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Abstract—In the past decade, there is a fast-growing need for
sensing technology applications. However, the implementation of
sensing and proceeding creates a large burden on data processing.
The idea for designing stable cluster state for coupled phase
oscillator in pattern recognition is receiving significant attention.
This paper gives an overview of an oscillator neural network
(ONN) based hierarchical associative memory (AM) architecture
using oscillator synchronization and stable cluster state for
pattern recognition and how such architecture can be efficiently
used in local processing units. The ONN based AM architecture
can be easily achieved using CMOS technology on local hardware
units. Unlike cloud computing system, our architecture provides
an approach when it is under an offline mode which couldn’t get
responses from the web server. The proposed architecture can
help perform sensing and data processing efficiently on the local
device without connecting to the Internet.

Index Terms—ONN, synchronization, stable cluster state, en-
ergy efficiency, hierarchical AM, pattern recognition

I. INTRODUCTION

Technological innovations of sensors and integrated circuit

technology have resulted in wireless sensing for various ap-

plications [1], [2], [3], [4]. With the widespread deployment

of sensors and the proliferation of Internet-of-Things, there is

a critical need for in-situ energy-efficient computational units.

Cloud computing has been used to access server and database

through the internet [5] such as Amazon Web Services (AWS).

The cloud services can be easily connected to the hardware

over a web application. However, cloud computing approaches

in pattern recognition applications are based on online data

processing. While considering the possibility of an offline

mode where the server cannot respond to the request of pattern

recognition or other required tasks, the local processing unit

embedded with computational power can solve the offline data

processing problem.

In order to improve the information processing efficiency

of computers, researchers have begun to use CMOS process

devices to simulate the information processing methods of

neurons. Since the 1980s, with the development of CMOS

technology, the convergence of learning rules and very large

scale integration (VLSI) technologies, the size of the device

channel has entered a dozen or even a few nanometers and

transistor integration density has grown tremendously which

made it is possible to better simulate the nervous system

to validate the model and cultivate new biologically inspired

ideas [6]. Neuro-inspired computing CMOS architecture based

ONN for analog or non-boolean computing has been learned

for many years as the recognition tasks on local processing

unit [7]. The coupled ONN can perform the pattern recognition

tasks with ease than other scheme [8], [9]. As a result, diverse

ONN models for computing have been proposed. In recent

years, several researchers have proposed the use of multiple

coupled oscillators for pattern recognition. There have been

several studies that proposed different hardware implementa-

tions for the ONN structure to perform pattern recognition.

In [10], an AM architecture of ONN that consist of phase-

locked loop (PLL) circuit which can store and retrieve dynamic

oscillator patterns as synchronization states is performed. Fang

et. al. proposed a self-generating power computing system

based on BZ-PZ ONN for pattern recognition using the

synchronization approach [11]. In [12], CMOS ring oscillators

for pattern recognition were proposed. A non-Boolean ring

oscillator coupled with a resistor network was proposed to

function as a Hopfield network. The computing efficiency in

pattern recognition of a variety of coupled oscillator networks

has been compared in references [13]. However, the traditional

synchronization approach for classifying signal and images is

based upon the nearest neighbor theorem can only provide a

binary result for pattern recognition. In this paper, we are using

a supervised approach, cluster state is used to exhibit more

complex behavior for the coupled nonlinear oscillators to per-

form multiple stable cluster state by calculating the appropriate

weights connecting between every two oscillators. Since local

data storage and maintenance is a big challenge for the local

processing unit. Due to the fact that make improvement on the

CMOS scale is approaching the limitation in the near future.

As a result, it has become important to consider alternate

methods for data processing with higher processing speed

and lower energy consumption [14] Therefore, in this paper,

we are demonstrating a two-layer hierarchical associative

memory architecture based on ONN using traditional CMOS

technology for real-time pattern recognition.

The rest of this paper is structured as follows. In Section

II, an overview of the hierarchical system is summarized

including the hierarchical algorithm and the dynamic coupling

structures for two different layers. In section III, our image

processing unit is performed. In section IV, we describe our

hierarchical AM architecture for pattern recognition. Section

V reports the simulation result in pattern recognition. Finally,

this paper ends with a discussion and conclusion in Section
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Fig. 1. Hierarchical dendrogram.

VI and VII.

II. OVERVIEW OF THE HIERARCHICAL SYSTEM

A. Hierarchical AM Model

In this section, we describe our two-layer hierarchical AM

architecture and algorithm. In Fig. 1, the top diagram, letter

A to P represent the pixel values of an image, the bottom

diagram is the two-layer hierarchical dendrogram. During the

pattern recognition processing, we divided the 4×4 oscillators

in level 3 into four modules in level 2 with each module

four oscillators in level 1. Each module in level 2 represents

the synchronization output of a coupled ONN in level 1. The

outputs of level 2 are read as the inputs of level 3 in the higher

layer through clustering.

