
Theoretical Computer Science 777 (2019) 308–328

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Recursive stochastic games with positive rewards✩

Kousha Etessami a, Dominik Wojtczak b, Mihalis Yannakakis c,∗

a School of Informatics, University of Edinburgh, United Kingdom of Great Britain and Northern Ireland
b Department of Computer Science, University of Liverpool, United Kingdom of Great Britain and Northern Ireland
c Computer Science Department, Columbia University, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 June 2018
Received in revised form 10 October 2018
Accepted 20 December 2018
Available online 28 December 2018

Keywords:

Recursive Markov decision processes
Recursive simple stochastic games

Recursive Markov chains
Total expected reward

Stochastic context-free grammars

Multi-type branching processes
Probabilistic pushdown systems

Linear programming

Policy iteration and strategy improvement
algorithms

We study the complexity of a class of Markov decision processes and, more generally,
stochastic games, called 1-exit Recursive Markov Decision Processes (1-RMDPs) and
1-exit Recursive Simple Stochastic Games (1-RSSGs), with strictly positive rewards. These
are a class of finitely presented countable-state zero-sum turn-based stochastic games
that subsume standard finite-state MDPs and Condon’s simple stochastic games. They
correspond to optimization and game versions of several classic stochastic models, with
rewards. In particular, they correspond to the MDP and game versions of multi-type
branching processes and stochastic context-free grammars with strictly positive rewards.
The goal of the two players in the game is to maximize/minimize the total expected
reward generated by a play of the game. Such stochastic models arise naturally as models
of probabilistic procedural programs with recursion, and the problems we address are
motivated by the goal of analyzing the optimal/pessimal expected running time in such a
setting.

We first show that in such games both players have optimal deterministic “stackless
and memoryless” optimal strategies. We then provide polynomial-time algorithms for
computing the exact optimal expected reward (which may be infinite, but is otherwise
rational), and optimal strategies, for both the maximizing and minimizing single-player
versions of the game, i.e., for (1-exit) Recursive Markov Decision Processes (1-RMDPs).
It follows that the quantitative decision problem for positive reward 1-RSSGs is in NP ∩
coNP. We show that Condon’s well-known quantitative termination problem for finite-
state simple stochastic games (SSGs) which she showed to be in NP ∩ coNP reduces to
a special case of the reward problem for 1-RSSGs, namely, deciding whether the value is
∞. By contrast, for finite-state SSGs with strictly positive rewards, deciding if this expected
reward value is ∞ is solvable in P-time. We also show that there is a simultaneous strategy
improvement algorithm that converges in a finite number of steps to the value and optimal
strategies of a 1-RSSG with positive rewards.

 2018 Elsevier B.V. All rights reserved.

✩ A preliminary version of this paper appeared in the proceedings of the ICALP’2008 conference: [15].
* Corresponding author.

E-mail addresses: kousha@inf.ed.ac.uk (K. Etessami), d.wojtczak@liv.ac.uk (D. Wojtczak), mihalis@cs.columbia.edu (M. Yannakakis).

https://doi.org/10.1016/j.tcs.2018.12.018

0304-3975/ 2018 Elsevier B.V. All rights reserved.

K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328 309

Fig. 1. A 1-RSSG example consisting of two components, A1 and A2 . Black vertices belong to player 1, white to player 2, grey vertices to “nature” (i.e., they
are random). Each box (labelled, e.g., b1:A1) has a name (b1) and is mapped to a component (A1). Each edge has a label whose first component is ⊥ for
controlled vertices or a probability value for random ones, and the second component is the reward assigned to this edge.

1. Introduction

Markov decision processes and stochastic games are fundamental models in stochastic dynamic optimization and game
theory (see, e.g., [33,31,21]). In this paper, motivated by the goal of analyzing the optimal/pessimal expected running time of
probabilistic procedural programs, we study the complexity of a reward-based stochastic game, called 1-exit recursive simple
stochastic games (1-RSSGs), and its 1-player version, 1-exit recursive Markov decision processes (1-RMDPs). These form a class
of (finitely presented) countable-state turn-based zero-sum stochastic games (and MDPs) with strictly positive rewards, and
with an undiscounted expected total reward objective.

Intuitively, a 1-RSSG (1-RMDP) consists of a collection of finite-state component SSGs (MDPs), each of which can be
viewed as an abstract finite-state procedure (subroutine) of a probabilistic program with potential recursion. Each com-

ponent procedure has some nodes that are probabilistic and others that are controlled by one or the other of the two
players. The component SSGs can call each other in a recursive manner, generating a potentially unbounded call stack,
and thereby an infinite state space. The “1-exit” restriction essentially restricts these finite-state subroutines so they do
not return a value, unlike multi-exit RSSGs and RMDPs in which they can return distinct values. (We shall show that the
multi-exit version of these reward games are undecidable.) An example 1-RSSG with two components A and B is depicted
in Fig. 1. 1-RMDPs and 1-RSSGs were studied in [17] in a setting without rewards, where the goal of the players was to
maximize/minimize the probability of termination. Such termination probabilities can be irrational, and quantitative deci-
sion problems for them subsume long standing open problems in exact numerical computation. Here we extend 1-RSSGs
and 1-RMDPs to a setting with positive rewards. Note that much of the literature on MDPs and games is based on a reward
structure. This paper is a first step toward extending these models to the recursive setting. Interestingly, we show that the
associated problems actually become more benign in some respects in this strictly positive reward setting. In particular, the
values of our games are either rational, with polynomial bit complexity, or ∞.

The 1-RMDP and 1-RSSG models can also be described as optimization and game versions of several classic stochastic
models, including stochastic context-free grammars (SCFGs) and (multi-type) branching processes. These have applications
in many areas, including natural language processing [29], biological sequence analysis ([10]), and population biology [25,
24]. Another model that corresponds to a strict subclass of SCFGs is “random walks with back-buttons” studied in [19] as a
model of web surfing. See [16] for details on the relationships between these various models.

A 1-RSSG with positive rewards, can be equivalently reformulated as the following game played on a stochastic context-
free grammar. We are given a context-free grammar where nonterminals are partitioned into three disjoint sets: random,
player-1, and player-2. Starting from a designated start nonterminal, S init , we proceed to generate a (left-most) deriva-
tion by choosing a remaining (left-most) nonterminal, S , and expanding it. The precise derivation law (left-most, right-most,
etc.) does not effect the game’s value in our strictly positive reward setting, but it would do so if we were to allow 0 re-

wards on rules/transitions. If S belongs to random, it is expanded randomly by choosing a rule S → α, according to a given
probability distribution over the rules whose left hand side is S . If S belongs to player-i, then player i chooses which
grammar rule to use to expand this S . Each grammar rule also has an associated strictly positive reward for player 1, and
each time a rule is used during the derivation, player 1 accumulates this associated reward. Player 1 wants to maximize the
total expected reward (which may be ∞), and player 2 wants to minimize it. When we have only one player in the game it
is either a minimizing or maximizing 1-RMDP.

Let us mention another very closely related model to 1-RMDPs and 1-RSSGs, namely (multi-type) Branching Markov Deci-
sion Processes (BMDPs) and Branching Simple Stochastic Games (BSSGs), which constitute a natural generalization of the purely
stochastic multi-type Branching Processes ([25]), to the controlled setting of MDPs and SSGs. These stochastic processes are
heavily used in population biology and many other areas of applied probability. They model the stochastic evolution of a
population of objects of possibly distinct types. In each generation, each object of a given type in the population gives rise
to a (possibly empty) set of offspring objects of possibly distinct types in the next generation. In the purely probabilistic

310 K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328

setting, the offspring in the next generation for an object of type, t , are determined by a probability distribution associated
with the type t . In the controlled and game settings of BMDPs and BSSGs, the players control particular types of objects
and can decide between a (finite) set of offspring choices for each object of that type in each generation. Players can use
whatever strategy they wish to optimize a given objective. See [17,13,14] for more on these models. We mention that the
results of this paper yield directly a polynomial time algorithm, given a BMDP, for computing the optimal (maximum or
minimum) expected number of descendants of a given type for an object of a given type. Speculating somewhat about the ap-
plications of such models, they could be useful, for example, if the branching process represents a population of different
types of cells, where some cell types are benign whereas other cell types are malignant. If an adversary (say a foreign
virus) can control the reproductive behavior of some cell types, then such a model could be used to compute (in P-time),
the worst-case expected total number of malignant cells that can arise, under the worst possible adversary. Alternatively, if
medicines could be introduced to control the reproductive behavior of some cell types, then such a model could be used to
compute (in P-time), the expected total number of malignant cells that would arise under the best possible medicine (and
to compute that “medicine”, i.e., an optimal strategy).

We assume strictly positive rewards on all transitions (rules) in this paper, and this assumption is essential for our results
regarding 1-RMDPs and 1-RSSGs. However, for analyzing, e.g., the optimal expected total number of descendants of given
types for BMDPs and BSSGs, we only need the assumption that rewards are non-negative, and all of our results would
remain intact (this is essentially because BMDPs operate under a simultaneous derivation law, unlike, e.g., context-free
grammars with left-most derivation). The assumption of strictly positive rewards is very natural for modeling the opti-
mal/pessimal expected running time in probabilistic procedural programs: each discrete step of the program is assumed to
cost some non-zero amount of time. Strictly positive rewards also endow our games with a number of important robustness
properties. In particular, in the above context-free grammar presentation, with strictly positive rewards these games have
the same value regardless of what derivation law is imposed. This is not the case if we also allow 0 rewards on grammar
rules. In that case, even in the single-player setting, the game value can be wildly different (e.g., 0 or ∞) depending on the
derivation law (e.g., left-most, or right-most, or simultaneous). We shall explain all this in more detail in Section 6.1, using
explicit examples of such games presented as context-free grammars.

As we shall show, none of these pathologies arise in the setting with strictly positive rewards. In this case, all derivation
rules for the context-free grammar presentation of these games yield precisely the same value. The left-most derivation
rule is the one that captures precisely 1-RMDPs and 1-RSSGs. We show that 1-RMDPs and 1-RSSGs with strictly positive
rewards have a value which is either rational (with polynomial bit complexity) or ∞, and which arises as the least fixed
point solution (over the extended reals) of an associated system of linear-min-max equations. Both players do have optimal
strategies in these games, and in fact we show the much stronger fact that both players have stackless and memoryless (SM)
optimal strategies: deterministic strategies that depend only on the current state of the running component, and not on the
history or even the stack of pending recursive calls.

We provide polynomial-time algorithms for computing the exact value for both maximizing and minimizing 1-RMDPs
with positive rewards, and for computing optimal strategies. The two cases of maximization and minimization are not
equivalent and require separate treatment. We show that for the 2-player games (1-RSSGs) deciding whether the game
has value at least a given r ∈ Q ∪ {∞} is in NP ∩ coNP. We also describe a practical simultaneous strategy improvement
algorithm, analogous to similar algorithms for finite-state stochastic games, and show that it converges to the game value
(even if it is ∞) in a finite number of steps. A corollary is that computing the game value and optimal strategies for these
games is contained in the class PLS of polynomial local search problems ([27]).

We also observe that these games are “harder” than Condon’s finite-state SSG games [7] in the following senses. We
reduce Condon’s quantitative decision problem for finite-state SSGs to a special case of 1-RSSG games with strictly positive
rewards: namely to deciding whether the game value is ∞. By contrast, if finite-state SSGs are themselves equipped with
strictly positive rewards, we can decide in P-time whether their value is ∞. Moreover, it has been shown that computing
the value of Condon’s SSG games is in the complexity class PPAD for which the 2-player Nash Equilibrium problem [6]
(and the ≥ 3 player ε-NE problem [9]) is complete (see [18] and [28]). The same proof however does not work for 1-RSSGs
with positive rewards, and we do not know whether these games are contained in PPAD. Technically, the problem is that
in the expected reward setting the domain of the fixed point equations is not compact, and indeed the expected reward
is potentially ∞, so the problem cannot in an obvious way be formulated as a Brouwer fixed point problem. In these
senses, the 1-RSSG reward games studied in this paper appear to be “harder” than Condon’s SSGs, and yet as we show
their quantitative decision problems remain in NP ∩ coNP. Finally, we show that the more general multi-exit RSSG model is
undecidable. Namely, even for single-player multi-exit RMDPs with strictly positive rewards, it is undecidable whether the
optimal reward value is ∞.

Applications of these models to the analysis of expected running time of recursive probabilistic programs, as in the tool
PReMo ([39]), was the original motivation for the work in this paper. The tool PReMo [39] implements a number of analyses
for RMCs, 1-RMDPs, and 1-RSSGs. In particular, the strategy improvement algorithm of this paper was implemented and
incorporated in that tool. It is worth noting that it was shown by Friedmann [22] that essentially the same simultaneous
strategy improvement algorithm requires exponentially many steps in the worst case to compute the optimal value for
parity games and for Condon’s finite-state SSGs, and similar results were shown by Fearnley [20] for MDPs with a total or
average reward criterion. Despite this worst-case behavior, the algorithm performs very well in practice on a wide range of
instances, including for 1-RSSGs. See [37] for some encouraging experimental results showing how simultaneous strategy

K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328 311

improvement outperforms some other standard iterative methods for computing the fixed point of max-linear equation
systems.

Related work. Two (equivalent) purely probabilistic recursive models, Recursive Markov chains and probabilistic Pushdown
Systems (pPDSs) were introduced in [16] and [11], and have been studied in several papers subsequently. These models
were extended to the optimization and game setting of (1)-RMDPs and (1)-RSSGs in [17], and studied further in [2,3,13,14].
As mentioned earlier, the games considered in these earlier papers had the goal of maximizing/minimizing termination or
reachability probability, which can be irrational. Furthermore, the problems of computing an optimal strategy, as well as
quantitative decision problems regarding the optimal probability (e.g., decide whether it exceeds a given rational bound),
encounter long standing open problems in numerical computation, even to place their complexity in NP. On the other hand,
the qualitative termination decision problem (“is the termination game value exactly 1?”) for 1-RMDPs was shown to be
in P, and for 1-RSSGs in NP ∩ coNP, in [17]. These results are related to the results in the present paper as follows. If
termination occurs with probability strictly less than 1 in a strictly positive reward game, then the expected total reward
is ∞. But the converse does not hold: the expected reward may be ∞ even when the game terminates with probability 1,
because there can be null recurrence in these infinite-state games. Thus, not only do we have to address this discrepancy,
but also our goal in this paper is quantitative computation (to compute the optimal reward), whereas in [17] it was purely
qualitative (almost sure termination).

