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Abstract

Large-scale multiple testing with correlated and heavy-tailed data arises in a

wide range of research areas from genomics, medical imaging to finance. Con-

ventional methods for estimating the false discovery proportion (FDP) often

ignore the effect of heavy-tailedness and the dependence structure among test

statistics, and thus may lead to inefficient or even inconsistent estimation. Also,

the commonly imposed joint normality assumption is arguably too stringent

for many applications. To address these challenges, in this paper we propose

a Factor-Adjusted Robust Multiple Testing (FarmTest) procedure for large-

scale simultaneous inference with control of the false discovery proportion. We

demonstrate that robust factor adjustments are extremely important in both

controlling the FDP and improving the power. We identify general conditions

under which the proposed method produces consistent estimate of the FDP.

As a byproduct that is of independent interest, we establish an exponential-

type deviation inequality for a robust U -type covariance estimator under the

spectral norm. Extensive numerical experiments demonstrate the advantage of

the proposed method over several state-of-the-art methods especially when the
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data are generated from heavy-tailed distributions. The proposed procedures

are implemented in the R-package FarmTest.

Keywords: Factor adjustment; False discovery proportion; Huber loss; Large-scale multi-

ple testing; Robustness.

1 Introduction

Large-scale multiple testing problems with independent test statistics have been extensively

explored and is now well understood in both practice and theory (Benjamini and Hochberg,

1995; Storey, 2002; Genovese and Wasserman, 2004; Lehmann and Romano, 2005). Yet, in

practice, correlation effects often exist across many observed test statistics. For instance,

in neuroscience studies, although the neuroimaging data may appear very high dimensional

(with millions of voxels), the effect degrees of freedom are generally much smaller, due to

spatial correlation and spatial continuity (Medland et al., 2014). In genomic studies, genes

are usually correlated regulatorily or functionally: multiple genes may belong to the same

regulatory pathway or there may exist gene-gene interactions. Ignoring these dependence

structures will cause loss of statistical power or lead to inconsistent estimates.

To understand the effect of dependencies on multiple testing problems, validity of stan-

dard multiple testing procedures have been studied under weak dependencies, see Benjamini

and Yekutieli (2001), Storey (2003), Storey et al. (2004), Ferreira and Zwinderman (2006),

Chi (2007), Wu (2008), Clarke and Hall (2009), Blanchard and Roquain (2009) and Liu and

Shao (2014), among others. For example, it has been shown that, the Benjamini-Hochberg

procedure or Storey’s procedure, is still able to control the false discovery rate (FDR) or

false discovery proportion, when only weak dependencies are present. Nevertheless, multi-

ple testing under general and strong dependence structures remains a challenge. Directly

applying standard FDR controlling procedures developed for independent test statistics

in this case can lead to inaccurate false discovery control and spurious outcomes. There-

fore, correlations must be accounted for in the inference procedure; see, for example, Owen

(2005), Efron (2007, 2010), Leek and Storey (2008), Sun and Cai (2009), Friguet et al.

(2009), Schwartzman and Lin (2011), Fan et al. (2012), Desai and Storey (2012), Wang et
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al. (2017) and Fan and Han (2017) for an unavoidably incomplete overview.

In this paper, we focus on the case where the dependence structure can be characterized

by latent factors, that is, there exist a few unobserved variables that correlate with the

outcome. A multi-factor model is an effective tool for modeling dependence, with wide

applications in genomics (Kustra et al., 2006), neuroscience (Pournara and Wernish, 2007)

and financial economics (Bai, 2003). It relies on the identification of a linear space of random

vectors capturing the dependence structure of the data. In Friguet et al. (2009) and Desai

and Storey (2012), the authors assumed a strict factor model with independent idiosyncratic

errors, and used the EM algorithm to estimate the factor loadings as well as the realized

factors. The FDP is then estimated by subtracting out the realized common factors. Fan et

al. (2012) considered a general setting for estimating the FDP, where the test statistics

follow a multivariate normal distribution with an arbitrary but known covariance structure.

Later, Fan and Han (2017) used the POET estimator (Fan et al., 2013) to estimate the

unknown covariance matrix, and then proposed a fully data-driven estimate of the FDP.

Recently, Wang et al. (2017) considered a more complex model with both observed primary

variables and unobserved latent factors.

All the methods above assume joint normality of factors and noise, and thus methods

based on least squares regression, or likelihood generally, can be applied. However, normal-

ity is really an idealization of the complex random world. For example, the distribution

of the normalized gene expressions is often far from normal, regardless of the normaliza-

tion methods used (Purdom and Holmes, 2005). Heavy-tailed data also frequently appear

in many other scientific fields, such as financial engineering (Cont, 2001) and biomedical

imaging (Eklund et al., 2016). In finance, the seminal papers by Mandelbrot (1963) and

Fama (1963) discussed the power law behavior of asset returns, and Cont (2001) provided

extensive evidence of heavy-tailedness in financial returns. More recently, in functional MRI

studies, it has been observed by Eklund et al. (2016) that the parametric statistical methods

failed to produce valid clusterwise inference, where the principal cause is that the spatial

autocorrelation functions do not follow the assumed Gaussian shape. The heavy-tailedness

issue may further be amplified by high dimensionality in large-scale inference. In the con-

text of multiple testing, as the dimension gets larger, more outliers are likely to appear, and
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this may lead to significant false discoveries. It is therefore imperative to develop inferential

procedures that adjust dependence and are robust to heavy-tailedness at the same time.

In this paper, we investigate the problem of large-scale multiple testing under depen-

dence via an approximate factor model, where the outcome variables are correlated with each

other through latent factors. To simultaneously incorporate the dependencies and tackle

with heavy-tailed data, we propose a factor-adjusted robust multiple testing (FarmTest)

procedure. As we proceed, we gradually unveil the whole procedure in four steps. First, we

consider an oracle factor-adjusted procedure given the knowledge of the factors and load-

ings, which provides the key insights into the problem. Next, using the idea of adaptive

Huber regression (Zhou at al., 2018; Sun et al., 2017), we consider estimating the realized

factors when the loadings were known and provide a robust control of the FDP. In the third

part, we propose two robust covariance matrix estimators, a U -statistic based estimator

and another one based on elementwise robustification. We then apply spectral decomposi-

tion to these estimators and use principal factors to recover the factor loadings. The final

part, which is provided in Appendix A, gives a fully data-driven testing procedure based

on sample splitting: use part of the data for loading construction and the other part for

simultaneous inference.

First we illustrate our methodology with a numerical example that consists of observa-

tions Xi’s generated from a three-factor model:

Xi = µ+Bfi + εi, i = 1, . . . , n,

where fi ∼ N (0, I3) and the entries of B are independent and identically distributed (IID)

from a uniform distribution, U(−1, 1). The idiosyncratic errors, εi’s, are independently

generated from the t3-distribution with 3 degrees of freedom. The sample size n and di-

mension p are set to be 100 and 500, respectively. We take the true means to be µj = 0.6

for 1 ≤ j ≤ 0.25× p and 0 otherwise. In Figure 1, we plot the histograms of sample means,

robust mean estimators, and their counterparts with factor-adjustment. Details of robust

mean estimation and the related factor-adjusted procedure are specified in Sections 2 and

3. Due to the existence of latent factors and heavy-tailed errors, there is a large overlap
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Histogram of Sample Means with Factor Adjustment
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Histogram of Robust Means
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Histogram of Robust Means with Factor Adjustment
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Figure 1: Histograms of four different mean estimators for simultaneous inference.

between sample means from the null and alternative, which makes it difficult to distinguish

them from each other. With the help of either robustification or factor-adjustment, the

null and alternative are better separated as shown in the figure. Further, with both factor-

adjustment and robustification, the resulting estimators are tightly concentrated around

the true means so that the signals are evidently differentiated from the noise. This example

demonstrates the effectiveness of the factor-adjusted robust multiple testing procedure.

The rest of the paper proceeds as follows. In Section 2, we describe a generic factor-

adjusted robust multiple testing procedure under the approximate factor model. In Section

3, we gradually unfold the proposed method, while we establish its theoretical properties

along the way. Section 4 is devoted to simulated numerical studies. Section 5 analyzes an

empirical dataset. We conclude the paper in Section 6. Proofs of the main theorems and

technical lemmas are provided in the online supplement.

Notation. We adopt the following notations throughout the paper. For any d× d matrix
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A = (Akℓ)1≤k,ℓ≤d, we write ‖A‖max = max1≤k,ℓ≤d |Akℓ|, ‖A‖1 = max1≤ℓ≤d
∑d

k=1 |Akℓ|

and ‖A‖∞ = max1≤k≤d
∑d

ℓ=1 |Akℓ|. Moreover, we use ‖A‖ and tr(A) =
∑d

k=1Akk to

denote the spectral norm and the trace of A. When A is symmetric, we have ‖A‖ =

max1≤k≤d |λk(A)|, where λ1(A) ≥ λ2(A) ≥ · · · ≥ λd(A) are the eigenvalues of A, and

it holds ‖A‖ ≤ ‖A‖1/21 ‖A‖1/2∞ ≤ max{‖A‖1, ‖A‖∞} ≤ d1/2‖A‖. We use λmax(A) and

λmin(A) to denote the maximum and minimum eigenvalues of A, respectively.

2 FarmTest

In this section, we describe a generic factor-adjusted robust multiple testing procedure under

the approximate factor model.

2.1 Problem setup

Let X = (X1, . . . , Xp)
T be a p-dimensional random vector with mean µ = (µ1, . . . , µp)

T and

covariance matrix Σ = (σjk)1≤j,k≤p. We assume the dependence structure in X is captured

by a few latent factors such that X = µ + Bf + ε, where B = (b1, . . . , bp)
T ∈ Rp×K

is the deterministic factor loading matrix, f = (fi1, . . . , fiK)T ∈ RK is the zero-mean

latent random factor, and ε = (ε1, . . . , εp)
T ∈ Rp consists of idiosyncratic errors that are

uncorrelated with f . Suppose we observe n random samples X1, . . . ,Xn from X, satisfying

Xi = µ+Bfi + εi, i = 1, . . . , n, (1)

where fi’s and εi’s are IID samples of f and ε, respectively. Assume that f and ε have

covariance matrices Σf and Σε = (σε,jk)1≤j,k≤p. In addition, note that B and fi are not

separately identifiable as they both are unobserved. For an arbitraryK×K invertible matrix

H, one can choose B∗ = BH and f∗
i = H−1fi such that B∗f∗

i = Bfi. Since H contains

K2 free parameters, we impose the following conditions to make B and f identifiable:

Σf = IK and BTB is diagonal, (2)
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where the two conditions provide K(K + 1)/2 and K(K − 1)/2 restrictions, respectively.

The choice of identification conditions is not unique. We refer to Lawley and Maxwell

(1971) and Bai and Li (2012) for details of more identification strategies. Model (1) with

observable factors has no identification issue and is studied elsewhere (Zhou at al., 2018).

In this paper, we are interested in simultaneously testing the following hypotheses

H0j : µj = 0 versus H1j : µj 6= 0, for 1 ≤ j ≤ p, (3)

based on the observed data {Xi}ni=1. Many existing works (e.g. Friguet et al., 2009; Fan et

al., 2012; Fan and Han, 2017) in the literature assume multivariate normality of the id-

iosyncratic errors. However, the Gaussian assumption on the sampling distribution is often

unrealistic in many practical applications. For each feature, the measurements across differ-

ent subjects consist of samples from potentially different distributions with quite different

scales, and thus can be highly skewed and heavy-tailed. In the big data regime, we are often

dealing with thousands or tens of thousands of features simultaneously. Simply by chance,

some variables exhibit heavy and/or asymmetric tails. As a consequence, with the number

of variables grows, some outliers may turn out to be so dominant that they can be mistak-

enly regarded as discoveries. Therefore, it is imperative to develop robust alternatives that

are insensitive to outliers and data contaminations.

For each 1 ≤ j ≤ p, let Tj be a generic test statistic for testing the individual hypothesis

H0j . For a prespecified thresholding level z > 0, we reject the j-th null hypothesis whenever

|Tj | ≥ z. The number of total discoveries R(z) and the number of false discoveries V (z)

can be written as

R(z) =

p∑

j=1

I(|Tj | ≥ z) and V (z) =
∑

j∈H0

I(|Tj | ≥ z), (4)

respectively, where H0 := {j : 1 ≤ j ≤ p, µj = 0} is the set of the true nulls with cardinality

p0 = |H0| =
∑p

j=1 I(µj = 0). We are mainly interested in controlling the false discovery

proportion, FDP(z) = V (z)/R(z) with the convention 0/0 = 0. We remark here that R(z)

is observable given the data, while V (z), which depends on the set of true nulls, is an

unobserved random quantity that needs to be estimated. Comparing with FDR control,
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Figure 2: The Huber loss function ℓτ (·) with varying robustification parameters and the
quadratic loss function.

controlling FDP is arguably more relevant as it is directly related to the current experiment.

2.2 A generic procedure

We now propose a Factor-Adjusted Robust Multiple Testing procedure, which we call

FarmTest. As the name suggests, this procedure utilizes the dependence structure in X

and is robust against heavy tailedness of the error distributions. Recent studies in Fan et al.

(2017) and Zhou at al. (2018) show that the Huber estimator (Huber, 1964) with a properly

diverging robustification parameter admits a sub-Gaussian-type deviation bound for heavy-

tailed data under mild moment conditions. This new perspective motivates new methods, as

described below. To begin with, we revisit the Huber loss and the robustification parameter.

Definition 1. The Huber loss ℓτ (·) (Huber, 1964) is defined as

ℓτ (u) =





u2/2, if |u| ≤ τ,

τ |u| − τ2/2, if |u| > τ,

where τ > 0 is refereed to as the robustification parameter that trades bias for robustness.

We refer to the Huber loss in Definition 1 above as the adaptive Huber loss to recognize

the adaptivity of the robustification parameter τ . For any 1 ≤ j ≤ p, with a robustification
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parameter τj > 0, we consider the following M -estimator of µj :

µ̂j = argmin
θ∈R

n∑

i=1

ℓτj (Xij − θ), (5)

where we suppress the dependence of µ̂j on τj for simplicity. As shown in our theoretical

results, the parameter τ plays an important role in controlling the bias-robustness tradeoff.

To guarantee the asymptotic normality of µ̂j uniformly over j = 1, . . . p, and to achieve

optimal bias-robustness tradeoff, we choose τ = τ(n, p) of the form C
√
n/log(np), where

the constant C > 0 can be selected via cross-validation. We refer to Section 4.1 for details.

Specifically, we show that
√
n (µ̂j−bTj f̄) is asymptotically normal with mean µj and variance

σε,jj (with details given in Appendix B):

√
n (µ̂j − µj − bTj f̄) = N (0, σε,jj) + oP(1) uniformly over j = 1, . . . , p. (6)

Here, µ̂j ’s can be regarded as robust versions of the sample averages X̄j = µj + bTj f̄ + ε̄j ,

where X̄j = n−1
∑n

i=1Xij and ε̄j = n−1
∑n

i=1 εij .

Given a prespecified level α ∈ (0, 1), our testing procedure consists of three steps:

(i) robust estimation of the loading vectors and factors; (ii) construction of factor-adjusted

marginal test statistics and their P -values; and (iii) computing the critical value or threshold

level with the estimated FDP controlled at α. The detailed procedure is stated below.

