
Largest Entries of Sample Correlation Matrices from

Equi-correlated Normal Populations

Jianqing Fan∗and Tiefeng Jiang†

Princeton University and University of Minnesota

Abstract

The paper studies the limiting distribution of the largest off-diagonal entry of
the sample correlation matrices of high-dimensional Gaussian populations with
equi-correlation structure. Assume the entries of the population distribution
have a common correlation coefficient ρ > 0 and both the population dimension
p and the sample size n tend to infinity with log p = o(n

1
3 ). As 0 < ρ < 1, we

prove that the largest off-diagonal entry of the sample correlation matrix con-
verges to a Gaussian distribution, and the same is true for the sample covariance
matrix as 0 < ρ < 1/2. This differs substantially from a well-known result for
the independent case where ρ = 0, in which the above limiting distribution is an
extreme-value distribution. We then study the phase transition between these
two limiting distributions and identify the regime of ρ where the transition oc-
curs. It turns out that the thresholds of such a regime depend on n and converge
to zero. If ρ is less than the threshold, larger than the threshold or is equal to
the threshold, the corresponding limiting distribution is the extreme-value dis-
tribution, the Gaussian distribution and a convolution of the two distributions,
respectively. The proofs rely on a subtle use of the Chen-Stein Poisson approx-
imation method, conditioning, a coupling to create independence and a special
property of sample correlation matrices. The results are then applied to eval-
uating the power of a high-dimensional testing problem of identity correlation
matrix.
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1 Introduction

The correlation coefficient matrix is an important statistic in the multivariate analysis.
It plays pivotal roles in the statistical analysis of a multivariate normal data. The max-
imum likelihood estimator is the sample correlation matrix. This paper investigates
the limiting distribution of the largest off-diagonal entry of the sample correlation ma-
trix in the high-dimensional setting when the correlation matrix admits a compound
symmetry structure, namely, is of equi-correlation.

Let Np(0,Σ) stand for a p-variate normal population with the correlation matrix
R = (ρij)p×p. Let X1, · · · , Xn be a random sample from the population Np(0,Σ). We
have the data matrix X = (X1, · · · , Xn)

′. Write X = (xij)n×p = (x(1),x(2), · · · ,x(p)),
then the Pearson correlation coefficient between x(i) and x(j) is given by

ρ̂ij =

∑n
k=1(xki − x̄i)(xkj − x̄j)

√
∑n

k=1(xki − x̄i)2
√
∑n

k=1(xkj − x̄j)2
, 1 ≤ i, j ≤ p, (1.1)

where x̄i =
1
n

∑n
k=1 xki. In particular, ρ̂ii = 1 for all 1 ≤ i ≤ p. The sample correlation

matrix R̂ is then defined by R̂ = (ρ̂ij)p×p. In contrast, X′X/n is refereed to as the
sample covariance matrix.

Define the largest magnitude of off-diagonal entries of the sample correlation matrix
by

L0n = max
1≤i<j≤p

|ρ̂ij|. (1.2)

Assuming that xij’s are independent and identically distributed but not necessarily
Gaussian-distributed, the asymptotic distribution of L0n have been extensively studied
as both p and n tend to infinity.

The first result on the topic is due to Jiang [9], who uses the Chen-Stein Poisson
approximation method to get the limiting distribution of the L0n as follows.

Assume E|x11|30+ǫ < ∞ for some ǫ > 0. Let p = pn and n
p
→ γ ∈ (0,∞) as

n→ ∞, then

P (nL2
0n − 4 log n+ log log n ≤ t) → exp

(

− γ2√
8π
e−t/2

)

for any t ∈ R, or equivalently,

P (nL2
0n − 4 log p+ log log p ≤ t) → exp

(

− 1√
8π
e−t/2

)

. (1.3)

Zhou [19] proves that the moment condition can be relaxed to that limx→∞ x6P (|x11x12| >
x) = 0 and lim supn→∞

p
n
< ∞. Li and Rosalsky [12] consider the strong limit of L0n

under some more relaxed assumption. Li et al. [11, 13] have further improved the
assumption of the result, under the assumption that n

p
bounded away from zero or

infinity. They actually obtain some necessary and sufficient conditions for which (1.3)
holds. As p/n → ∞, Liu et al. [15] establish similar results to (1.3) under the as-
sumption p = O(nα) where α is a constant. Cai and Jiang [3] consider the ultra-high
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dimensional case where p can be as large as en
α
for some 0 < α ≤ 1 and they extend

the result to dependent case. Cai and Jiang [4] derive the limiting distribution of L0n

under the assumption that the population has a spherical distribution. In fact, a phase
transition phenomenon occur at three different regimes: log p

n
→ 0, log p

n
→ α ∈ (0,∞)

and log p
n

→ ∞. By using the limiting distribution of L0n, Cai et al. [2] work on the
asymptotic behavior of the pairwise geodesic distances among n random points that are
independently and uniformly distributed on the unit sphere in the p-dimensional spaces.
The same phase transition phenomenon are also understood. Without the Gaussian
assumption, Shao and Zhou [18] obtain similar results to (1.3) as log p = o(nα) for
some 0 < α ≤ 1.

Assuming the p entries of x are independent, most of the aforementioned work
mainly focus on the improvement of the moment assumption on x11 from the data
matrix X = (xij)n×p as well as relaxing the range of p relative to n. The question of
how dependence impacts on the limiting distribution of the largest correlations remains
largely unknown.

In this paper, we will consider a case that all the entries of x are very dependent.
In fact, we assume x ∼ Np(µ,Σ), and the corresponding correlation matrix R has the
compound symmetry structure, which is also referred to as the intraclass covariance
or equi-correlation structure in literature, that is,

R =











1 ρ · · · ρ
ρ 1 · · · ρ
...

...
...

ρ ρ · · · 1











. (1.4)

It is easy to see that R is positive definite if and only if 1 > ρ > −1/(p− 1). Since we
will be in the scenario that p = pn → ∞, we will always assume ρ ≥ 0 later.

When ρ > 0, the sample correlations ρ̂ij, 1 ≤ i < j ≤ p are highly dependent and
new technical challenges arise in deriving the limiting distribution of the maximum
value of these entries. In addition, we found somewhat surprisingly that such a limiting
distribution is Gaussian. This is in sharp contrast to the independence case (ρ = 0)
in which the limiting distribution is a Gumbel distribution. Where does the phase
transition occur? In what way the limiting distribution changes over the regime of
correlation ρ? We provide sharp asymptotic results to describe these regimes of ρ and
their associated limiting distributions of the maximum correlation.

Related to our study is the maximum spurious correlation between each variable in
X and an independent variable Y in which the variables in X are correlated. Fan et
al. [8] derived the asymptotic distribution of such a maximum spurious correlation
using Gaussian approximation techniques of Chernozhukov et al. [6]. Unless the
correlation matrix of X is of a specific form, such a limiting distribution can not
be analytically derived and they require a multiplier bootstrap method to estimate the
limiting distribution. Their setting relates to our case with the last row of off-diagonal
correlation equal to zero and only computes the maximum sample correlation in the
last row, albeit these sample correlations are also dependent due to the dependence of
X.
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Some notations will be used in the paper. The symbol
d−→ means convergence in

distribution, ξ
d
= η implies that ξ and η have the same distribution. Furthermore,

• bn = o(an) if bn/an → 0 and that bn = O(an) if lim supn→∞ |bn/an| <∞.
• ξn = op(an) if ξn/an → 0 in probability as n → ∞. And ξn = Op(an) if

limC→∞ lim supn→∞ P (|ξn/an| > C) = 0. In addition, we denote C and C1 positive
constants independent of n or p, and their values may be different from line to line.

The rest of the paper is organized as follows. Section 2 gives the main results,
discussions and an application of the result. The proofs are relegated to Section 3,
where we develop necessary technical tools for our quests.

2 Main results and discussions

Let X1, · · · , Xn be a random sample from the population Np(µ,Σ) with the popu-
lation correlation matrix R defined as in (1.4). The data matrix is given by X =
(X1, · · · , Xn)

′ = (xij)n×p.
We will study the following two statistics in this paper:

Jn = max
1≤i<j≤p

n−1

n
∑

k=1

xkixkj and Ln = max
1≤i<j≤p

ρ̂ij, (2.1)

where ρ̂ij is defined as in (1.1).

The first is the maximum of normalized sample covariances when µ = 0, whereas
the second one is the maximum of the sample correlations. The purpose having the
normalization in Jn is such that Jn and Ln have the same scale. To make our analysis
thoroughly, we allow ρ to depend on n. We will see from (iii) of Theorems 2.1 and 2.2
later on that Jn and Ln behave differently as ρ is a constant.

2.1 Main results

We first consider the limiting distribution for the statistics Jn.

Theorem 2.1 Let ρn ≥ 0 for each n ≥ 1 and supn≥1 ρn < 1
2
. Assume µ = 0 and

Σ = R, where R is given by (1.4). Suppose p = p(n) → ∞ and log p = o(n
1
3 ) as

n→ ∞. Set

µ1 =
√
nρn +

(

2
√

log p− log log p

4
√
log p

)

√

1− ρ2n.

The following holds as n→ ∞.
(i). If ρn

√
log p→ 0, then

4
√

log p
(

n1/2Jn − µ1

) d−→ φ

where φ has distribution function F (x) = e−Ke−
x
2 , x ∈ R with K = 1

4
√
2π
.
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(ii). If ρn
√
log p→ λ ∈ (0,∞), then

n1/2Jn − µ1√
2ρn

d−→ ξ + λ0φ,

where ξ ∼ N(0, 1), λ0 =
1

4
√
2λ
, φ is as in (i) and φ is independent of ξ.

(iii). If ρn
√
log p→ ∞, then

n1/2Jn − µ1√
2ρn

d−→ N(0, 1).

The above theorem has the following implication.

Corollary 2.1 Let ρ ∈ (0, 1
2
) be fixed, µ = 0 and Σ = R, where R is as in (1.4).

Suppose p = p(n) → ∞ and log p = o(n
1
3 ) as n→ ∞. Then

n1/2Jn − µ1√
2ρ

d−→ N(0, 1)

as n→ ∞, where µ1 =
√
nρ+ 2

√

(1− ρ2) log p.

For the largest entry of the sample correlation matrix R̂, we have the following.

Theorem 2.2 Let ρn ≥ 0 for each n ≥ 1 and supn≥1 ρn < 1. Assume Σ = R, where

R is as in (1.4). Let p = p(n) → ∞ satisfying log p = o(n
1
3 ) as n→ ∞. Set

µ2 =
√
n− 1 ρn + (1− ρn) ·

√

1 + 2ρn − ρ2n ·
(

2
√

log p− log log p

4
√
log p

)

.