The problem of approximating the optimal termination probabilities for 1-RMDPs (and BMDPs) was addressed in [13],
which gave efficient algorithms for computing approximately the optimal termination probabilities of 1-RMDPs within any
desired accuracy in polynomial time in the size of the given 1-RMDP and the number of bits of precision, and for computing
ε-optimal strategies. Efficient algorithms for approximately optimizing the reachability probabilities of BMDPs in polynomial
time were presented in [14] (these algorithms do not apply however to reachability analysis of 1-RMDPs). Our focus in
this paper however is on exact optimization, and the objective is based on rewards rather than termination/reachability
probability.

Condon [7] originally studied finite-state SSGs with termination objectives (no rewards), and showed that the quantitative
termination decision problem, i.e. determining whether the value of the game (the optimal termination probability) is
greater than or equal to a given rational number, is in NP ∩ coNP; it is a well-known open problem whether this problem is
in P. In [8] strategy improvement algorithms for SSGs were studied, based on variants of the classic Hoffman–Karp algorithm
[26]. As noted earlier, more recently it was shown by Friedmann [22] that the simultaneous strategy improvement method
requires exponentially many steps in the worst case to compute the optimal value for both parity games and for Condon’s
finite-state SSGs.

There has been some work on augmenting purely probabilistic multi-exit RMCs and pPDSs with rewards in [12], as well
as work on analyzing the distribution of the runtime of RMCs and pPDSs, proving effective tail bounds for it (using poly-
nomial space) [4]. These results however are for purely probabilistic RMCs without players. We in fact show in Theorem 20

that the basic questions for analyzing multi-exit RMDPs and RSSGs with positive rewards are undecidable.
An independent paper by Gawlitza and Seidl [23] considers monotone linear-min-max equations with potentially negative

constant terms (with entirely different motivation coming from abstract interpretation), and studies a different kind of
strategy improvement algorithm for computing their least fixed point solution over the full extended reals. Their work is
related to ours, but in subtle ways. In particular their notion of LFP over the extended reals may yield negative values or
even −∞, and they assume that “strategies” (choices for the max and min operators) are memoryless, rather than proving
a (memoryless) determinacy result. Moreover, their strategy improvement algorithm requires a particular initial strategy
(otherwise, it can fail) and thus is not directly formulable as a local search. Unlike our results, their results apparently
do not yield containment in NP ∩ coNP for the relevant decision problems (only containment in NP is known, see [23]).
Nevertheless, there appear to be close connections between their work and ours that could be explored further.

Models related to 1-RMDPs have been studied in Operations Research under the name Branching Markov Decision Chains
(a controlled version of multi-type Branching processes). These are close to Branching Markov Decision Processes with
non-negative rewards and to the single-player SCFG model, but with simultaneous derivation law. They were studied by
Pliska [32], in a related form by Veinott [36], and extensively by Rothblum and co-authors (e.g., [34]). Besides the restriction
to simultaneous derivation, these models were restricted to the single-player MDP case, and to simplify their analysis they
were typically assumed to be “transient” (i.e., the expected number of visits to a node was assumed to be finite under all
strategies). None of these works yield a P-time algorithm for optimal expected rewards for 1-RMDPs with positive rewards.
Although we do not directly appeal to any of these results (and in particular to the eigenvalue characterisations they
typically involve), our results are related and further generalize a related model to a 2-player setting.

Another work [5], studies the problem of finding a strategy that minimizes the expected number of transitions taken
before termination for a given one-counter Markov Decision Process (OC-MDP). The OC-MDP model can be seen as a special
subclass of RMDPs, but it is not comparable with 1-RMDPs: there are (countable state) Markov decision processes generated
by 1-RMDPs that cannot be generated by OC-MDPs and vice versa. It was shown in [5] that an ε-optimal strategy for the
objective of minimizing the expected number of transitions taken can be computed in time linear in 1/ε and exponential
in the encoding size of the OC-MDP, and that finding such a strategy cannot be done in polynomial time unless P=NP.

Finally, the model studied in this paper has been extended to a model with time constraints [35] and concurrent game
setting in [38]. In the former, each transition has an associated time constraint and can only be taken if this constraint

312 K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328

is satisfied. The results in this paper generalize well to such a setting with an exponential blow-up in the computational
complexity of the problems studied. In the latter, at each step both players make a (possibly probabilistic) choice among the
ones available to him at the current node. The next state and reward generated by this step is dependent on the selected
pair. Such games do not belong to the class of perfect-information games, because the choices are made currently and
independently of each other. In this concurrent setting, optimal and even ε-optimal strategy may have to be probabilistic.
Furthermore, optimal strategies may require infinite amount of memory in general, but it was shown in [38] that both
players have ε-optimal probabilistic stackless & memoryless strategies and can be found using a natural generalization of
the strategy improvement algorithm presented in this paper. The quantitative decision questions regarding the value of such
a game as well as checking whether the value is infinite can be answered in PSPACE and turns out to be as hard as the
square root sum problem.

Organization of the paper. The rest of the paper is organized as follows. Section 2 gives basic definitions of the models
and the problems studied, and presents relevant background. It shows also how to construct from a given 1-RSSG with
positive rewards a linear min-max system of equations whose least fixed point gives the optimal rewards for every starting
vertex. Section 3 shows that both players have stackless-memoryless optimal strategies, and also proves that a strategy
improvement algorithm can be used to compute optimal strategies. Section 4 presents polynomial-time algorithms for both
minimizing and maximizing 1-RMDPs with positive rewards. It also shows that the problem for 1-RSSGs is in NP ∩ coNP,
and furthermore the qualitative problem of determining if the optimal reward in infinite is at least as hard as Condon’s
quantitative problem for finite-state SSGs. In Section 5 we show that the problem for multi-exit RMDPs is undecidable.
Section 6 explains the close relationship of 1-RMDPs and 1-RSSGs with positive rewards with the analogous reward models
of Branching MDPs and games (BMDPs and BSSGs) and Stochastic context-free grammar MDPs and games.

2. Definitions and background

Let R>0 = (0, ∞) denote the positive real numbers, R≥0 = [0, ∞), R = [−∞, ∞], R∞
>0 = (0, ∞], and R∞

≥0 = [0, ∞]. The

extended reals R have the natural total order. We assume the following usual arithmetic conventions on the non-negative
extended reals R∞

≥0: a · ∞ = ∞, for any a ∈ R∞
>0; 0 · ∞ = 0; a + ∞ = ∞, for any a ∈ R∞

≥0 . This extends naturally to matrix
arithmetic over R∞

≥0 .

We first define general multi-exit RSSGs (for which basic reward problems turn out to be undecidable). Later, we will
confine these to the 1-exit case, 1-RSSGs. A visual depiction of a RSSG is given in Fig. 1 and its detailed description follows
after the formal definition.

A Recursive Simple Stochastic Game (RSSG) with positive rewards is a tuple A = (A1, . . . , Ak), where each component Ai =

(Ni, B i, Y i, Eni, Exi, pli, δi, ξi) consists of:

• A set Ni of nodes, with a distinguished subset Eni of entry nodes and a (disjoint) subset Exi of exit nodes.

• A set B i of boxes, and a mapping Y i : B i
→ {1, . . . , k} that assigns to every box (the index of) a component. To each box
b ∈ B i , we associate a set of call ports, Callb = {(b, en) | en ∈ EnY (b)}, and a set of return ports, Retb = {(b, ex) | ex ∈ ExY (b)}.
Let Calli = ∪b∈B i

Callb , Reti = ∪b∈B i
Retb , and let Q i = Ni ∪ Calli ∪ Reti be the set of all nodes, call ports and return ports;

we refer to these as the vertices of component Ai .

• A mapping pli : Q i
→ {0, 1, 2} that assigns to every vertex a player (Player 0 represents “chance” or “nature”). We
assume pli(u) = 0 for all u ∈ Calli ∪ Exi .

• A transition relation δi ⊆ (Q i × (R>0 ∪ {⊥}) × Q i × R>0), where for each tuple (u, x, v, cu,v) ∈ δi , the source u ∈ (Ni \

Exi) ∪ Reti , the destination v ∈ (Ni \ Eni) ∪ Calli , and x is either (i) pu,v ∈ (0, 1] (the transition probability) if pli(u) = 0,
or (ii) x = ⊥ if pli(u) = 1 or 2; and cu,v ∈ R>0 is the positive reward associated with this transition. A transition
(u, x, v, cu,v) ∈ δi can be viewed as an edge from vertex u to vertex v with label (x, cu,v), and the transition relation δi
as a set of labelled edges on the vertices of Ai (see Fig. 1). We assume that for any two vertices, u and v , there is at most
one transition in δi from u to v . For computational purposes we assume the given probabilities pu,v and rewards cu,v

are rational. Probabilities must also satisfy consistency: for every u ∈ pl
−1
i

(0),
∑

{v ′|(u,pu,v′ ,v ′,cu,v′)∈δi}
pu,v ′ = 1, unless u

is a call port or exit node, neither of which have outgoing transitions, in which case by default
∑

v ′ pu,v ′ = 0.

• Finally, the mapping ξi : Calli
→ R>0 maps each call port u in the component to a positive rational value cu = ξ(u).
(This mapping reflects the “cost” of a function call, but is not strictly necessary. This cost can be 0 and all our results
would still hold.)

Example. The example RSSG in Fig. 1 has two components A1 and A2 , i.e., k = 2. Component A1 has three entry nodes
(en1 , en2 and en3), two internal nodes (n1 and n2) and one exit node ex1 . Component A2 has two entry nodes (en4 and
en5), one internal nodes (n3) and one exit node ex2 .

Component A1 has two boxes b1 and b2 mapped to A1 and A2 , respectively. As box b1 is mapped to A1 , i.e., Y (b1) = 1,
it has three entry ports ((b1, en1), (b1, en2), (b1, en3)) and one exit port (b1, ex1). Box b2 is mapped to A2 , i.e., Y (b2) = 2,
and has two entry ports ((b2, en4), (b2, en5)) and one exit port ((b2, ex2)). Component A2 has only one box b3 mapped to
A1 , i.e., Y (b3) = 1, which has three entry ports ((b3, en1), (b3, en2), (b3, en3)) and one exit port ((b3, ex1)).

K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328 313

We can see that nodes en2 , (b1, ex1) and n3 belong to player 1, i.e., pl(en) = pl((b1, ex1)) = pl(n3) = 1. Nodes en1 and
en5 belong to player 2, i.e., pl(en1) = pl(en5) = 2. For all other nodes x we have pli(x) = 0, i.e., they are random nodes.

An example of a probabilistic transition is (n2, 0.1, ex1, 3) ∈ δ1 , which gives reward 3 to Player 1 with probability 0.1. In
the figure, it is represented by an arrow from n2 to ex1 with (0.1, 3) as its label. An example of a controlled transition is
(en5, ⊥, n3, 1) ∈ δ2 , which gives reward 1 to Player 1 if Player 2, while at en5, decides to use it. In the figure, it is represented
by an arrow from en5 to n3 with (⊥, 1) as its label. In this particular example ξ ≡ 0. �

We use the symbols N, B, Q , δ, etc., without a subscript, to denote the union over all components. Thus, e.g., N = ∪k
i=1Ni

is the set of all nodes of A, δ = ∪k
i=1δi the set of all transitions, etc. Let n(u) =

{
v | (u,⊥, v, cu,v) ∈ δ

}
denote the neighbors

of u if u is a player 1 or player 2 vertex and n(u) =
{
v | (u, pu,v , v, cu,v) ∈ δ

}
otherwise. An RSSG A defines a global

denumerable simple stochastic game, with rewards, MA = (V = V0∪V1∪V2, �, pl) as follows. The global states V ⊆ B∗ ×Q

of MA are pairs of the form 〈β, u〉, where β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A. The
states V ⊆ B∗ × Q and transitions � are defined inductively as follows:

1. 〈ε, u〉 ∈ V , for u ∈ Q . (ε denotes the empty string.)
2. If 〈β, u〉 ∈ V & (u, x, v, c) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉, c) ∈ �.

3. If 〈β, (b, en)〉 ∈ V & (b, en) ∈ Callb , then 〈βb, en〉 ∈ V & (〈β, (b, en)〉,1, 〈βb, en〉, ξ((b, en))) ∈ �.

4. If 〈βb, ex〉 ∈ V & (b, ex) ∈ Retb , then 〈β, (b, ex)〉 ∈ V & (〈βb, ex〉,1, 〈β, (b, ex)〉,0) ∈ �.

The mapping pl : V
→ {0, 1, 2} is given as follows: pl(〈β, u〉) = pl(u) if u is in Q \ (Call ∪ Ex), and pl(〈β, u〉) = 0 if
u ∈ Call∪ Ex. The set of states V is partitioned into V0 , V1 , and V2 , where V i = pl−1(i). We consider MA with various initial
states of the form 〈ε, u〉, denoting this by Mu

A . Some states of MA are terminating states and have no outgoing transitions.
These are states 〈ε, ex〉, where ex is an exit node. An RSSG where V2 = ∅ (V1 = ∅) is called a maximizing (minimizing,
respectively) Recursive Markov Decision Process (RMDP); an RSSG where V1 ∪ V2 = ∅ is called a Recursive Markov Chain (RMC)
([16]). A 1-RSSGs is a RSSG where every component has one exit, and we likewise define 1-RMDPs and 1-RMCs. (The example
RSSG in Fig. 1 is in fact a 1-RSSG, because each component has just one exit.) This entire paper is focused on 1-RSSGs and
1-RMDPs, except for Theorem 20, where we show that multi-exit RMDP reward games are undecidable.

In a (1-)RSSG with positive rewards the goal of player 1 (maximizer) is to maximize the total expected reward gained
during a play of the game, and the goal of player 2 (minimizer) is to minimize this. A strategy σ for player i, i ∈ {1, 2}, is
a function σ : V ∗V i
→ V , where, given the history ws ∈ V ∗V i of play so far, with s ∈ V i (i.e., it is player i’s turn to play a
move), σ (ws) = s′ determines the next move of player i, where (s, ⊥, s′, c) ∈ �. (We could also allow randomized strategies,
but this won’t be necessary, as we shall see.)