We expect that the factor-adjusted test statistic Tj given in (8) is close in distribution

to standard normal for all j = 1, . . . , p. Hence, according to the law of large numbers, the

number of false discoveries V (z) =
∑

j∈H0
I(|Tj | ≥ z) should be close to 2p0Φ(−z) for any

z ≥ 0. The number of null hypotheses p0 is typically unknown. In the high dimensional

and sparse regime, where both p and p0 are large and p1 = p− p0 = o(p) is relatively small,

FDPA in (9) serves as a slightly conservative surrogate for the asymptotic approximation

2p0Φ(−z)/R(z). If the proportion π0 = p0/p is bounded away from 1 as p→ ∞, FDPA tends

to overestimate the true FDP. The estimation of π0 has long been known as an interesting

problem. See, for example, Storey (2002), Langaas and Lindqvist (2005), Meinshausen and

Rice (2006), Jin and Cai (2007) and Jin (2008), among others. Therefore, a more adaptive

method is to combine the above procedure with, for example Storey’s approach, to calibrate
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FarmTest Procedure.
Input: Observed data Xi = (Xi1, . . . , Xip)

T ∈ Rp for i = 1, . . . , n, a prespecified level
α ∈ (0, 1) and an integer K ≥ 1.
Procedure:
Step 1: Construct a robust covariance matrix estimator Σ̂ ∈ Rp×p based on observed
data. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂K be the top K eigenvalues of Σ̂, and v̂1, v̂2, . . . , v̂K be

the corresponding eigenvectors. Define B̂ = (λ̃
1/2
1 v̂1, . . . , λ̃

1/2
K v̂K) ∈ Rp×K , where λ̃k =

max(λ̂k, 0). Let b̂1, . . . , b̂p ∈ RK be the p rows of B̂, and define

f̂ ∈ arg min
f∈RK

p∑

j=1

ℓγ(X̄j − b̂Tj f), (7)

where γ = γ(n, p) > 0 is a robustification parameter.
Step 2: Construct factor-adjusted test statistics

Tj =

√
n

σ̂ε,jj
(µ̂j − b̂Tj f̂ ), j = 1, . . . , p, (8)

where σ̂ε,jj = θ̂j − µ̂2j − ‖b̂j‖22, θ̂j = argmin
θ≥µ̂2j+‖b̂j‖22

∑n
i=1 ℓτjj (X

2
ij − θ), τjj ’s are robus-

tification parameters and µ̂j ’s are defined in (5). Here, we use the fact that E(X2
j ) =

µ2j + ‖bj‖22 + var(εj), according to the identification condition.
Step 3: Calculate the critical value zα as

zα = inf{z ≥ 0 : FDPA(z) ≤ α}, (9)

where FDPA(z) = 2pΦ(−z)/R(z) denotes the approximate FDP and R(z) is as in (4).
Finally, for j = 1, . . . , p, reject H0j whenever |Tj | ≥ zα.

the rejection region for individual hypotheses. Let {Pj = 2Φ(−|Tj |)}pj=1 be the approximate

P -values. For a predetermined η ∈ [0, 1), Storey (2002) suggested to estimate π0 by

π̂0(η) =
1

(1− η)p

p∑

j=1

I(Pj > η). (10)

The fundamental principle that underpins Storey’s procedure is that most of the large

P -values come from the true null hypotheses and thus are uniformly distributed. For a

sufficiently large η, about (1− η)π0 of the P -values are expected to lie in (η, 1]. Therefore,

the proportion of P -values that exceed η should be close to (1− η)π0. A value of η = 1/2 is

used in the SAM software (Storey and Tibshirani, 2003); while it was shown in Blanchard

and Roquain (2009) that the choice η = α may have better properties for dependent P -

values.
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Incorporating the above estimate of π0, a modified estimate of FDP takes the form

FDPA(z; η) = 2p π̂0(η)Φ(−z)/R(z), z ≥ 0.

Finally, for any prespecified α ∈ (0, 1), we reject H0j whenever |Tj | ≥ zα,η, where

zα,η = inf{z ≥ 0 : FDPA(z; η) ≤ α}. (11)

By definition, it is easy to see that zα,0 coincides with zα given in (9).

3 Theoretical properties

To fully understand the impact of factor-adjustment as well as robust estimation, we succes-

sively investigate the theoretical properties of the FarmTest through several steps, starting

with an oracle procedure that provides key insights into the problem.

3.1 An oracle procedure

First we consider an oracle procedure that serves as a heuristic device. In this section, we

assume the loading matrix B is known and the factors {fi}ni=1 are observable. In this case,

it is natural to use the factor-adjusted data: Yi = Xi − Bfi = µ + εi, which has smaller

componentwise variances (which are {σε,jj}pj=1 and assumed known for the moment) than

those of Xi. Thus, instead of using
√
n µ̂j given in (5), it is more efficient to construct

robust mean estimates using factor-adjusted data. This is essentially the same as using the

test statistic

T ◦
j =

√
n

σε,jj
(µ̂j − bTj f̄ ), (12)

whose distribution is close to the standard normal distribution under the j-th null hypoth-

esis. Recall that p0 = |H0| is the number of true null hypotheses. Then, for any z ≥ 0,

1

p0
V (z) =

1

p0

∑

j∈H0

I(|T ◦
j | ≥ z).
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Intuitively, the (conditional) law of large numbers suggests that p−1
0 V (z) = 2Φ(−z)+oP(1).

Hence, the FDP based on oracle test statistics admits an asymptotic expression

AFDPorc(z) = 2p0Φ(−z)/R(z), z ≥ 0, (13)

where “AFDP” stands for the asymptotic FDP and a subscript “orc” is added to highlight

its role as an oracle.

Remark 1. For testing the individual hypothesis H0j , Fan and Han (2017) considered the

test statistic
√
nX̄j , where X̄j = (1/n)

∑n
i=1Xij . The empirical means, without factor

adjustments, are inefficient as elucidated in Section 1. In addition, they are sensitive to the

tails of error distributions (Catoni, 2012). In fact, with many collected variables, by chance

only, some test statistics
√
nX̄j can be so large in magnitude empirically that they may be

mistakenly regarded as discoveries.

We will show that AFDPorc(z) provides a valid asymptotic approximation of the (un-

known) true FDP using oracle statistics {T ◦
j } in high dimensions. The latter will be denoted

as FDPorc(z). Let Rε = (rε,jk)1≤j,k≤p be the correlation matrix of ε = (ε1, . . . , εp)
T, that

is, Rε = D−1
ε ΣεD

−1
ε where D2

ε = diag(σε,11, . . . , σε,pp). Moreover, write

ωn,p =
√
n/ log(np). (14)

We impose the following moment and regularity assumptions.

Assumption 1. (i) p = p(n) → ∞ and log(p) = o(
√
n) as n→ ∞; (ii) X ∈ Rp follows the

approximate factor model (1) with f and ε being independent; (iii) E(f) = 0, cov(f) = IK

and ‖f‖ψ2
≤ Af for some Af > 0, where ‖ · ‖ψ2

denotes the vector sub-Gaussian norm

(Vershynin, 2018); (iv) There exist constants Cε, cε > 0 such that cε ≤ min1≤j≤p σ
1/2
ε,jj ≤

max1≤j≤p υj ≤ Cε, where υj := (Eε4j )
1/4; (v) There exist constants κ0 ∈ (0, 1) and κ1 > 0

such that max1≤j,k≤p |rε,jk| ≤ κ0 and p−2
∑

1≤j,k≤p |rε,jk| = O(p−κ1) as p→ ∞.

Part (iii) of Assumption 1 requires f ∈ RK to be a sub-Gaussian random vector. Typical

examples include: (1) Gaussian and Bernoulli random vectors, (2) random vector that is

uniformly distributed on the Euclidean sphere in RK with center at the origin and radius
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√
K, (3) random vector that is uniformly distributed on the Euclidean ball centered at the

origin with radius
√
K, and (4) random vector that is uniformly distributed on the unit

cube [−1, 1]K . In all these cases, the constant Af is a dimension-free constant. See Section

3.4 in Vershynin (2018) for detailed discussions of multivariate sub-Gaussian distributions.

Part (v) is a technical condition on the covariance structure that allows ε1, . . . , εp to be

weakly dependent. It relaxes the sparsity condition on the off-diagonal entries of Σε.

Theorem 1. Suppose that Assumption 1 holds and p0 ≥ ap for some constant a ∈ (0, 1).

Let τj = ajωn,p with aj ≥ σ
1/2
jj for j = 1, . . . , p, where ωn,p is given by (14). Then we have

p−1
0 V (z) = 2Φ(−z) + oP(1) (15)

p−1R(z) =
1

p

p∑

j=1

{
Φ

(
− z +

√
nµj√
σε,jj

)
+Φ

(
− z −

√
nµj√
σε,jj

)}
+ oP(1) (16)

uniformly over z ≥ 0 as n, p→ ∞. Consequently, for any z ≥ 0,

|FDPorc(z)−AFDPorc(z)| = oP(1) as n, p→ ∞.

3.2 Robust estimation of loading matrix

To realize the oracle procedure in practice, we need to estimate the loading matrix B and

the covariance matrix Σ, especially its diagonal entries. Before proceeding, we first investi-

gate how these preliminary estimates affect FDP estimation. Assume at the moment that

f̄ is given, let b̃1, . . . , b̃p and σ̃11, . . . , σ̃pp be generic estimates of b1, . . . , bp and σ11, . . . , σpp,

respectively. In view of (2), σε,jj can be naturally estimated by σ̃jj − ‖b̃j‖22. The corre-

sponding FDP and its asymptotic approximation are given by

F̃DP(z) = Ṽ (z)/R̃(z) and ÃFDP(z) = 2p0Φ(−z)/R̃(z), z ≥ 0,

where Ṽ (z) =
∑

j∈H0
I(|T̃j | ≥ z), R̃(z) =

∑p
j=1 I(|T̃j | ≥ z) and T̃j = (n/σ̃ε,jj)

1/2(µ̂j −

b̃Tj f̄) for j = 1, . . . , p. The following proposition shows that to ensure consistent FDP

approximation or furthermore estimation, it suffices to establish the uniform convergence

results in (17) for the preliminary estimators of B and {σjj}pj=1. Later in Section 3.2.1 and
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3.2.2, we propose two types of robust estimators satisfying (17) when p = p(n) is allowed

to grow exponentially fast with n.

Proposition 1. Assume the conditions of Theorem 1 hold and that the preliminary esti-

mates {b̃j , σ̃jj}pj=1 satisfy

max
1≤j≤p

‖b̃j − bj‖2 = oP{(log n)−1/2}, max
1≤j≤p

|σ̃jj − σjj | = oP{(log n)−1/2}. (17)

Then, for any z ≥ 0, |F̃DP(z)− ÃFDP(z)| = oP(1) as n, p→ ∞.

Next we focus on estimatingB under identification condition (2). WriteB = (b̄1, . . . , b̄K)

and assume without loss of generality that b̄1, . . . , b̄K ∈ Rp are ordered such that {‖b̄ℓ‖2}Kℓ=1

is in a non-increasing order. In this notation, we have Σ =
∑K

ℓ=1 b̄ℓb̄
T
ℓ +Σε, and b̄Tℓ1 b̄ℓ2 = 0

for 1 ≤ ℓ1 6= ℓ2 ≤ K. Let λ1, . . . , λp be the eigenvalues of Σ in a descending order, with

associated eigenvectors denoted by v1, . . . ,vp ∈ Rp. By Weyl’s theorem,

|λj − ‖b̄j‖22| ≤ ‖Σε‖ for 1 ≤ j ≤ K and |λj | ≤ ‖Σε‖ for j > K.

Moreover, under the pervasiveness condition (see Assumption 2 below), the eigenvectors vj

and b̄j/‖b̄j‖2 of Σ and BBT, respectively, are close to each other for 1 ≤ j ≤ K. The

estimation of B thus depends heavily on estimating Σ along with its eigenstructure.

In Sections 3.2.1 and 3.2.2, we propose two different robust covariance matrix estimators

that are also of independent interest. The construction of B̂ then follows from Step 1 of

the FarmTest procedure described in Section 2.2.

3.2.1 U-type covariance estimation

First, we propose a U -type covariance matrix estimator, which leads to estimates of the

unobserved factors under condition (2). Let ψτ (·) be the derivative of ℓτ (·) given by

ψτ (u) = min(|u|, τ) sign(u), u ∈ R.

Given n real-valued random variables X1, . . . , Xn from X with mean µ, a fast and robust

estimator of µ is given by µ̂τ = (1/n)
∑n

i=1 ψτ (Xi). Minsker (2016) extended this univariate
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estimation scheme to matrix settings based on the following definition on matrix functionals.

Definition 2. Given a real-valued function f defined on R and a symmetric A ∈ Rd×d with

eigenvalue decomposition A = UΛUT such that Λ = diag(λ1, . . . , λd), f(A) is defined as

f(A) = Uf(Λ)UT, where f(Λ) = diag(f(λ1), . . . , f(λd)).

Suppose we observe n random samples X1, . . . ,Xn from X with mean µ and covariance

matrix Σ = E{(X−µ)(X−µ)T}. If µ were known, a robust estimator of Σ can be simply

constructed by (1/n)
∑n

i=1 ψτ{(Xi−µ)(Xi−µ)T}. In practice, the assumption of a known

µ is often unrealistic. Instead, we suggest to estimate Σ using the following U -statistic

based estimator:

Σ̂U (τ) =
1(
n
2

)
∑

1≤i<j≤n

ψτ

{
1

2
(Xi −Xj)(Xi −Xj)

T

}
.

Observe that (Xi −Xj)(Xi −Xj)
T is a rank one matrix with eigenvalue ‖Xi −Xj‖22 and

eigenvector (Xi −Xj)/‖Xi −Xj‖2. Therefore, by Definition 2, Σ̂U (τ) can be equivalently

written as

1(
n
2

)
∑

1≤i<j≤n

ψτ

(
1

2
‖Xi −Xj‖22

)
(Xi −Xj)(Xi −Xj)

T

‖Xi −Xj‖22
. (18)

This alternative expression makes it much easier to compute. The following theorem pro-

vides an exponential-type deviation inequality for Σ̂U (τ), representing a useful complement

to the results in Minsker (2016). See, for example, Remark 8 therein.

Theorem 2. Let

v2 =
1

2

∥∥∥E{(X − µ)(X − µ)T}2 + tr(Σ)Σ+ 2Σ2
∥∥∥. (19)

For any t > 0, the estimator Σ̂U = Σ̂U (τ) with τ ≥ (v/2)(n/t)1/2 satisfies

P{‖Σ̂U −Σ‖ ≥ 4v(t/n)1/2} ≤ 2p exp(−t).

Given Σ̂U , we can construct an estimator of B following Step 1 of the FarmTest proce-

dure. Recall that b̂1, . . . , b̂p are the p rows of B̂. To investigate the consistency of b̂j ’s, let
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λ1, . . . , λK be the top K (nonzero) eigenvalues of BBT in a descending order and v1, . . . ,vK

be the corresponding eigenvectors. Under identification condition (2), we have λℓ = ‖bℓ‖22
and vℓ = bℓ/‖bℓ‖2 for ℓ = 1, . . . ,K.

Assumption 2 (Pervasiveness). There exist positive constants c1, c2 and c3 such that

c1p ≤ λℓ − λℓ+1 ≤ c2p for ℓ = 1, . . . ,K with λK+1 := 0, and ‖Σε‖ ≤ c3 < λK .

Remark 2. The pervasiveness condition is required for high dimensional spiked covariance

model with the first several eigenvalues well separated and significantly larger than the rest.