The following holds as n→ ∞.
(i). If ρn

√
log p→ 0, then

4
√

log p
(√

n− 1Ln − µ2

) d−→ φ,

where φ has distribution function F (x) = e−Ke−
x
2 , x ∈ R with K = 1

4
√
2π
.

(ii). If ρn
√
log p→ λ ∈ (0,∞), then

√
n− 1Ln − µ2√

2ρn

d−→ ξ + λ0φ,

where ξ ∼ N(0, 1), λ0 =
1

4
√
2λ

and φ is the same as in (i) and φ is independent of ξ.

(iii). If ρn
√
log p→ ∞, then

√
n− 1Ln − µ2√
2ρn(1− ρn)

d→ N(0, 1).
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If ρ is close to zero, presumably the behavior of Ln is close to an extreme-value distri-
bution as in (1.3); if ρ is relatively large, Ln is asymptotically the normal distribution
as stated in Theorem 2.2. Item (ii) of the above theorem actually gives the phase
transition between the two cases. The following is an easy consequence of Theorem
2.2.

Corollary 2.2 Let ρ ∈ (0, 1) be fixed and Σ = R, where R is as in (1.4). Suppose

p = p(n) → ∞ and log p = o(n
1
3 ) as n → ∞. Then, (

√
n− 1Ln − µ2)/σ2

d−→ N(0, 1)
as n→ ∞, where

µ2 = ρ
√
n− 1 + 2(1− ρ) ·

√

1 + 2ρ− ρ2 ·
√

log p and σ2 =
√
2ρ(1− ρ).

The above two results are totally different from Jiang [9], Zhou [19], Liu et al. [15],
Li et al. [11, 13], Cai and Jiang [3, 4], Cai et al. [2], Shao and Zhou [18]. They all end
up with the Gumbel distribution by arguing that ρ̂ij’s are roughly independent random
variables. In Theorems 2.1 and 2.2, the appearance of ρ creates a strong dependency
among the terms

∑n
k=1 xkixkj, 1 ≤ i < j ≤ p, in the definition of Jn from (2.1). This

is also true for the terms ρ̂ij, 1 ≤ i < j ≤ p. The occurrence of ρ makes the situation
so delicate that, if ρ is a constant, the limiting distributions of Jn and Ln are no longer
the Gumbel distribution, they are the normal distribution instead.

For Jn (similarly for Ln), a key difference between the case ρ = 0 and the case
ρ > 0 is explained as follows. For ρ > 0, each term of the denominator in (1.1) can no
longer be regarded as roughly

√
n as that in the case ρ = 0. In particular, if ρ > 0 is a

constant, the dependence really matters, and the difference can be seen from Corollary
2.2 by comparing the means and the variances.

2.2 Discussions

The paper investigates the limiting distributions of the largest off-diagonal entry of
sample covariance/correlation matrices generated by a random sample from a high-
dimensional normal distribution. We assume the normal distribution has the structure
of equi-correlation (1.4). Under the assumption that p → ∞ and log p = o(n1/3),
the asymptotical distributions of the largest off-diagonal entries of both matrices are
established. Their behaviors depend on the value of ρ. The limits are the normal
distribution if ρ is reasonably large; the limits are the extreme-value distribution if
ρ is very small. We also figure out the regime to differentiate the two scenarios.
In particular, for ρ in the regime, the limiting distribution is the convolution of the
Gaussian distribution and the extreme-value distribution.

Next we make some comments.
1. For the sample correlation matrix R̂, we get the limiting distribution of its largest

entry for each ρ ∈ [0, 1). The same result holds for the sample covariance matrix but
under the more stringent restriction 0 ≤ ρ < 1/2, which is required in Lemma 3.9.
This difference will be easily understood by the fact that the sample correlation matrix
can be regarded as a type of self-normalized statistics. It is known that self-normalized
statistics are more “tamed”; see, for example, Shao and Wang [17]. And hence the
range of ρ is more relaxed in the case of the sample correlation matrix than that in the
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case of the sample covariance matrix. We do not know whether or not Theorem 2.1 is
still true for the case ρ ∈ [1

2
, 1). It is an interesting project for future.

2. Under the Gaussian assumption and that for the equi-correlation R in (1.4), the
decomposition structure of (3.77), i.e.,

X =
√
ρ(ξ, · · · , ξ)′ +

√

1− ρ(ξ1, · · · , ξp)′ (2.2)

where ξ, ξ1, · · · , ξp are independent standard Gaussian random variables, plays a key
role in the proofs. Now let us remove the Gaussian assumption. Instead, we assume the
decomposition (2.2) continues to hold with ξ, ξ1, · · · , ξp relaxed to independent random
variables with mean zero, variance one, and a sub-Gaussian tail. Then Theorems 2.1
and 2.2 may also hold except (ii) from each theorem. The conclusion of (ii) is derived
by using the Gaussian assumption essentially.

3. The paper deals with the equi-correlation matrix. If R = (rij) has another

special structure, one may like to work on max1≤i<j≤p r̂ij or max1≤i<j≤p
r̂ij
rij
. It seems

that, to get good properties for these two quantities, R can not be assumed to be too
arbitrary.

4. Assuming ρ = 0, Jiang [10] obtains the limiting spectral distribution of the
sample correlation matrix R̂. When n/p → c ∈ (0,∞), the author proves that the
empirical spectral distribution of R̂ asymptotically obeys the Marchenko-Pastur law.
If 0 < ρ < 1, by using the decomposition (3.77), it can be shown easily that the spectral
distribution of the sample covariance matrix also takes the Marchenko-Pastur law as
its limit. A similar result is expected for correlation matrix R̂ for the case ρ > 0 by
employing the approximation method from Jiang [10].

5. Methodology of our proofs. The key elements in our proofs are a special property
for sample correlation matrices under Gaussian assumptions, the Chen-Stein Poisson
approximation method, conditioning arguments and a coupling to create independence.
Let us take Ln from Theorem 2.2 to elaborate this next through a few steps.

a). The special property (Lemma 3.2) for sample correlation matrices allows us
to remove x̄i and x̄j from the expression ρ̂ij in (1.1). So we get an easier form of the
target to work with.

b). With some efforts, we are able to write

Ln = αn + βnQn + γnRn (2.3)

where αn, βn, γn are constants, Qn goes to N(0, 1), Rn (the quantity M ′
n from Propo-

sition 3.2) is the maximum of sums of independent but non-identically distributed
random variables; see (3.100).

c). We use the Chen-Stein Poisson approximation method to work on Rn. However,
due to the strong dependency, we are not able to apply the method directly. In par-
ticular, the methods for deriving the limiting distribution of Rn under the assumption
ρ = 0 in all earlier literature are no longer valid. We will use a conditioning trick. In
fact, conditioning on certain event, we obtain the asymptotic distribution of Rn by the
Chen-Stein method. After taking the expectation of the conditional probability, we
finally derive the limiting distribution of Rn (Proposition 3.2).

d). We construct R′
n such that it is independent of Qn in (2.3) (see Lemma 3.17)

and it has the same asymptotic distribution as that of Rn. Furthermore, we show that
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the difference between Ln and L′
n := αn + βnQn + γnR

′
n is negligible. So, basically

speaking, Ln is reduced to a linear combination of two independent random variables
such that one goes to the normal distribution and another goes to the extreme-value
distribution.

2.3 An application to a high-dimensional test

Let X1, · · · , Xn be a random sample from the population Np(µ,Σ). We are interested
in testing whether Σ is diagonal. A natural nonparametric test is to use the test statis-
tic Ln, which is powerful for sparse alternatives. The null distribution of such a test
statistic corresponds to the limiting distribution for case ρ = 0 in regime (i) of Theo-
rem 2.2. A question arises naturally how powerful it is under the dense alternatives.
The specific alternative of interest is

H0 : ρ = 0 vs H1 : ρ = ρ1

where ρ1 ∈ (0, 1) is given.
Assume the dimension p and sample size n are all very large such that log p =

o(n1/3). By (i) of Theorem 2.2, under H0,

4
√

log p
(√

n− 1Ln − µ20

) d−→ φ,

where µ20 = 2
√
log p − log log p

4
√
log p

and φ has distribution function F (x) = e−Ke−
x
2 , x ∈ R

and K = 1
4
√
2π
. For 0 < α < 1, denote qα the (1−α)-quantile of the distribution F (x),

that is,

qα = − log(32π)− 2 log log(1− α)−1.

Then, a rejection region of the asymptotic size-α test is given by

X0 =
{√

n− 1Ln ≥ 2
√

log p+ (qα − log log p)/(4
√

log p)
}

.

Using Theorem 2.2 (i) again, when ρ1 = o(1/
√
log p), the asymptotic power is still α,

like a random guess, as the asymptotic distribution under such a contiguous alternative
hypothesis is the same as that under the null hypothesis. Now the power starts to
emerge when ρ1 = λ/

√
log p for λ ∈ (0,∞) in regime (ii). In this case, it can be

calculated that µ2 in this regime is

µ22 := λ

√

n− 1

log p
+
[

1− 2λ2

log p
+O

( 1

(log p)3/2
)

]

µ20.

The power function is

β(ρ1) = P
{√

n− 1Ln ≥ µ20 + qα/(4
√

log p)|ρ1
}

= P
{

4
√

log p(
√
n− 1Ln − µ22) ≥ qα − 4λ

√
n− 1 + 16λ2 + o(1)|ρ1

}

.

According to Theorem 2.2(ii), the power tends to 1 for each fixed λ. By using a similar
argument, it is easy to show that the power in region (iii) has also asymptotic power
1.
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3 Proofs

The proofs of Theorems 2.1 and 2.2 are quite involved. We break them into small
sections from each of which problems with a common feature are handled together.
See the detail of each section given at the end of the Introduction.

3.1 A result on sample correlation matrices

In the following, we will present a special property of the sample correlation matrix R̂
as defined below (1.1). An auxiliary fact has to be derived first.

Lemma 3.1 Let X1, · · · , Xn be i.i.d. random vectors and X1 ∼ Np(0,Σ), where Σ
is a p × p non-negative definite matrix. Set X = (X1, · · · , Xn)

′. Then, for any n × n

orthogonal matrix O, we have OX
d
= X.

Proof. Let Y1, · · · , Yn be i.i.d. and Y1 ∼ Np(0, Ip). Then Xi and Σ1/2Yi have the same
distribution for each i. By independence,

X = (X1, · · · , Xn)
′ d
= (Y1, · · · , Yn)′Σ1/2. (3.1)

As a consequence,

OX
d
= O(Y1, · · · , Yn)′Σ1/2

for any n× n orthogonal matrix O. Write (Y1, · · · , Yn)′ = (yij)n×p. Then yij’s are i.i.d.