B. Method Analysis for Two Layers

The Kuramoto model is a commonly used model for study-

ing synchronization phenomenon. It provides a simple but

solvable approach to synchronization in coupled oscillators

[15]. For this hierarchical data processing, the oscillator data of

each module in the lower layer is read by the Kuramoto model

as the intrinsic frequency, and the synchronization frequency

of each module acts as the intrinsic phase of one of the

oscillators in the higher layer. A classification process is then

done by using a stable clustering algorithm to classify phase

difference between each pair of the oscillator in the higher

layer into stable 2-clusters.

III. IMAGE PREPROCESSING UNIT

Our result use human face from ATT Cambridge Database

[16]. In our ONN, the image pixel value is stored as the

intrinsic frequency of oscillators. When a new photograph

is coming, we convert it to the same pixel amount as our

stored pattern. Fig. 2 shows how the image pixel values are

stored in oscillators and forming the ONN. We assume that

each oscillator is connected to a pixel. The ATT Cambridge

Database contains 40 person’s face image and 10 pictures for

each person. However not all of them are suitable for our

Algorithm. So we pick three individuals with two photographs

for each of them as storage patterns and with one for each as

recognition pattern. Fig. 3 shows three images for each of two

individuals from the datasets.

Kij OjOi

Pixel i value Pixel j value

Fig. 2. Image preprocessing unit of the proposed ONN for clustering
applications. Oscillator i and oscillator j are connected with pixel i value
and pixel j value, respectively. Oscillator i and oscillator j are coupled with
Kij , which is one in this system.

Fig. 3. Three sample images for each individuals. In each row, the first and
the second are storage patterns, the third is the recognition pattern.

IV. PATTERN RECOGNITION ARCHITECTURE

The behavior of our ONN is governed by the following

equation:

dφi

dt
(t) = ωi +

N∑

j=1

KijHij [φj(t)− φi(t)] (1)

In general, by choosing appropriate coupling function Hij ,

any arbitrarily complex behavior can achieve a stable clus-

ter state. In particular, when Hij [φj(t)− φi(t)] is equal

to sin [φj(t)− φi(t)], then the system becomes Kuramoto

model. the oscillator data of each module in the lower layer

is read by the Kuramoto model as the intrinsic frequency.

Kuramoto model can only show whether a pattern is syn-

chronized or not. While our clustering can provide more than

one stable state, it also provides another stable state of pattern

compared to the single decision from the Kuramoto model. For

a higher layer of the dynamics of weakly coupled oscillators



exhibit complex chaotic behavior which cannot be obtained by

Kuramoto model using simple sinusoidal coupling function.

By choosing appropriate coupling function Hij , the stable

cluster state can be achieved. The algorithm below shows how

to design stable 2-cluster [17]. Any Hij can be represented as

a Fourier series and choosing a suitable coefficient, the Fourier

expansion of Hij to the L-th harmonics is given by,

Hij =

L∑

l=1

[ul cos(lφ) + vl sin(lφ)] (2)

Consider a cluster state with M cluster. For stable cluster

states, both the tangential eigenvalues and the transverse eigen-

values have to be on the left- half complex plane, which can be

satisfied by changing the coefficient u1, v1, u2, v2 in equation

(2). By fixing the cluster phase difference φ1 = 2kπ, φ2 =
(k+ 1

2 )π, and the cluster size a1, a2, N = a1+a2, u1, v1, u2, v2
can be calculated for each storage pattern.

Based on these oscillators, we can design and build an AM

circuit for each stored pattern. When the new pattern is com-

ing. The pattern will compare to all stored patterns to search

the closest match. The hierarchical clustering greatly reduced

the pattern that needs to be stored through multiple layered

processing. In this approach, our AM architecture reduces the

time complexity by increasing the space complexity.

A binary pattern ξ,

ξ =
[
ξ1 ξ2 ξ3 ... ξ16

]
,

ξi = ±1, i = 1...16, ξj = ±1, j = 1...16
(3)

can be designed as a stable 2-cluster and stored into the ONN

while the higher layer achieving stable 2-cluster. When the

phase difference is 2kπ , ξi is equal to 1. On the other hand,

while the phase difference is (k + 1
2 )π, ξj is equal to -1.