In particular, Assumption 2 requires the top K eigenvalues grow linearly with the dimension

p. The corresponding eigenvectors can therefore be consistently estimated as long as sample

size diverges (Fan et al., 2013). This condition is widely assumed in the literature (Stock

and Watson, 2002; Bai and Ng, 2002). The following proposition provides convergence

rates of the robust estimators {λ̂ℓ, v̂ℓ}Kℓ=1 under Assumption 2. The proof, which is given

in in Appendix D, is based on Weyl’s inequality and a useful variant of the Davis-Kahan

theorem (Yu et al., 2015). We notice that some preceding works (Onatski, 2012; Shen et

al., 2016; Wang and Fan, 2017) have provided similar results under a weaker pervasiveness

assumption which allows p/n → ∞ in any manner and the spiked eigenvalues {λℓ}Kℓ=1 are

allowed to grow slower than p so long as cℓ = p/(nλℓ) is bounded.

Proposition 2. Under Assumption 2, we have

max
1≤ℓ≤K

|λ̂ℓ − λℓ| ≤ ‖Σ̂U −Σ‖+ ‖Σε‖ and (20)

max
1≤ℓ≤K

‖v̂ℓ − vℓ‖2 ≤ Cp−1(‖Σ̂U −Σ‖+ ‖Σε‖), (21)

where C > 0 is a constant independent of (n, p).

We now show the properties of estimated loading vectors and estimated residual vari-

ances {σ̂ε,jj}pj=1 that are defined below (8).

Theorem 3. Suppose Assumption 1(iv) and Assumption 2 hold. Let τ = v0ωn,p with

v0 ≥ v/2 for v given in (19). Then, with probability at least 1− 2n−1,

max
1≤j≤p

‖b̂j − bj‖2 ≤ C1{v
√

log(np) (np)−1/2 + p−1/2} (22)
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as long as n ≥ v2p−1 log(np). In addition, if n ≥ C2 log(np), τj = ajωn,p, τjj = ajjωn,p with

aj ≥ σ
1/2
jj , ajj ≥ var(X2

j )
1/2, we have

max
1≤j≤p

|σ̂ε,jj − σε,jj | ≤ C3(vp
−1/2w−1

n,p + p−1/2) (23)

with probability greater than 1 − C4n
−1. Here, C1–C4 are positive constants that are

independent of (n, p).

Remark 3. According to Theorem 3, the robustification parameters can be set as τj =

ajωn,p and τjj = ajjωn,p, where wn,p is given in (14). In practice, the constants aj and ajj

can be chosen by cross-validation.

3.2.2 Adaptive Huber covariance estimation

In this section, we adopt an estimator that was first considered in Fan et al. (2017). For

every 1 ≤ j 6= k ≤ p, we define the robust estimate σ̂jk of σjk = E(XjXk)− µjµk to be

σ̂jk = θ̂jk − µ̂jµ̂k with θ̂jk = argmin
θ∈R

n∑

i=1

ℓτjk(XijXik − θ), (24)

where τjk > 0 is a robustification parameter and µ̂j is defined in (5). This yields the

adaptive Huber covariance estimator Σ̂H = (σ̂jk)1≤j,k≤p. The dependence of Σ̂H on {τjk :

1 ≤ j ≤ k ≤ p} and {τj}pj=1 is assumed without displaying.

Theorem 4. Suppose Assumption 1(iv) and Assumption 2 hold. Let τj = ajωn,p, τjk =

ajkωn,p2 with aj ≥ σ
1/2
jj , ajk ≥ var(X2

j )
1/2 for 1 ≤ j, k ≤ p. Then, there exist positive

constants C1–C3 independent of (n, p) such that as long as n ≥ C1 log(np),

max
1≤j≤p

‖b̂j − bj‖2 ≤ C2(ω
−1
n,p + p−1/2)

and max
1≤j≤p

|σ̂ε,jj − σε,jj | ≤ C3(ω
−1
n,p + p−1/2)

with probability greater than 1− 4n−1, where wn,p is given in (14).
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3.3 Estimating realized factors

To make the oracle statistics T ◦
j ’s given in (12) usable, it remains to estimate f̄ . Since the

loadings can be estimated in two different ways, let us first assume B is given and treat it

as an input variable.

Averaging the approximate factor model (1), we have X̄ = µ + Bf̄ + ε̄, where X̄ =

(X̄1, . . . , X̄p)
T = (1/n)

∑n
i=1Xi and ε̄ := (ε̄1, . . . , ε̄p)

T = (1/n)
∑n

i=1 εi. This leads to

X̄j = bTj f̄ + µj + ε̄j , j = 1, . . . , p. (25)

Among all {µj+ ε̄j}pj=1, we may regard µj+ ε̄j with µj 6= 0 as outliers. Therefore, to achieve

robustness, we estimate f̄ by solving the following optimization problem:

f̂(B) ∈ arg min
f∈RK

p∑

j=1

ℓγ(X̄j − bTj f), (26)

where γ = γ(n, p) > 0 is a robustification parameter. Next, we define robust variance

estimators σ̂ε,jj ’s by

σ̂ε,jj(B) = θ̂j − µ̂2j − ‖bj‖22 with θ̂j = arg min
θ≥ µ̂2j+‖bj‖22

n∑

i=1

ℓτjj (X
2
ij − θ),

where τjj ’s are robustification parameters and µ̂j ’s are as in (5). Plugging {σ̂ε,jj}pj=1 and

f̂ into (12), we obtain the following factor-adjusted test statistics

Tj(B) =

{
n

σ̂ε,jj(B)

}1/2

{µ̂j − bTj f̂(B)}, j = 1, . . . , p. (27)

For a given threshold z ≥ 0, the corresponding FDP is defined as

FDP(z;B) = V (z;B)/R(z;B),

where V (z;B) =
∑

j∈H0
I{|Tj(B)| ≥ z} and R(z;B) =

∑
1≤j≤p I{|Tj(B)| ≥ z}. Similarly
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to (13), we approximate FDP(z;B) by

AFDP(z;B) = 2p0Φ(−z)/R(z;B).

For any z ≥ 0, the approximate FDP AFDP(z;B) is computable except p0, which can be

either estimated (Storey, 2002) or upper bounded by p. Albeit being slightly conservative,

the latter proposal is accurate enough in the sparse setting.

Regarding the accuracy of AFDP(z;B) as an asymptotic approximation of FDP(z;B),

we need to account for the statistical errors of {σ̂ε,jj(B)}pj=1 and f̂(B). To this end, we

make the following structural assumptions on µ and B.

Assumption 3. The idiosyncratic errors ε1, . . . , εp are mutually independent, and there

exist constants cl, cu > 0 such that λmin(p
−1BTB) ≥ cl and ‖B‖max ≤ cu.

Assumption 4 (Sparsity). There exist constants Cµ > 0 and cµ ∈ (0, 1/2) such that

‖µ‖∞ = max1≤j≤p |µj | ≤ Cµ and ‖µ‖0 =
∑p

j=1 I(µj 6= 0) ≤ p1/2−cµ . Moreover, (n, p)

satisfies that n log(n) = o(p) as n, p→ ∞.

The following proposition, which is of independent interest, reveals an exponential-type

deviation inequality for f̂(B) with a properly chosen γ > 0.

Proposition 3. Suppose that Assumption 3 holds. For any t > 0, the estimator f̂(B)

given in (26) with γ = γ0(p/t)
1/2 for γ0 ≥ σε := (p−1

∑p
j=1 σε,jj)

1/2 satisfies that with

probability greater than 1− (2eK + 1)e−t,

‖f̂(B)− f̄‖2 ≤ C1γ0(Kt)
1/2p−1/2 (28)

as long as p ≥ max{‖µ‖22/σ2ε, (‖µ‖1/σε)2t, C2K
2t}, where C1, C2 > 0 are constants depend-

ing only on cl, cu in Assumption 3.

The convergence in probability of FDP(z;B) to AFDP(z;B) for any z ≥ 0 is investigated

in the following theorem.

Theorem 5. Suppose that Assumptions 1 (i)–(iv), Assumptions 3 and 4 hold. Let τj =

ajωn,p, τjj = ajjωn,p with aj ≥ σ
1/2
jj , ajj ≥ var(X2

j )
1/2 for j = 1, . . . , p, and γ = γ0{p/ log(n)}1/2

with γ0 ≥ σε. Then, for any z ≥ 0, |FDP(z;B)−AFDP(z;B)| = oP(1) as n, p→ ∞.
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4 Simulation studies

4.1 Selecting robustification parameters

The robustification parameter involved in the Huber loss plays an important role in the

proposed procedures both theoretically and empirically. In this section, we describe the use

of cross-validation to calibrate robustification parameter in practice. To highlight the main

idea, we restrict our attention to the mean estimation problem.

Suppose we observe n samples X1, . . . , Xn from X with mean µ. For any given τ > 0,

the Huber estimator is defined as µ̂τ = argminθ∈R
∑n

i=1 ℓτ (Xi − θ), or equivalently, the

unique solution of the equation
∑n

i=1 ψτ (Xi − θ) = 0. Our theoretical analysis suggests

that the theoretically optimal τ is of the form Cσωn, where ωn is a specified function of

n and Cσ > 0 is a constant that scales with σ, the standard deviation of X. This allows

us to narrow down the search range by selecting Cσ instead via the K-fold (K = 5 or 10)

cross-validation as follows. First, we randomly divide the sample intoK subsets, I1, . . . , IK ,

with roughly equal sizes. The cross-validation criterion for a given C > 0 can be defined as

CV(C) =
1

n

K∑

k=1

∑

i∈Ik

{Xi − µ̂(−k)τC
}2, (29)

where µ̂
(−k)
τC is the Huber estimator using data not in the k-th fold, namely

µ̂(−k)τC
= argmin

θ∈R

K∑

ℓ=1,ℓ6=k

∑

i∈Iℓ

ℓτC (Xi − θ),

and τC = Cωn. In practice, let C be a set of grid points for C. We choose Cσ and therefore

τ by Ĉσ = argminC∈C CV(C) and τ̂ = Ĉσωn.

The robustification parameters involved in the FarmTest procedure can be selected in

a similar fashion by modifying the loss function and the cross-validation criterion (29)

accordingly. The theoretical order ωn can be chosen as the rate that guarantees optimal

bias-robustness tradeoff. Based on the theoretical results in Section 3, we summarize the

optimal rates for various robustification parameters in Table 1. Robust estimation of µj ’s

and the adaptive Huber covariance estimator involve multiple robustification parameters. If
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X1, . . . , Xp are homoscedastic, it is reasonable to assume τj = τµ in (5) for all j = 1, . . . , p.

Then we can choose τµ by applying the cross-validation over a small subset of the covariates

X1, . . . , Xp. Similarly, we can set τjk = τΣ in (24) for all j, k and calibrate τΣ by applying

the cross-validation over a subset of the entries.

Table 1: Optimal rates for robustification parameters

Estimator Parameter Optimal Rate

Robust estimator of µj τj in (5)
√
n/ log(np)

U -type covariance estimator τ in (18) p
√
n/ log(p)

Adaptive Huber covariance estimator τjk in (24)
√
n/ log(np2)

Robust estimator of f̄ γ in (26)
√
p/ log(n)

4.2 Settings

In the simulation studies, we take (p1, p) = (25, 500) so that π1 = p1/p = 0.05, n ∈

{100, 150, 200} and use t = 0.01 as the threshold value for P -values. Moreover, we set the

mean vector µ = (µ1, . . . , µp)
T to be µj = 0.5 for 1 ≤ j ≤ 25 and µj = 0 otherwise. We

repeat 1000 replications in each of the scenarios below. The robustifications parameters

are selected by five-fold cross-validation under the guidance of their theoretically optimal

orders. The data-generating processes are as follows.

Model 1: Normal factor model. Consider a three-factor model Xi = µ + Bfi + εi,

i = 1, . . . , n, where fi ∼ N (0, I3), B = (bjℓ)1≤j≤p,1≤ℓ≤3 has IID entries bjℓ’s generated from

the uniform distribution U(−2, 2).

Model 2: Synthetic factor model. Consider a similar three-factor model as in Model 1,

except that fi’s and bj ’s are generated independently from N (0,Σf ) and N (µB,ΣB),

respectively, where Σf , µB and ΣB are calibrated from the daily returns of S&P 500’s top

100 constituents (ranked by the market cap) between July 1st, 2008 and June 29th, 2012.

Model 3: Serial dependent factor model. Consider a similar three-factor model as in

Model 1, except that fi’s are generated from a stationary VAR(1) model fi = Πfi−1 + ξi
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for i = 1, . . . , n, with f0 = 0 and ξi’s IID drawn from N (0, I3). The (j, k)-th entry of Π is

set to be 0.5 when j = k and 0.4|j−k| otherwise.

The idiosyncratic errors in these three models are generated from one of the following

four distributions. Let Σε be a sparse matrix whose diagonal entries are 3 and off-diagonal

entries are drawn from IID 0.3× Bernoulli(0.05);

(1) Multivariate normal distribution N (0,Σε);

(2) Multivariate t-distribution t3(0,Σε) with 3 degrees of freedom;

(3) IID Gamma distribution with shape parameter 3 and scale parameter 1;

(4) IID re-scaled log-normal distribution a{exp(1 + 1.2Z) − b}, where Z ∼ N (0, 1) and

a, b > 0 are chosen such that it has mean zero and variance 3.

4.3 FDP estimation

In our robust testing procedure, the covariance matrix is either estimated by the entry-wise

adaptive Huber method or by the U -type robust covariance estimator. The corresponding

tests are labeled as FARM-H and FARM-U , respectively.

In this section, we compare FARM-H and FARM-U with three existing non-robust tests.

The first one is a factor-adjusted procedure using the sample mean and sample covariance

matrix, denoted by FAM. The second one is the PFA method, short for principal factor

approximation, proposed by Fan and Han (2017). In contrast to FAM, PFA directly uses

the unadjusted test statistics and only accounts for the effect of latent factors in FDP

estimation. The third non-robust procedure is the Naive method, which completely ignores

the factor dependence.

We first examine the accuracy of FDP estimation, which is assessed by the median of the

relative absolute error (RAE) between the estimated FDP and FDPorc(t) :=

∑
j∈H0

I(Pj≤t)

max{1,
∑p

j=1
I(Pj≤t)}

,

where Pj = 2Φ(−|T o
j |) and T o

j are the oracle test statistics given in (12). For a given thresh-

old value t, RAE for kth simulation is defined as

RAE(k) = |F̂DP(t, k)− FDPorc(t, k)|/FDPorc(t, k), k = 1, . . . , 1000,
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where F̂DP(t, k) is the estimated FDP in the kth simulation using one of the five competing

methods and FDPorc(t, k) is the oracle FDP in the kth experiment. The median of RAEs

are presented in Table 2. We see that, although the PFA and FAM methods achieve the

smallest estimation errors in the normal case, FARM-H and FARM-U perform comparably

well. In other words, a high level of efficiency is achieved if the underlying distribution is

normal. The Naive method performs worst as it ignores the impact of the latent factors.

In heavy-tailed cases, both FARM-H and FARM-U outperform the non-robust competitors

by a wide margin, still with the Naive method being the least favorable. In summary, the

proposed methods achieve high degree of robustness against heavy-tailed errors, while losing

little or no efficiency under normality.