N(0, 1)-distributed random variables. Hence O(Y1, · · · , Yn)′ d
= (Y1, · · · , Yn)′ by the

orthogonal invariance of independent Gaussian random variables. It follows that

OX
d
= (Y1, · · · , Yn)′Σ1/2 d

= X

by (3.1). �

The following lemma provides a simple expression for the sample correlation matrix.

Lemma 3.2 Let X1, · · · , Xn be i.i.d. random vectors and X1 ∼ Np(µ,Σ) where µ ∈ R
p

and Σ is a positive definite matrix. Let ρ̂ij be as in (1.1). Suppose Y1, · · · , Yn−1 are
i.i.d. and Y1 ∼ Np(0,Σ). Write (Y1, · · · , Yn−1)

′ = (V1, · · · , Vp)(n−1)×p. Then

(ρ̂ij)p×p
d
=

( V ′
i Vj

‖Vi‖ · ‖Vj‖
)

p×p
.

Proof. Since ρ̂ij is invariant under translation and scaling of the vectors X1, · · · , Xn,
without loss generality, we assume µ = 0 next.

Denotes I = (1, 1, · · · , 1)′ ∈ R
n×1 and An×n = In − 1

n
II

′. Trivially, A is an idempo-
tent matrix with tr(A) = n− 1, then there exists an n× n orthogonal matrix O such
that

A = O′
(

In−1 0
0 0

)

O.
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Write










x1j − x̄j
x2j − x̄j

...
xnj − x̄j











= A











x1j
x2j
...
xnj











for each 1 ≤ j ≤ p. Write X = (X1, · · · , Xn)
′ = (xij)n×p. Then

H :=











x11 − x̄1 x12 − x̄2 · · · x1p − x̄p
x21 − x̄1 x22 − x̄2 · · · x2p − x̄p

...
...

...
xn1 − x̄1 xn2 − x̄2 · · · xnp − x̄p











= O′
(

In−1 0
0 0

)

OX

d
= O′

(

In−1 0
0 0

)

X

by Lemma 3.1. Then

X̃ :=

(

In−1 0
0 0

)

X =

(

(xij)(n−1)×p

0

)

where 0 above is a p-dimensional row vector with all entries equal to zero. Therefore,

H
d
= O′X̃ and hence

H′H
d
= X̃′X̃ = (xij)

′
(n−1)×p(xij)(n−1)×p.

Define (xij)(n−1)×p = (V1, · · · , Vp)(n−1)×p. The above implies

H′H
d
= (V ′

i Vj)p×p. (3.2)

For a positive definite matrix M = (mij)p×p, define h(M) to be a p×p matrix such that

its (i, j)-entry is equal to mijm
−1/2
ii m

−1/2
jj . Let Mp×p be the set of all p × p positive

definite matrices. Then, h : Mp×p → Mp×p is continuous map, and therefore is

Borel-measurable map. From (3.2) we conclude h(H′H)
d
= h

(

(V ′
i Vj)p×p

)

. The desired
conclusion then follows. �

3.2 Some technical tools

We will collect and prove some technical tools for the proof of Theorems 2.1 and 2.2.
The first one is the Chen-Stein Poisson approximation method, which is a special case
of Theorem 1 from Arratia, Goldstein and Gordon [1].

Lemma 3.3 Let ηα be random variables on an index set I and {Bα, α ∈ I} be a set of
subsets of I, that is, for each α ∈ I, Bα ⊂ I. For any t ∈ R, set λ =

∑

α∈I P (ηα > t),
Then we have

∣

∣

∣P (max
α∈I

ηα ≤ t)− e−λ
∣

∣

∣ ≤ (1 ∧ λ−1)(b1 + b2 + b3),

10



where

b1 =
∑

α∈I

∑

β∈Bα

P (ηα > t)P (ηβ > t),

b2 =
∑

α∈I

∑

α 6=β∈Bα

P (ηα > t, ηβ > t),

b3 =
∑

α∈I

∣

∣P{ηα > t|σ(ηβ, β /∈ Bα)} − P (ηα > t)
∣

∣,

and σ(ηβ, β /∈ Bα) is the σ-algebra generated by {ηβ, β /∈ Bα}. In particular, if ηα is
independent of {ηβ, β /∈ Bα} for each α, then b3 vanishes.

The next lemma is on the moderation deviation of the partial sum of i.i.d. random
variables. It can be seen, for instance, from Linnik [14].

Lemma 3.4 Suppose {ζ, ζ1, ζ2, · · · } is a sequence of i.i.d. random variables with Eζ1 =
0 and Eζ21 = 1. Define Sn =

∑n
i=1 ζi. If Eet0|ζ|

α
< ∞ for some 0 < α ≤ 1 and t0 > 0,

then

lim
n→∞

1

x2n
logP

( Sn√
n
≥ xn

)

= −1

2

for any xn → ∞, xn = o(n
α

2(2−α) ).

The following lemma is on the moderation deviation of the partial sum of the
independent but not necessarily identically distributed random variables. It can be
seen in Proposition 4.5 from Chen et al. [5].

Lemma 3.5 Let ηi, 1 ≤ i ≤ n be independent random variables with Eηi = 0 and
Eehn|ηi| <∞ for some hn > 0 and 1 ≤ i ≤ n. Assume that

∑n
i=1Eη

2
i = 1. Then

P (
∑n

i=1 ηi ≥ x)

1− Φ(x)
= 1 + Cn(1 + x3)γe4x

3γ

for all 0 ≤ x ≤ hn and γ =
∑n

i=1E
(

|ηi|3ex|ηi|
)

, where supn≥1 |Cn| ≤ C and C is an
absolute constant.

In our framework, ηi above is a quadratic form of two independent normals for each
i. We first need to control E

(

|ηi|3ex|ηi|
)

.

Lemma 3.6 Let U and V be i.i.d. N(0, 1)-distributed random variables. Let a, b, c, d, e, f
be real numbers. Set η = aU2 + bUV + cV 2 + dU + eV + f. Then

E
(

|η|3ex|η|
)

≤ C · (|a|3 + |b|3 + |c|3 + |d|3 + |e|3 + |f |3) · e2(d2+e2)x2+|f |x

as 0 < x ≤ 1
12(|a|+|b|+|c|) , where C is constant not depending on a, b, c, d, e or f.

11



Proof. First, use |UV | ≤ U2 + V 2 to see

|η| ≤ (|a|+ |b|)U2 + (|b|+ |c|)V 2 + |dU + eV |+ |f |. (3.3)

In particular,

E|η|9 ≤ 48 · E
[

(|a|+ |b|)9U18 + (|b|+ |c|)9V 18 + |dU + eV |9 + |f |9
]

≤ C1

[

(|a|+ |b|)9 + (|b|+ |c|)9 + (d2 + e2)9/2 + |f |9
]

≤ C1

[

(|a|+ |b|+ |c|)9 + (|d|+ |e|)9 + |f |9
]

where C1 is a constant not depending on a, b, c, d, e or f . We also use the facts E(U18+

V 18) <∞ and dU + eV
d
=

√
d2 + e2U . It follows that

(E|η|9)1/3 ≤ C
1/3
1 (|a|+ |b|+ |c|+ |d|+ |e|+ |f |)3.

From (3.3),

E
(

|η|3ex|η|
)

≤ (E|η|9)1/3 ·
[

E exp
(

3x(|a|+ |b|)U2 + 3x(|b|+ |c|)V 2
)]1/3

·
[

E exp(3x|dU + eV |)
]1/3 · ex|f |.

First,

Ee3x·|dU+eV | = Ee3x
√
d2+e2|U |

≤ Ee3x
√
d2+e2U + Ee−3x

√
d2+e2U = 2e9x

2(d2+e2)/2

by using the identity EetN(0,1) = et
2/2 for all t ∈ R. Second, setting α = 3x(|a| + |b|)

and β = 3x(|b|+ |c|), and reviewing EesU
2
= (1− 2s)−1/2 for all s < 1

2
, we have

E exp
(

3x(|a|+ |b|)U2 + 3x(|b|+ |c|)V 2
)

= (1− 2α)−1 · (1− 2β)−1

≤ 4

if α ≤ 1
4
and β ≤ 1

4
by independence. Finally, combining the above, we see

E
(

|η|3ex|η|
)

≤ C · (|a|+ |b|+ |c|+ |d|+ |e|+ |f |)3e2(d2+e2)x2+|f |x

as 0 < x ≤ 1
12(|a|+|b|+|c|) . The conclusion then comes from an inequality on convex func-

tion f(x) := x3 for x ≥ 0. �

In our setting, the parameter γ from Lemma 3.5 needs a special care. This will be
done below with the help of Lemma 3.6.

Lemma 3.7 Let {ξk; k ≥ 1} be i.i.d. N(0, 1)-distributed random variables. Set τ =
E(|ξ1|3) + 1. Assume p = pn satisfies that p → ∞ and log p = o(n1/3). Let {yn >
0; n ≥ 1} be real numbers such that yn = O(log p). Then,

P
( 1

n

n
∑

k=1

(1 + |ξk|3)eynξ
2
k/n ≥ 2τ

)

≤ exp
(

− 1

4
n1/2(log n)−2

)

as n is sufficiently large.

12



Proof. By assumption, we assume yn ≤ N0 log p for all n ≥ 1, where N0 > 0 is a
constant. For ǫ > 0, set Θǫ = {max1≤k≤n ξ

2
k ≤ ǫn/yn}. By the inequality P (N(0, 1) ≥

y) ≤ 1√
2πy
e−y2/2 ≤ e−y2/2 for all y ≥ 1, there exists a constant n1 ≥ 1 such that

P (Θc
ǫ) ≤ nP

(

|ξ1| > (ǫn/yn)
1/2

)

≤ n · exp
(

− ǫ

2
· n
yn

)

as n ≥ n1, which is again bounded by

n · exp
(

− ǫ

2N0

· n

log p

)

≤ n · e−n2/3

as n ≥ nǫ ≥ n1, where nǫ ≥ 1 is an integer depending on ǫ. It follows that

P
( 1

n

n
∑

k=1

(1 + |ξk|3)eynξ
2
k/n ≥ 2τ

)

≤ P
( 1

n

n
∑

k=1

(1 + |ξk|3)eǫ ≥ 2τ
)

+ n · e−n2/3

as n ≥ nǫ. Take ǫ = log 4
3
. Then 2e−ǫτ = 3

2
τ. Consequently,

P
( 1

n

n
∑

k=1

(1 + |ξk|3)eǫ ≥ 2τ
)

= P
( 1

n

n
∑

k=1

(|ξk|3 − E(|ξk|3) ≥
1

2
τ
)

≤ P
( 1√

n

n
∑

k=1

ζk ≥ xn

)

as n is sufficiently large, where ζk =
(

|ξk|3 −E(|ξk|3)
)

/
√

Var(ξ31) and xn = n1/4/ log n.