A special class of strategies extensively used later in this paper are Stackless & Memoryless (SM) strategies. These are
strategies that are deterministic, and depend neither on the history of the game nor on the current call stack. In other
words, these strategies only depend on the current vertex. Such strategies, for player i, can clearly be specified by a function
σ : V i
→ V .

Let 	i denote the set of all strategies for player i. A pair of strategies σ ∈ 	1 and τ ∈ 	2 induces in a straightforward
way a Markov chain Mσ ,τ

A = (V ∗, �′), whose set of states is the set V ∗ of histories. Let rk,σ ,τ
u denote the expected reward

in k steps in Mσ ,τ
A , starting at initial state 〈ε, u〉. Formally, we can define the reward gained during the i’th transition,

starting at 〈ε, u〉 to be given by a random variable C i . The total k-step expected reward is simply rk,σ ,τ
u = E[

∑k
i=1 C i].

When k = 0, we of course have r0,σ ,τ
u = 0. Given an initial vertex u, let r∗,σ ,τ

u = limk→∞ rk,σ ,τ = E[
∑∞

i=1 C i] ∈ [0, ∞] denote
the total expected reward obtained in a run of Mσ ,τ

A , starting at initial state 〈ε, u〉. Clearly, this sum may diverge, thus
r∗,σ ,τ ∈ [0, ∞]. Note that, because of the positive constraint on the rewards out of all transitions, the sum will be finite if
and only if the expected number of steps until the run terminates is finite.

We now want to associate a “value” to 1-RSSG games. Unlike 1-RSSGs with termination probability objectives, it unfor-
tunately does not follow directly from general determinacy results such as Martin’s Blackwell determinacy ([30]) that these
games are determined, because those determinacy results require a Borel payoff function to be bounded, whereas the payoff
function for us is unbounded. Instead, let us define for all vertices u r∗u

.
= supσ∈	1

infτ∈	2 r
∗,σ ,τ
u . Also, for a strategy σ ∈ 	1 ,

let r∗,σ
u

.
= infτ∈	2 r

∗,σ ,τ
u , and for τ ∈ 	2 , let r

∗,·,τ
u

.
= supσ∈	1

r
∗,σ ,τ
u . Player 1’s strategy σ is called ε-optimal if r∗,σ

u ≥ r∗u − ε
and is optimal if it is 0-optimal; similarly for player 2’s strategies. A game is determined if for every ε > 0 both players
have ε-optimal strategies and we call it SM-determined if both players have optimal SM strategies. We will first show that
r∗u = infτ∈	2 supσ∈	1

r
∗,σ ,τ
u , so our games are determined and r∗u is the value of the game starting at vertex u, and later that

our games are in fact also SM determined.

We are interested in the following problem: Given A, a 1-RSSG (or 1-RMDP), and given a vertex u in A, compute r∗u if it is finite,
or else declare that r∗u = ∞. Also, compute optimal SM strategies for both players.

In [17] we defined a monotone system of nonlinear min-max equations for the value of the termination probability game
on 1-RSSGs, and showed that its Least Fixed Point solution yields the desired probabilities. Here we show we can adapt
this to obtain analogous linear min-max systems in the setting of positive reward 1-RSSGs. We use a variable xu for each
unknown r∗u . Let x be the vector of all xu, u ∈ Q . The system has one equation of the form xu = Pu(x) for each vertex u.
Suppose that u is in component Ai with (unique) exit ex. There are 5 cases based on the “Type” of u.

314 K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328

1. T ype0: u = ex. In this case: xu = 0.

2. T yperand: pl(u) = 0 & u ∈ (Ni \ {ex}) ∪ Reti : xu =
∑

v∈n(u) pu,v(xv + cu,v).

3. T ypecall: u = (b, en) is a call port: x(b,en) = xen + x(b,ex′) + cu ,

where ex′ ∈ ExY (b) is the unique exit of AY (b) .

4. T ypemax: pl(u) = 1 and u ∈ (Ni \ {ex}) ∪ Reti : xu = maxv∈n(u)(xv + cu,v)

5. T ypemin: pl(u) = 2 and u ∈ (Ni \ {ex}) ∪ Reti : xu = minv∈n(u)(xv + cu,v)

We denote the system in vector form by x = P (x). Given a 1-RSSG, we can easily construct its associated system in linear
time. For vectors x, y ∈ Rn , x ≤ y means x j ≤ y j for every j. Let r∗ ∈ Rn denote the n-vector of r∗u ’s. Let 0 denote an all 0
vector, and define x0 = 0, xk+1 = Pk+1(0) = P (xk), for k ≥ 0.

Theorem 1.

1. The map P : R
n

→ R
n
is monotone on R∞

≥0 and 0 ≤ xk ≤ xk+1 for k ≥ 0.

2. r∗ = P (r∗).

3. For all k ≥ 0, xk ≤ r∗ .

4. For all r′ ∈R∞
≥0 , if r

′ = P (r′), then r∗ ≤ r′ .

5. For all vertices u,

r∗u
.
= sup

σ∈	1

inf
τ∈	2

r∗,σ ,τ
u = inf

τ∈	2

sup
σ∈	1

r∗,σ ,τ
u .

(In other words, these games are determined.)

6. r∗ = limk→∞ xk .

Proof. 1. All equations in the system P (x) are min-max linear with non-negative coefficients and constants, and hence
are monotone.

2. The proof that r∗ = P (r∗) is similar to the one for 1-RSSG termination games from [17], but it uses in a crucial way the
fact that rewards on all transitions are strictly positive.
(a) For u = ex ∈ T ype0 , r∗u = 0, so it fulfills the corresponding equation xu = 0.

(b) For u ∈ T yperand , from the definition r∗u = supσ infτ r
∗,σ ,τ
u it follows that r∗u =

∑
v∈n(u) pu,v(r

∗
v + cu,v). Note that this

holds even when some of the expected rewards are infinite, because if pu,v > 0 and the game starting at v has
infinite reward value, then this is also the case starting at u.

(c) For u ∈ T ypecall , where u = (b, en) is a call port. We claim that

r∗u = r∗en + r∗(b,ex′) + cu (1)

where ex′ is the unique exit of Y (b). First, for any pair of strategies σ and τ of player 1 and 2, respectively, we
define two random variables. Let Kσ ,τ be equal to the total accumulated reward until a play of the game MA start-

ing at u, and using strategies σ and τ , exits the box b, i.e. reaches (b, ex′) in the same (empty) calling context (i.e.,
with the same (empty) call stack), and let Lσ ,τ be the total accumulated reward thereafter (if the play never leaves
b then Lσ ,τ is defined to be 0). Also, let T be the event that the game exits the box b and T ′ be its complement.
Finally, let Pσ ,τ (F) be the probability of the event F occurring in the Markov chain Mσ ,τ

u . From the definition, r∗u =

supσ infτ E(Kσ ,τ + Lσ ,τ) = supσ infτ EKσ ,τ +ELσ ,τ = supσ infτ E(Kσ ,τ |T) ·Pσ ,τ (T) +E(Kσ ,τ |T ′) ·Pσ ,τ (T ′) +E(Lσ ,τ |T) ·
Pσ ,τ (T) + E(Lσ ,τ |T ′) · Pσ ,τ (T ′) = supσ infτ E(Kσ ,τ |T) · Pσ ,τ (T) + ∞ · Pσ ,τ (T ′) + E(Lσ ,τ |T) · Pσ ,τ (T) + 0 · Pσ ,τ (T ′), be-
cause the event T ′ implies that the game never stops and from the assumption that all rewards are strictly positive
E(Kσ ,τ |T ′) has to be ∞ then. We now claim that the last expression is in fact equal to supσ infτ E(Kσ ,τ) +E(Lσ ,τ |T).
This is because equality holds if Pσ ,τ (T) = 1 and otherwise we have Pσ ,τ (T ′) > 0 which implies that both expres-
sions are ∞ and so are equal. Now, supσ infτ E(Kσ ,τ) + E(Lσ ,τ |T) = supσ infτ E(Kσ ,τ) + supσ infτ E(Lσ ,τ |T), because
any pair of player 1’s strategies σ1 and σ2 that are (ε-)optimal for infτ E(Kσ1,τ) and infτ E(Lσ2,τ |T), respectively, can
be easily composed into a single strategy σ that is (ε-)optimal for infτ E(Kσ ,τ) + E(Lσ ,τ |T) and vice versa. Finally,
supσ infτ E(Kσ ,τ) = cu + r∗en , because K

σ ,τ only accumulates reward from the moment the game enters and until it
leaves box b, and the structure of the game between these two moments is isomorphic to a game starting at en.
Similarly, supσ infτ E(Lσ ,τ |T) = r∗

(b,ex′)
, because the event T implies that the game reaches (b, ex′) at some point,

Lσ ,τ accumulates reward only from that moment on and the structure of the game from that point is isomorphic to
a game starting at (b, ex′).

(d) For u ∈ T ypemax , we know that r∗u ≥ r∗v + cu,v for any v ∈ n(u), because otherwise the max player would be able to
increase his expected reward by taking the transition to the node v in the first step. On the other hand, we also
have that r∗u ≤ r∗v + cu,v for some v ∈ n(u), as otherwise no matter what transition player max picks from u, the min

player has a strategy such that max would not be able to obtain the expected total reward r∗u .

K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328 315

(e) For u ∈ T ypemin , we know that r∗u ≤ r∗v + cu,v for all v ∈ n(u), because otherwise it would be better for the min

player to take the transition leading to the node v and giving the max player expected reward r∗v + cu,v which is
lower than r∗u . However, for some v ∈ n(u) it has to be r∗ ≥ r∗v + cu,v , as otherwise player max could always obtain
expected reward higher than r∗u no matter what min player does.

3. Note that P is monotonic, and r∗ is a fixed point of P . Since x0 = 0 ≤ r∗ , it follows by induction on k that xk ≤ r∗ , for
all k ≥ 0.

4. Consider any fixed point r′ of the equation system P (x). We will prove that r∗ ≤ r′ . Let us denote by τ ∗ a strategy for
the minimizer that picks for each vertex the successor with the minimum value in r′ , i.e., for each state s = 〈β,u〉, where
u belongs to player 2 (minimizer) nodes, we choose τ ∗(s) = argminv∈n(u) r

′
v + cu,v (breaking ties lexicographically).

Lemma 2. For all strategies σ ∈ 	1 of player 1, and for all k ≥ 0, rk,σ ,τ ∗
≤ r′ .

Proof. Base case r0,σ ,τ ∗
= 0 ≤ r′ is trivial.

(a) u = ex, then rk,σ ,τ ∗

u = 0 = r′u for all k ≥ 0.

(b) u ∈ T yperand is a random node and after we define a strategy σ ′(θ) = σ (〈ε,u〉θ) we get:

rk+1,σ ,τ ∗

u =
∑

v∈n(u)

pu,v(r
k,σ ′,τ ∗

v + cu,v) ≤
∑

v∈n(u)

pu,v(r
′
v + cu,v) = r′u

based on the inductive assumption and the fact that r′ is a fixed point of P (x).

(c) If u = (b, en) is an entry en of the box b then we claim

rk+1,σ ,τ ∗

u ≤ max
ρ

r
k,ρ,τ ∗

en +max
ρ

r
k,ρ,τ ∗

(b,ex′)
+ cu (2)

where (b, ex′) is the only return port of box b. To see this, note that in any specific trajectory, the total reward
gained in k + 1 steps starting at call port (b, en) is cu plus the remaining reward, which is split into two parts: that
gained in i steps inside box b, and the rest gained in j steps after returning from box b, and such that i + j = k.
Thus clearly the total expected reward in k + 1 steps starting at u is no more than cu plus the expected reward in k
steps starting inside box b (i.e., starting at the entry en of Y (b)) plus the expected gain in k steps starting at (b, ex′).
We now have

max
ρ

r
k,ρ,τ ∗

en +max
ρ

r
k,ρ,τ ∗

(b,ex′)
+ cu ≤ r′en + r′(b,ex′) + cu = r′u (3)

by inductive assumption, and by the fact that r′ is a fixed point of P (x). So, combining equations (2) and (3), we
have rk+1,σ ,τ ∗

u ≤ r′u .

(d) For u ∈ T ypemax we claim

rk+1,σ ,τ ∗

u ≤ max
v∈n(u)

rk,σ
′,τ ∗

v + cu,v

because the player has to move to some neighbor v of 〈ε,u〉 in one step, and thus it cannot gain more that rk,σ
′,τ ∗

,
where σ ′ is defined from σ in the same way as for T yperand . Thus

rk+1,σ ,τ ∗

u ≤ max
v∈n(u)

rk,σ
′,τ ∗

v + cu,v ≤ max
v∈n(u)

r′v + cu,v = r′u

(e) For u ∈ T ypemin we know that τ ∗(u) = argminv∈n(u)(r
′
u + cu,v) = v∗ , so:

rk+1,σ ,τ ∗

u = r
k,σ ′,τ ∗

v∗ + cu,v∗ ≤ r′v∗ + cu,v∗ = min
v∈n(u)

(r′v + cu,v) = r′u �

Now by the lemma we have r∗,σ ,τ ∗

u = limk→∞ r
k,σ ,τ ∗

u ≤ r′u for every vertex u and for any max player strategy σ , so

supσ r
∗,σ ,τ ∗

u ≤ r′u . Thus for all vertices u:

r∗u = sup
σ

inf
τ

r∗,σ ,τ
u ≤ inf

τ
sup
σ

r∗,σ ,τ
u ≤ sup

σ
r∗,σ ,τ ∗

u ≤ r′u (4)

5. In equation (4) above, choose r′ = r∗ . Then we have, for all vertices u,

sup
σ

inf
τ

r∗,σ ,τ
u = inf

τ
sup
σ

r∗,σ ,τ
u .

6. We know that z = limk→∞ xk exists in [0, ∞], because it is a monotonically non-decreasing sequence (note some entries
may be infinite). In fact we have z = limk→∞ Pk+1(0) = P (limk→∞ Pk(0)), and thus z is a fixed point of the equation
P (x) = x. So from (4) we have r∗ ≤ limk→∞ xk . Since xk ≤ r∗ for all k ≥ 0, limk→∞ xk ≤ r∗ and thus limk→∞ xk = r∗ . �

316 K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328

The following is a simple corollary of the proof.

Corollary 3. In 1-RSSG positive reward games, theminimizer has an optimal deterministic Stackless and Memoryless (SM) strategy.