4.4 Power performance

In this section, we compare the powers of the five methods under consideration. The

empirical power is defined as the average ratio between the number of correct rejections and

p1. The results are displayed in Table 3. In the normal case, FAM has a higher power than

PFA. This is because FAM adjusts the effect of latent factors for each individual hypothesis

so that the signal-to-noise ratio is higher. Again, both FARM-H and FARM-U tests only

pay a negligible price in power under normality. In heavy-tailed cases, however, these two

robust methods achieve much higher empirical powers than their non-robust counterparts.

Moreover, to illustrate the relationship between the empirical power and signal strength,

Figure 3 displays the empirical power versus signal strength ranging from 0.1 to 0.8 for

Model 1 with (n, p) = (200, 500) and t3-distributed errors.

4.5 FDP/FDR control

In this section, we compare the numerical performance of the five tests in respect of

FDP/FDR control. We take p = 500 and let n gradually increase from 100 to 200. The

empirical FDP is defined as the average false discovery proportion based on 200 simula-

tions. At the prespecified level α = 0.05, Figure 4 displays the empirical FDP versus the

sample size under Model 1. In the normal case, all the four factor-adjusted tests, FARM-H,

FARM-U , FAM and PFA, have empirical FDPs controlled around or under α. For heavy-
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Table 2: Median relative absolute error between estimated and oracle FDP

p = 500
εi n FARM-H FARM-U FAM PFA Naive

Model 1

Normal
100 0.8042 0.8063 0.7716 0.7487 1.789
150 0.7902 0.7925 0.7467 0.7790 1.599
200 0.7665 0.7743 0.7437 0.7363 1.538

t3

100 0.7047 0.7539 1.3894 1.4676 2.061
150 0.6817 0.6002 1.1542 1.2490 1.801
200 0.6780 0.5244 0.9954 1.1306 1.579

Gamma
100 0.7034 0.7419 1.4986 1.7028 3.299
150 0.6844 0.6869 1.4396 1.5263 2.844
200 0.6393 0.6446 1.3911 1.4563 2.041

LN
100 0.6943 0.7104 1.5629 1.7255 3.292
150 0.6487 0.6712 1.6128 1.7742 3.092
200 0.6137 0.6469 1.4476 1.4927 2.510

Model 2

Normal
100 0.6804 0.7079 0.6195 0.6318 1.676
150 0.6928 0.6873 0.6302 0.6136 1.573
200 0.6847 0.6798 0.6037 0.6225 1.558

t3

100 0.6438 0.6641 1.3939 1.4837 2.206
150 0.6258 0.6466 1.2324 1.2902 1.839
200 0.6002 0.6245 1.0368 1.0811 1.481

Gamma
100 0.6404 0.6493 1.6743 1.7517 3.129
150 0.5979 0.5991 1.3618 1.4405 2.657
200 0.5688 0.5746 1.0803 1.1595 2.035

LN
100 0.7369 0.7793 2.0022 2.0427 3.664
150 0.6021 0.6122 1.7935 1.8796 3.056
200 0.5557 0.5588 1.6304 1.8059 2.504

Model 3

Normal
100 0.7937 0.8038 0.7338 0.7651 1.991
150 0.7617 0.7750 0.7415 0.7565 1.888
200 0.7544 0.7581 0.7428 0.7440 1.858

t3

100 0.7589 0.7397 1.4302 1.6053 2.105
150 0.6981 0.7010 1.2980 1.3397 1.956
200 0.6596 0.6846 1.1812 1.1701 1.847

Gamma
100 0.7134 0.7391 1.7585 1.9981 3.945
150 0.6609 0.6744 1.5449 1.7437 3.039
200 0.6613 0.6625 1.4650 1.4869 2.295

LN
100 0.7505 0.7330 1.8019 1.9121 3.830
150 0.6658 0.7015 1.7063 1.7669 3.278
200 0.6297 0.6343 1.5944 1.6304 2.937

tailed data, FARM-H and FARM-U manage to control the empirical FDP under α for varying

sample sizes; while FAM and PFA lead to much higher empirical FDPs, indicating more false

discoveries. This phenomenon is in accord with our intuition that outliers can sometimes

be mistakenly regarded as discoveries. The Naive method performs worst throughout all

models and settings. Due to limitations of space, numerical results for Models 2 and 3 are

given in Appendix E of the online supplement.

24



Table 3: Empirical powers

p = 500
εi n FARM-H FARM-U FAM PFA Naive

Model 1

Normal
100 0.853 0.849 0.872 0.863 0.585
150 0.877 0.870 0.890 0.882 0.624
200 0.909 0.907 0.924 0.915 0.671

t3

100 0.816 0.815 0.630 0.610 0.442
150 0.828 0.826 0.668 0.657 0.464
200 0.894 0.870 0.702 0.691 0.502

Gamma
100 0.816 0.813 0.658 0.639 0.281
150 0.830 0.825 0.684 0.663 0.391
200 0.889 0.873 0.712 0.707 0.433

LN
100 0.798 0.786 0.566 0.534 0.242
150 0.817 0.805 0.587 0.673 0.292
200 0.844 0.835 0.613 0.605 0.369

Model 2

Normal
100 0.801 0.799 0.864 0.855 0.584
150 0.856 0.846 0.880 0.870 0.621
200 0.904 0.900 0.911 0.904 0.659

t3

100 0.810 0.802 0.612 0.601 0.402
150 0.825 0.814 0.638 0.632 0.457
200 0.873 0.859 0.695 0.683 0.484

Gamma
100 0.804 0.798 0.527 0.509 0.216
150 0.821 0.819 0.594 0.557 0.289
200 0.885 0.875 0.638 0.606 0.379

LN
100 0.763 0.757 0.463 0.434 0.206
150 0.799 0.795 0.495 0.479 0.228
200 0.826 0.819 0.529 0.511 0.312

Model 3

Normal
100 0.837 0.832 0.848 0.833 0.535
150 0.856 0.848 0.864 0.857 0.594
200 0.875 0.871 0.902 0.896 0.628

t3

100 0.801 0.796 0.606 0.591 0.403
150 0.818 0.816 0.640 0.612 0.426
200 0.881 0.872 0.675 0.643 0.501

Gamma
100 0.792 0.785 0.385 0.329 0.205
150 0.818 0.809 0.472 0.435 0.281
200 0.874 0.867 0.581 0.565 0.367

LN
100 0.783 0.776 0.355 0.336 0.187
150 0.804 0.795 0.442 0.406 0.231
200 0.859 0.849 0.514 0.487 0.326

5 Real data analysis

Oberthuer et al. (2006) analyzed the German Neuroblastoma Trials NB90-NB2004 (diag-

nosed between 1989 and 2004) and developed a gene expression based classifier. For 246

neuroblastoma patients, gene expressions over 10,707 probe sites were measured. The binary

response variable is the 3-year event-free survival information of the patients (56 positive

and 190 negative). We refer to Oberthuer et al. (2006) for a detailed description of the
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Figure 3: Empirical power versus signal strength. The data are generated from Model 1
with (n, p) = (200, 500) and t3-distributed noise.

dataset. In this study, we divide the data into two groups, one with positive responses and

the other with negative responses, and test the equality of gene expression levels at all the

10,707 probe sites simultaneously. To that end, we generalize the proposed FarmTest to the

two-sample case by defining the following two-sample t-type statistics

Tj =
(µ̂1j − b̂T1j f̂1)− (µ̂2j − b̂T2j f̂2)

(σ̂1ε,jj/56 + σ̂2ε,jj/190)1/2
, j = 1, . . . , 10707,

where the subscripts 1 and 2 correspond to the positive and negative groups, respectively.

Specifically, µ̂1j and µ̂2j are the robust mean estimators obtained from minimizing the

empirical Huber risk (5), and b̂1j , b̂2j , f̂1 and f̂2 are robust estimators of the factors and

loadings based on the U -type covariance estimator. In addition, σ̂1ε,jj and σ̂2ε,jj are the

variance estimators defined in (27). As before, the robustification parameters are selected

via five-fold cross-validation with their theoretically optimal orders taking into account.

We use the eigenvalue ratio method (Lam and Yao, 2012; Ahn and Horenstein, 2013) to

determine the number of factors. Let λk(Σ̂) be the k-th largest eigenvalue of Σ̂ and Kmax

a prespecified upper bound. The number of factors can then be estimated by

K̂ = arg max
1≤k≤Kmax

λk(Σ̂)/λk+1(Σ̂).

The eigenvalue ratio method suggestsK = 4 for both positive and negative groups. Figure 5
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Figure 4: Empirical FDP versus sample size for the five tests at level α = 0.05. The data
are generated from Model 1 with p = 500 and sample size n ranging from 100 to 200 with
a step size of 10. The panels from top to bottom correspond to the four error distributions
in Section 4.2.
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Figure 5: Scree plots for positive and negative groups. The bars represent the
proportion of variance explained by the top 20 principal components. The dots represent
the corresponding eigenvalues in descending order.

depicts scree plots of the top 20 eigenvalues for each group. The gene expressions in both

groups are highly correlated. As an evidence, the top 4 principal components (PCs) explain

42.6% and 33.3% of the total variance for the positive and negative groups, respectively.

To demonstrate the importance of the factor-adjustment procedure, for each group, we

plot the correlation matrices of the first 100 gene expressions before and after adjusting the

top 4 PCs; see Figure 6. The blue and red pixels in Figure 6 represent the pairs of gene

expressions whose absolute correlations are greater than 1/3. Therefore, after adjusting

the top 4 PCs, the number of off-diagonal entries with strong correlations is significantly

reduced in both groups. To be more specific, the number drops from 1452 to 666 for the

positive group and from 848 to 414 for the negative group.

Another stylized feature of the data is that distributions of many gene expressions are

heavy-tailed. To see this, we plot histograms of the excess kurtosis of the gene expressions

in Figure 7. The left panel of the Figure 7 shows that 6518 gene expressions have positive

excess kurtosis with 420 of them greater than 6. In other words, more than 60% of the

gene expressions in the positive group have tails heavier than the normal distribution and

about 4% are severely heavy tailed as their tails are fatter than the t-distribution with 5

degrees of freedom. Similarly, in the negative group, 9341 gene expressions exhibit positive

excess kurtosis with 671 of them greater than 6. Such a heavy-tailed feature indicates the

necessity of using robust methods to estimate the mean and covariance of the data.
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Figure 6: Correlations among the first 100 genes before and after factor-

adjustment. The pixel plots are the correlation matrices of the first 100 gene expressions.
In the plots, the blue pixels represent the entries with correlation greater than 1/3 and the
red pixels represent the entries with correlation smaller than -1/3.

We apply four tests, the two-sample FARM-H and FARM-U , the FAM test and the naive

method, to this dataset. At level α = 0.01, the two-sample FARM-H and FARM-U methods

identify, respectively, 3912 and 3855 probes with different gene expressions, among which

3762 probes are identical. This shows an approximately 97% similarity in the two methods.

The FAM and naive methods discover 3509 and 3236 probes, respectively. For this dataset,
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Figure 7: Histogram of excess kurtosises for the gene expressions in positive and

negative groups. The dashed line at 6 is the excess kurtosis of t5-distribution.

accounting for latent factor dependence indeed leads to different statistical conclusions. This

visible discrepancy between the two robust methods and FAM highlights the importance of

robustness and reflects the difference in power of detecting differently expressed probes. The

effectiveness of factor adjustment is also highlighted in the discovery of significant genes.

6 Discussion and extensions

In this paper, we have developed a factor-adjusted multiple testing procedure (FarmTest)

for large-scale simultaneous inference with dependent and heavy-tailed data, the key of

which lies in a robust estimate of the false discovery proportion. The procedure has two

attractive features: First, it incorporates dependence information to construct marginal

test statistics. Intuitively, subtracting common factors out leads to higher signal-to-noise

ratios, and therefore makes the resulting FDP control procedure more efficient and powerful.

Second, to achieve robustness against heavy-tailed errors that may also be asymmetric, we

used the adaptive Huber regression method (Fan et al., 2017; Zhou at al., 2018) to estimate

the realized factors, factor loadings and variances. We believe that these two properties will

have further applications to higher criticism for detecting sparse signals with dependent and

non-Gaussian data; see Delaigle et al. (2011) for the independent case.

In other situations, it may be more instructive to consider the mixed effects regression

modeling of the data (Friguet et al., 2009; Wang et al., 2017), that is, Xj = µj + βT
j Z +
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bTj f+εj for j = 1, . . . , p, where Z ∈ Rq is a vector of explanatory variables (e.g., treatment-

control, phenotype, health trait), βj ’s are q × 1 vectors of unknown slope coefficients, and

f , bj ’s and εj ’s have the same meanings as in (1). Suppose we observe independent samples

(X1,Z1), . . . , (Xn,Zn) from (X,Z) satisfying

Xi = µ+ΘZi +Bfi + εi, i = 1, . . . , n,

where Θ = (β1, . . . ,βp)
T ∈ Rp×q. In this case, we have E(Xi|Zi) = µ + ΘZi and

cov(Xi|Zi) = BΣfB
T+Σε. The main issue in extending our methodology to such a mixed

effects model is the estimation of Θ. For this, we construct robust estimators (µ̂j , β̂j) of

(µj ,βj), defined as

(µ̂j , β̂j) ∈ arg min
µ∈R,βj∈Rq

n∑

i=1

ℓτj (Xij − µ− βT
j Zi), 1 ≤ j ≤ p,

where τj ’s are robustification parameters. Taking Θ̂ = (β̂1, . . . , β̂p)
T, the FarmTest proce-

dure in Section 2.2 can be directly applied with {Xi}ni=1 replaced by {Xi− Θ̂Zi}ni=1. How-

ever, because Θ̂ depends on {(Xi,Zi)}ni=1, the adjusted data X1 − Θ̂Z1, . . . ,Xn − Θ̂Zn

are no longer independent, which causes the main difficulty of extending the established

theory in Section 3 to the current setting. One way to bypass this issue and to facilitate the

theoretical analysis is the use of sample splitting as discussed in Appendix A of the online

supplement. The FarmTest procedure for mixed effects models was also implemented in the

R-package FarmTest (https://cran.r-project.org/web/packages/FarmTest).

References

Ahn, S. C. and Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors.

Econometrica, 81, 1203–1227.

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71,

135–171.

Bai, J. and Li, K. (2012). Statistical analysis of factor models of high dimension. The

Annals of Statistics, 40, 436–465.

31



Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor

models. Econometrica, 70, 191–221.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical

and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series

B, 57, 289–300.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in mul-

tiple testing under dependency. The Annals of Statistics, 29, 1165–1188.

Blanchard, G. and Roquain, E. (2009). Adaptive false discovery rate control under

independence and dependence. Journal of Machine Learning Research, 10, 2837–2871.

Catoni, O. (2012). Challenging the empirical mean and empirical variance: A deviation
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Supplementary Material

A Sample splitting

Our procedure described in Sections 3.2 and 3.3 consists of two parts, the calibration of a

factor model (i.e. estimating B in equation (1)) and multiple inference. The construction

of the test statistics, or equivalently, the P -values, relies on a “fine” estimate of f̄ based on

the linear model in (25). In practice, bj ’s are replaced by the fitted loadings b̂j ’s using the

methods in Section 3.2.

To avoid mathematical challenges caused by the reuse of the sample, we resort to the

simple idea of sample splitting (Hartigan, 1969; Cox, 1975): half the data are used for

calibrating a factor model and the other half are used for multiple inference. We refer to

Rinaldo et al. (2016) for a modern look at inference based on sample splitting. Specifically,

the steps are summarized below.

(1) Split the data X = {X1, . . . ,Xn} into two halves X1 and X2. For simplicity, we

assume that the data are divided into two groups of equal size m = n/2.

