage for simplifying ONN. Our aim is to develop an
algorithm such that reducing the computational complexity
and minimizing the connections of stored pattern without
sacrificing recognition accuracy. However, we still cannot
guarantee the accuracy of the hierarchical AM model when
using it to differentiate two very similar patterns. But with
enough training data, we are able to improve the coupling
function for more accurate recognition performance.

A weakly coupled phase oscillator theory is analyzed in
the case of both linear and nonlinear couplings. For the
Kuramoto model, a sinusoidal coupling function is able to
exhibit synchronization for pattern recognition applications.
The convergence time and frequency of synchronization are
considered as indicators of recognition. Moreover, a nonlinear
coupling function is utilized and the nonlinear dynamics is
represented as a Fourier series. The dynamic coupling function
provides an approach for analyzing the nonlinear coupled
oscillator. By choosing the specific coefficient and coupling
function, a stable 2-cluster is achieved for a sensing applica-
tion. Since clustering can provide more than one stable state, it
also provides another stable state of pattern compared to the
single decision from the Kuramoto model. The hierarchical
AM model performed in this work can be easily achieved in
a local processing unit.

TABLE I
COMPARISON OF THE PROPOSED HIERARCHICAL AM MODEL WITH THE
SINGLE AM MODEL.

ONN Characteristics Hierarchical AM model | Single AM model
No. of layers 2 1
No. of oscillators n? n?
No. of oscillators in each layer n n?
Connections (Number of weights) C?Hrl Ciz

VII. CONCLUSION

In this paper, the synchronization and stable 2-cluster for
dynamic ONN system have been studied. The ONN based
hierarchical AM model which performs sensing and comput-
ing on a local processing unit is explored. An application for
human face recognition is used to test the functionality and

retrieval performance of the hierarchical AM model. Our AM
model is possible to use an ONN as a basic unit from nano-
oscillator for local processing. Since the recognized pattern
will always need to compare with all storage patterns to search
the nearest neighbor, instead of a single AM model, we use
the two layers hierarchical clustering which greatly reduces
the pattern that needs to be stored through multiple layered
processing.
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