Set σ =
√

Var(ξ31). Observe that σ2/3 · |ζk|2/3 ≤ |ξk|2 + (E|ξk|3)2/3. This implies
E exp(1

4
σ2/3|ζk|2/3) <∞ since ξk ∼ N(0, 1). Take α = 2

3
in Lemma 3.4 to see

P
( 1√

n

n
∑

k=1

ζk ≥ xn

)

≤ exp
(

− 1

4
n1/2(log n)−2

)

as n is sufficiently large. In summary,

P
( 1

n

n
∑

k=1

(1 + |ξk|3)eynξ
2
k/n ≥ 2τ

)

≤ exp
(

− 1

4
n1/2(log n)−2

)

+ n · e−n2/3

.

This implies the desired inequality. �

The following result provides us with an equivalent expression on a limit theorem.
It will be applied to the proofs of Propositions 3.1 and 3.2 later, in which F (x) is an
extreme-value distribution.
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Lemma 3.8 Let Mn be a random variable for each n ≥ 1 satisfying

lim
n→∞

P
(

Mn ≤
√

4 log p− log log p+ x) = F (x)

for any x ∈ R, where F (x) is a continuous distribution function on R. Then

Mn = 2
√

log p− log log p

4
√
log p

+
1

4
√
log p

Un,

where Un converges weakly to a probability measure with distribution function F (x).

Proof. Easily, (1 + t)1/2 = 1 + 1
2
t + r(t) where sup|t|<ǫ |r(t)| ≤ t2 for some ǫ > 0. Fix

x0 ∈ R. Let A0 > 0 be given. For any x ∈ [x0 − A0, x0 + A0],

√

4 log p− log log p+ x = 2
√

log p
(

1− log log p

4 log p
+

x

4 log p

)1/2

= 2
√

log p
[

1− log log p

8 log p
+

x

8 log p
+ r(p, x)

]

where

sup
|x−x0|≤A0

|r(p, x)| ≤ sup
|x−x0|≤A0

( log log p

4 log p
− x

4 log p

)2

≤ (log log p)2

15(log p)2

as n is large enough. By the given condition,

lim
n→∞

P
(

Mn ≤ 2
√

log p− log log p

4
√
log p

+
x

4
√
log p

+ s(p, x)
)

= F (x) (3.4)

as n→ ∞, where s(p, x) := 2r(p, x)
√
log p and

sup
|x−x0|≤A0

|s(p, x)| ≤ (log log p)2

7(log p)3/2
(3.5)

as n is sufficiently large. Define

Un = 4
√

log p
(

Mn − 2
√

log p+
log log p

4
√
log p

)

. (3.6)

Then (3.4) implies that

lim
n→∞

P (Un ≤ x+ t(p, x)) = F (x) (3.7)

where t(p, x) := 4s(p, x)
√
log p. Easily, from (3.5),

sup
|x−x0|≤A0

|t(p, x)| ≤ (log log p)2

log p

14



as n is sufficiently large. Therefore, for any δ > 0,

P (Un ≤ x− δ) ≤ P (Un ≤ x+ t(p, x)) ≤ P (Un ≤ x+ δ)

as n is sufficiently large. From (3.7),

lim sup
n→∞

P (Un ≤ x− δ) ≤ F (x) ≤ lim inf
n→∞

P (Un ≤ x+ δ)

for any x ∈ [x0 − A0, x0 + A0]. For δ ∈ (0, A0), taking x = x0 + δ and x = x0 − δ,
respectively, we have

lim sup
n→∞

P (Un ≤ x0) ≤ F (x0 + δ);

lim inf
n→∞

P (Un ≤ x0) ≥ F (x0 − δ).

Letting δ ↓ 0, we obtain limn→∞ P (Un ≤ x0) = F (x0). Since x0 ∈ R is arbitrary, the
limit together with (3.6) concludes the proof. �

3.3 A proposition on the largest entry of a sample covariance
matrix

In this section, we will use the Chen-Stein Poisson approximation method to get the
asymptotical distribution of a statistic Mn defined in Proposition 3.1 later. The quan-
tity Mn will serves as a key building block to understand the largest entry of a sample
covariance matrix. Literally, it will be used in the proof of Theorem 2.1.

For convenience, the following notation will be used throughout the rest of the
paper.

(1). The random variables

{ξk, ξ′k, ξki; k, i = 1, 2, · · · } are i.i.d. with N(0, 1)-distribution. (3.8)

(2). Given ρn ∈ [0, 1) for each n ≥ 1, set ρ′n = 1− ρn,

an =

√

ρ′n
1 + ρn

and bn =

√

ρn
1 + ρn

. (3.9)

(3). For x ∈ R and integer p ≥ 1, set

sp =
√

4 log p− log log p+ x. (3.10)

In our theorems we assume p→ ∞, so sp is well-defined as p is large. This clarification
will not repeated in the future.

(4). Let ξi’s be as in (3.8). we write

ξ = (ξ1, · · · , ξn)′ and ‖ξ‖ = (ξ21 + · · ·+ ξ2n)
1/2. (3.11)

Before stating the main result in this section, we will first establish a technical tool,
which will play a key role in the proof of the Lemma 3.12 in the sequel.
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Lemma 3.9 Review the notations in (3.8)-(3.10). Assume ρn ≥ 0 for all n ≥ 1 and
supn≥1 ρn < 1

2
. Define Zn = bn√

n

∑n
k=1 ξkξ

′
k. If p = pn → ∞ and log p = o(n1/3) as

n→ ∞, then there exists a constant δ ∈ (0, 1) such that

E exp
[

− 1 + ρn
1 + δ

(Zn − sp)
2
]

= o
( 1

p3

)

as n→ ∞.

Proof. If ρn = 0 for some n ≥ 1, then Zn = 0 and the expectation in the lemma is
identical to exp(−(4 log p − log log p + x)/(1 + δ)), which, by taking δ ∈ (0, 1) small
enough, is bounded by p−3.5 as n is sufficiently large. Therefore, to prove the lemma,
w.l.o.g., we assume ρn > 0 for all n ≥ 1.

First, we show

Ee−α1(ξ1−β1)2 =
1√

2α1 + 1
exp

(

− α1β
2
1

2α1 + 1

)

(3.12)

for any α1 > 0 and β1 ∈ R. In fact

Ee−α1(ξ1−β1)2 =
1√
2π

∫ ∞

−∞
e−α1(x−β1)2−x2

2 dx.

Write

−α1(x− β1)
2 − x2

2
= −

(

√

α1 +
1

2
x− α1β1

√

α1 +
1
2

)2

− α1β
2
1

2α1 + 1
.

Now, define y such that

y√
2
=

√

α1 +
1

2
x− α1β1

√

α1 +
1
2

.

It follows that

1√
2π

∫ ∞

−∞
e−α1(x−β1)2−x2

2 dx

= exp
(

− α1β
2
1

2α1 + 1

)

· 1√
2π

∫ ∞

−∞
e−y2/2 dy · 1√

2α1 + 1
.

Thus, (3.12) holds.
Recall the notation (3.11). By Proposition 7.3 from Eaton [7] or Theorem 1.5.6 from

Murihead [16], we know ‖ξ‖ and ξ
‖ξ‖ are independent. Also, 1

‖ξ‖
∑n

k=1 ξkξ
′
k ∼ N(0, 1)

by independence. Consequently,

Zn
d
= bn ·

‖ξ‖√
n
· ξ′1. (3.13)
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In particular, ‖ξ‖√
n
and ξ′1 are independent. Let τ = 1+δ

1+ρn
. Observe

E exp
[

− (Zn − sp)
2

τ

]

= Ee−α1(ξ′1−β1)2 = E
[

E1e
−α1(ξ′1−β1)2

]

(3.14)

where E1 stands for the conditional expectation given ‖ξ‖,

α1 =
b2n‖ξ‖2
nτ

and β1 =

√
nsp

bn‖ξ‖
.

By using (3.12), we obtain

E1e
−α1(ξ′1−β1)2 ≤ exp

(

−
s2p

τ + 2b2n
‖ξ‖2
n

)

≤ exp
{

−
s2p

(1 + δ)[(1 + ρn)−1 + 2b2n]

}

(3.15)

if ‖ξ‖2
n

< 1 + δ. Observe that (1 + ρn)
−1 + 2b2n = 1+2ρn

1+ρn
≤ 1+2ρ

1+ρ
< 4

3
for all n ≥ 1, where

ρ := supn≥1 ρn <
1
2
by assumption. Take δ ∈ (0, 1) such that θ := (1 + δ)1+2ρ

1+ρ
< 4

3
.

Hence, given ‖ξ‖2
n

< 1 + δ,

E1e
−α1(ξ′1−β1)2 ≤ (log p)5/θ

p4/θ

as n is sufficiently large. By the large deviations for i.i.d. random variables, there

exists a constant C > 0 depending on τ only such that P (‖ξ‖
2

n
≥ 1 + δ) < e−nC for all

n ≥ 1. Combining the above inequality, (3.14) and (3.15), we arrive at

E exp
[

− (Zn − sp)
2

τ

]

= E
[

E1e
−α1(ξ′1−β1)2I

(‖ξ‖2
n

< 1 + δ
)]

+ P
(‖ξ‖2

n
≥ 1 + δ

)

≤ (log p)5/θ

p4/θ
+ e−nC = o

( 1

p3

)

where the last equality follows from the assumption log p = o(n1/3). �

Now we state the main result in the section. Review the notations in (3.8)-(3.10).
Define

ηkij = anξkiξkj + bnξk(ξki + ξkj); (3.16)

Mnij =
1√
n

n
∑

k=1

ηkij (3.17)

for all 1 ≤ i < j ≤ p.
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Proposition 3.1 Let ρn ≥ 0 for each n ≥ 1 and supn≥1 ρn <
1
2
. Let sp be as in (3.10).

Set Mn = max1≤i<j≤pMnij. If p = pn → ∞ and log p = o(n1/3), then

lim
n→∞

P
(

Mn ≤ sp) = e−Ke−x/2

for any x ∈ R, where K = 1
4
√
2π
.

Proof. In the next we will assume p is large enough such that sp > 0. Set I =
{(i, j); 1 ≤ i < j ≤ p}. For α = (i, j) ∈ I, define Xα =Mnij and

Bα = {(k, l) ∈ I; either k ∈ {i, j} or l ∈ {i, j}, but (k, l) 6= α}.