(2) We use X1 to estimate b1, . . . , bp using either the U -type method (Section 3.2.1) or

the adaptive Huber method (Section 3.2.2). For simplicity, we focus on the latter and

denote the estimators by b̂1(X1), . . . , b̂p(X1).

(3) Proceed with the remain steps in the FarmTest procedure using the data in X2. De-

note the resulting test statistics by T1, . . . , Tp. For a given threshold z ≥ 0, the

corresponding FDP and its asymptotic expression are defined as

FDPsp(z) = V (z)/R(z) and AFDPsp(z) = 2pΦ(−z)/R(z),

respectively, where V (z) =
∑

j∈H0
I(|Tj | ≥ z), R(z) =

∑
1≤j≤p I(|Tj | ≥ z) and the

subscript “sp” stands for sample splitting.

The purpose of sample splitting employed in the above procedure is to facilitate the

theoretical analysis. The following result shows that the asymptotic FDP AFDPsp(z),

constructed via sample splitting, provides a consistent estimate of FDP(z).
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Theorem A.1. Suppose that Assumptions 1 (i)–(iv), Assumptions 2–4 hold. Let τj =

ajωn,p, τjj = ajjωn,p with aj ≥ σ
1/2
jj , ajj ≥ var(X2

j )
1/2 for j = 1, . . . , p, and let γ =

γ0{p/ log(np)}1/2 with γ0 ≥ σε. Then, for any z ≥ 0, |AFDPsp(z) − FDPsp(z)| = oP(1) as

n, p→ ∞.

B Derivation of (6)

For any t and aj ≥ σ
1/2
jj , Lemma C.3 in Section C.1 shows that, conditionally on fi’s, the

rescaled robust estimator
√
n µ̂j with τj = aj(n/t)

1/2 satisfies

√
n (µ̂j − µj − bTj f̄) =

{
1√
n

n∑

i=1

ℓ′τj (b
T
j fi + εij)−

√
n bTj f̄

}
+R1j , (B.1)

where the remainder R1j satisfies P(|R1j | . ajn
−1/2t) ≥ 1 − 3e−t. The stochastic term

n−1/2
∑n

i=1 ℓ
′
τj (b

T
j fi + εij)−

√
n bTj f̄ in (6) can be decomposed as

1√
n

n∑

i=1

ℓ′τj (b
T
j fi + εij)−

√
n bTj f̄ =

1√
n

n∑

i=1

{ℓ′τj (bTj fi + εij)− Efi
ℓ′τj (b

T
j fi + εij)}

︸ ︷︷ ︸
Sj

+
1√
n

n∑

i=1

{Efi
ℓ′τj (b

T
j fi + εij)− bTj fi}

︸ ︷︷ ︸
R2j

, (B.2)

where f̄ = n−1
∑n

i=1 fi and Efi
(·) = E(·|fi) denotes the conditional expectation given fi.

Under the finite fourth moment condition υj := (Eε4j )
1/4 < ∞, it follows from Lemma C.4

that as long as n ≥ 4a−2
j max1≤i≤n(bTj fi)

2t,

|R2j | ≤ 8a−3
j υ4j n

−1t3/2. (B.3)

Given {fi}ni=1, Sj in (B.2) is a sum of (conditionally) independent random variables with

(conditional) mean zero. In addition, we note from (C.4) in Lemma C.4 that the (condi-

tional) variance of ℓ′τj (b
T
j fi + εij) given fi satisfies |varfi

{ℓ′τj (bTj fi + εij)} − σε,jj | . n−1t.

Therefore, by the central limit theorem, the conditional distribution of Sj given {fi}ni=1

is asymptotically normal with mean zero and variance σε,jj as long as t = t(n, p) = o(n).
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This, together with (B.3) implies that, conditioning on {fi}ni=1, the distribution of
√
n µ̂j

is close to a normal distribution with mean
√
n (µj + bTj f̄) and variance σε,jj . Under the

identifiability condition (2), σε,jj = σjj − ‖bj‖22 for j = 1, . . . , p. We complete the proof.

C Proofs of main results

In this section, we present the proofs for Theorems 1–5 and Theorem A.1, starting with

some preliminary results whose proofs can be found in Section D. Recall that

wn,p =

√
n

log(np)
,

which will be frequently used in the sequel. Also, we use c1, c2, . . . and C1, C2, . . . to denote

constants that are independent of (n, p), which may take different values at each occurrence.

C.1 Preliminaries

For each 1 ≤ j ≤ p, define the zero-mean error variable ξj = Xj − µj and let µj,τ =

argminθ∈R Eℓτ (Xj−θ) be the approximate mean, where ℓτ (·) is the Huber loss given in (5).

Throughout, we use ψτ to denote the derivative of ℓτ , that is,

ψτ (u) = ℓ′τ (u) = min(|u|, τ) sign(u), u ∈ R.

Lemma C.1 provides an upper bound on the approximation bias |µj − µj,τ |, whose proof is

given in Section D.3.

Lemma C.1. Let 1 ≤ j ≤ p and assume that υκ,j = E(|ξj |κ) < ∞ for some κ ≥ 2. Then,

as long as τ > σ
1/2
jj , we have

|µj,τ − µj | ≤ (1− σjjτ
−2)−1υκ,jτ

1−κ. (C.1)

The following concentration inequality is from Theorem 5 in Fan et al. (2017), showing

that µ̂j with a properly chosen robustification parameter τ exhibits sub-Gaussian tails when

the underlying distribution has heavy tails with only finite second moment.

3



Lemma C.2. For every 1 ≤ j ≤ p and t > 0, the estimator µ̂j in (5) with τ = a(n/t)1/2

for a ≥ σ
1/2
jj satisfies P{|µ̂j − µj | ≥ 4a(t/n)1/2} ≤ 2e−t as long as n ≥ 8t.

The next result provides a nonasymptotic Bahadur representation for µ̂j . In particular,

we show that when the second moment is finite, the remainder of the Bahadur represen-

tation for µ̂j exhibits sub-exponential tails. The proof of Lemmas C.3–C.6 can be found

respectively in Sections D.4–D.7.

Lemma C.3. For every 1 ≤ j ≤ p and for any t ≥ 1, the estimator µ̂j in (5) with

τ = a(n/t)1/2 and a ≥ σ
1/2
jj satisfies that as long as n ≥ 8t,

∣∣∣∣
√
n (µ̂j − µj)−

1√
n

n∑

i=1

ψτ (ξij)

∣∣∣∣ ≤ C
at√
n

(C.2)

with probability greater than 1 − 3e−t, where ξij = Xij − µj and C > 0 is an absolute

constant.

Under factor model (1), note that ξj = bTj f + εj for every j. The following conclusion

reveals that the differences between the first two (conditional) moments of ξj and ψτ (ξj)

given f vanish faster if higher moments of εj exist.

Lemma C.4. Assume that E(|εj |κ) <∞ for some 1 ≤ j ≤ p and κ ≥ 2.

(1) On the event Gj := {|bTj f | < τ},

|Efψτ (ξj)− bTj f | ≤ min

{
σε,jj

τ − |bTj f |
,

E|εj |κ
(τ − |bTj f |)κ−1

}
(C.3)

almost surely. In addition, if κ > 2, we have

σε,jj −
E(|εj |κ)

(τ − |bTj f |)κ−2

{
2

κ− 2
+

E(|εj |κ)
(τ − |bTj f |)κ

}
≤ varf{ψτ (ξj)} ≤ σε,jj (C.4)

almost surely on Gj .

(2) Assume that υjk := E(|εj |κ) ∨ E(|εk|κ) <∞ for some 1 ≤ j 6= k ≤ p and κ > 2. Then

|covf (ψτ (ξj), ψτ (ξk))− cov(εj , εk)| ≤ Cmax(υjkτ
2−κ, υ2jkτ

2−2κ) (C.5)
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almost surely on Gjk := {|bTj f | ∨ |bTk f | ≤ τ/2}, where C > 0 is an absolute constant.

Lemma C.5. Suppose that Assumption 1 holds. Then, for any t > 0,

P{‖√nf̄‖2 > C1Af (K + t)1/2} ≤ e−t, (C.6)

P

{
max
1≤i≤n

‖fi‖2 > C1Af (K + log n+ t)1/2
}

≤ e−t, (C.7)

and P[‖Σ̂f − IK‖2 > C2max{A2
fn

−1/2(K + t)1/2, A4
fn

−1(K + t)}] ≤ 2e−t, (C.8)

where f̄ = n−1
∑n

i=1 fi, Σ̂f = n−1
∑n

i=1 fif
T
i and C1, C2 > 0 are absolute constants.

The following lemma provides an ℓ∞-error bound for estimating the eigenvectors vℓ’s of

BTB. The proof is based on an ℓ∞ eigenvector perturbation bound developed in Fan et al.

(2018) and is given in Appendix D.

Lemma C.6. Suppose Assumption 2 holds. Then we have

max
1≤ℓ≤K

|λ̃ℓ − λℓ| ≤ p‖Σ̂H −Σ‖max + ‖Σε‖ (C.9)

and max
1≤ℓ≤K

‖v̂ℓ − vℓ‖∞ ≤ C(p−1/2‖Σ̂H −Σ‖max + p−1‖Σε‖), (C.10)

where C > 0 is a constant independent of (n, p).

C.2 Proof of Theorem 1

To prove (15) and (16), we will derive the following stronger results that

p−1
0 V (z) = 2Φ(−z) +OP{p−κ1/2 + w−1/2

n,p + n−1/2 log(np)} (C.11)

and p−1R(z) =
1

p

p∑

j=1

{
Φ

(
− z +

√
nµj√
σε,jj

)
+Φ

(
− z −

√
nµj√
σε,jj

)}

+OP{p−κ1/2 + w−1/2
n,p + n−1/2 log(np)} (C.12)

uniformly over z ≥ 0 as n, p→ ∞, where wn,p =
√
n/ log(np).

For 1 ≤ j ≤ p and t ≥ 1, set τj = aj
√
n/t with aj ≥ σ

1/2
jj . By Lemma C.3, for every

5



j ∈ H0 so that µj = 0,

|T ◦
j − σ

−1/2
ε,jj (Sj +R2j)| ≤ c1

ajt√
σε,jjn

(C.13)

with probability greater than 1− 3e−t as long as n ≥ 8t, where

Sj =
1√
n

n∑

i=1

Sij with Sij := ψτj (b
T
j fi + εij)− Efi

ψτj (b
T
j fi + εij), (C.14)

R2j = n−1/2
∑n

i=1{Efi
ψτj (b

T
j fi + εij)− bTj fi}. For j = 1, . . . , p, denote by E1j(t) the event

that (C.13) holds. Define E1(t) =
⋂p
j=1 E1j(t), on which it holds

∑

j∈H0

I

(
|T0j | ≥ z +

c1ajt√
σε,jjn

)
≤ V (z) ≤

∑

j∈H0

I

(
|T0j | ≥ z − c1ajt√

σε,jjn

)
, (C.15)

where T0j := σ
−1/2
ε,jj (Sj +R2j). Next, let E2(t) denote the event on which the following hold:

‖√nf̄‖2 ≤ C1Af (K + t)1/2, max
1≤i≤n

‖fi‖2 ≤ C1Af (K + log n+ t)1/2,

and ‖Σ̂f − IK‖2 ≤ C2max{A2
fn

−1/2(K + t)1/2, A4
fn

−1(K + t)}.

From Lemmas C.3, C.5 and the union bound, it follows that

P{E1(t)c} ≤ pe−t and P{E2(t)c} ≤ 4e−t.

With the above preparations, we are ready to prove (C.11). The proof of (C.12) follows

the same argument and therefore is omitted. Note that, on the event E2(t),

max
1≤i≤n

|bTj fi| ≤ C1Af‖bj‖2(K + log n+ t)1/2 for all 1 ≤ j ≤ p.

By the definition of τj ’s,

max
1≤i≤n

|bTj fi| ≤ τj/2 for all j = 1, . . . , p, (C.16)

as long as n ≥ 4(C1Af )
2(K + log n+ t)t. This, together with Lemma C.5, implies |R2j | ≤
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8a−3
j υ4j n

−1t3/2 almost surely on E2(t) for all sufficiently large n. Moreover, taking (C.15)

into account we obtain that, almost surely on the event E1(t) ∩ E2(t),

∑

j∈H0

I(|σ−1/2
ε,jj Sj | ≥ z + c2n

−1/2t) ≤ V (z) ≤
∑

j∈H0

I(|σ−1/2
ε,jj Sj | ≥ z − c2n

−1/2t) (C.17)

as long as n & (K + t)t. For x ∈ R, define

Ṽ+(x) =
∑

j∈H0

I(σ
−1/2
ε,jj Sj ≥ x) and Ṽ−(x) =

∑

j∈H0

I(σ
−1/2
ε,jj Sj ≤ −x),

so that (C.17) can be written as

p−1
0 {Ṽ+(z + c2n

−1/2t) + Ṽ−(z + c2n
−1/2t)}

≤ p−1
0 V (z) ≤ p−1

0 {Ṽ+(z − c2n
−1/2t) + Ṽ−(z − c2n

−1/2t)}. (C.18)

Therefore, to prove (C.11) it suffices to focus on Ṽ+ and Ṽ−.

Observe that, conditional on Fn := {f1, . . . ,fn}, I(σ−1/2
ε,11 S1 ≥ z), . . . , I(σ

−1/2
ε,pp Sp ≥ z)

are weakly correlated random variables. Define

Yj = I(σ
−1/2
ε,jj Sj ≥ z) and Pj = P(σ

−1/2
ε,jj Sj ≥ z|Fn)

for j = 1, . . . , p, and note that

var

(
1

p0

∑

j∈H0

Yj

∣∣∣∣Fn
)

=
1

p20

∑

j∈H0

var(Yj |Fn) +
1

p20

∑

j,k∈H0:j 6=k
cov(Yj , Yk|Fn)

≤ 1

4p0
+

1

p20

∑

j,k∈H0:j 6=k
{E(YjYk|Fn)− PjPk} (C.19)

almost surely. In the following, we will study Pj and E(YjYk|Fn) separately, starting with

the former. Conditional on Fn, Sj is a sum of independent zero-mean random variables

with conditional variance s2j := var(Sj |Fn) = n−1
∑n

i=1 s
2
ij where s2ij := var(Sij |Fn). Let

G ∼ N (0, 1) be a standard normal random variable independent of the data. By the

7



Berry-Esseen inequality,

sup
x∈R

|P(σ−1/2
ε,jj Sj ≤ x|Fn)− P(sjσ

−1/2
ε,jj G ≤ x|Fn)|

.
1

(nsj)3/2

n∑

i=1

Efi
|ψτj (bTj fi + εij)|3 .

1

(nsj)3/2

n∑

i=1

(|bTj fi|3 + E|εij |3) (C.20)

almost surely, where conditional on Fn, sjσ−1/2
ε,jj G ∼ N (0, s2jσ

−1
ε,jj). Since max1≤i≤n |bTj fi| ≤

τj/2 for all 1 ≤ j ≤ p on E2(t), applying Lemma C.4 with κ = 4 yields

σε,jj − 4a−2
j υ4j (1 + 16a−4

j υ4j n
−2t2)n−1t ≤ s2j ≤ σε,jj (C.21)

almost surely on the event E2(t). Using (C.21) and Lemma A.7 in the supplement of

Spokoiny and Zhilova (2015), we get

sup
x∈R

|P(sjσ−1/2
ε,jj G ≤ x|Fn)− Φ(x)| . a−2

j υ4j n
−1t (C.22)

almost surely on E2(t) as long as n & (K + t)t. Putting (C.20) and (C.22) together we

conclude that, almost surely on E2(t),

max
1≤j≤p

|Pj − Φ(−z)| . n−1/2(K + log n+ t)1/2 (C.23)

uniformly for all z ≥ 0 as long as n & (K + t)t.