Proof. It is enough to consider the strategy τ ∗ , from Part 4 of Theorem 1, when we let r′ = r∗ . For then, by equation (4),
we have r∗u = supσ r∗,σ ,τ ∗

= infτ supσ r∗,σ ,τ . �

Note that for a 1-RMC (i.e., without players) with positive rewards, the vector r∗ ∈ (R∞
≥0)

n of expected total rewards is
the LFP of a system x = Ax + b, for some non-negative matrix A ∈ Rn×n , A ≥ 0, and a positive vector b > 0. We will exploit
this fact later in various proofs.

3. SM-determinacy and strategy improvement

We now prove SM-determinacy for 1-RSSGs with positive rewards, and we also show that strategy improvement can be
used to compute the values and optimal strategies for 1-RSSG positive reward games. Consider the following (simultaneous)
strategy improvement algorithm.

Initialization: Pick some (any) SM strategy, σ , for player 1 (maximizer).

Iteration step: First compute the optimal value, r∗,σ
u , starting from every vertex, u, in the resulting minimizing 1-RMDP. (We

show in Theorem 8 that this can be done in P-time.)

Then, update σ to a new SM strategy, σ ′ , as follows. For each vertex u ∈ T ypemax , if σ (u) = v and u has a neighbor w �= v ,
such that r∗,σ

w +cu,w > r
∗,σ
v +cu,v , let σ ′(u) := w (e.g., choose a w that maximizes r∗,σ

w +cu,w). Otherwise, let σ ′(u) := σ (u).

Repeat the iteration step, using the new σ ′ in place of σ , until no further local improvement is possible, i.e., stop when
σ ′ = σ .

Theorem 6 below shows that this algorithm always halts, and produces an optimal final SM strategy for player 1. (The
proof shows it works even if we switch any non-empty subset of improvable vertices in each iteration.) Combined with
Corollary 3, both players have optimal SM strategies, i.e., the games are SM-determined.

Recall that for a 1-RMC (i.e., without players) with positive rewards, the vector r∗ of expected total rewards is the LFP of
a system x = Ax + b, for some non-negative matrix A ∈ Rn×n , A ≥ 0, and a positive vector b > 0. In the proof of Theorem 6

we shall need the following basic fact about matrix inequalities.1

Lemma 4. For any x ∈ Rn
≥0 , A ∈ (R∞

≥0)
n×n and b ∈ (R∞

>0)
n , if x ≤ Ax + b then x ≤ (

∑∞
k=0 Ak)b. This holds even if for some indices i

we have bi = 0, as long as the entries in any such row i of the matrix A are all zero.

Proof. Let D =
∑∞

k=0 Ak and y = Db. We have to prove that x ≤ y. Some of the entries of D can be infinite. Let R =
{r1, r2, . . . , rm} be the set of indices of the rows of D that contain at least one ∞ entry. For every r ∈ R , yr =

∑n
i=1 Dr,ibi .

Since bi > 0 for all i and Dr,i is ∞ for at least one i, we have yr = ∞ and so xr ≤ yr is trivially fulfilled for every r ∈ R .
Now let us construct a new matrix A′ by zeroing all rows of A that are in R . Similarly, let x′ be the vector x where entries
xr for all r ∈ R were zeroed. Let D ′ =

∑∞
k=0 A′k .

We will prove that x′ ≤ A′x′ + b. For entries r ∈ R , it is trivial as (A′x′)r + br = 0 + br ≥ 0 = x′
r . If r /∈ R then x′

r = xr and

(A′x′)r =

n∑

i=1

A′
r,ix

′
i =

∑
{
i|A′

r,i
>0

}
A′
r,ix

′
i

Proposition 5. If Ai, j > 0, and for some k we have D j,k = ∞ then D i,k = ∞.

Proof. We have that D = I + AD and so D i,k = δik +
∑n

l=1 Ai,lDl,k ≥ Ai, jD j,k = ∞. (where δik is equal to 1 if i = k and 0
otherwise). �

Suppose that r /∈ R . If for some i, x′
i
�= xi , then i ∈ R and we must have D i, j = ∞ for some j. If A′

r,i
> 0 then Ar,i = A′

r,i
,

and from Proposition 5 we get that Dr, j = ∞, which contradicts the fact that r /∈ R . Thus for r /∈ R , and for i such that
A′
r,i

> 0, we must have x′
i
= xi and A′

r,i
= Ar,i . Thus (A′x′)r + br = (Ax)r + br ≥ xr = x′

r for all r /∈ R . Hence we can conclude
that x′

r ≤ (A′x′)r + br for all r.

1 Note that if we assume both that A ∈ (R≥0)
n×n and that (

∑∞
k=0 Ak) converges, the lemma is trivial: we have (I − A)−1 = (

∑∞
k=0 Ak), and thus x ≤

Ax + b ⇒ x − Ax ≤ b ⇒ (I − A)x ≤ b ⇒ x ≤ (I − A)−1b. But we need this lemma even when (
∑∞

k=0 Ak) is not convergent.

K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328 317

We will now prove that limk→∞ A′k = 0. For contradiction, note that if we had limk→∞(A′k)i, j �= 0 for some i, j then it

must be the case that D ′
i, j

= ∞, because (A′k)i, j ≥ 0 for all k, and for some ε > 0 and infinitely many k, (A′)k
i, j

> ε . Since

A′ ≤ A, we get that A′k ≤ Ak for any k ≥ 0 and thus
∑∞

k=0 A′k ≤
∑∞

k=0 Ak . Therefore if D ′
i, j

= ∞ then D i, j = ∞, but this
means that all entries in the i-th row of A were zeroed in order to obtain A′. However if the i-th row in A′ has only zeroes,
then so does the i-th row in A′k for any k. This would contradict the assumption that limk→∞(A′k)i, j �= 0.

Now, substituting x′ by A′x′ +b in x′ ≤ A′x′ +b, we get that x′ ≤ A′x′ +b ≤ A′(A′x′ +b) +b = A′2x′ + A′b +b ≤ A′2(A′x′ +

b) + A′b + b = A′3x′ + (A′2 + A′ + I)b and by iterating we can see that x′ ≤ A′l+1
x′ + (

∑l
k=0(A

′)k)b for any l ≥ 0. All entries

of x′ are finite and limk→∞ A′k = 0, so by taking the limit l → ∞ we get x′ ≤ (
∑∞

k=0(A
′)k)b ≤ (

∑∞
k=0(A)k)b = y. This shows

that also for r /∈ R we have xr ≤ yr , which concludes the proof that x ≤ y.

Finally, we show now that we can also handle the case when for some indices i, bi = 0 as long as each such a i-th row
in A contains only 0s. We proceed by induction on the number, d, of indices i such that bi = 0. For the base case d = 0,
the claim was already proved. For the inductive case, suppose d > 0, and let i be the smallest such index. Since we assume
Ax + b ≥ x, it must be that xi = 0. For any matrix M , let M ′ denote the matrix obtained by removing the i-th row and
the i-th column from M . Similarly, for a vector v by v ′ denote the vector v with the i-th entry removed. If xi = 0, then
M ′x′ = (Mx)′ for any matrix M . Also, since the i-th row of A contains only 0s we have that (A′)k = (Ak)′ for any k ≥ 0 and
so

∑∞
k=0(A

′)k = (
∑∞

k=0 Ak)′ . Now, from Ax + b ≥ x we get (Ax + b)′ ≥ x′ and so A′x′ + b′ ≥ x′ . But it is easy to see that A′

and b′ have the same property as before: if b′
j
= 0 then the j-th row of A′ consists of only 0s. Moreover, there are now

d − 1 such indices. Thus, from the inductive hypothesis, x′ ≤ (
∑∞

k=0(A
′)k)b′ = (

∑∞
k=0 Ak)′b′ = ((

∑∞
k=0 Ak)b)′ , and because

the inequality is trivial for the i-th position of x, we conclude that x ≤ (
∑∞

k=0 Ak)b. �

Theorem 6. (1) SM-determinacy. In 1-RSSG positive reward games, both players have optimal SM strategies (and thus by Corollary 3
these games are SM determined).

(2) Strategy Improvement. Moreover, we can compute the value and optimal SM strategies using the above simultaneous strategy
improvement algorithm.

(3) Computing the value and optimal strategies in these games is contained in the class PLS.

Proof. Let σ be any SM strategy for player 1. Consider r∗,σ
u = infτ∈	2 r

∗,σ ,τ
u . (Note that some entries in the vector r∗,σ may

be ∞.) First, note that if r∗,σ = P (r∗,σ) then r∗,σ = r∗ . This is because, by Theorem 1, r∗ ≤ r∗,σ , and on the other hand, σ
is just one strategy for player 1, and for every vertex u, r∗u = supσ ′∈	1

r
∗,σ ′

u ≥ r
∗,σ
u . Now we claim that, for all vertices u such

that u /∈ T ypemax , r
∗,σ
u satisfies its equation in x = P (x). In other words, r∗,σ

u = Pu(r
∗,σ). To see this, note that for vertices u

of Types {0, call, rand}, no choice of either player is involved and the equation holds by definition of r∗,σ (In particular, the
expected reward value at a call u is cu plus the sum of the expected reward values of the game starting at the entry inside
the box, and the game starting at the return port.) For nodes u ∈ T ypemin , we have the equation xu = minv∈n(u) xv + cu,v .
But note that the best minimizer can do against strategy σ , starting at 〈ε,u〉, is to move to a neighboring vertex v such that
v = argminv∈n(u)(r

∗,σ
v + cu,v). Thus, the only equations that may fail are those for u ∈ T ypemax , xu = maxv∈n(u)(xv + cu,v).

Suppose σ (u) = v , for some neighbor v . Clearly then, r∗,σ
u = r

∗,σ
v + cu,v . Thus, r

∗,σ
u ≤ maxv ′∈n(u)(r

∗,σ
v ′ + cu,v ′). Thus equality

fails iff there is another vertex w �= v , with (u, ⊥, w) ∈ δ, such that r∗,σ
v + cu,v < r

∗,σ
w + cu,w .

Suppose now that the nodes (u1, u2, . . .un) are all those nodes where the SM strategy σ is not locally optimal, i.e., for
i = 1, 2, . . . , n, σ (ui) = v i , and thus r∗,σ

ui
= r

∗,σ
v i + cui ,v i , but there is some w i such that r∗,σ

v i + cui ,v i < r
∗,σ
w i

+ cui ,w i
. Let

u = (u1, u2, . . . , un) and similarly define v and w. Consider now a revised SM strategy σ ′ , which is identical to σ , except
that σ ′(ui) = w i for all i. Next, consider a parametrized 1-exit RSSG, A(t) where t = (t1, t2, . . . , tn), which is identical to A,
except that all edges out of vertices ui are removed, and replaced by a single probability 1 edge labeled by reward ti , to the
exit of the same component node ui is in. Fixing the value of the vector t ∈ [0, ∞]n determines an 1-RSSG, A(t). Note that
if we restrict SM strategies σ or σ ′ to vertices other than those in u, then they both define the same SM strategy for the
1-RSSG A(t). Define r∗,σ ,τ ,t

z to be the expected total reward starting from 〈ε, z〉 in the Markov chain Mz,σ ,τ
A(t) . Now, for each

vertex z, define the function f z(t) = infτ∈	2 r
∗,σ ,τ ,t
z . In other words, f z(t) is the infimum of the expected rewards, over all

strategies of player 2, starting at 〈ε, z〉 in A(t). This reward is parametrized by t. Now, let tσ be a vector such that tσui
= r

∗,σ
ui

,
and observe that f z(tσ) = r

∗,σ
z for every z. This is so because any strategy for minimizing the total reward starting from z

would, upon hitting a state 〈β, ui〉 in some arbitrary context β , be best off minimizing the total expected reward starting
from 〈β, ui〉 until that context is exited, (and unless the minimizer has a strategy that assures the context is exited with
probability 1, the expected reward will be ∞).

Note that, by Corollary 3, in the 1-RSSG reward game on A(t), for any values in vector t, and any start vertex z, minimizer
has an optimal SM strategy τz,t , such that τz,t = argminτ∈	2 r

∗,σ ,τ ,t
z . Let g(z,τ)(t) = r

∗,σ ,τ ,t
z . Note that f z(t) = minτ gz,τ (t),

where the minimum is over SM strategies. Now, note that the function gz,τ (t) is the expected reward in a positive reward
1-RMC starting from a particular vertex, and it is given by gz,τ (t) = (limk→∞ Rk(0))z for a linear system x = R(x) with
non-negative coefficients in R , where R(x) = Aσ ,τ x + bσ ,τ (t), for some nonnegative matrix Aσ ,τ , and vector bσ ,τ (t) which
describes the average 1-step rewards from each vertex. All of these 1-step rewards are positive, except that at positions ui

the entry is the variable ti , i.e., b
σ ,τ
ui

(t) = ti . (Note that for all i the ui ’th row vector of Aσ ,τ is all zero.) Simple iteration

318 K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328

then shows that gz,τ (t) = limk→∞ Rk(0)z = ((
∑∞

k=0 Ak
σ ,τ)bσ ,τ (t))z . (Note that if limk→∞ Ak

σ ,τ = 0, then (
∑∞

k=0 Ak
σ ,τ) = (I −

Aσ ,τ)−1 .) Now gz,τ (t) has the following properties: it is a continuous, nondecreasing, and linear function of t ∈ [0, ∞]n ,
and for t ∈ [0, ∞]n , gz,τ (t) ∈ [0, ∞]. Specifically, we can think of it as a function gz,τ (t) = α

z,τ t + β z,τ , where αz,τ =

(αz,τ
1 , αz,τ

2 , . . . , αz,τ
n) and αz,τ

i
, β z,τ ∈ [0, ∞].

Let gτ (t) = (gw1,τ (t′), gw2,τ (t′), . . . , gwn,τ (t′)) where t′ = t + cu,w and let cu,w = (cu1,w1 , cu2,w2 , . . . , cun,wn). Note t ∈
(−cu1,w1 , ∞] ×(−cu2,w2 , ∞] × . . .×(−cun,wn , ∞]. We can represent gτ (t) as Dτ t +dτ , where Dτ = [αw1,τ ; αw2,τ ; . . . ; αwn,τ]

and dτ
j
=

∑n
i=0 α

w j ,τ

i
cui ,w i

+ βw j ,τ . Note that if dτ
j
= 0 then it has to be αw j ,τ = 0 and βw j ,τ = 0, because cui ,w i

> 0 for
all i.