Let P2 and E2 stand for the conditional probability and the conditional expectation
given {ξk; 1 ≤ k ≤ n}, respectively. The crucial point is that, given {ξk; 1 ≤ k ≤ n},
random variable Xα is independent of {Xβ; β /∈ Bα}. Since {Xα, α ∈ I} are identically
distributed under P2, by Lemma 3.3, we have

∣

∣

∣
P2(max

α∈I
Xα ≤ sp)− e−λp1

∣

∣

∣
≤ w1 + w2, (3.18)

where

λp1 =
p(p− 1)

2
P2

( 1√
n

n
∑

k=1

ηk12 > sp

)

and

w1 =
∑

α∈I

∑

β∈Bα

P2(Xα > sp)P2(Xβ > sp)

≤ p(p− 1)

2
· (2p) · P2

( 1√
n

n
∑

k=1

ηk12 > sp

)2

and

w2 =
∑

α∈I

∑

β∈Bα

P2(Xα > sp, Xβ > sp)

≤ p(p− 1)

2
· (2p) · P2

( 1√
n

n
∑

k=1

ηk12 > sp,
1√
n

n
∑

k=1

ηk13 > sp

)

.

Note that P (maxα∈I Xα ≤ sp) = EP2(maxα∈I Xα ≤ sp). From (3.18),

∣

∣P (max
α∈I

Xα ≤ sp)− Ee−λp1
∣

∣ ≤ E
∣

∣P2(max
α∈I

Xα ≤ sp)− e−λp1
∣

∣

≤ Ew1 + Ew2.
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Now,

Ee−λp1 = E exp
[

− p(p− 1)

2
P2

( 1√
n

n
∑

k=1

ηk12 > sp

)]

;

Ew1 ≤ p3 · E
[

P2

( 1√
n

n
∑

k=1

ηk12 > sp

)2]

;

Ew2 ≤ p3 · P
( 1√

n

n
∑

k=1

ηk12 > sp,
1√
n

n
∑

k=1

ηk13 > sp

)

.

The following three lemmas say that Ee−λp1 → exp
(

− 1
4
√
2π
e−x/2

)

, Ew1 → 0 and
Ew2 → 0. The proof is then completed. �

Lemma 3.10 Let the assumptions in Proposition 3.1 hold. Review that P2 stands for
the conditional probability given {ξk; 1 ≤ k ≤ n}. Then

E exp
[

− p(p− 1)

2
P2

( 1√
n

n
∑

k=1

ηk12 > sp

)]

→ exp
(

− 1

4
√
2π
e−x/2

)

as n→ ∞ for all x ∈ R.

Lemma 3.11 Let the assumptions in Proposition 3.1 hold. Review that P2 stands for
the conditional probability given {ξk; 1 ≤ k ≤ n}. Then

E
[

P2

( 1√
n

n
∑

k=1

ηk12 > sp

)2]

= o
( 1

p3

)

as n→ ∞.

Lemma 3.12 Let the assumptions in Proposition 3.1 hold. Then

P
( 1√

n

n
∑

k=1

ηk12 > sp,
1√
n

n
∑

k=1

ηk13 > sp

)

= o
( 1

p3

)

as n→ ∞.

Now we start to prove the three results one by one.

Proof of Lemma 3.10. Write

n
∑

k=1

ηk12 =
n

∑

k=1

[

anξk1ξk2 + bnξk(ξk1 + ξk2)
]

. (3.19)

Given {ξk; 1 ≤ k ≤ n}, it is the sum of independent random variables with mean

E2

[

anξk1ξk2 + bnξk(ξk1 + ξk2)
]

= 0 and variance Var2
[

anξk1ξk2 + bnξk(ξk1 + ξk2)
]2

=
a2n + 2b2nξ

2
k. Thus,

Var2

(

n
∑

k=1

ηk12

)

= na2n + 2b2n

n
∑

k=1

ξ2k. (3.20)
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Define

Fn =
{

max
1≤k≤n

|ξk| ≤
√
n and

6

7
≤ 1

n

n
∑

k=1

ξ2k ≤ 15

14

}

.

Set τ = E(|ξ1|3) + 1. For v > 0, set

Gn(v) =
{ 1

n

n
∑

k=1

(1 + |ξk|3)evξ
2
k(log p)/n ≤ 2τ

}

.

The parameter v will be chosen later. By the fact P (|N(0, 1)| ≥ x) ≤ 2√
2π x

e−x2/2 for
all x > 0, the large deviations for i.i.d. random variables and Lemma 3.7, we have

P
(

(Fn ∩Gn(v))
c
)

≤ nP (|ξ1| ≥
√
n) + P

( 1

n

n
∑

k=1

ξ2k ∈
[6

7
,
15

14

]c
)

+P
( 1

n

n
∑

k=1

(1 + |ξk|3)evξ
2
k(log p)/n > 2τ

)

≤ 3 exp
(

− 1

4
n1/2(log n)−2

)

(3.21)

as n ≥ nv, where nv ≥ 1 is a constant depending on v. Define σ2
n0 = a2n+2b2n(

1
n

∑n
k=1 ξ

2
k).

Then, on Fn,

1

2
=

1

2
(a2n + 2b2n) ≤ σ2

n0 ≤ a2n +
15

14
(2b2n) ≤

8

7
, (3.22)

where the last inequality follows from the identity a2n + 2b2n = 1.
Next we will use Lemma 3.5 to get a precise estimate on P2(

1√
n

∑n
k=1 ηk12 > sp).

To do so, Lemma 3.6 will be applied to control γ defined in Lemma 3.5.
Reviewing (3.19), we take a = an√

nσn0
, b = bnξk√

nσn0
. Set ηk = aξk1ξk2 + b(ξk1 + ξk2).

Then, it follows from (3.20) that

E2ηk = 0 and
n

∑

k=1

Var2(ηk) = 1 (3.23)

for each k. Furthermore, by (3.22) we have

|a| ≤ 2√
n

and |b| ≤ 2|ξk|√
n

≤ 2 (3.24)

on Fn. Then, on Fn, use the Hölder inequality, the facts that 2|ξ11ξ12| ≤ ξ211 + ξ212 and
ξ11 + ξ12 ∼

√
2N(0, 1), and independence to see

Eeh|ηk| ≤ E exp
( 2h√

n
|ξ11ξ12|+ 2h|ξ11 + ξ12|

)

≤
[

E exp
( 2h√

n
(ξ211 + ξ212)

)]1/2

·
[

E exp(4
√
2hN(0, 1)

]1/2

= E exp
( 2h√

n
N(0, 1)2

)

· e16h2

<∞ (3.25)
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for all h, k, n satisfying 0 < h ≤ hn := 1
8

√
n and 1 ≤ k ≤ n. Now, on Fn, by Lemma

3.6 and (3.24) we have

E2

(

|ηk|3ex|ηk|
)

≤ C

n3/2
(1 + |ξk|3)e4b

2x2

≤ C

n3/2
(1 + |ξk|3)e16x

2ξ2k/n (3.26)

for all x ∈ (0, 1
12|a|). Observe that

(

0,
√
n

24

)

⊂ (0, 1
12|a|) on Fn by (3.24). Thus, (3.26)

particularly holds for all x ∈ (0,
√
n

24
). Now take x0 =

sp
σn0

. Then

x0 ≤ 2sp <

√
n

24
(3.27)

on Fn by the assumption log p = o(n1/3). We then have

γ : =
n

∑

k=1

E2

(

|ηk|3ex0|ηk|
)

≤ C

n3/2

n
∑

k=1

(1 + |ξk|3)e16x
2
0ξ

2
k/n

≤ C

n3/2

n
∑

k=1

(1 + |ξk|3)e256ξ
2
k(log p)/n

on Fn. Thus, γ ≤ 2Cτ√
n
on Fn ∩Gn(256) := Hn. The inequality in (3.21) implies

P (Hc
n) ≤ 3 exp

(

− 1

4
n1/2(log n)−2

)

(3.28)

as n is sufficiently large. From (3.23), (3.25) and Lemma 3.5, we conclude

P2

( 1√
n

n
∑

k=1

ηk12 > sp

)

= P2

(

n
∑

k=1

ηk > x0

)

=
[

1− Φ(x0)
]

·
[

1 +O(1)(1 + x30)γe
4x3

0γ
]

(3.29)

on Hn since x0 < hn = 1
8

√
n by (3.27). Finally, x30γ = O(s3pn

−1/2) → 0 on Hn by the

assumption log p = o(n1/3). Reviewing (3.22), we have sp
2
≤ sp

σn0
≤ 2sp on Hn. Hence,

from the formula P (N(0, 1) ≥ x) = 1√
2π x

e−x2/2(1+ o(1)) as x→ ∞ we obtain that, on
Hn,

P2

( 1√
n

n
∑

k=1

ηk12 > sp

)

=
[

1− Φ
( sp
σn0

)

]

·
[

1 +O
( log3/2 p√

n

)]

=
σn0√
2π sp

· e−s2p/(2σ
2
n0) · (1 + o(1)) (3.30)
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as n→ ∞, where the last term “o(1)” does not depend on ξk’s.
To prove the lemma, it is enough to show

p2

2
· P2

( 1√
n

n
∑

k=1

ηk12 > sp

)

→ 1

4
√
2π
e−x/2

in probability as n→ ∞. Since P (Hn) → 1, to finish the proof, it suffices to check

p2

2
· P2

( 1√
n

n
∑

k=1

ηk12 > sp

)

· IHn → 1

4
√
2π
e−x/2

in probability as n → ∞. Now σn0 → 1 in probability as n → ∞ and sp ∼ 2
√
log p,

comparing this with (3.30), it suffices to show

p2

4
√
2π log p

· e−s2p/(2σ
2
n0) · IHn → 1

4
√
2π
e−x/2 (3.31)

in probability. By the central limit theorem for i.i.d. random variables, σ2
n0 = 1 +

Op(
1√
n
). Hence σ−2

n0 = 1 +Op(
1√
n
). It follows that

s2p
2σ2

n0

= (2 log p− 1

2
log log p+

1

2
x) ·

[

1 +Op(
1√
n
)
]

= 2 log p− 1

2
log log p+

1

2
x+ op(1)

by the condition (log p)/n1/3 → 0. This implies (3.31). �

Proof of Lemma 3.11. Review the proof of Lemma 3.10. Let Hn be defined as above
(3.28). By (3.29), there exists a constant n1 ≥ 1 not depending on ξk’s such that

P2

( 1√
n

n
∑

k=1

ηk12 > sp

)

· IHn ≤ 2
[

1− Φ
( sp
σn0

)

]

· IHn

as n ≥ n1 since x0 = sp
σn0

. Recall the inequality 1 − Φ(x) ≤ 1√
2π x

e−x2/2 for all x > 0.