Next we consider the joint probability E(YjYk|Fn) = P(σ
−1/2
ε,jj Sj ≥ z, σ

−1/2
ε,kk Sk ≥ z|Fn)

for a fixed pair (j, k) satisfying 1 ≤ j 6= k ≤ p. Define bivariate random vectors ξi =

(s−1
j Sij , s

−1
k Sik)

T for i = 1, . . . , n. Observe that ξ1, . . . , ξn are conditionally indepen-

dent random vectors given Fn. Denote by A = (auv)1≤u,v≤2 the covariance matrix of

n−1/2
∑n

i=1 ξi = (s−1
j Sj , s

−1
k Sk)

T given Fn such that

a11 = a22 = 1 and a12 = a21 =
1

nsjsk

n∑

i=1

covfi
(Sij , Sik).

By Lemma C.4 and (C.21), we have |a12 − rε,jk| . n−1t almost surely on E2(t). Therefore,

the matrix A is positive definite almost surely on E2(t) whenever n & t. Let G = (G1, G2)
T

8



be a Gaussian random vector with E(G) = 0 and cov(G) = A. Then, applying Theorem 1.1

in Bentkus (2005), a multivariate Berry-Esseen bound, to n−1/2
∑n

i=1 ξi gives

sup
x,y∈R

|P(s−1
j Sj ≥ x, s−1

k Sk ≥ y|Fn)− P(G1 ≥ x,G2 ≥ y)|

.
1

n3/2

n∑

i=1

E(‖A−1/2ξi‖32) .
1√
n
+

1

n3/2

n∑

i=1

(|bTj fi|3 + |bTk fi|3)

almost surely on E2(t). Taking x = s−1
j σ

1/2
ε,jj z and y = s−1

k σ
1/2
ε,kk z implies

|E(YjYk|Fn)− P(G1 ≥ s−1
j σ

1/2
ε,jj z,G2 ≥ s−1

k σ
1/2
ε,kk z|Fn)|

.
1√
n
+

1

n3/2

n∑

i=1

(|bTj fi|3 + |bTk fi|3). (C.24)

For the bivariate Gaussian random vector (G1, G2)
T with a12 = cov(G1, G2), it follows from

Corollary 2.1 in Li and Shao (2002) that, for any x, y ∈ R,

|P(G1 ≥ x,G2 ≥ y)− {1− Φ(x)}{1− Φ(y)}| ≤ |a12|
4

exp

{
− x2 + y2

2(1 + |a12|)

}
≤ |a12|

4
.

This, together with the Gaussian comparison inequality (C.22) gives

|P(G1 ≥ s−1
j σ

1/2
ε,jj z,G2 ≥ s−1

k σ
1/2
ε,kk z|Fn)− Φ(−z)2| . |rε,jk|+ n−1t (C.25)

almost surely on E2(t) as long as n & (K + t)t.

Consequently, it follows from (C.19), (C.23), (C.24), (C.25) and Assumption 1 that

E[{p−1
0 Ṽ+(z)− Φ(−z)}2|Fn] . p−κ1 + n−1/2(K + log n+ t)1/2 (C.26)

almost surely on E2(t) as long as n & (K + t)t. A similar bound can be obtained for

E[{p−1
0 Ṽ−(z)−Φ(−z)}2|Fn]. Recall that P{E1(t)∩E2(t)} ≥ 1− (p+4)e−t whenever n ≥ 8t.

Finally, taking t = log(np) in (C.18) and (C.26) proves (C.11).
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C.3 Proof of Proposition 1

To begin with, observe that

∣∣∣∣T̃j −
√

n

σ̃ε,jj
(µ̂j − bTj f̄ )

∣∣∣∣ =
√

n

σ̃ε,jj
|(b̃j − bj)

Tf̄ | ≤
√

n

σ̃ε,jj
‖f̄‖2‖b̃j − bj‖2,

∣∣∣∣
√

n

σ̃ε,jj
(µ̂j − bTj f̄ )− T ◦

j

∣∣∣∣ ≤
∣∣∣∣

1√
σ̃ε,jj

− 1
√
σε,jj

∣∣∣∣(|
√
n µ̂j |+ ‖bj‖2‖

√
nf̄‖2).

By Lemma C.5, ‖√nf̄‖2 . (K+log n)1/2 with probability greater than 1−n−1. Moreover,

it follows from Lemma C.2 that max1≤j≤p |µ̂j − µj | . {log(np)}1/2n−1/2 with probability

at least 1− 2n−1. Putting the above calculations together, we conclude that

max
j∈H0

|T̃j − T ◦
j | .

log(np)√
n

+ (K + log n)1/2 max
1≤j≤p

(‖b̃j − bj‖2 + |σ̃jj − σjj |)

with probability at least 1−3n−1. Combining this with the proof of Theorem 1 and condition

(17) implies p−1
0 Ṽ (z) = 2Φ(−z) + oP(1). Similarly, it can be proved that (C.12) holds with

R(z) replaced by R̃(z). The conclusion follows immediately.

C.4 Proof of Theorem 2

We first note that the Σ̂ = Σ̂U defined is a U -statistic of order two. For simplicity, let C

denote the set of
(
n
2

)
distinct pairs (i1, i2) satisfying 1 ≤ i1 < i2 ≤ n. Let h(Xi,Xj) =

2−1(Xi −Xj)(Xi −Xj)
T and Yij = ψτ (h(Xi,Xj)) = τψ1(τ

−1h(Xi,Xj)), such that

Σ̂ =
1(
n
2

)
∑

(i,j)∈C
Yij .

We now rewrite the U -statistic Σ̂ as an average of dependent averages of identically and

independently distributed random matrices. Define k = [n/2], the greatest integer ≤ n/2

and define

W(1,...,n) = k−1(Y12 + Y23 + . . .+ Y2k−1,2k).

Let P denote the class of all n! permutations of (1, . . . , n) and π = (i1, . . . , in) : {1, . . . , n} 7→
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{1, . . . , n} be a permutation, i.e. π(k) = ik for k = 1, . . . , n. Then it can be shown that

Σ̂ =
1

n!

∑

π∈P
Wπ.

Using the convexity of maximum eigenvalue function λmax(·) along with the convexity of

the exponential function, we obtain

exp{λmax(Σ̂−Σ)/τ} ≤ 1

n!

∑

π∈P
exp{λmax(Wπ −Σ)/τ}.

Combining this with Chebyshev’s inequality delivers

P{λmax(Σ̂−Σ) ≥ t/
√
n}

= P

[
exp{λmax(kΣ̂− kΣ)/τ} ≥ exp{kt/(τ√n )}

]

≤ e−kt/(τ
√
n) 1

n!

∑

π∈P
E exp{λmax(kWπ − kΣ)/τ}

≤ e−kt/(τ
√
n) 1

n!

∑

π∈P
E tr exp{(kWπ − kΣ)/τ},

where we use the property eλmax(A) ≤ tr eA in the last inequality. For a given permutation

π = (i1, . . . , in) ∈ P, we write Yπj = Yi2j−1i2j and Hπj = h(Xi2j−1
,Xi2j ) with EHπj = Σ.

We then rewrite Wπ as Wπ = k−1(Yπ1 + . . .+ Yπk), where Yπj ’s are mutually independent.

Before proceeding, we introduce the following lemma whose proof is based on elementary

calculations.

Lemma C.7. For any τ > 0 and x ∈ R, we have ψτ (x) = τψ1(x/τ) and

− log(1− x+ x2) ≤ ψ1(x) ≤ log(1 + x+ x2) for all x ∈ R.

From Lemma C.7 we see that the matrix Yπj can be bounded as

− log(Ip −Hπj/τ +H2
πj/τ

2) ≤ Yπj/τ ≤ log(Ip +Hπj/τ +H2
πj/τ

2).
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Using this property we can bound E exp{tr(kWπ − kΣ)/τ} by

E[k−1]Ek tr exp

{
k−1∑

j=1

Yπj − (k/τ)Σ+ Yπk

}

≤ E[k−1]Ek tr exp

{
k−1∑

j=1

Yπj − (k/τ)Σ+ log(Ip +Hπj/τ +H2
πj/τ

2)

}
(C.27)

To further bound the right-hand side of (C.27), we follow a similar argument as in Minsker

(2016). The following lemma, which is taken from Lieb (2002), is commonly referred to as

the Lieb’s concavity theorem.

Lemma C.8. For any symmetric matrix H ∈ R
d×d, the function

f(A) = tr exp(H + logA), A ∈ R
d×d

is concave over the set of all positive definite matrices.

Applying Lemma C.8 repeatedly along with Jensen’s inequality, we obtain

E{tr exp(kWπ − kΣ)/τ} ≤ E tr exp

{
k−1∑

j=1

Yπj − (k/τ)Σ+ log(Ip + EHπk/τ + EH2
πk/τ

2)

}

≤ tr exp

{
k∑

j=1

log(Ip + EHπj/τ + EH2
πj/τ

2)− (k/τ)Σ

}

≤ tr exp

(
k∑

j=1

EH2
πk/τ

2

)
,

where we use the inequality log(1+x) ≤ x for x > −1 in the last step. The following lemma

gives an explicit form for v2 := ‖EH2
πk‖2.

Lemma C.9. We have

‖Eh2(X1,X2)‖2 =
1

2

∥∥∥E{(X − µ)(X − µ)T}2 + tr(Σ)Σ+ 2Σ2
∥∥∥.

Proof of Lemma C.9. Write X = X1 and Y = X2. Without loss of generality, assume that

12



E(X)=E(Y )=0. Let H1 = XXT, H2 = Y Y T, H12 = XY T and H21 = Y XT. Then

{(X − Y )(X − Y )T}2 = (H1 +H2 −H12 −H21)
2

= H2
1 +H2

2 +H2
12 +H2

21 +H1H2 +H2H1 +H12H21 +H21H12

−H1H12 −H12H1 −H1H21 −H21H1 −H2H12 −H12H2

−H2H21 −H21H2,

which, by symmetry, implies that

E{(X − Y )(X − Y )T}2 = 2EH2
1 + 2EH2

12 + 2EH1H2 + 2EH12H21.

In the following we calculate the four expectations on the right-hand side of the above

equality separately. For the first term, note that

EH2
1 = E(XXTXXT).

Let A = (Ajk) = H2
12 and we have

EAjk = E

( p∑

ℓ=1

XℓYℓXjYk

)
= E

(
Yk

p∑

ℓ=1

XjXℓYℓ

)
=

p∑

ℓ=1

σjℓσℓk,

where σjk is the (j, k)-th entry of Σ. Therefore, we have EH2
12 = Σ2. For EH1H2, using

independence, we can show that EH1H2 = Σ2. For EH12H21, we have

EH12H21 = E(XY TY XT) = E{E(XY TY XT|Y )} = tr(Σ)Σ.

Putting the above calculations together completes the proof.
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For any u > 0, putting the above calculations together and letting τ ≥ 2v2
√
n/u yield

P{λmax(Σ̂−Σ) ≥ u/
√
n}

≤ e−ku/(
√
nτ) tr exp

( k∑

j=1

EH2
πk/τ

2

)
≤ p exp

(
− ku√

nτ
+
kv2

τ2

)

≤ p exp

(
− ku2

4nv2

)
≤ p exp

(
− u2

16v2

)
,

where we use the fact that k := [n/2] ≥ n/4 for n ≥ 2 in the last inequality. On the other

hand, it can be similarly shown that

P{λmin(Σ̂−Σ) ≤ −u/√n} ≤ p exp

(
− u2

16v2

)

Combining the above two inequalities and putting u = 4v
√
t complete the proof.

C.5 Proof of Theorem 3

First we bound max1≤j≤p ‖b̂j − bj‖2. For any t > 0, it follows from Theorem 2 that with

probability greater than 1 − 2pe−t, ‖Σ̂U −Σ‖ ≤ 4v(t/n)1/2, where v is as in (19). Define

b̃j = (λ
1/2
1 v̂1j , . . . , λ

1/2
K v̂Kj)

T ∈ R
K , such that ‖b̂j − bj‖2 ≤ ‖b̂j − b̃j‖2 + ‖b̃j − bj‖2. By

Assumption 2, (20) and (21), we have

|λ̂1/2ℓ − λ
1/2
ℓ | = |λ̂ℓ − λℓ|/(λ̂1/2ℓ + λ

1/2
ℓ ) . p−1/2(‖Σ̂U −Σ‖+ ‖Σε‖),

‖vℓ‖∞ = ‖bℓ‖∞/‖bℓ‖2 ≤ ‖B‖max/‖bℓ‖2 . p−1/2

and ‖v̂ℓ‖∞ ≤ ‖v̂ℓ − vℓ‖2 + ‖vℓ‖∞ . p−1‖Σ̂U −Σ‖+ p−1/2.

On the event {‖Σ̂U −Σ‖ ≤ 4v(t/n)1/2}, it follows that

|λ̂1/2ℓ − λ
1/2
ℓ | . v

√
t (np)−1/2 + p−1/2 and ‖v̂ℓ‖∞ . p−1/2 (C.28)
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as long as n ≥ v2p−1t. Write v̂ℓ = (v̂ℓ1, . . . v̂ℓp)
T. It follows that, with probability at least

1− 2pe−t,

‖b̂j − b̃j‖2 =
{ K∑

ℓ=1

(λ̂
1/2
ℓ − λ

1/2
ℓ )2 v̂2ℓj

}1/2

. p−1(v
√
t n−1/2 + 1)

for all 1 ≤ j ≤ p. Similarly,

‖b̃j − bj‖2 =
{ K∑

ℓ=1

λℓ(v̂ℓj − vℓj)
2

}1/2

≤ max
1≤ℓ≤K

λ
1/2
ℓ ·

√
K ‖v̂ℓ − vℓ‖∞ . v

√
t (np)−1/2 + p−1/2.

By taking t = log(np), the previous two displays together imply (22).

Next we consider max1≤j≤p |σ̂ε,jj − σε,jj |. Note that with probability at least 1− 4pe−t,

max1≤j≤p |θ̂j − E(X2
j )| . (t/n)1/2 as long as n & t. Therefore, it suffices to focus on

‖b̂j‖22 − ‖bj‖22, which can be written as
∑K

ℓ=1(λ̂ℓ − λℓ)v̂
2
ℓj +

∑K
ℓ=1 λℓ(v̂

2
ℓj − v2ℓj). Under

Assumption 2, it follows from (20) and (21) that on the event {‖Σ̂U −Σ‖ ≤ 4v(t/n)1/2},

|‖b̂j‖22 − ‖bj‖22|

≤
K∑

ℓ=1

|λ̂ℓ − λℓ|‖v̂ℓ‖2∞ +

K∑

ℓ=1

λℓ(‖v̂ℓ‖∞ + ‖vℓ‖∞)‖v̂ℓ − vℓ‖∞

. v
√
t (np)−1/2 + p−1/2

as long as n ≥ v2p−1t, which proves (23) by taking t = log(np).