Consider function f(t) = minτ gτ (t). This is well defined, since whatever the values in t, the min player always has, by
Corollary 3, an optimal SM strategy τ ∗ in A(t) such that for any strategy σ of the max player, and any strategy τ of the min

player, and all z we have r∗,σ ,τ ∗,t
z ≤ r

∗,σ ,τ ,t
z . Note that f(t) = (fw1 (t + cu,w), fw2 (t + cu,w), . . . , fwn (t + cu,w)).

Lemma 7. If f(t) > t for some finite vector t, then for any fixed point t∗ of f, t ≤ t∗ .

Proof. Suppose that t∗ is some fixed point of f. Since f(t∗) = minτ gτ (t∗), for some τ ∗ we have gτ ∗
(t∗) = t∗ . From the fact

that f(t) > t, we get that for all τ we have gτ (t) > t. In particular we have gτ ∗
(t) > t, which means that Dτ ∗

t + dτ ∗
> t.

Now, for all i, either dτ ∗

i = 0 and the i-th row in Dτ ∗
is all zeroes, or dτ ∗

i > 0, thus from Lemma 4 we can conclude that
t ≤

∑∞
k=0(D

τ ∗
)kdτ ∗

. However, letting h(t) = gτ ∗
(t) = Dτ ∗

t + dτ ∗
be the linear operator on [0, ∞]n , note that the least fixed

point solution (in [0, ∞]n) of h(t) is t0 = limk→∞ hk+1(0) = limk→∞ Dτ ∗
hk(0) +dτ ∗

=
∑∞

k=0(D
τ ∗

)
k
dτ ∗

. Thus, any other fixed
point of h has to be greater than t0 and in particular t∗ ≥ t0 ≥ t. �

Now, we know that f(tσ − cu,w)i = fw i
(tσ) = r

∗,σ
w i

> r
∗,σ
v i + cui ,v i − cui ,w i

= r
∗,σ
ui

− cui ,w i
= (tσ − cu,w)i which proves that

f(tσ −cu,w) > tσ −cu,w . Therefore, by Lemma 7, any fixed point of f has to be greater or equal to tσ −cu,w . Also, if we switch
strategy σ to σ ′ , then tσ

′
− cu,w is a fixed point of f because f(tσ

′
− cu,w)i = fw i

(tσ
′
) = r

∗,σ ′

w i
= r

∗,σ ′

ui
− cui ,w i

= (tσ
′
− cu,w)i .

Thus tσ ≤ tσ
′
. Since f is non-decreasing, then r∗,σ ′

z = f z(t
σ ′

) ≥ f z(t
σ) = r

∗,σ
z for any z, and for u1, u2, . . . , un the inequality

is strict: r∗,σ ′

ui
− cui ,w i

= r
∗,σ ′

w i
≥ r

∗,σ
w i

> r
∗,σ
v i + cui ,v i − cui ,w i

= r
∗,σ
ui

− cui ,w i
.

Thus, switching to the new SM strategy σ ′ , we get r∗,σ ′
which dominates r∗,σ , and is strictly greater in some coordinates,

including all the ui ’s. There are finitely many SM strategies, thus repeating this we eventually reach some SM strategy σ ∗

that can’t be improved. Thus r∗,σ ∗
= P (r∗,σ ∗

), and by our earlier claim r∗,σ ∗
= r∗ . Thus, maximizer has an optimal SM

strategy, arrived at via simultaneous strategy improvement.

Since each local improvement step can be done in P-time and increases the sum total reward, the problem is in PLS. �

4. The complexity of reward 1-RMDPs and 1-RSSGs

Theorem 8. There is a P-time algorithm for computing the exact optimal value (including the possible value ∞) of a 1-RMDP with
positive rewards, in both the case where the single player aims to maximize, or to minimize, the total reward.

We consider maximizing and minimizing 1-RMDPs separately.

4.1. Maximizing reward 1-RMDPs

We are given a maximizing reward 1-RMDP (i.e., no T ypemin nodes in the 1-RSSG). Let us call the following LP “max-LP”:

Minimize
∑

u∈Q xu

Subject to:

xu = 0 for all u ∈ T ype0
xu ≥

∑
v∈n(u) pu,v(xv + cu,v) for all u ∈ T yperand

xu ≥ xen + x(b,ex′) + cu for all u = (b, en) ∈ T ypecall; ex
′ is the exit of Y (b).

xu ≥ (xv + cu,v) for all u ∈ T ypemax and all v ∈ n(u)

xu ≥ 0 for all vertices u ∈ Q

We show that, when the value vector r∗ is finite, it is precisely the optimal solution to the above max-LP, and further-
more that we can use this LP to find and eliminate vertices u for which r∗u = ∞. Note that if r∗ is finite then it fulfills
all the constraints of the max-LP, and thus it is a feasible solution. We will show that it must then also be an optimal
feasible solution. We first have to detect vertices u such that r∗u = ∞. For the max-linear equation system P , we define the
underlying directed dependency graph G , where the nodes are the set of vertices, Q , and there is an edge in G from u to v
if and only if the variable xv occurs on the right hand side in the equation defining variable xu in P . We can decompose

K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328 319

this graph in linear time into strongly connected components (SCCs) and get an SCC DAG, SCC(G), where the set of nodes
are SCCs of G , and an edge goes from one SCC A to another B , iff there is an edge in G from some node in A to some node
in B . We will call a subset U ⊆ Q of vertices proper if all vertices reachable in G from the vertices in U are already in U .
We also use U to refer to the corresponding set of variables. Clearly, such a proper set U must be a union of SCCs, and the
equations restricted to variables in U do not use any variables outside of U , so they constitute a proper equation system
on their own. For any proper subset U of G , we will denote by max-LP|U a subset of equations of max-LP, restricted to the
constraints corresponding to variables in U and with the new objective

∑
u∈U xu . Analogously we define P |U , and let x|U

be the vector x with entries outside of U removed.

Proposition 9. Let U be any proper subset of vertices.
(I) The vector r∗|U is the LFP of P |U .

(II) If r∗u = ∞ for some vertex u in an SCC S of G, then r∗v = ∞ for all v ∈ S.

(III) If r′ is an optimal bounded solution tomax-LP|U , then r′ is a fixed point of P |U .

(IV) If max-LP|U has a bounded optimal feasible solution r′, then r′ = r∗|U .

Proof. Part (I) follows immediately from the definitions. Part (II) follows by induction on the length of the shortest path
from any vertex v ∈ S to u. In particular, if xv = max{xw , . . .}, and r∗w = ∞, then r∗v = ∞, and likewise for other vertex
types. For part (III), observe that for each vertex u ∈ T ypemax , if r′ is an optimal bounded solution of the max-LP, then at
least one of the constraints xu ≥ xv + cu,v holds tightly, i.e., xu = xv + cu,v . For otherwise, we could decrease the value of xu ,
letting xu = maxv∈n(u)(xv + cu,v), and still satisfy all constraints. The fact that the other types of inequalities are satisfied
tightly follows similarly. For part (IV), if max-LP|U has a feasible bounded solution, then the optimal (minimum) solution r′

is bounded. From part (III), we know r′ is a fixed point of P |U , but then from the objective function of max-LP|U , we know
that r′ is the LFP of P |U , so we must have r′ = r∗|U . �

Theorem 10. We can compute r∗ for the max-linear equation system P , including the values that are infinite, in time polynomial in
the encoding size of the 1-RMDP.

Proof. Build the dependency graph G of P and decompose it into SCC DAG SCC(G). We will find the LFP solution to P ,
bottom-up starting at a bottom SCC, S1 . We solve max-LP|S1 using a P-time LP algorithm. If the LP is feasible then the
optimal (minimum) value is bounded, and we plug in the values of the (unique) optimal solution as constants in all other
constraints of max-LP. We know this optimal solution is equal to r∗|S1 , since S1 is proper. We do the same, in bottom-up
order, for remaining SCCs S2 , . . . , Sl . If at any point after adding the new constraints corresponding to the variables in an
SCC S i , the LP is infeasible, we know from Proposition 9 (IV), that at least one of the values of r∗|S i is ∞. So by Proposition 9

(II), all of them are. We can then mark all variables in S i as ∞, and also mark all variables in the SCCs that can reach S i in
SCC(G) as ∞. Also, at each step we add to a set U the SCCs that have finite optimal values. At the end we have a maximal
proper such set U , i.e., every variable outside of U has value ∞. We label the variables not in U with ∞, obtaining the
vector r∗ . All of this can be done easily in polynomial time. �

Algorithm 1 summarizes all the steps necessary to compute the optimal solution for maximizing 1-RMDPs with positive
rewards.

4.2. Minimizing reward 1-RMDPs

Given a minimizing reward 1-RMDP (i.e., no T ypemax nodes) we want to compute r∗ . Call the following LP “min-LP:”

Maximize
∑

u∈Q xu

Subject to:

xu = 0 for all u ∈ T ype0
xu ≤

∑
v∈n(u) pu,v(xv + cu,v) for all u ∈ T yperand

xu ≤ xen + x(b,ex′) + cu for all u = (b, en) ∈ T ypecall; ex
′ is the exit of Y (b).

xu ≤ (xv + cu,v) for all u ∈ T ypemin and all v ∈ n(u)

xu ≥ 0 for all vertices u ∈ Q

Lemma 11. For any proper set U , if an optimal solution x to min-LP|U is bounded, it is a fixed point of the min-linear operator P |U .
Thus, if min-LP|U has a bounded optimal feasible solution then r∗|U is bounded (i.e., is a real vector).

Proof. Note that if an optimal solution x to min-LP|U is bounded then for each vertex u ∈ T ypemin , for at least one of the
constraints xu ≤ xv + cu,v we have equality, i.e., xu = xv + cu,v . For otherwise, we could increase the value of xu , letting
xu = minv∈n(u)(xv + cu,v), and still satisfy all the constraints. Similarly the equality holds for all the other types of vertices.

320 K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328

Algorithm 1: An algorithm for computing the optimal expected reward in maximizing 1-RMDP with positive rewards.

Input: A maximizing 1-RMDP with positive rewards A = (A1, . . . , Ak), where Ai = (Ni , B i , Y i , Eni , Exi , pli , δi , ξi) and Q = ∪i Q i is the set of vertices.
Output: For all u ∈ Q , x∗

u = r∗u , which is the optimal value from 〈ε, u〉 in A.
1 Construct the dependency graph, i.e., the digraph G = (V , E) that has nodes V = Q (the set of vertices of A), and edges E consisting of

{(u, v) | u ∈ Q , v ∈ n(u)} (the edges of A) and for each call port u = (b, en) we also include edges (u, en) and (u, (b, ex′)) where ex′ is the exit of
Y (b).

2 Find a bottom-up SCC decomposition of G and denote it by (V1, . . . , V l).

3 for i = 1, . . . , l do
4 if there is an edge from a node of V i to a node v ∈ V j , j < i where x∗

v = ∞ then

5 set x∗
u = ∞ for all u ∈ V i

6 else

7 Solve the following linear program in variables xu, u ∈ V i ; for all occurrences below of xv , v ∈ V j with j < i we substitute the previously
computed values x∗

v .

Minimize
∑

u∈V i
xu

Subject to:

xu = 0 for all u ∈ T ype0 ∩ V i

xu ≥
∑

v∈n(u) pu,v (xv + cu,v) for all u ∈ T yperand ∩ V i

xu ≥ xen + x(b,ex′) + cu for all u = (b, en) ∈ T ypecall ∩ V i

where ex′ is the exit of Y (b).

xu ≥ (xv + cu,v) for all u ∈ T ypemax ∩ V i and all v ∈ n(u)

xu ≥ 0 for all vertices u ∈ V i

8 If the above program is infeasible then set x∗
u = ∞ for all u ∈ V i . Otherwise set the values of x∗

u for all u ∈ V i to the just found optimal
solution.

Therefore, x is a fixed point of P |U and because we showed r∗|U to be the least fixed point of P |U , r∗|U has to be bounded
as well. �

From min-LP we can remove variables xu ∈ T ype0 , by substituting their occurrences with 0. Assume, for now, that we
can also (efficiently) find all variables xu such that r∗u = ∞. By removing these variables, and eliminating appropriately their
occurrences in all the constraints where they occur, we obtain a new operator P ′ , and a new LP, min-LP′ .

Lemma 12. If ∞ and 0 nodes have been removed, i.e., if r∗ ∈ (0, ∞)n , then r∗ is the unique optimal feasible solution of min-LP′.

Proof. By Corollary 3, player 2 has an optimal SM strategy, call it τ , which yields the finite optimal reward vector r∗ . Once
strategy τ is fixed, we can define a new equation system P ′

τ (x) = Aτ x + bτ , where Aτ is a nonnegative matrix and bτ is a
vector of average rewards per single step from each node, obtained under strategy τ . We then have r∗ = limk→∞(P ′

τ)k(0),
i.e., r∗ is the LFP of x = P ′(x).

Proposition 13. (I) r∗ = (
∑∞

k=0 Ak
τ)bτ .

(II) If r∗ is finite, then limk→∞ Ak
τ = 0, and thus (I − Aτ)−1 =

∑∞
i=0(Aτ)i exists (i.e., is a finite real matrix).

Proof. (I): r∗ = limk→∞(P ′
τ)k+1(0) = limk→∞ Aτ (P ′

τ)k(0) + bτ = limk→∞(
∑k

i=0(Aτ)k)bτ .

(This holds regardless of whether r∗ is finite. We shall use this fact in a subsequent proof.)
(II): since r∗ = P ′

τ (r∗), we have, for any k ≥ 0, r∗ = Ak
τ r

∗ + (I + Aτ + A2
τ + . . . + Ak−1

τ)bτ . The second part of the right
hand side, in the limit, is equal to r∗ , thus Ak

τ r
∗ in the limit is an all-zero vector. It follows that the limit of Ak

τ is an all-zero
matrix since all the entries/rewards in r∗ are positive (we have already removed 0 entries). �

Now pick an optimal SM strategy τ for player 2 that yields the finite r∗ . We know that r∗ = (I − Aτ)−1bτ . Note that r∗ is
a feasible solution of the min-LP′ . We show that for any feasible solution r to min-LP′ , r ≤ r∗ . From the LP we can see that
r ≤ Aτ r + bτ (because this is just a subset of the constraints) and in other words (I − Aτ)r ≤ bτ . We know that (I − Aτ)−1

exists and is non-negative (and finite), so multiply both sides by (I − Aτ)−1 to get r ≤ (I − Aτ)−1bτ = r∗ . Thus r∗ is the
optimal feasible solution of min-LP′ . �

For u ∈ Q , consider the LP: Maximize xu , subject to: the same constraints as min-LP, except, again, remove all variables
xv ∈ T ype0 . Call this u-min-LP′ .