Then, from (3.22) we have

[

P2

( 1√
n

n
∑

k=1

ηk12 > sp

)]2

· IHn ≤ C · σ
2
n0

s2p
· e−s2p/σ

2
n0 · IHn

≤ C

log p
· e−7s2p/8

as p ≥ n2, where n2 is a constant not depending on ξk’s. Therefore, combining this
with (3.28), we see

E
[

P2

( 1√
n

n
∑

k=1

ηk12 > sp

)2]

≤ E
[

P2

( 1√
n

n
∑

k=1

ηk12 > sp

)2

· IHn

]

+ P (Hc
n)

≤ p−3.4 + 3 exp
(

− 1

4
n1/2(log n)−2

)
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as n is sufficiently large since log p = o(n1/3). This proves the lemma. �

Proof of Lemma 3.12. Let P3 and E3 stand for the conditional probability and the
conditional expectation given {ξk, ξk1; 1 ≤ k ≤ n}, respectively. By independence,

P
( 1√

n

n
∑

k=1

ηk12 > sp,
1√
n

n
∑

k=1

ηk13 > sp

)

= E
[

P3

( 1√
n

n
∑

k=1

ηk12 > sp

)2]

. (3.32)

Recall the notations in (3.16) and (3.17). Write
∑n

k=1 ηk12 = (bn
∑n

k=1 ξkξk1)+
∑n

k=1(anξk1+
bnξk)ξk2. Then, given {ξk, ξk1; 1 ≤ k ≤ n}, we have from independence that

1√
n

n
∑

k=1

ηk12 ∼ N(µ0n, σ
2
0n) (3.33)

where

µ0n =
bn√
n

n
∑

k=1

ξkξk1 and σ2
0n =

1

n

n
∑

k=1

(anξk1 + bnξk)
2.

Trivially, b2n = ρn
1+ρn

≤ supn≥1
ρn

1+ρn
:= κ2 < 1

3
and a2n + b2n = 1

1+ρn
∈ (1

2
, 1] for all

ρn ∈ [0, 1). Define

A = {|µ0n| <
√
3sp/2} and Bδ =

{

1− δ <
σ2
0n

a2n + b2n
< 1 + δ

}

for δ ∈ (0, 1). Observe anξ11 + bnξ1
d
=

√

a2n + b2n · ξ1 since ξ11 and ξ1 are i.i.d. N(0, 1)-

distributed random variables. Thus,
σ2
0n

a2n+b2n

d
= 1

n

∑n
k=1 ξ

2
k. Then, by the large deviations

for the sum of i.i.d. random variables, we obtain

P (Bc
δ) = P

( 1

n

n
∑

k=1

ξ2k ∈ [1− δ, 1 + δ]c
)

≤ e−nCδ (3.34)

for all δ ∈ (0, 1) where Cδ > 0 for each δ ∈ (0, 1). Similarly, {ξkξk1; 1 ≤ k ≤ n} are
i.i.d. with mean zero and variance one. Notice |ξ1ξ11| ≤ 1

2
(|ξ1|2 + |ξ11|2). Therefore

E exp
(

1
2
|ξ1ξ11|) < ∞. From Lemma 3.4 and the fact sp ∼ 2

√
log p = o(n1/6) we see

that, for any ǫ ∈ (0, 1),

P (Ac) ≤ P
( 1√

n

∣

∣

∣

n
∑

k=1

ξkξk1

∣

∣

∣
≥

√
3sp
2κ

)

= 2P
( 1√

n

n
∑

k=1

ξkξk1 ≥
√
3sp
2κ

)

≤ 2 exp
(

− 1− ǫ

2
·
3s2p
4κ2

)
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n is large enough. Since κ2 < 1
3
, we choose ǫ = 1

2
− κ2. Then 1−ǫ

2κ2 = 1
2
+ 1

4κ2 > 1. This
implies that

P (Ac) ≤ 2 exp
(

− 1− ǫ

2κ2
·
3s2p
4

)

= o
( 1

p3

)

as n→ ∞.
It is easy to see that sp − µ0n → ∞ on A. By the inequality P (N(0, 1) ≥ y) ≤

1√
2πy
e−y2/2 ≤ 1

2
e−y2/2 for all y ≥ 1, we have from (3.33) that, on A ∩ Bδ,

P3

( 1√
n

n
∑

k=1

ηk12 ≥ sp

)

= P3

(

N(µ0n, σ
2
0n) ≥ sp

)

= P3

(

N(0, 1) ≥ sp − µ0n

σ0n

)

≤ exp
(

− 1

2

(sp − µ0n)
2

σ2
0n

)

.

Note that σ2
0n < (1 + δ)(a2n + b2n) =

1+δ
1+ρn

on Bδ. Therefore, on A ∩ Bδ,

P3

( 1√
n

n
∑

k=1

ηk12 > sp

)

≤ exp
(

− 1 + ρn
2(1 + δ)

· (sp − µ0n)
2
)

Review (3.32). We then have

P
( 1√

n

n
∑

k=1

ηk12 > sp,
1√
n

n
∑

k=1

ηk13 > sp

)

≤ E
[

P3

( 1√
n

n
∑

k=1

ηk12 > sp

)2

IAc∪Bc
δ

]

+ E exp
(

− 1 + ρn
1 + δ

· (sp − µ0n)
2
)

≤ P (Ac) + P (Bc
δ) + E exp

(

− 1 + ρn
1 + δ

· (sp − µ0n)
2
)

≤ o
( 1

p3

)

+ e−nCδ + E exp
(

− 1 + ρn
1 + δ

· (µ0n − sp)
2
)

.

By Lemma 3.9, choosing δ > 0 small enough, we know the last expectation is identical
to o( 1

p3
). The desired conclusion follows from the assumption log p = o(n1/3). �

3.4 A proposition on the largest entry of a sample correlation
matrix

Similar to Section 3.3, we now study a statistic M ′
n, which is essentially a key quantity

to understand the largest entry of a sample correlation matrix. The main result is
Proposition 3.2, which will be used in the proof of Theorem 2.2.
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Review the notations from (3.8) and (3.9). Throughout this section, we assume
σ2
n1 = (1− ρn)

2 + 2ρna
2
n. Set

a′n =
an
σn1

and b′n =
(1− ρn)bn

σn1
; (3.35)

γk = −1

2
ρna

′
n(ξ

2
k1 − 1) + b′nξkξk1 (3.36)

for 1 ≤ k ≤ m := n− 1. Set Vn = (γ1 + · · ·+ γm)/
√
m.

Similar to Lemma 3.9, the following technical result studies the behavior of the
moment generating function of a random variable. It will be used in the proof of
Lemma 3.16.

Lemma 3.13 Let ρn ∈ [0, 1) be constants. Suppose p = pn → ∞ and log p = o(n1/3)
as n→ ∞. Let sp be as in (3.10). Then, there exists δ ∈ (0, 1) such that

E
{

IK′
n
· exp

[

− 1− δ

1− ω2
n

(Vn − sp)
2
]}

= o
( 1

p3

)

(3.37)

as n→ ∞, where K ′
n := {0 < Vn <

√
7
2
ωnsp} and ωn :=

√

Var(γ1).

Proof. First, if ρn = 0 for some n ≥ 1, then γk = 0 for all 1 ≤ k ≤ m. Hence Vn = 0
and the expectation in (3.37) is zero by the definition of K ′

n. So it is enough to prove
the conclusion by assuming ρn > 0 for all n ≥ 1. The proof is divided into a few of
steps.

Step 1. Reduction of K ′
n to a smaller set. From the definitions of a′n and b′n in

(3.35), it is easy to check that

(1 + ρ2n)a
′2
n + 2b′2n = 1. (3.38)

Trivially, we have ω2
n = 1

2
ρ2na

′2
n + b′2n . Therefore,

ω2
n =

1

2
− a′2n

2

=
1

2
− 1

2
·

1−ρn
1+ρn

(1− ρn)2 + (2ρn)
1−ρn
1+ρn

=
1

2

(

1− 1

1 + 2ρn − ρ2n

)

<
1

4
(3.39)

because 1 + 2x− x2 < 2 for all x ∈ [0, 1). In particular,

1

1− ω2
n

(

1− 1

5
ωn

)2

>
(

1− 1

5
ωn

)2

≥
(19

20

)2

> 0.8.

This implies that

E
{

I(0 < Vn ≤ 1

5
ωnsp) · exp

[

− 1− δ

1− ω2
n

(Vn − sp)
2
]}

≤ exp
[

− 1− δ

1− ω2
n

(

1− 1

5
ωn

)2
s2p

]

≤ exp
[

− 3.2(1− 2δ) log p
]

= o
( 1

p3

)
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as n → ∞ if δ > 0 is small enough. Therefore, it is enough to prove (3.37) with K ′
n

being replaced by K ′′
n = {1

5
ωnsp < Vn <

√
7
2
ωnsp}.

Step 2. The tail probability of Vn. By the formula ω2
n = 1

2
ρ2na

′2
n + b′2n again,

(−1
2
ρna

′
n

ωn

)2

=
1

2
·
(

1 +
2b′2n
ρ2na

′2
n

)−1

≤ 1

2

and

( b′n
ωn

)2

=
(

1 +
1

2
ρ2n
a′2n
b′2n

)−1

≤ 1.

Recall γk in (3.36). Set γ′k = γk/(
√
mωn) for 1 ≤ k ≤ m. The above implies that

√
m · |γ′k| ≤

1

2
(ξ2k1 + 1) + |ξkξk1| ≤ ξ2k1 + ξ2k + 1.

In addition, γ′k’s are i.i.d. with mean zero and satisfy
∑m

k=1 Var(γ
′
k) = 1. Also, Eet|γ

′
k| <

∞ if 0 < t < 1
4

√
m. Observe

γ :=
m
∑

i=1

E(|γ′k|3ex|γ
′
k|) ≤ 1√

m
E
[

(ξ211 + ξ21 + 1)3e
x√
m
(ξ211+ξ21+1)]

≤ C√
m

for all 0 ≤ x ≤
√
m
4
, where C = E

[

(ξ211 + ξ21 + 1)3e
1
4
(ξ211+ξ21+1)

]

<∞. By Lemma 3.5,

P (Vn ≥ x) = P
(

m
∑

i=1

γ′k ≥
x

ωn

)

≤ 2
[

1− Φ
( x

ωn

)

]

(3.40)

provided ( x
ωn
)3 1√

m
→ 0 and 0 ≤ x

ωn
≤ 1

4

√
m. In particular, by the assumption log p =

o(n1/3) and the fact P (N(0, 1) ≥ t) ≤ 1√
2π t
e−t2/2 for all t > 0 again, we have

P (Vn ≥ x) ≤ e−x2/(2ω2
n) (3.41)

for all 1
5
ωnsp < x <

√
7
2
ωnsp.