C.6 Proof of Theorem 4

For µ̂j ’s and θ̂jk’s with τj = aj(n/t1)
1/2 and τjk = ajk(n/t2)

1/2, it follows from Lemma C.2

and the union bound that as long as n ≥ 8max(t1, t2),

max
1≤j≤p

|µ̂j − µj | ≤ 4 max
1≤j≤p

aj

√
t1
n

and max
1≤j≤k≤p

|θ̂jk − E(XjXk)| ≤ 4 max
1≤j≤k≤p

ajk

√
t2
n

with probability at least 1 − 2pe−t1 − (p2 + p)e−t2 . In particular, taking t1 = log(np) and

t2 = log(np2) implies that as long as n & log(np), ‖Σ̂H − Σ‖max . w−1
n,p with probability

greater than 1− 4n−1.
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The rest of the proof is similar to that of Theorem 3, simply with the following modi-

fications. Under Assumption 2, it follows from (C.9) and (C.10) in Lemma C.6 that, with

probability at least 1− 4n−1,

|λ̃1/2ℓ − λ
1/2
ℓ | = |λ̃ℓ − λℓ|/(λ̃1/2ℓ + λ

1/2
ℓ ) .

√
p (w−1

n,p + p−1),

‖vℓ‖∞ = ‖bℓ‖∞/‖bℓ‖2 ≤ ‖B‖max/‖bℓ‖2 . p−1/2,

‖ṽℓ − vℓ‖∞ . p−1/2w−1
n,p + p−1 and ‖ṽℓ‖∞ . p−1/2.

Plugging the above bounds into the proof of Theorem 3 proves the conclusions.

C.7 Proof of Theorem 5

The key of the proof is to show that Tj(B) provides a good approximation of T ◦
j uniformly

over 1 ≤ j ≤ p. To begin with, note that the estimator θ̂j with τjj = ajj(n/t)
1/2 for

ajj ≥ var(X2
j )

1/2 satisfies P{|θ̂j − θj | ≥ 4ajj(t/n)
1/2} ≤ 2e−t, where θj = E(X2

j ). Together

with the union bound, this yields that with probability greater than 1− 2pe−t,

max
1≤j≤p

|θ̂j − θj | ≤ 4 max
1≤j≤p

a
1/2
jj

√
t

n
(C.29)

as long as n ≥ 8t. Next, observe that

∣∣∣∣Tj(B)−
√

n

σ̂ε,jj
(µ̂j − bTj f̄ )

∣∣∣∣ =
√

n

σ̂ε,jj
|bTj {f̄ − f̂(B)}| ≤

√
n

σ̂ε,jj
‖bj‖2‖f̂(B)− f̄‖2

(C.30)

and

∣∣∣∣
√

n

σ̂ε,jj
(µ̂j − bTj f̄ )− T ◦

j

∣∣∣∣ ≤
∣∣∣∣

1√
σ̂ε,jj

− 1
√
σε,jj

∣∣∣∣(|
√
n µ̂j |+ ‖bj‖2‖

√
nf̄‖2). (C.31)

Applying Proposition 3 with t = log n shows that, with probability at least 1− C1n
−1,

‖f̂(B)− f̄‖2 . (K log n)1/2p−1/2. (C.32)
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Moreover, it follows from Lemma C.2, (C.6) and (C.29) that, with probability greater than

1− 4pe−t1 − e−t2 ,

max
1≤j≤p

|µ̂j − µj | .
√
t1
n
, max

1≤j≤p

∣∣∣∣
σ̂ε,jj
σε,jj

− 1

∣∣∣∣ .
√
t1
n

and ‖f̄‖2 .
√
K + t2
n

.

Taking t1 = log(np) and t2 = log n, we deduce from (C.30)–(C.32) that, with probability

at least 1− C2n
−1,

max
j∈H0

|Tj(B)− T ◦
j | . {K + log(np)}n−1/2 + (Kn log n)1/2p−1/2. (C.33)

Based on (C.33), the rest of the proof is almost identical to that of Theorem 1 and therefore

is omitted.

C.8 Proof of Theorem A.1

For convenience, we write b̂j = b̂j(X1) for j = 1, . . . , p, which are the estimated loading

vectors using the first half of the data. Let f̂(X2) be the estimator of f̄ obtained by solving

(26) using only the second half of the data and with bj ’s replaced by b̂j ’s.

We keep the notation used in Section 3.2.2, but with all the estimators constructed from

X1 instead of the whole data set. Recall that B̂ = (b̂1, . . . , b̂p)
T = (λ̃

1/2
1 v̂1, . . . , λ̃

1/2
K v̂K).

Following the proof of Theorem 4, we see that as long as n & log(np), the event Emax :=

{‖Σ̂H −Σ‖max . w−1
n,p} occurs with probability at least 1− 4n−1. On Emax, we have

max
1≤ℓ≤K

|λ̃1/2ℓ − λ
1/2
ℓ | . √

p (w−1
n,p + p−1) and max

1≤ℓ≤K
‖v̂ℓ‖∞ . p−1/2,

which, combined with the pervasiveness assumption λℓ ≍ p, implies max1≤ℓ≤K λ̃
1/2
ℓ .

√
p.

Moreover, write δj = b̂j − bj for 1 ≤ j ≤ p and note that

B̂TB̂−BTB =

p∑

j=1

(b̂j b̂
T
j − bjb

T
j ) =

p∑

j=1

δjδ
T
j + 2

p∑

j=1

δjb
T
j .

It follows that ‖p−1(B̂TB̂ − BTB)‖ ≤ max1≤j≤p(‖δj‖22 + 2‖bj‖2‖δj‖2). Again, from the

proof of Theorem 4 we see that on the event Emax, ‖p−1(B̂TB̂ − BTB)‖ . w−1
n,p + p−1/2.
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Under Assumption 3, putting the above calculations together yields that with probability

greater than 1− 4n−1,

λmin(p
−1B̂TB̂) ≥ cl

2
and ‖B̂‖max ≤ C1

as long as n & log(np). By the independence between b̂j ’s and X2, the conclusion of

Proposition 3 holds for f̂(X2).

Next, recall that

Tj =

√
n

σ̂ε,jj
{µ̂j − b̂Tj f̂(X2)},

where µ̂j ’s and σ̂ε,jj ’s are all constructed from X2. Note that

|√n{µ̂j − b̂Tj f̂(X2)} −
√
n{µ̂j − bTj f̄}| ≤

√
n‖b̂j‖2‖f̂(X2)− f̄‖2 +

√
n‖f̄‖2‖b̂j − bj‖2.

This, together with (28), Theorem 4 and (C.6), implies that with probability at least 1 −

C2n
−1,

max
1≤j≤p

|√n{µ̂j − b̂Tj f̂(X2)} −
√
n{µ̂j − bTj f̄}|

. (Kn log n)1/2p−1/2 + (K + log n)1/2(w−1
n,p + p−1/2).

Following the proof of Theorem 5, it can be shown that with probability at least 1−C3n
−1,

max
j∈H0

|Tj − T ◦
j | . (Kn log n)1/2p−1/2 + {K + log(np)}n−1/2.

The rest of the proof is almost identical to that of Theorem 1 and therefore is omitted.

D Additional proofs

In this section, we prove Propositions 2 and 3 in the main text, and Lemmas C.1–C.6 in

Section C.
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D.1 Proof of Proposition 2

By Weyl’s inequality and the decomposition that Σ̂ = BBT + (Σ̂−Σ) +Σε, we have

max
1≤ℓ≤K

|λ̂ℓ − λℓ| ≤ ‖Σ̂−Σ‖2 + ‖Σε‖2 and max
K+1≤ℓ≤p

|λ̂ℓ| ≤ ‖Σ̂−Σ‖2 + ‖Σε‖2,

where λ̂1, . . . , λ̂p are the eigenvalues of Σ̂ in a non-increasing order. Thus, (20) follows

immediately. Next, applying Corollary 1 in Yu et al. (2015) to the pair (Σ̂,BBT) gives

that, for every 1 ≤ ℓ ≤ K,

‖v̂ℓ − vℓ‖2 ≤
23/2‖(Σ̂−Σ) +Σε‖2

min(λℓ−1 − λℓ, λℓ − λℓ+1)
,

where we put λ0 = ∞ and λK+1 = 0. Under Assumption 2, this proves (21).

D.2 Proof of Proposition 3

To begin with, we introduce the following notation. Define the loss function Lγ(w) =

p−1
∑p

j=1 ℓγ(X̄j − bTj w) for w ∈ R
K , w∗ = f̄ and ŵ = argminw∈RK Lγ(w). Without loss

of generality, we assume ‖B‖max ≤ 1 for simplicity.

Define an intermediate estimator ŵη = w∗ + η(ŵ −w∗) such that ‖ŵη −w∗‖2 ≤ r for

some r > 0 to be specified below (D.7). We take η = 1 if ‖ŵ − w∗‖2 ≤ r; otherwise, we

choose η ∈ (0, 1) so that ‖ŵη −w∗‖2 = r. Then, it follows from Lemma A.1 in Sun et al.

(2017) that

〈∇Lγ(ŵη)−∇Lγ(w∗), ŵη −w∗〉 ≤ η〈∇Lγ(ŵ)−∇Lγ(w∗), ŵ −w∗〉, (D.1)

where ∇Lγ(ŵ) = 0 according to the Karush-Kuhn-Tucker condition. By the mean value

theorem for vector-valued functions, we have

∇Lγ(ŵη)−∇Lγ(w∗) =
∫ 1

0
∇2Lγ((1− t)w∗ + tŵη) dt (ŵη −w∗).
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If, there exists some constant amin > 0 such that

min
w∈RK :‖w−w∗‖2≤r

λmin(∇2Lγ(w)) ≥ amin, (D.2)

then it follows amin‖ŵη − w∗‖22 ≤ −η〈∇Lγ(w∗), ŵ − w∗〉 ≤ ‖∇Lγ(w∗)‖2‖ŵη − w∗‖2, or

equivalently,

amin‖ŵη −w∗‖2 ≤ ‖∇Lγ(w∗)‖2, (D.3)

where ∇Lγ(w∗) = −p−1
∑p

j=1 ψγ(µj + ε̄j)bj .

First we verify (D.2). Write S = p−1BTB and note that

∇2Lγ(w) =
1

p

p∑

j=1

bjb
T
j I(|X̄j − bTj w| ≤ γ),

where X̄j − bTj w = bTj (w
∗ −w) + µj + ε̄j . Then, for any u ∈ S

K−1 and w ∈ R
K satisfying

‖w −w∗‖2 ≤ r,

uT∇2Lγ(w)u

≥ uTSu− 1

p

p∑

j=1

(bTj u)
2I(|ε̄j + µj | > γ/2)− 1

p

p∑

j=1

(bTj u)
2I{|bTj (w∗ −w)| > γ/2}

≥ uTSu− max
1≤j≤p

‖bj‖22
{
1

p

p∑

j=1

I(|ε̄j + µj | > γ/2) +
4

γ2
‖w −w∗‖22 uTSu

}
.

By Assumption 3, λmin(S) ≥ cl for some constant cl > 0 and max1≤j≤p ‖bj‖22 ≤ K. There-

fore, as long as γ > 2r
√
K we have

min
w∈RK :‖w−w∗‖2≤r

λmin(∇2Lγ(w)) ≥ (1− 4γ−2r2K)cl −
K

p

p∑

j=1

I(|ε̄j + µj | > γ/2), (D.4)

To bound the last term on the right-hand side of (D.4), it follows from Hoeffding’s inequality

that for any t > 0,

1

p

p∑

j=1

I(|ε̄j + µj | > γ/2) ≤ 1

p

p∑

j=1

P(|ε̄j + µj | > γ/2) +

√
t

2p
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with probability at least 1− e−t. This, together with (D.4) and the inequality

1

p

p∑

j=1

P(|ε̄j + µj | > γ/2) ≤ 4

γ2p

p∑

j=1

(µ2j + Eε̄2j ) = 4γ−2(p−1‖µ‖22 + n−1σ2ε)

implies that, with probability greater than 1− e−t,

min
w∈RK :‖w−w∗‖2≤r

λmin(∇2Lγ(w)) ≥ 3

4
cl −K

√
t

2p
− 4K

γ2

(‖µ‖22
p

+
σ2ε
n

)
(D.5)

as long as γ ≥ 4r
√
K.

Next we bound ‖∇Lγ(w∗)‖2. For every 1 ≤ ℓ ≤ K, we write Ψℓ = p−1
∑p

j=1 ψjℓ :=

p−1
∑p

j=1 γ
−1ψγ(µj+ε̄j)bjℓ, such that ‖∇Lγ(w∗)‖2 ≤

√
K ‖∇Lγ(w∗)‖∞ = γ

√
K max1≤ℓ≤d |Ψℓ|.

Recall that, for any u ∈ R, − log(1 − u + u2) ≤ γ−1ψγ(γu) ≤ log(1 + u + u2). After some

simple algebra, we obtain that

eψjℓ ≤ {1 + γ−1(µj + ε̄j) + γ−2(µj + ε̄j)
2}bjℓI(bjℓ≥0)

+ {1− γ−1(µj + ε̄j) + γ−2(µj + ε̄j)
2}−bjℓI(bjℓ<0)

≤ 1 + γ−1(µj + ε̄j)bjℓ + γ−2(µj + ε̄j)
2.

Taking expectation on both sides gives

E(eψjℓ) ≤ 1 + γ−1|µj |+ γ−2(µ2j + n−1σε,jj).

Moreover, by independence and the inequality 1 + t ≤ et, we get

E(epΨℓ) =

p∏

j=1

E(eψjℓ) ≤ exp

{
1

γ

p∑

j=1

|µj |+
1

γ2

p∑

j=1

(
µ2j +

σε,jj
n

)}

≤ exp

(‖µ‖1
γ

+
‖µ‖22
γ2

+
σ2ε p

γ2n

)
.

For any t > 0, it follows from Markov’s inequality that

P(pΨj ≥ 2t) ≤ e−2t
E(epΨℓ) ≤ exp

{‖µ‖1
γ

+
‖µ‖22
γ2

+
σ2ε p

γ2n
− 2t

}
≤ exp(1− t)
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provided

γ ≥ max

{
‖µ‖1, σε

√
‖µ‖22/σ2ε + p/n

t

}
. (D.6)

Under the constraint (D.6), it can be similarly shown that P(−pΨj ≥ 2t) ≤ e1−t. Putting

the above calculations together, we conclude that

P

{
‖∇Lγ(w∗)‖2 ≥

√
K

2γt

p

}

≤ P

{
‖∇Lγ(w∗)‖∞ ≥ 2γt

p

}
≤

K∑

ℓ=1

P(|pΨℓ| ≥ 2t) ≤ 2eK exp(−t). (D.7)

With the above preparations, now we are ready to prove the final conclusion. It follows

from (D.5) that with probability greater than 1−e−t, (D.2) holds with amin = cl/4, provided

that γ ≥ 4
√
Kmax{r, c−1/2

l (‖µ‖22/p + σ2ε/n)
1/2} and p ≥ 8c−2

l K2t. Hence, combining

(D.3) and (D.7) with r = γ

4
√
K

yields that, with probability at least 1 − (1 + 2eK)e−t,

‖ŵη − w∗‖2 ≤ 8c−1
l

√
K p−1γt < r as long as p > 32c−1

l Kt. By the definition of ŵη, we

must have η = 1 and thus ŵ = ŵη.