Theorem 14. In a minimizing 1-RMDP, for all vertices u, value r∗u is finite iff u-min-LP′ is feasible and bounded. Thus, combined with
Lemma 12, we can compute the exact value (even if ∞) of minimizing reward 1-RMDPs in P-time.

K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328 321

We first need some preliminary claims. Let W be the set of vertices u such that u-min-LP′ is bounded and let S be the
minimum proper set such that W ⊆ S . From min-LP remove all the constraints for variables outside of the set S and remove
the variables of T ype0 in the same way as before. Call this set of constraints LPS .

Proposition 15. For any two vectors x = [x1, x2, . . . , xn], y = [y1, y2, . . . , yn] and vector z = max(x, y) = [max(x1, y1),
max(x2, y2), . . . , max(xn, yn)], and subset A ⊆ {1,2, . . . ,n}, and constants pi j ≥ 0, ci, j ≥ 0 we have that:

1. if vectors x, y fulfill a linear constraint ̃xi ≤
∑

j∈A pi j (̃x j + ci, j) then so does z
2. if vectors x, y fulfill a constraint ̃xi ≤ min j∈A (̃x j + ci, j) then so does z

Proof. 1. Function max is monotonic, hence if xi ≤ x j and yi ≤ y j , then max(xi, yi) ≤ max(x j, y j). Thus max(xi, yi) ≤
max

(∑
j∈A pi j(x j + ci, j),

∑
j∈A pi j(y j + ci, j)

)
based on the fact that they fulfill the underlying constraint. However

we know that for all j we have that x j ≤ max(x j, y j) = z j and y j ≤ max(x j, y j) = z j , hence
∑

j∈A pi j(x j + ci, j) ≤∑
j∈A pi j(z j +ci, j) and

∑
j∈A pi j(y j +ci, j) ≤

∑
j∈A pi j(z j +ci, j), which means that zi = max(xi, yi) ≤ max

(∑
j∈A pi j(x j +

ci, j),
∑

j∈A pi j(y j + ci, j)
)
≤

∑
j∈A pi j(z j + ci, j)

2. Again we know that max(xi, yi) ≤ max
(
min j∈A(x j + ci, j), min j∈A(y j + ci, j)

)
and for all j we have x j + ci, j ≤ z j + ci, j

and y j + ci, j ≤ z j + ci, j . We also know that the min function is monotonic, hence min j∈A(x j + ci, j) ≤ min j∈A(z j + ci, j) ≥
min j∈A(y j + ci, j). This means that zi = max(xi, yi) ≤ max

(
min j∈A(x j + ci, j), min j∈A(y j + ci, j)

)
≤ min j∈A(z j + ci, j). �

Corollary 16. For any two feasible solutions x, y to LPS we have that z = max(x, y) = [maxi(xi, yi)] (vector with entries being the
maximum of the respective entries in x and y) is a feasible solution to LPS as well.

Proof of Theorem 14. (⇒) First let us show that for any u if r∗u is finite, then u-min-LP′ has to be feasible and bounded.
Feasibility is easy as an all zero vector 0 fulfills all the constraints in u-min-LP′ .

Now pick the optimal SM strategy τ for the min player that yields the optimal reward vector r∗ and take any feasible
vector x. From the u-min-LP′ we can see that x ≤ Aτ x + bτ (because this is just a subset of the constraints). Since we
removed all zero reward nodes, i.e., exits of components, then all entries of bτ are positive and from Lemma 4 we can get
that x ≤ (

∑∞
k=0 Ak

τ)bτ . However by Proposition 13 (I) (which holds regardless of whether r∗ is finite) this means that x ≤ r∗

for any feasible x.
For contradiction, assume u-min-LP′ was feasible but unbounded. Then there would exist a sequence of feasible vectors

x0, x1, x2, . . . such that limk→∞ xku = ∞. But we know that xk ≤ r∗ for all k, thus r∗u would have to be infinite, contradicting
our assumption.

(⇐) Now let us show that if u-min-LP′ is feasible and bounded then r∗u has to be finite. Consider an LP with LPS

constraints and with the objective: Maximize
∑

u∈W xu . Call it W-min-LP and for any optimal solution x∗ denote by x∗ the
vector filled with values from x∗ for u ∈ W and ∞ for all u ∈ S \ W . Notice that x∗ is unique, because if the value of two
optimal vectors x and x′ differ at an entry u ∈ W , then max(x, x′) is also feasible thanks to Corollary 16, and this would
contradict their optimality.

Lemma 17. The vector x∗ is a fixed point of P |S .

Proof. Since for every xu , u ∈ W , u-min-LP′ is bounded, and we removed from u-min-LP′ only the constraints that these
variables do not depend on (even in a transitive way), the maximum value of xu cannot possibly increase after we re-
move these constraints, because that would mean xu could have been assigned a higher value in u-min-LP′ . Hence the LP
W -min-LP is feasible and bounded.

Now we show that for an optimal solution x∗ , no constraint with a variable xu , u ∈ W , on the left hand side can hold
tightly (i.e., with equality) when there is a variable xv , v ∈ S \ W , on the right hand side. Let us take some optimal solution
x∗ to W -min-LP. Notice that S \ W = {v1, v2, . . . , vn} is the set of vertices whose corresponding variables are unbounded,
i.e., v i-min-LP is unbounded. We know that for each of them there is a sequence of feasible solutions xv i

1 , xv i
2 , xv i

3 , . . . to
v i-min-LP (the bold subscripts denote the position in this sequence, not inside the vector), such that the value of entry xv i
in this sequence of vectors is nondecreasing and becomes arbitrarily large. If we project this sequence onto the variables
in S then xv i

1 |S , x
v i
2 |S , x

v i
3 |S , . . . is a sequence of feasible solutions to W -min-LP, such that xv i becomes arbitrarily large.

Now construct a sequence of vectors x′
i
= max(x∗, xv1

i
|S , x

v2
i

|S , . . . , x
vn
i

|S). By Corollary 16 we know that all vectors in this
sequence are feasible solutions to W -min-LP. We also know that all of them are optimal solutions, because we always take
the maximum of the entries, including the ones in the optimal solution x∗ . So we obtain as high a value of the objective
function

∑
u∈W xu as before, and we cannot improve this value as it would contradict the assumption that x∗ was optimal.

Now notice three things:

1. Since every variable xu , u ∈ W , is bounded, at some point in this sequence, we will reach a point such that the r.h.s. of
any constraint which involves some variable xv , v ∈ S \ W , will be larger than the highest possible value of all variables

322 K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328

corresponding to vertices in W . This means that at that point there cannot be a constraint that holds with equality
such that xu , u ∈ W , is the l.h.s. and where there is a variable xv , v ∈ S \ W , on the r.h.s.

2. For all k, for every xu , u ∈ W , there has to be some constraint with xu on the l.h.s. such that x′
k
satisfies this constraint

tightly, with equality, because otherwise we could increase the value of xu without altering the value of any other
variables, to obtain a larger value for the objective, which would contradict the optimality of x′

k
.

3. All variables xv , v ∈ S \ W , become arbitrarily large in this sequence, thus it cannot be the case that there are only
variables corresponding to vertices in W on the r.h.s. in any constraint with xv on the l.h.s. (that would force this
variable to be bounded).

Using these facts, we can see that for a large enough k, from the vector x′
k
we can construct a vector x∗ which a fixed

point of P |S . We do so by setting the value of all variables xv , v ∈ S \ W to ∞, and leaving the value of all variables xu ,
u ∈ W , unchanged in x′

k
. The claim that x∗ is a fixed point of P |S follows because for every variable xu , u ∈ W , of type

T yperand or T ypecall , x′
k
satisfies the correlated constraint with xu on the l.h.s. with equality, and this can only be the case if

the r.h.s. of that constraint contains only variables corresponding to vertices in W , and thus x∗ also satisfies this constraint
with equality. Likewise, for variables xu , u ∈ W , of type T ypemin , for x′

k
all constraints such that xu is the l.h.s. and there is

at least one variable corresponding to a vertex in S \ W on the r.h.s., must hold with strict inequality. Hence, since equality
must hold in x′

k
for one of the constraints involving xu on the l.h.s., there must exist one such constraint such that the

r.h.s. only involves variables corresponding to vertices in W . Thus, equality also holds for these constraints for x∗ for these
variables. Thus x∗ satisfies the corresponding min equation in P |S . Also for variables in xv , v ∈ S \ W , all the equations in
P |S will clearly be fulfilled after setting their values to ∞, because both sides of the equations where xv occurs have at
least one variable corresponding to a vertex in S \ W , and that makes the value of both sides of this equation ∞. �

Now finally we can finish the proof of Theorem 14, using the previous lemma. Since we know that r∗|S is the LFP of the
operator P |S , it must be that r∗|S ≤ x∗ , which means that for all u ∈ W we have that r∗u |S ≤ x∗

u = x∗
u , which is finite. �

Algorithm 2 summarizes the steps needed to compute the optimal values in a minimizing 1-RMDP with positive rewards.
Note that the variables equal to 0 are not removed as this is not really needed. Also note that the linear programs are
feasible: x = 0 is a feasible solution. As compared with Algorithm 1, Algorithm 2 has to solve more and larger linear
programs unless the dependency graph G of P is strongly connected.

Algorithm 2: An algorithm for computing the optimal expected reward in minimizing 1-RMDP with positive rewards.

Input: A minimizing 1-RMDP with positive rewards A = (A1, . . . , Ak), where Ai = (Ni , B i , Y i , Eni , Exi , pli , δi , ξi), and Q = ∪i Q i is the set of vertices.
Output: For all u ∈ Q , x∗

u = r∗u , which is the optimal value from 〈ε, u〉 in A.
1 for w ∈ Q do

2 Solve the following linear program.

Maximize xw
Subject to:

xu = 0 for all u ∈ T ype0
xu ≤

∑
v∈n(u) pu,v (xv + cu,v) for all u ∈ T yperand

xu ≤ xen + x(b,ex′) + cu for all u = (b, en) ∈ T ypecall
where ex′ is the exit of Y (b).

xu ≤ (xv + cu,v) for all u ∈ T ypemax and all v ∈ n(u)

xu ≥ 0 for all vertices u ∈ Q

3 If the above program is unbounded then set x∗
w = ∞ and otherwise set x∗

w to be the optimal value of its objective.

4.3. Complexity of (1-)RSSGs with positive rewards

Theorem 18. Deciding whether the value r∗u of a given 1-RSSG positive reward game is ≥ q for a given q ∈ [0, ∞], is in NP ∩ coNP.

Proof. Both the membership in NP and membership in coNP follow from the P-time upper bounds for 1-RMDPs and SM-

determinacy: For membership in NP, guess a SM strategy for the maximizing player, compute the value for the resulting
minimizing 1-RMDP and verify that it is ≥ q. For membership in coNP, guess a SM strategy for the minimizing player,
compute the value for the resulting maximizing 1-RMDP and verify that it is < q. �

We will show now that the qualitative problem of testing whether the maximizing player can achieve infinite reward
in a 1-RSSG is at least as hard as Condon’s quantitative decision problem for finite SSGs. Recall that in Condon’s problem,
we are given a finite SSG, without any rewards, with a designated starting state u and target terminal state t . The objective
of the maximizing player is to maximize the probability that the trajectory starting at u eventually reaches state t , and
the objective of the minimizing player is to minimize this probability. The quantitative problem is, given finite SSG G and

K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328 323

Fig. 2. Standard 1-RMC gadget used in proof of Theorem 19.

rational number q, is the value of the game ≤ q? It is well-known (and easy to see) that the problem is polynomially
equivalent to the special case that q = 1/2. The problem is in NP ∩ coNP, and it is a long-standing open question whether
it is in P or not [7].

Theorem 19. Condon’s quantitative termination problem for finite SSGs reduces in P-time to the problem of deciding whether r∗u = ∞.

Proof. Consider the standard 1-RMC from [16], depicted in Fig. 2. From the entry, en, this 1-RMC goes with probability p1 to
a sequence of two boxes labeled by the same component and with probability p2 goes to the exit. We assume p1 + p2 = 1.
As shown in ([16], Theorem 3), in this 1-RMC the probability of termination starting at 〈ε, en〉 is = 1 if and only if p2 ≥ 1/2.

Now, given a finite SSG, G with a starting node u and target terminal node t , do the following: First “clean up” G by
removing all nodes where the min player (player 2) has a strategy to achieve probability 0 of the trajectory reaching t . We
can do this in polynomial time. If u is among these nodes, we would already be done, so assume it is not. The revised SSG
will have two designated terminal nodes, the old terminal node t , labeled “1”, and another new terminal node labeled “0”.
From every node v in the revised SSG which does not carry full probability on its outedges, we direct all the “residual”
probability to “0”, i.e., we add an edge from v to “0” and assign probability pv,“0” = 1 −

∑
w pv,w to it, where the sum is

over all remaining nodes w in the SSG. In the resulting finite SSG, we know that if the max player plays with an optimal
memoryless strategy (which it has), and the min player plays arbitrarily with a memoryless strategy, there is no bottom SCC
in the resulting finite Markov chain other than the two designated terminating nodes “0” and “1”. In other words, all the
probability exits the system, as long as the maximizing player plays optimally. Note also that, importantly, the “expected
time” that it takes for the probability to exit the system when max player plays optimally is finite (because there are no
“null recurrent” nodes in a finite Markov chain).

Another way to put this fact is as follows: consider the resulting SSG to be a finite reward SSG with reward 1 on each
transition, and switch the role of the max and min player, and now the goal of the max player is to maximize the total
reward before termination (at either exit), and that of the min player is to minimize it. Translating the above to this setting,
the “cleaned up” SSG has the property that the min player has a memoryless strategy using which, no matter what the
maximizer does, the total reward will be finite: we will terminate, at “0” or at “1”, in finite expected time (because there
are no “null recurrent” nodes in finite Markov chains, and both players have optimal memoryless strategies).