Step 3. The estimate of the expectation from (3.37). Let A1, B1 and α2 > 0 be

constants. Assume [A1, B1] ⊂ [0, sp]. Notice
d e−α2(x−sp)

2

dx
= 2α2(sp − x) · e−α2(x−sp)2 , we

have

e−α2(v−sp)2 = e−α2(A1−sp)2 + 2α2

∫ v

A1

(sp − x) · e−α2(x−sp)2 dx

≤ e−α2(A1−sp)2 + 2α2sp

∫ ∞

0

e−α2(x−sp)2I(A1 ≤ x ≤ v) dx
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for any sp > v > A1. Replacing v with Vn, then multiplying both sides of the above
by I(A1 < Vn < B1), we get

e−α2(Vn−sp)2I(A < Vn < B)

≤ e−α2(A1−sp)2 + 2α2sp

∫ ∞

0

e−α2(x−sp)2I(A1 ≤ x ≤ Vn < B1) dx

≤ e−α2(A1−sp)2 + 2α2sp

∫ B1

A1

e−α2(x−sp)2I(Vn ≥ x) dx.

Set A1 =
1
5
ωnsp and B1 =

√
7
2
ωnsp. By taking expectations on both sides of the above,

we obtain from (3.41) that

E
[

e−α2(Vn−sp)2I(A1 < Vn < B1)
]

≤ e−α2(A1−sp)2 + 2α2sp

∫ B1

A1

e−α2(x−sp)2P (Vn ≥ x) dx

≤ e−α2(A1−sp)2 + 2α2sp

∫ B1

A1

exp
(

− α2(x− sp)
2 − x2

2ω2
n

)

dx. (3.42)

Now we evaluate the integral. Write

−α2(x− sp)
2 − x2

2ω2
n

= −
(

√

α2 +
1

2ω2
n

x− α2sp
√

α2 +
1

2ω2
n

)2

−
α2s

2
p

2α2ω2
n + 1

.

Now, define y such that

y√
2
=

√

α2 +
1

2ω2
n

x− α2sp
√

α2 +
1

2ω2
n

. (3.43)

It follows that

2α2sp

∫ B1

A1

exp
(

− α2(x− sp)
2 − x2

2ω2
n

)

dx

= (2α2sp) · exp
(

−
α2s

2
p

2α2ω2
n + 1

)

·
∫ B′

A′

e−y2/2 dy · 1
√

2α2 +
1
ω2
n

≤
√
8πα2

√

2α2 +
1
ω2
n

sp · exp
(

−
α2s

2
p

2α2ω2
n + 1

)

· 1√
2π

∫ ∞

−∞
e−y2/2 dy

where A′ and B′ are the corresponding values of y in (3.43) as x = A1 and B1,
respectively. This combining with (3.42) implies

E
[

e−α2(Vn−sp)2I(A1 < Vn < B1)
]

≤ e−α2(A1−sp)2 +
√

4πα2s2p · exp
(

−
s2p

2ω2
n + α−1

2

)

,
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where the inequality α2(2α2 + ω−2
n )−1/2 ≤

√

α2/2 is used. Take α2 = 1−δ
1−ω2

n
. Then

1− δ < α2 <
4
3
by (3.39). Note

2ω2
n + α−1

2 = 2ω2
n +

1− ω2
n

1− δ
≤ 1 + ω2

n

1− δ
≤ 1 + ω2

1− δ
,

where ω2 := supn≥1 ω
2
n ≤ 1

4
. From (3.39), we know A1 ≤ 1

10
sp. This concludes

E
{

IK′′
n
· exp

[

− 1− δ

1− ω2
n

(Vn − sp)
2
]}

≤ exp
[

− (1− δ)(
1

10
sp − sp)

2
]

+ 2
√

6π(log p) · exp
(

− 1− δ

1 + ω2
s2p

)

.

The first term on the right hand side is o(p−3) if (1 − δ)( 9
10
)2 · 4 > 3, which is true if

0 < δ < 2
27
; the second term is o(p−3) as long as 1−δ

1+ω2 >
3
4
, which is equivalent to that

0 < δ < 1− 3
4
(1 + ω2). The desired conclusion then follows from the fact ω2 ≤ 1

4
. �

Let us continue to use the notations before Lemma 3.13. Set m = n− 1 and

η′kij = a′n

[

ξkiξkj −
ρn
2
(ξ2ki + ξ2kj − 2)

]

+ b′nξk(ξki + ξkj);

M ′
nij =

1√
m

m
∑

k=1

η′kij

for k = 1, 2 · · · ,m.
The main result of this section is given below.

Proposition 3.2 Set M ′
n = max1≤i<j≤pM

′
nij. Let ρn ∈ (0, 1) for each n ≥ 1. Let sp

be as in (3.10). If p→ ∞ and log p = o(n1/3), then

lim
n→∞

P
(

M ′
n ≤ sp) = e−Ke−x/2

for any x ∈ R, where K = 1
4
√
2π
.

Proof. The strategy of the proof is similar to that of Proposition 3.1. However, the
technical details are more involved. Let I, sp and Bα be as in the proof of Proposition
3.1. For α = (i, j) ∈ I, define Xα = M ′

nij. Let P2 and E2 stand for the condi-
tional probability and the conditional expectation given {ξk; 1 ≤ k ≤ m}, respectively.
Again, the key observation is that, given {ξk; 1 ≤ k ≤ m}, random variable Xα is
independent of {Xβ; β /∈ Bα}. Since {Xα, α ∈ I} are identically distributed under P2,
by Lemma 3.3, we have

∣

∣

∣
P2(max

α∈I
Xα ≤ sp)− e−λp2

∣

∣

∣
≤ w′

1 + w′
2, (3.44)

where

λp2 =
p(p− 1)

2
P2

( 1√
m

m
∑

k=1

η′k12 > sp

)
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and

w′
1 =

∑

α∈I

∑

β∈Bα

P2(Xα > sp)P2(Xβ > sp)

≤ p(p− 1)

2
· (2p) · P2

( 1√
m

m
∑

k=1

η′k12 > sp

)2

and

w′
2 =

∑

α∈I

∑

β∈Bα

P2(Xα > sp, Xβ > sp)

≤ p(p− 1)

2
· (2p) · P2

( 1√
m

m
∑

k=1

η′k12 > sp,
1√
m

m
∑

k=1

η′k13 > sp

)

.

Note that P (maxα∈I Xα ≤ sp) = EP2(maxα∈I Xα ≤ sp). From (3.44),
∣

∣P (max
α∈I

Xα ≤ sp)− Ee−λp2
∣

∣ ≤ E
∣

∣P2(max
α∈I

Xα ≤ sp)− e−λp2
∣

∣

≤ Ew′
1 + Ew′

2.

Obviously,

Ee−λp2 = E exp
[

− p(p− 1)

2
P2

( 1√
m

m
∑

k=1

η′k12 > sp

)]

;

Ew′
1 ≤ p3 · E

[

P2

( 1√
m

m
∑

k=1

η′k12 > sp

)2]

;

Ew′
2 ≤ p3 · P

( 1√
m

m
∑

k=1

η′k12 > sp,
1√
m

m
∑

k=1

η′k13 > sp

)

.

The following three lemmas say that Ee−λp2 → exp
(

− 1
4
√
2π
e−x/2

)

, Ew′
1 → 0 and

Ew′
2 → 0. The proof is then completed. �

Lemma 3.14 Let the assumptions in Proposition 3.2 hold. Review m = n− 1 and P2

stands for the conditional probability given {ξk; 1 ≤ k ≤ m}. Then

E exp
[

− p(p− 1)

2
P2

( 1√
m

m
∑

k=1

η′k12 > sp

)]

→ exp
(

− 1

4
√
2π
e−x/2

)

(3.45)

as n→ ∞ for all x ∈ R.

Lemma 3.15 Let the assumptions in Proposition 3.2 hold. Review m = n− 1 and P2

stands for the conditional probability given {ξk; 1 ≤ k ≤ m}. Then

E
[

P2

( 1√
m

m
∑

k=1

η′k12 > sp

)2]

= o
( 1

p3

)

as n→ ∞.
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Lemma 3.16 Let the assumptions in Proposition 3.2 hold. Review m = n− 1. Then

P
( 1√

m

m
∑

k=1

η′k12 > sp,
1√
m

m
∑

k=1

η′k13 > sp

)

= o
( 1

p3

)

as n→ ∞.

Now we start to prove the three results one by one.

Proof of Lemma 3.14. We will get a sharp estimate on P2(
1√
m

∑m
k=1 η

′
k12 > sp) first

by using Lemma 3.5. To carry on this, we have to check the required conditions.
Step 1: the behaviors of η′k12. Write

m
∑

k=1

η′k12 =
m
∑

k=1

{

a′n

[

ξk1ξk2 −
ρn
2
(ξ2k1 + ξ2k2 − 2)

]

+ b′nξk(ξk1 + ξk2)
}

.

Given {ξk; 1 ≤ k ≤ m}, it is the sum of independent random variables. It is easy to
check that

E2η
′
k12 = 0, Var2(η

′
kij) = a′2n (1 + ρ2n) + 2b′2n ξ

2
k.

So the conditional variance

Var2(
m
∑

k=1

η′k12) = m(1 + ρ2n)a
′2
n + 2b′2n

m
∑

k=1

ξ2k. (3.46)

Set

Fn =
{

max
1≤k≤n

|ξk| ≤
√
m and

6

7
≤ 1

m

m
∑

k=1

ξ2k ≤ 15

14

}

.

Recall the notation τ = E(|ξ1|3) + 1 defined earlier. For v > 0, define

Gn(v) =
{ 1

m

m
∑

k=1

(1 + |ξk|3)evξ
2
k(log p)/m ≤ 2τ

}

. (3.47)

The parameter v will be chosen later. The inequality (3.21) says that

P
(

(Fn ∩Gn(v))
c
)

≤ 3 exp
(

− 1

4
n1/2(log n)−2

)

(3.48)

as n ≥ nv, where nv ≥ 1 is a constant depending on v only. Define

σ2
n2 = (1 + ρ2n)a

′2
n + 2b′2n

1

m

m
∑

k=1

ξ2k. (3.49)

Note (3.38). Then, on Fn,

1

2
=

1

2
[1 + ρ2n)a

′2
n + 2b′2n ] ≤ σ2

n2 ≤ (1 + ρ2n)a
′2
n + 2b′2n · 15

14
≤ 15

14
. (3.50)
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Next we will use Lemma 3.5 to get a precise estimate on P2(
1√
m

∑m
k=1 η

′
k12 > sp).