D.3 Proof of Lemma C.1

Let 1 ≤ j ≤ p be fixed and define the function h(θ) = E{ℓτ (Xj − θ)}, θ ∈ R. By the

optimality of µj,τ and the mean value theorem, we have h′(µj,τ ) = 0 and

h′′(µ̃j,τ )(µj − µj,τ ) = h′(µj)− h′(µj,τ ) = h′(µj) = −E{ψτ (ξj)}, (D.8)

where µ̃j,τ = λµj +(1−λ)µj,τ for some 0 ≤ λ ≤ 1. Since E(ξj) = 0, we have −E{ψτ (ξj)} =

E{ξjI(|ξj | > τ)− τI(ξj > τ) + τI(ξj < −τ)}, which implies

|E{ψτ (ξj)}| ≤ τ1−κυκ,j . (D.9)

Next we consider h′′(µ̃j,τ ) = P(|Xj − µ̃j,τ | ≤ τ). Since h is a convex function that is

minimized at µj,τ , h(µ̃j,τ ) ≤ λh(µj) + (1− λ)h(µj,τ ) ≤ h(µj) ≤ σjj/2. On the other hand,

note that h(θ) ≥ E{(τ |Xj−θ|−τ2/2)1(|Xj−θ| > τ)} for all θ ∈ R. Combining these upper
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and lower bounds on h(µ̃j,τ ) with Markov’s inequality gives

τE{|Xj − µ̃j,τ |I(|Xj − µ̃j,τ | > τ)}

≤ 1

2
τ2P(|Xj − µ̃j,τ | > τ) +

1

2
σjj ≤

1

2
τ E{|Xj − µ̃j,τ |I(|Xj − µ̃j,τ | > τ)}+ 1

2
σjj ,

which further implies that for every 0 ≤ λ ≤ 1,

P(|Xj − µ̃j,τ | > τ) ≤ τ−1
E{|Xj − µ̃j,τ |1(|Xj − µ̃j,τ | > τ)} ≤ σjjτ

−2.

Together with (D.8) and (D.9), this proves (C.1).

D.4 Proof of Lemma C.3

Throughout the proof, we let 1 ≤ j ≤ p, a ≥ σ
1/2
jj , t ≥ 1 be fixed and write τ = a(n/t)1/2

with n ≥ 8t. The dependence of τ on (a, n, t) will be assumed without displaying. First

we introduce the following notations. Define functions L(θ) = −∑n
i=1 ℓτ (Xij − θ), ζ(θ) =

L(θ)−EL(θ) and w2(θ) = − d2

dθ2
EL(θ), such that µ̂j = argmaxθ∈R L(θ). Moreover, we write

w2
0 := w2(µj) = ατn with ατ = P(|Xj − µj | ≤ τ). (D.10)

For every r > 0, define the parameter set

Θ0(r) = {θ ∈ R : |w0(θ − µj)| ≤ r}. (D.11)

Then, it follows from Lemma C.2 that

P{µ̂j ∈ Θ0(r0)} ≥ 1− 2 exp(−t), (D.12)

where r0 = 4a(ατ t)
1/2. Based on this result, we only need to focus on the local neighborhood

Θ0(r0) of µj . The rest of the proof is based on Proposition 3.1 in Spokoiny (2013). To this

end, we need to check Conditions (L0) and (ED2) there.
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Condition (L0): Note that, for every θ ∈ Θ0(r),

|w−1
0 w2(θ)w−1

0 − 1| = |α−1
τ − 1− α−1

τ P(|Xj − θ| > τ)|

≤ α−1
τ max[1− ατ , {σjj + (θ − µj)

2}τ−2].

By Chebyshev’s inequality, we have 1 ≥ ατ ≥ 1− σjjτ
−2 ≥ 7/8. Therefore,

|w−1
0 w2(θ)w−1

0 − 1| ≤ α−1
τ {σjj + (ατn)

−1r2}τ−2.

This verifies Condition (L0) by taking

δ(r) = α−1
τ σjjτ

−2 + α−2
τ τ−2n−1r2, r > 0.

Condition (ED2): Note that ζ ′′(θ) = −∑n
i=1{1(|Xij − θ| ≤ τ) − P(|Xij − θ| ≤ τ)}. For

every λ ∈ R satisfying |λ| ≤ ατ
√
n, using the inequalities 1+u ≤ eu and eu ≤ 1+u+u2eu∨0/2

we deduce that

E exp{λ√nζ ′′(θ)/w2
0} =

n∏

i=1

E exp[−λw−2
0

√
n{I(|Xij − θ| ≤ τ)− P(|Xij − θ| ≤ τ)}]

≤
n∏

i=1

{1 + (1/2)λ2w−4
0 n exp(|λ|w−2

0

√
n)}

≤
n∏

i=1

{1 + (e/2)α−2
τ λ2n−1} ≤ exp{(e/2)α−2

τ λ2}.

This verifies Condition (ED2) by taking ω = n−1/2, ν0 = e1/2α−1
τ and g(r) = ατ

√
n, r > 0.

Now, using Proposition 3.1 in Spokoiny (2013) we obtain that as long as α2
τn ≥ 4 + 2t,

sup
θ∈Θ0(r)

|ατ
√
n(θ − µj) + n−1/2{L′(θ)− L′(µj)}|

≤ α1/2
τ δ(r)r + 6α−1/2

τ e1/2(2t+ 4)1/2n−1/2r

with probability greater than 1 − e−t. Under the conditions that n ≥ 8t and t ≥ 1, it is
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easy to see that α2
τn ≥ (7/8)2 · 8t ≥ 6t ≥ 4 + 2t. Moreover, observe that

sup
θ∈Θ0(r)

|(ατ − 1)
√
n(θ − µj)| ≤ α−1/2

τ σjjτ
−2r.

The last two displays, together with (D.12) and the fact that L′(µ̂j) = 0 prove (C.2) by

taking r = r0. The proof of Lemma C.3 is then complete.

D.5 Proof of Lemma C.4

Under model (1), we have ξj = bTj f + εj , where E(εj) = 0 and εj and f are independent.

Therefore,

Efψτ (ξj)− bTj f

= −Ef (εj + bTj f − τ)I(εj > τ − bTj f) + Ef (−εj − bTj f − τ)I(εj < −τ − bTj f).

Therefore, as long as τ > |bTj f |, we have for any q ∈ [2, κ] that

|Efψτ (ξj)− bTj f | ≤ Ef{|εj |I(|εj | > τ − |bTj f |)} ≤ (τ − |bTj f |)1−q E(|εj |q)

almost surely. This proves (C.3) by taking q to be 2 and κ.

For the conditional variance, observe that

Ef{ψτ (ξj)− bTj f}2 = varf{ψτ (ξj)}+ {Efψτ (ξj)− bTj f}2 (D.13)

and that ψτ (ξj)− bTj f can be written as

εjI(|bTj f + εj | ≤ τ) + (τ − bTj f)I(b
T
j f + εj > τ)− (τ + bTj f)I(b

T
j f + εj < −τ),

which further implies

{ψτ (ξj)− bTj f}2

= ε2jI(|bTj f + εj | ≤ τ) + (τ − bTj f)
2I(bTj f + εj > τ) + (τ + bTj f)

2I(bTj f + εj < −τ).
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Taking conditional expectation on both sides yields

Ef{ψτ (ξj)− bTj f}2

= E(ε2j )− Ef{ε2jI(|bTj f + εj | > τ)}

+ (τ − bTj f)
2
Pf (εj > τ − bTj f) + (τ + bTj f)

2
Pf (εj < −τ − bTj f).

Using the equality u2 = 2
∫ u
0 t dt for u > 0 we deduce that as long as τ > |bTj f |,

Efε
2
jI(b

T
j f + εj > τ)

= 2Ef

∫ ∞

0
I(εj > t)I(εj > τ − bTj f)t dt

= 2Ef

∫ τ−bTj f

0
I(εj > τ − bTj f)t dt+ 2Ef

∫ ∞

τ−bTj f

I(εj > t)t dt

= (τ − bTj f)
2
Pf (εj > τ − bTj f) + 2

∫ ∞

τ−bTj f

P(εj > t)t dt.

Analogously, it can be shown that

Ef{ε2jI(bTj f + εj < −τ)} = (τ + bTj f)
2
Pf (εj < −τ − bTj f) + 2

∫ ∞

τ+bTj f

P(−εj > t)t dt.

Together, the last three displays imply

0 ≥ Ef{ψτ (ξj)− bTj f}2 − E(ε2j )

≥ −2

∫ ∞

τ−|bTj f |
P(|εj | > t)t dt ≥ −2E(|εj |κ)

∫ ∞

τ−|bTj f |
t1−κ dt = − 2

κ− 2

E(|εj |κ)
(τ − |bTj f |)κ−2

.

Combining this with (D.13) and (C.3) proves (C.4).

Finally, we study the covariance covf (ψτ (ξj), ψτ (ξk)) for j 6= k. By definition,

covf (ψτ (ξj), ψτ (ξk))

= Ef{ψτ (ξj)− bTj f + bTj f − Efψτ (ξj)}{ψτ (ξk)− bTk f + bTk f − Efψτ (ξk)}

= Ef{ψτ (ξj)− bTj f}{ψτ (ξk)− bTk f}︸ ︷︷ ︸
Π1

−{Efψτ (ξj)− bTj f}{Efψτ (ξk)− bTk f}︸ ︷︷ ︸
Π2

.

Recall that ψτ (ξj) − bTj f = εjI(|ξj | ≤ τ) + (τ − bTj f)I(ξj > τ) − (τ + bTj f)I(ξj < −τ).
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Hence,

Π1 = EfεjεkI(|ξj | ≤ τ, |ξk| ≤ τ) + (τ − bTk f)EfεjI(|ξj | ≤ τ, ξk > τ)

− (τ + bTk f)EfεjI(|ξj | ≤ τ, ξk < −τ) + (τ − bTj f)EfεkI(ξj > τ, |ξk| ≤ τ)

+ (τ − bTj f)(τ − bTk f)EfI(ξj > τ, ξk > τ)− (τ − bTj f)(τ + bTk f)EfI(ξj > τ, ξk < −τ)

− (τ + bTj f)EfεkI(ξj < −τ, |ξk| ≤ τ)− (τ + bTj f)(τ − bTk f)EfI(ξj < −τ, ξk > τ)

+ (τ + bTj f)(τ + bTk f)EfI(ξj < −τ, ξk < −τ). (D.14)

Note that the first term on the right-hand side of (D.14) can be written as

EfεjεkI(|ξj | ≤ τ, |ξk| ≤ τ)

= cov(εj , εk)− EfεjεkI(|ξj | > τ)− EfεjεkI(|ξk| > τ) + EfεjεkI(|ξj | > τ, |ξk| > τ),

where

|EfεjεkI(|ξj | > τ)| ≤ |τ − bTj f |2−κE(|εj |κ−1|εk|) ≤ 2κ−2τ2−κ(E|εj |κ)(κ−1)/κ(E|εk|κ)1/κ

and

|EfεjεkI(|ξj | > τ, |ξk| > τ)|

≤ |τ − bTj f |2−κE(|εj |κ/2|εk|κ/2) ≤ 2κ−2τ2−κ(E|εj |κ)1/2(E|εk|κ)1/2

almost surely on Gjk. The previous three displays together imply

|EfεjεkI(|ξj | ≤ τ, |ξk| ≤ τ)− cov(εj , εk)| . τ2−κ

almost surely on Gjk. For the remaining terms on the right-hand side of (D.14), it can be
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similarly obtained that, almost surely on Gjk,

|EfεjI(|ξj | ≤ τ, ξk > τ)| ≤ |τ − bTk f |1−κE(|εj ||εk|κ−1),

|EfεjI(|ξj | ≤ τ, ξk < −τ)| ≤ |τ + bTk f |1−κE(|εj ||εk|κ−1),

and EfI(ξj > τ, ξk < −τ) ≤ |τ − bTj f |−κ/2|τ + bTk f |−κ/2E(|εjεk|κ/2).

Putting together the pieces, we get |Π1 − cov(εj , εk)| . υjkτ
2−κ almost surely on Gjk.

For Π2, it follows directly from (C.3) that |Π2| . υ2jkτ
2−2κ almost surely on Gjk. These

bounds, combined with the fact that covf (ψτ (ξj), ψτ (ξk)) = Π1 −Π2, yield (C.5).

D.6 Proof of Lemma C.5

For any u ∈ R
K , by independence we have

E exp(uTfi) ≤ exp(C1‖f‖2ψ2
‖u‖22) for all i = 1, . . . , n, (D.15)

and E exp(
√
nuTf̄) =

n∏

i=1

E exp(uTfi/
√
n) ≤ exp(C1‖f‖2ψ2

‖u‖22),

where C1 > 0 is an absolute constant. From Theorem 2.1 in Hsu et al. (2012) we see that,

for any t > 0,

P{‖√nf̄‖22 > 2C1‖f‖2ψ2
(K + 2

√
Kt+ 2t)} ≤ e−t

and P{‖fi‖22 > 2C1‖f‖2ψ2
(K + 2

√
Kt+ 2t)} ≤ e−t, i = 1, . . . , n.

This proves (C.6) and (C.7) by the union bound.

For Σ̂f , applying Theorem 5.39 in Vershynin (2012) yields that, with probability at

least 1− 2e−t, ‖Σ̂f − IK‖ ≤ max(δ, δ2), where δ = C2‖f‖2ψ2
n−1/2(K + t)1/2 and C2 > 0 is

an absolute constant. Conclusion (C.8) then follows immediately.
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D.7 Proof of Lemma C.6

For each 1 ≤ ℓ ≤ K, as λℓ > 0 and by Weyl’s inequality, we have |λ̃ℓ−λℓ| ≤ |λℓ(Σ̂H)−λℓ| ≤

‖Σ̂H −Σ‖+ ‖Σε‖. Moreover, note that for any matrix E ∈ R
d1×d2 ,

‖E‖2 ≤ ‖E‖1 ∨ ‖E‖∞ ≤ (d1 ∨ d2)‖E‖max.

Putting the above calculations together proves (C.9).

Next, note that

Σ̂H = Σ̂H −Σ+BBT +Σε =
K∑

ℓ=1

λℓvℓv
T
ℓ + Σ̂H −Σ+Σε.

Under Assumption 2, it follows from Theorem 3 and Proposition 3 in Fan et al. (2018) that

max
1≤ℓ≤K

‖v̂ℓ − vℓ‖∞ ≤ C

p3/2
(‖Σ̂H −Σ‖∞ + ‖Σε‖∞) ≤ C(p−1/2‖Σ̂H −Σ‖max + p−1‖Σε‖),

where we use the inequalities ‖Σ̂H −Σ‖∞ ≤ p‖Σ̂H −Σ‖max and ‖Σε‖∞ ≤ p1/2‖Σε‖ in the

last step and C > 0 is a constant independent of (n, p). This proves (C.10) .

E Additional numerical results on FDP/FDR control

In the end, we present some additional simulation results that complement Section 4.5.

Under Models 2 and 3 defined in Section 4.2, we compare the numerical performance of

the five tests regarding FDP/FDR control. We take α = 0.05, p = 500 and let n gradually

increase from 100 to 200. The empirical FDP is defined as the average false discovery

proportion based on 200 simulations. The simulation results are presented in Figures E.1

and E.2, respectively.
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Figure E.1: Empirical FDP versus sample size for the five tests at level α = 0.05. The data
are generated from Model 2 with p = 500 and sample size n ranging from 100 to 200 with
a step size of 10. The panels from top to bottom correspond to the four error distributions
in Section 4.2.
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Figure E.2: Empirical FDP versus sample size for the five tests at level α = 0.05. The data
are generated from Model 3 with p = 500 and sample size n ranging from 100 to 200 with
a step size of 10. The panels from top to bottom correspond to the four error distributions
in Section 4.2.
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