Now, take the remaining finite SSG, call it G ′ . Just put a copy of G ′ at the entry of the component A1 of the 1-RMC,
identifying the entry en with the initial node, u, of G ′ . Take every edge that is directed into the terminal node “1” of G ′ ,
and instead direct it to the exit ex of the component A1 . Next, take every edge that is directed into the terminal “0” node
and direct it to the first call, (b1, en) of the left box b1 . Both boxes map to the unique component A1 . Call this 1-RSSG A.

We now claim that q∗
u ≤ 1/2 in the finite SSG G ′ for terminating at the terminal “1” iff r∗u = ∞ for expected reward value

in the resulting reward 1-RSSG, A (recall: with the role min and max reversed, and with all transitions having reward 1).
The reason is as follows: we know that in A the minimizer has at least one SM strategy that obtains finite reward inside

any copy of G ′ , and it must play one such strategy each time it goes through G ′ if it wants to avoid payoff ∞.

Now, there are only a finite number of SM strategies for minimizer inside G ′ which yield a finite expected reward (after
an optimal response by the maximizer). Let D ∈ [0, ∞) be the maximum finite expected reward among those SM strategies.
Also, no matter what the two players do, we know we will earn reward at least 1, each time we go through G ′ . So, each
time going through G ′ we accumulate a reward D ′ ∈ [1, D]. Therefore, from the point of view of trying to make sure the
total expected reward is finite, it is really of no relevance what the specific value of D ′ is when we go through G ′ . Rather,
what is important is whether we “visit” a copy of G ′ , i.e., a copy of the entry u, infinitely often.

Now, to make sure that the expected number of times u is visited is finite, the minimizer must in fact maximize the
probability of terminating at “1”, and thus minimize the probability of termination at “0”. In addition, the minimizer must
also make sure that the expected reward inside G ′ is finite, but this we know it can do while maximizing the probability of
terminating at “1”. Thus, the total reward r∗u = ∞ precisely when the value of the SSG termination game G ′ is ≤ 1/2. �

By contrast, for finite-state SSGs with strictly positive rewards, we can decide in P-time whether the value is ∞, because
this is the case iff the value of the corresponding termination game is not 1. This is basically because null-recurrence is not
possible in finite state spaces. Deciding whether an SSG termination game has value 1 is in P-time (see, e.g., [17]).

324 K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328

Fig. 3. Multi-exit reward RMDP: undecidability.

5. Multi-exit RMDPs with positive rewards

In this section we show undecidability for multi-exit minimizing reward RMDPs.

Theorem 20. For a given multi-exit positive rewardminimizing RMDP, it is undecidable to distinguish whether the infimum expected
total reward value starting at a given node is finite or ∞.

Proof. We will use the construction of a component named A in the proof of Theorem 10.2 in [17]. This single-entry n-exit
component relates RMDPs with n exits with Probabilistic Finite Automata (PFA) with n states. More precisely the supremum
probability of termination at the n-th exit starting at the entry of A is equal to the supremum probability with which the
correlated PFA accepts some word. It was proved in [1] that deciding whether a given PFA with 46 states accepts any word
with probability greater than 1

2
is undecidable. This means it is undecidable to resolve whether the supremum probability

of termination at the n-th exit (n = 46) in the correlated RMDP A is greater than 1
2
.

To prove that it is also undecidable to resolve whether the infimum expected total reward starting from a given node
in a RMDP with positive rewards is finite or ∞, we will combine the RMDP A with a gadget 1-RMDP C , as can be seen at
Fig. 3. Let us denote by p the supremum probability of termination at the n-th exit of the component A labeling box b0.
We will argue that p > 1/2 iff the infimum expected total reward for the reward 1-RMDP C is finite.

To consider A inside a reward RMDP, we will place the same positive reward, say 1, on all transitions inside the compo-

nent A.
We will need several observations about the component A from the proof of Theorem 23 in [17]. Firstly, one property

of A is the following: for any strategy that yields probability > 0 of exiting from the n-th exit of component A, it must be
the case that the total probability of exiting from one of the exits of component A is 1. It is easy to verify this fact based
on the structure of component A given in [17].

Now, first suppose p > 1/2. It follows from the previously mentioned fact that in the reward game the minimizer has a
strategy with which to exit from A with probability 1, and simultaneously to exit from the n-th exit with probability > 1/2.
Therefore, note that component C , under an optimal strategy played inside box b0, acts like the previously used gadget from
Fig. 2, in which the probability of exiting directly is p. For this gadget, if p > 1/2, we know that the resulting expected time
until termination is finite.

Moreover, the component A from [17] has the following additional property: if p > 1/2, then the corresponding PFA
accepts a finite word w with probability p > 1/2, and we can furthermore use the word w as a strategy σw in A such that
starting at the entry of A, the strategy σw will exit A with probability 1, and will exit from the n-the exit with probability
p > 1/2, and will exit from A in finite expected time 2|w|. Thus the expected time taken until termination inside A, i.e.,
inside the box b0, is finite and hence the total expected time until termination starting at the entry of C is also finite.

Next suppose that p ≤ 1/2. Then in C we either stay inside a copy of b0 (A) with non-zero probability, in which case
the total reward is infinite, or else we exit from the n-th exit of every copy of A with probability ≤ 1/2 and we exit from
the other exits with probability ≥ 1/2. It follows easily from the properties of the gadget in C that the expected termination
time is infinite in such a case. Thus if we can decide whether the infimum expected total reward starting at the entry of C
is finite or not, we can also decide whether the supremum termination probability p at the n-th exit of A is greater than
1
2
, which we know is undecidable. �

Theorem 20 leaves open whether it is undecidable to determine whether the supremum expected total reward for a given
multi-exit positive reward maximizing RMDP is infinite.

A natural approach to attempt to prove such an undecidability result is to use the undecidability result established in [17]
for determining whether the minimum termination probability for a multi-exit RMDP is = 1. However, there is a technical
difficultly with attempting to adapt the proof of that result to the setting of maximizing positive reward RMDPs, which we
have not been able to overcome.

We conjecture that indeed determining whether the supremum expected total reward for a given multi-exit positive
reward maximizing RMDP is ∞ is undecidable, but we leave this as an open problem.

K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328 325

6. BSSGs, SCFG games with positive rewards, and equivalence to 1-RSSGs with positive rewards

In this section we explain the close relationship between 1-RMDPs and 1-RSSGs with positive reward, and MDP and
stochastic game extensions of context-free grammars and branching processes, with both positive and non-negative rewards.

A stochastic context-free grammar (SCFG) game, is given by G = (V , R, Xstart), where V = V0 ∪ V1 ∪ V2 is a set of nontermi-

nals, which is partitioned into three disjoint sets: V0 are the probabilistic nonterminals (controlled by nature), V1 and V2 ,
the nonterminals controlled by players 1 and 2, respectively. Xstart ∈ V is the start nonterminal. R is a set of rules, where
each rule r ∈ R has the form r = (X, pr, cr, Zr), where X ∈ V , and if X ∈ V0 then pr ∈ [0, 1] is a (rational) probability, oth-
erwise, if X ∈ V i , i > 0, then pr = ⊥, cr ∈ Q≤0 is a rational positive reward (or non-negative reward, if we allow 0 reward),

and Zr ∈ V ∗ is a (possibly empty) string of nonterminals. A rule r = (X, pr, cr, Zr) is often written also as X
(pr ,cr)
→ Zr , where

X is the left-hand side, Zr the right-hand side, and (pr , cr) the label of the rule. For each nonterminal, X , let R X ⊆ R denote
the set of rules that have X on the left hand side. For each X ∈ V0 we have

∑
r=(X,pr ,cr ,Zr)∈R X

pr = 1.

The (countable) set of states of the game is a subset of V ∗ , i.e., strings of nonterminals. The precise game depends on the
specific derivation law we use for the grammar, e.g., left-most, right-most, or simultaneous. The derivation rule that captures
1-RMDPs and 1-RSSGs exactly is the left-most derivation law, so we first describe the game corresponding to left-most
derivation.2 Again, states of the game are sequences of nonterminals. The game begins in the state Xstart . In each round, if
the state is S = X1 . . . Xk , then we proceed, by using a left-most derivation law, as follows: choose a rule r = (X1, pr, cr, Zr) ∈
R X1 . If X1 ∈ V0 the rule r is chosen probabilistically among the rules r in R X1 , according to the probabilities pr . If X1 ∈ V i ,
i ∈ {1, 2}, then the rule r is chosen by player i. After the choice is made, the play moves to the new state Zr X2 . . . Xk . The
reward gained in that round by player 1 is cr . The game continues until (and unless) we reach the empty-string state S = ε .
The total reward gained by player 1 is the sum total of the rewards over every round. A strategy for player d ∈ {1, 2} is a
mapping that, given the history of play ending in state XW ∈ V ∗ , where X ∈ Vd , maps it to a rule r ∈ R X .

3 Fixing strategies
for the two players, we obtain a (denumerable) reward Markov chain whose states are (a subset of) V ∗ , the total reward
is a random variable defined over the trajectories (runs) of this Markov chain. Player 1’s goal is to maximize the expected
total reward, and player 2’s goal is to minimize it.

Let us consider the games corresponding to other derivation laws. Specifically, the game with right-most derivation law
is simply the mirror image of the one with left-most derivation: states are sequences of nonterminals, and in each round
the remaining right-most nonterminal in the current derivation state S is expanded, either by the choice of the player who
controls it, or probabilistically according to the given distribution, if it is a random nonterminal.

Finally, let us note that the game corresponding to the simultaneous derivation law is a bit different. Again, a state is
a sequence of nonterminals. However, in the case of simultaneous derivation, in each round all remaining nonterminals in
the current state S are expanded, by letting the player who controls each nonterminal choose a corresponding rule (or by
choosing the rule randomly according to the given distribution, if that nonterminal is random).

It is worth pointing out that these games with the simultaneous derivation law are essentially equivalent to a Branching
Simple Stochastic Game (BSSG), as defined and considered in [17], but with non-negative rewards and a total reward objective
(as opposed to the objective of optimizing extinction probability). Note that, unlike left-most and right-most derivation, this
definition of the game with simultaneous derivation law does not immediately yield a perfect information game (because
the two players are not aware of each others’ choices in each round). Nevertheless, just like 1-RMDPs and 1-RSSGs, these
games have a value that arises as the LFP of a max-min-linear monotone system of equations (which are basically the
corresponding Bellman equations in the 1-player BMDP case), and this is so even when 0 rewards are allowed.

Thus, the value for the 1-player MDP version of these simultaneous expansion games on SCFGs can be computed in
P-time, even when 0 rewards are allowed. Furthermore, both players in these games have static optimal strategies meaning
they have optimal strategies that are deterministic and which, irrespective of history or context, always expand any specific
nonterminal N belonging to the given player using the same rule. Static strategies are the moral equivalent of deterministic
stackless memoryless strategies for 1-RSSGs. The proofs of the above facts, which we will not provide in detail here, are
fairly simple variations on the proofs of Theorems 1, 6, 8, and 18 regarding 1-RMDPs and 1-RSSGs with positive rewards.

For 1-RMDPs and 1-RSSGs, the only place where we used in a crucial way the fact that there are only strictly positive
rewards on transitions, was in the proof of Theorem 1, establishing the correspondence between the values starting at each
vertex of the 1-RSSG reward game and the LFP solution of the corresponding system of max-min-linear equations (see, e.g.,
part (2.c.) of that proof).

The reason why we do not require strictly positive rewards on grammar rules to establish such a correspondence in
the setting with simultaneous derivation law is because, regardless whether some rules have reward 0 or not, with the
simultaneous derivation law the total reward value obtained starting from a particular nonterminal controlled, e.g., by the
maximizing player, will indeed equal the maximum over all rules associated with that nonterminal, of the sum total reward
of values starting at the nonterminal occurrences on the right hand side of that rule.

2 The game with left-most derivation is also equivalent to a BPA stochastic game with rewards; see, e.g., [2] and [3] where qualitative questions about
BPA games without rewards were considered.
3 We could more generally define strategies that can yield probability distributions on the next rule, but this won’t be necessary, since indeed determin-

istic “stackless and memoryless” strategies are already optimal.

326 K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328

However, if we were using left-most derivation, with 0 rewards on rules the correspondence to the LFP of the equations
would in general fail.

Let us now explain why 1-RSSGs with positive rewards (non-negative rewards, respectively) are basically equivalent to
SCFG games with left-most derivation law and with positive rewards (non-negative rewards, respectively). The proof is sim-

ilar to the proof of equivalence between 1-RMCs and SCFGs with respect to probability of termination in [16], Theorem 2.3.

Given a SCFG game G with positive rewards we can construct a 1-RSSG A such that there is a correspondence between
the states and strategies of the players, and such the two games have the same value. The 1-RSSG A has one component Ai

for every nonterminal Xi of G , the component Ai has one entry eni and one exit exi , the entry eni has the same type 0, 1,
or 2 as the corresponding nonterminal Xi . For each rule r = (Xi, pr, cr, Zr) of each nonterminal Xi in G , the corresponding
component Ai contains a path from the entry eni to the exit exi consisting of a sequence of a boxes that are mapped in
order to the nonterminals in Zr . That is, if Zr = Xi1 . . . Xik , then the path contains k boxes b1, . . . , bk , where b j is mapped to
Ai j for j = 1, . . . , k, the entry node eni has a transition to the call port of box b1 with label (pr , cr/(k + 1)), and the return
port of each box b j has a transition to the call port of the next box b j+1 (or the exit exi if j = k) with label (1, cr/(k + 1));
if k = 0, i.e., if Zr = ε , then there is a direct transition eni → exi with label (pr , cr). The starting state of the 1-RSSG A is
the entry of the component corresponding to the starting nonterminal Xstart of the SCFG game G .

Conversely, given a 1-RSSG A with positive rewards, we can construct an equivalent SCFG game G as follows. For each
vertex u of A that is not an exit, there is a corresponding nonterminal Xu in G which has the same type 0, 1, or 2 as the
vertex u. For every transition u → v of A, there is a corresponding rule Xu → Xv in G if v is not an exit, or Xu → ε if v is
an exit; the label of the rule is the same as the label of the transition. For every call port u = (b, en) of A, where b is a box

that is mapped to a component Ai with exit exi , the SCFG game G contains a corresponding rule X(b,en)
(1,cu)
→ XenX(b,exi) .