ξi = 1 ⇐⇒ φi − φj = 2kπ (4)

ξj = −1 ⇐⇒ φi − φj = (k +
1

2
)π (5)

V. SIMULATION RESULTS

In the higher layer of our system, we assume the topology

of this system is cross-connect topology with coupling weight

Kij = 1. For the coupling function Hij , the parameter

u1 = 1
4 , v1 = − 89

140 , u2 = 1
9 , v2 = 11

90 was calculated and

designed for the first individual. to achieve stable 2-cluster,

u1 = 1
4 , v1 = − 27

120 , u2 = 1
12 , v2 = 67

240 was calculated

and designed as stored pattern for the second individual. And

u1 = 1
6 , v1 = − 23

120 , u2 = 1
9 , v2 = 43

180 was calculated and

designed as stored pattern for the third individual.

We have stored each individuals’ image with 64 × 64
oscillators. The first and second images are stored as storage

pattern, the third image is acting as a recognition pattern shown

in Fig 3. For each image, in the lower layer, 8×8 oscillators are

stored in each module. 8× 8 modules are stored in the higher

layer. The output of each module in the lower layer is read as

the input of the higher layer. For hierarchical sensing process,

each oscillator data is read by the Kuramoto model as the

Fig. 4. The simulation results are shown as the first individual third image
using the first individual’s Hij function which is as a particular stable 2-
cluster partitions, where each curve represents the phase difference φi − φ1

Fig. 5. The simulation results are shown as the first individual third image
using the second individual’s Hij function which is unstable cluster partitions,
where each curve represents the phase difference φi − φ1

intrinsic frequency in the lower layer, and the synchronization

frequency of each module acts as the intrinsic phase of the

oscillator in the higher layer. Apparently from the simulation

result shown in Fig. 4 to Fig. 6, the first storage pattern in Fig.

4 achieves the best matching. A part of the oscillators approach

one cluster with phase difference 2kπ(k = 0 or 1), when

k = 0, φ1 − φ1 = 0, when k = 1, φj − φ1 = 2π(j �= 1) and

the rest of the patterns approach the other cluster with phase

difference close to (k + 1
2 )π, which means this two groups

of oscillators are converged to phase difference (k+ 1
2 )π and

2π, respectively. We call it stable 2-cluster. In Fig. 5 when the

first individual third image using the second individual’s Hij

function is perform unstable cluster partitions. Fig. 6 shows

the status for the first individual third image using the third

individual’s Hij function.

VI. DISCUSSION

Table I shows a comparison of the hierarchical AM model

used in this work with a single AM model. The coupling

weights are corresponding to the connections of each two

oscillators. A simple ONN based AM model implemented

in software costs too much time for training as the number

of neurons increases [18]. When the number of oscillators is

increasing, the hierarchical model uses much fewer connec-

tions compared with the single AM model, which is a big



Fig. 6. The simulation results are shown as the first individual third image
using the third individual’s Hij function which is unstable cluster partitions,
where each curve represents the phase difference φi − φ1

advantage for simplifying ONN. Our aim is to develop an

algorithm such that reducing the computational complexity

and minimizing the connections of stored pattern without

sacrificing recognition accuracy. However, we still cannot

guarantee the accuracy of the hierarchical AM model when

using it to differentiate two very similar patterns. But with

enough training data, we are able to improve the coupling

function for more accurate recognition performance.

A weakly coupled phase oscillator theory is analyzed in

the case of both linear and nonlinear couplings. For the

Kuramoto model, a sinusoidal coupling function is able to

exhibit synchronization for pattern recognition applications.

The convergence time and frequency of synchronization are

considered as indicators of recognition. Moreover, a nonlinear

coupling function is utilized and the nonlinear dynamics is

represented as a Fourier series. The dynamic coupling function

provides an approach for analyzing the nonlinear coupled

oscillator. By choosing the specific coefficient and coupling

function, a stable 2-cluster is achieved for a sensing applica-

tion. Since clustering can provide more than one stable state, it

also provides another stable state of pattern compared to the

single decision from the Kuramoto model. The hierarchical

AM model performed in this work can be easily achieved in

a local processing unit.

TABLE I
COMPARISON OF THE PROPOSED HIERARCHICAL AM MODEL WITH THE

SINGLE AM MODEL.

ONN Characteristics Hierarchical AM model Single AM model
No. of layers 2 1

No. of oscillators n2 n2

No. of oscillators in each layer n n2

Connections (Number of weights) C2
n+1 C2

n2

VII. CONCLUSION

In this paper, the synchronization and stable 2-cluster for

dynamic ONN system have been studied. The ONN based

hierarchical AM model which performs sensing and comput-

ing on a local processing unit is explored. An application for

human face recognition is used to test the functionality and

retrieval performance of the hierarchical AM model. Our AM

model is possible to use an ONN as a basic unit from nano-

oscillator for local processing. Since the recognized pattern

will always need to compare with all storage patterns to search

the nearest neighbor, instead of a single AM model, we use

the two layers hierarchical clustering which greatly reduces

the pattern that needs to be stored through multiple layered

processing.
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