Considering the equation system x = P (x) for the 1-RSSG A (see Theorem 1) it is easy to see that the value of the 1-RSSG
A starting at any vertex is equal to the value of the SCFG game starting at the corresponding nonterminal, and there is also
a correspondence between the players’ optimal strategies in the two games.

6.1. Some illustrative examples formulated as SCFG games, and further explanation of the role of 0 rewards

We now describe some examples of 1-RSSG games using the simple (and expressively equivalent) formulation of these
games as SCFG games.

We first use some examples formulated as SCFG games with left-most derivation to illustrate, as discussed in the in-
troduction, that the condition of strictly positive rewards on rules/transitions is essential to avoid various pathological cases
arising in such infinite-state games with rewards.

Indeed, consider the purely deterministic context-free grammar given by the rules: {X
(⊥,0)

→ XY ; X

(⊥,0)

→ ε ; Y

(⊥,7)

→ ε },

where X and Y are nonterminals belonging to the maximizing player, player 1. The notation is as follows: the pair (p, c)
of quantities labelling a rule denotes the probability, p, of that rule firing, and the reward, c, accumulated for each use of
that rule during a derivation, but when the nonterminal belongs to player 1 or 2, instead of a probability p we have the
label ⊥. In this example all nonterminals belong to player 1. Suppose the start nonterminal is X . If the deterministic game
proceeds by left-most derivation, it is easy to see that there is no optimal strategy for maximizing player 1’s total payoff.

Indeed, there aren’t even any ε-optimal strategies, because the supremum is ∞. In fact, if player 1 uses the rule X
(⊥,0)

→ XY ,

n times, to expand the left-most X in the derivation, and then uses X
(⊥,0)

→ ε , and finally uses Y

(⊥,7)

→ ε , n times to expand

all n remaining Y nonterminals, the total reward is 7 ∗ n. But no single strategy will gain a total reward of ∞. Note in
particular that any “stackless and memoryless” strategy, which always picks one fixed rule for each nonterminal, regardless
of the history of play and the remaining nonterminals (the “stack”), is the worst strategy possible: its total reward is 0. By
contrast, if we require simultaneous expansion of all remaining nonterminals in each round, then there is a single “stackless

and memoryless” strategy that gains infinite reward, namely: in each round expand every copy of X using X
(⊥,0)

→ XY , and

(simultaneously) expand every copy of Y using its unique rule. Clearly, after n ≥ 1 rounds we accumulate 7 ∗ (n − 1) reward
by doing this. Thus the total reward will be ∞.

Similarly, consider the simple grammar {X
(⊥,0)

→ XY ; Y

(⊥,1)

→ Y }, where, again, both nonterminals X, Y are controlled by

the maximizing player, and X is the start nonterminal. Under the left-most derivation law, clearly the maximum reward is 0,
whereas under the right-most or simultaneous derivation law, the total reward is ∞. So, the supremum total (expected)
reward is not robust with respect to the derivation law, and can wildly differ depending on the derivation law, when 0
rewards are allowed on rules.

This is not the case when only strictly positive rewards are allowed on rules: in that case all derivation laws yield the
same value for the resulting game.

Now let us consider a basic example with strictly positive rewards: consider the SCFG with rewards given by the follow-

ing grammar rules: {X
(1/3,3)

→ X X ; X

(2/3,2)

→ ε}. Here X is the only nonterminal. Consider now a random left-most derivation

of this grammar, starting from the nonterminal X . What is the expected total reward accumulated during the entire deriva-
tion? It is not hard to see that if we let x denote the total expected reward, then x must satisfy the following equation:
x = (1/3 ∗ (3 + (x + x))) + (2/3 ∗2) = (2/3)x + (7/3). Therefore, the total expected reward is the unique solution to this equa-

K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328 327

tion, namely x∗ = 7. Note that, in general, such a derivation may not terminate with probability 1, and that the expected

reward need not be finite (consider the same grammar with modified probabilities: {X
(2/3,3)

→ X X ; X

(1/3,2)

→ ε}).

As we have just seen, for 1-RMDPs (i.e., context-free MDPs with left-most derivation law), if we allow 0 rewards, then
there may not even exist any ε-optimal strategies. Furthermore, even in a purely probabilistic setting without players
(1-RMCs), with 0 rewards the expected total reward can be irrational. This follows from the fact that for 1-RMCs and SCFGs
the total probability of termination can be irrational (see [16]), combined with the fact that we can easily use 0 rewards (in
the left-most derivation setting for SCFGs) to encode the total probability of termination as the expected total reward. To do
this, we simply do the following: add a new start nonterminal, S ′ , to the grammar, as well as a new nonterminal Y . If the
old start nonterminal was S , add the new rule S ′ → SY to the grammar, with probability 1 and reward 0, and also add a
rule Y → ε , with probability 1 and reward 1. Assign reward 0 to every rule of the old grammar. It is easy to check that the
expected total reward for such a SCFG, using left-most derivation, and starting at the new start nonterminal S ′ , is precisely
the probability of eventual termination in the original SCFG.

When 0 rewards are allowed in the left-most derivation setting, even the decidability of determining whether the
supremum expected reward for 1-RMDPs is greater than a given rational value is open, and subsumes other simpler open
decidability questions, e.g., for the supremum reachability probability in non-reward 1-RMDPs. It is not even known whether
it is decidable whether this supremum reachability probability is 1 (see [17]), whereas it was shown in [2] that it is decid-
able, in fact in polynomial time, whether there exists some strategy which achieves probability of termination equal to 1.
(See also [3], where the two-player stochastic game version of qualitative reachability problems was considered.) We remark
that in the case of BMDPs, the supremum reachability probability is 1 if and only if there is a strategy that achieves it, and
this can be decided in polynomial time [14]. However, note that the equivalence between 1-RMDP and BMDP with respect
to the extinction probability does not carry over to the reachability probability, for essentially the same reason that it does
not hold in the reward model with 0 rewards.

Let us now explain further the reason why 0 rewards play a crucial role in the setting with left-most derivation (and
thus for 1-RMDPs and 1-RSSGs). If we consider a derivation tree of the context-free grammar associated with such a game
with rewards, then if we allow 0 rewards on rules it is entirely possible that a non-terminating infinite subtree (branch)
of the derivation tree may nevertheless yield finite total reward. This however can not happen when all rules have strictly
positive rewards associated with them: in that case any infinite derivation tree must yield ∞ as its total reward. Thus, in
that setting all derivations that yield the same tree yield the same total reward, regardless of the derivation law.

If we instead adopt the simultaneous derivation law, where we expand all remaining nonterminals in each step of the
derivation, then no pathologies arise as a result of 0 rewards on rules, and all of our results hold. In particular, the least
fixed point solution of the corresponding max/min-linear equations, directly analogous to those described in Section 2 for
1-RMDPs and 1-RSSGs, characterizes the values of such a game starting at each nonterminal. The simultaneous derivation
law corresponds naturally to the setting of Branching Markov Decision Processes (BMDPs) and BSSGs (see [17,13]), and thus
as already explained at the beginning of this section, the analogues of Theorems 1, 6, 8, and 18 hold also for BMDPs and
BSSGs with non-negative rewards (including 0 rewards).

Acknowledgement

Research partly supported by NSF grants CCF-1017955, CCF-1703925, CCF-1763970, and EPSRC grants EP/G050112/2,
EP/P020909/1, and EP/M027287/1.

References

[1] V. Blondel, V. Canterini, Undecidable problems for probabilistic automata of fixed dimension, Theory Comput. Syst. 36 (2003) 231–245.
[2] T. Brázdil, V. Brozek, V. Forejt, A. Kucera, Reachability in recursive Markov decision processes, Inform. and Comput. 206 (5) (2008) 520–537.
[3] T. Brázdil, V. Brozek, A. Kucera, J. Obdrzálek, Qualitative reachability in stochastic BPA games, Inform. and Comput. 209 (8) (2011) 1160–1183.
[4] T. Brázdil, S. Kiefer, A. Kucera, I. Hutarova Varekova, Runtime analysis of probabilistic programs with unbounded recursion, J. Comput. System Sci.

81 (1) (2015) 288–310.
[5] T. Brázdil, A. Kucera, P. Novotný, D. Wojtczak, Minimizing expected termination time in one-counter Markov decision processes, in: Proc. of 39th

ICALP’12, 2012.
[6] X. Chen, X. Deng, S.-H. Teng, Settling the complexity of computing two-player Nash equilibria, J. ACM 56 (3) (2009).
[7] A. Condon, The complexity of stochastic games, Inform. and Comput. 96 (2) (1992) 203–224.
[8] A. Condon, M. Melekopoglou, On the complexity of the policy iteration algorithm for stochastic games, ORSA J. Comput. 6 (2) (1994).
[9] C. Daskalakis, P. Goldberg, C. Papadimitriou, The complexity of computing a Nash equilibrium, SIAM J. Comput. 39 (1) (2009) 195–259.

[10] R. Durbin, S.R. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis: Probabilistic models of Proteins and Nucleic Acids, Cambridge U. Press, 1999.
[11] J. Esparza, A. Kučera, R. Mayr, Model checking probabilistic pushdown automata, Log. Methods Comput. Sci. 2 (1) (2006) 1–31.
[12] J. Esparza, A. Kučera, R. Mayr, Quantitative analysis of probabilistic pushdown automata: expectations and variances, in: Proc. of 20th IEEE LICS’05,

2005.

[13] K. Etessami, A. Stewart, M. Yannakakis, Polynomial-time algorithms for branching Markov decision processes, and probabilistic min(max) polynomial
Bellman equations, in: Proc. 39th Int. Coll. on Automata, Languages and Programming (ICALP), 2012. Fuller preprint on arXiv:1202 .4789.

[14] K. Etessami, A. Stewart, M. Yannakakis, Greatest fixed points of probabilistic min/max polynomial equations, and reachability for branching Markov
decision processes, in: Proc. 42nd Int. Coll. on Automata, Languages and Programming (ICALP), 2015. Full preprint on arXiv:1502 .05533.

[15] K. Etessami, D. Wojtczak, M. Yannakakis, Recursive stochastic games with positive rewards, in: Proceedings of ICALP’08, in: Lecture Notes in Comput.
Sci., vol. 5125, Springer, 2008, pp. 711–723.

328 K. Etessami et al. / Theoretical Computer Science 777 (2019) 308–328

[16] K. Etessami, M. Yannakakis, Recursive Markov chains, stochastic grammars, and monotone systems of non-linear equations, J. ACM 56 (1) (2009).
[17] K. Etessami, M. Yannakakis, Recursive Markov decision processes and recursive stochastic games, J. ACM 62 (2) (2015), 69 pages.
[18] K. Etessami, M. Yannakakis, On the complexity of Nash equilibria and other fixed points, SIAM J. Comput. 39 (6) (2010) 2531–2597.
[19] R. Fagin, A. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Sudan, A. Tomkins, Random walks with “back buttons” (extended abstract),

in: ACM Symp. on Theory of Computing, 2000, pp. 484–493.
[20] J. Fearnley, Exponential lower bounds for policy iteration, in: Proc. Int. Coll. on Automata, Languages and Programming (ICALP), 2010, pp. 551–562.
[21] J. Filar, K. Vrieze, Competitive Markov Decision Processes, Springer, 1997.
[22] O. Friedmann, An exponential lower bound for the latest deterministic strategy iteration algorithms, Log. Methods Comput. Sci. 7 (3) (2011).
[23] T.M. Gawlitza, H. Seidl, Solving systems of rational equations through strategy iteration, ACM Trans. Program. Lang. Syst. 33 (3) (2011) 11.
[24] P. Haccou, P. Jagers, V.A. Vatutin, Branching Processes: Variation, Growth, and Extinction of Populations, Cambridge U. Press, 2005.
[25] T.E. Harris, The Theory of Branching Processes, Springer-Verlag, 1963.
[26] A.J. Hoffman, R.M. Karp, On nonterminating stochastic games, Manage. Sci. 12 (1966) 359–370.
[27] D.S. Johnson, C. Papadimitriou, M. Yannakakis, How easy is local search?, J. Comput. System Sci. 37 (1) (1988) 79–100.
[28] B. Juba, On the Hardness of Simple Stochastic Games, Master’s thesis, CMU, 2006.
[29] C. Manning, H. Schütze, Foundations of Statistical Natural Language Processing, MIT Press, 1999.
[30] D.A. Martin, Determinacy of Blackwell games, J. Symbolic Logic 63 (4) (1998) 1565–1581.
[31] A. Neyman, S. Sorin (Eds.), Stochastic Games and Applications, NATO ASI Ser., Kluwer, 2003.
[32] S. Pliska, Optimization of multitype branching processes, Manage. Sci. 23 (2) (1976/77) 117–124.
[33] M.L. Puterman, Markov Decision Processes, Wiley, 1994.
[34] U. Rothblum, P. Whittle, Growth optimality for branching Markov decision chains, Math. Oper. Res. 7 (4) (1982) 582–601.
[35] A. Trivedi, D. Wojtczak, Timed branching processes, in: Proc. of 7th International Conference on Quantitative Evaluation of Systems (QEST), 2010,

pp. 219–228.

[36] A.F. Veinott, Discrete dynamic programming with sensitive discount optimality criteria, Ann. Math. Stat. 40 (1969) 1635–1660.
[37] Dominik Wojtczak, Recursive Probabilistic Models: Efficient Analysis and Implementation, PhD thesis, School of Informatics, University of Edinburgh,

2009.

[38] Dominik Wojtczak, Expected termination time in BPA games, in: Proc. of International Symposium on Automated Technology for Verification and
Analysis, 2013, pp. 303–318.

[39] D. Wojtczak, K. Etessami PReMo, an analyzer for probabilistic recursive models, in: Proc. 13th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2007, pp. 66–71.

	Recursive stochastic games with positive rewards
	1 Introduction
	2 Deﬁnitions and background
	3 SM-determinacy and strategy improvement
	4 The complexity of reward 1-RMDPs and 1-RSSGs
	4.1 Maximizing reward 1-RMDPs
	4.2 Minimizing reward 1-RMDPs
	4.3 Complexity of (1-)RSSGs with positive rewards

	5 Multi-exit RMDPs with positive rewards
	6 BSSGs, SCFG games with positive rewards, and equivalence to 1-RSSGs with positive rewards
	6.1 Some illustrative examples formulated as SCFG games, and further explanation of the role of 0 rewards

	Acknowledgement
	References