To do so, set

a′ = c′ = − a′nρn
2
√
mσn2

; b′ =
a′n√
mσn2

;

d′ = e′ =
b′nξk√
mσn2

; f ′ =
a′nρn√
mσn2

and η′k = a′ξ2k1 + b′ξk1ξk2 + c′ξ2k2 + d′ξk1 + e′ξk2 + f ′. Then, it follows from (3.46) that

E2η
′
k = 0 for each 1 ≤ k ≤ n and

n
∑

k=1

Var2(η
′
k) = 1. (3.51)

Furthermore, from (3.49), σn2 ≥ max{a′n, b′n} on Fn. Then

max{|a′|, |b′|, |c′|, |f ′|} ≤ 1√
m

and |d′| = |e′| ≤ |ξk|√
m

≤ 1 (3.52)

on Fn. Hence, on Fn, |η′k| ≤ 2√
m
(ξ2k1 + ξ2k2) + |ξk1 + ξk2| + 1√

m
. By the fact ξk1 + ξk2 ∼√

2N(0, 1) and independence,

Eeh|η
′
k| ≤ eh/

√
m · E exp

( 2h√
m
(ξ2k1 + ξ2k2) + h|ξ11 + ξ12|

)

≤ e1/16 ·
[

E exp
( 4h√

m
(ξ2k1 + ξ2k2)

)]1/2

·
[

E exp(2
√
2hN(0, 1)

]1/2

= 2 · E exp
( 4h√

m
N(0, 1)2

)

· e2h2

<∞

(3.53)

for all h, k, n satisfying 0 < h ≤ hn := 1
16

√
m and 1 ≤ k ≤ m. Now, on Fn, by Lemma

3.6, (3.50) and (3.52) we have

E2

(

|η′k|3ex|η
′
k|
)

≤ C

m3/2
(1 + |ξk|3)e4x

2ξ2k/m · ex/
√
m

≤ C

m3/2
(1 + |ξk|3)e4x

2ξ2k/m (3.54)

if 0 < x ≤ 1
12(|a′|+|b′|+|c′|) ∧

√
m, where C here and later in the proof is a constant not

depending on ξk’s and may be different from line to line. Observe that
(

0,
√
m

36

)

⊂
(0, 1

12(|a′|+|b′|+|c′|)) on Fn by (3.52). Thus, (3.54) particularly holds for all x ∈ (0,
√
m

36
).

Now we take x1 =
sp
σn2

. Then, by (3.50),

x1 ≤ 2sp <

√
m

36
(3.55)
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on Fn by the assumption log p = o(n1/3). We then have

γ : =
m
∑

k=1

E2

(

|η′k|3ex1|η′k|
)

≤ C

m3/2

m
∑

k=1

(1 + |ξk|3)e4x
2
1ξ

2
k/m

≤ C

m3/2

m
∑

k=1

(1 + |ξk|3)e64ξ
2
k(log p)/m

on Fn as n is sufficiently large. Thus, γ ≤ 2Cτ√
m

on Fn ∩ Gn(64) := Hn by (3.47). The

inequality in (3.48) implies

P (Hc
n) = o

( 1

p3

)

(3.56)

as n is sufficiently large since log p = o(n1/3) by assumption.
Step 2: a sharp estimate on P2(

1√
m

∑m
k=1 η

′
k12 > sp) by Lemma 3.5. By (3.55), we

see that x1 <
1
36

√
m < 1

16

√
m = hn. From (3.51), (3.53) and Lemma 3.5, we conclude

P2

( 1√
m

m
∑

k=1

η′k12 > sp

)

= P2

(

m
∑

k=1

η′k >
sp
σn2

)

= [1− Φ(x1)] ·
[

1 +O(1)(1 + x31)γe
4x3

1γ
]

on Hn. Just notice |O(1)| is bounded by an absolute constant. Finally, by (3.55),
x31γ = O(s3pm

−1/2) → 0 on Hn. Reviewing (3.50), we have sp/2 ≤ x1 ≤ 2sp on Hn.

Hence, from the formula P (N(0, 1) ≥ x) = 1√
2π x

e−x2/2(1 + o(1)) as x → ∞ we obtain
that, on Hn,

P2

( 1√
m

m
∑

k=1

η′k12 > sp

)

=
[

1− Φ
( sp
σn2

)

]

· (1 + o(1))

=
σn2√
2π sp

· e−s2p/(2σ
2
n2) · (1 + o(1)) (3.57)

as n→ ∞, where o(1) does not depend on ξk’s.
Step 3: proof of (3.45) by (3.57). By the bounded convergence theorem, to prove

the lemma, it is enough to show that

p2

2
· P2

( 1√
m

m
∑

k=1

η′k12 > sp

)

→ 1

4
√
2π
e−x/2

in probability as n → ∞. Since P (Hn) → 1, to complete the proof, it is enough to
prove

p2

2
· P2

( 1√
m

m
∑

k=1

η′k12 > sp

)

· IHn → 1

4
√
2π
e−x/2
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in probability as n → ∞. Recalling (3.38) and (3.49), it is trivial to see σn2 → 1 in
probability as n→ ∞. Also, sp ∼ 2

√
log p, comparing this with (3.57), it is enough to

prove

p2

4
√
2π log p

· e−s2p/(2σ
2
n2) · IHn → 1

4
√
2π
e−x/2 (3.58)

in probability. By the central limit theorem for i.i.d. random variables, we know
σ2
n2 = 1+Op(

1√
n
) from (3.38) and (3.49). Hence σ−2

n2 = 1+Op(
1√
n
). This leads to that

s2p
2σ2

n2

= (2 log p− 1

2
log log p+

1

2
x) ·

[

1 +Op

( 1√
n

)

]

= 2 log p− 1

2
log log p+

1

2
x+ op(1)

by the condition (log p)/n1/3 → 0. We then get (3.58). �

Proof of Lemma 3.15. Review the proof of Lemma 3.14. Let Hn be defined as above
(3.56). By (3.57), there exists a constant n1 ≥ 1 not depending on ξk’s such that

P2

( 1√
m

m
∑

k=1

η′k12 > sp

)

· IHn ≤ σn2√
2π sp

· e−s2p/(2σ
2
n2) · IHn

as n ≥ n1. Then

[

P2

( 1√
m

m
∑

k=1

η′k12 > sp

)]2

· IHn ≤ C · σ
2
n2

s2p
· e−s2p/σ

2
n2 · IHn

≤ C

log p
· e−7s2p/8

on Hn as n ≥ n2 by (3.50), where n2 is a constant not depending on ξk’s. Therefore,
combining this with (3.56), we see

E
[

P2

( 1√
m

m
∑

k=1

η′k12 > sp

)2]

≤ E
[

P2

( 1√
m

m
∑

k=1

η′k12 > sp

)2

· IHn

]

+ P (Hc
n)

≤ p−3.4 + o
( 1

p3

)

as n is sufficiently large. This proves the lemma. �

Proof of Lemma 3.16. Let P3 and E3 stand for the conditional probability and the
conditional expectation given {ξk, ξk1; 1 ≤ k ≤ n}, respectively. By independence,

P
( 1√

m

m
∑

k=1

η′k12 > sp,
1√
m

m
∑

k=1

η′k13 > sp

)

= E
[

P3

( 1√
m

m
∑

k=1

η′k12 > sp

)2]

. (3.59)
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Write

η′k12 = αn(U
2
k − 1) + βkUk + γk

where Uk = ξk2,

αn = −1

2
ρna

′
n,

βk = (a′nξk1 + b′nξk),

and γk is defined in (3.36). Now,

P3

( 1√
m

m
∑

k=1

η′k12 > sp

)

= P3

( 1√
m

m
∑

k=1

[

αn(U
2
k − 1) + βkUk

]

> sp −
1√
m

m
∑

k=1

γk

)

. (3.60)

We will finish the proof with a couple of steps.
Step 1: the size of 1√

m

∑m
k=1 γk. Unconditionally, {γk; 1 ≤ k ≤ m} are i.i.d. with

mean zero and variance ω2
n = 1

2
ρ2na

′2
n + b′2n mentioned below (3.38). By (3.39), ω2

n <
1
4
.

From (3.40) and the fact P (N(0, 1) ≥ t) ≤ 1√
2π t
e−t2/2 for all t > 0,

P
( 1√

m

m
∑

k=1

γk ≥ θωnsp

)

≤ 2e−(θsp)2/2

≤ p−2θ2(log p)θ
2

as n is sufficiently large for all θ > 0. Review the short argument as in getting (3.40),
the above inequality also holds if “γk” is replaced by “−γk”. It follows that

P
( 1√

m

∣

∣

∣

m
∑

k=1

γk

∣

∣

∣ ≥ θωnsp

)

≤ 2p−2θ2(log p)θ
2

as n is sufficiently large for all θ > 0. Set

K̃n =
{ 1√

m

∣

∣

∣

m
∑

k=1

γk

∣

∣

∣ <

√
7

2
ωnsp

}

.

Then

P (K̃c
n) = o

( 1

p3

)

(3.61)

as n→ ∞. Let

s′p = sp −
1√
m

m
∑

k=1

γk.
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Set Wk = αn(U
2
k − 1) + βkUk for 1 ≤ k ≤ m. Now we consider

P3

( 1√
m

m
∑

k=1

[

αn(U
2
k − 1) + βkUk

]

> s′p

)

= P3

( 1√
m

m
∑

k=1

Wk > s′p

)

.

Step 2: the behaviors of Wk’s on typical sets. Observe

E3(Wk) = 0; (3.62)

Var3(Wk) = 2α2
n + β2

k =
1

2
(ρna

′
n)

2 + (a′nξk1 + b′nξk)
2.

It follows that

σ2
n3 : = Var3

( 1√
m

m
∑

k=1

Wk

)

=
1

2
(ρna

′
n)

2 +
1

m

m
∑

k=1

(a′nξk1 + b′nξk)
2

d
=

1

2
(ρna

′
n)

2 + (a′2n + b′2n )
1

m

m
∑

k=1

ξ2k. (3.63)

Set

Fn(δ) =
{

max
1≤k≤n

|ξk| ≤
√
n and 1− δ ≤ 1

n

n
∑

k=1

ξ2k ≤ 1 + δ
}

for n ≥ 1 and δ ∈ (0, 1). By the fact P (N(0, 1) ≥ t) ≤ 1√
2π t
e−t2/2 for all t > 0 again

and (3.34), for any δ > 0, there is a constant Cδ > 0 such that

P (Fn(δ)
c) ≤ e−nCδ (3.64)

as n is sufficiently large. Review m = n− 1. Under Fm(δ), it is easy to see from (3.38)
that

∣

∣σ2
n3 − σ2

03

∣

∣ ≤ δ (3.65)

where σ2
03 := (1

2
ρ2n + 1)a′2n + b′2n . Evidently,

1

2
≤ σ2

03 ≤ 1 (3.66)

by (3.38). Now, review the notation τ = E(|ξ1|3) + 1 defined earlier. For v > 0, define

Gm(v) =
{ 1

m

m
∑

k=1

(1 + |βk|3)evβ
2
k(log p)/m ≤ 2τ

}

.
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The parameter v will be chosen later. Now (β1, · · · , βm)′ d
=

√

a′2n + b′2n (ξ1, · · · , ξm).
From (3.38) we know a′2n + b′2n ≤ 1. Then, by Lemma 3.7, for all v > 0, there exists
nv > 0 such that

P (Gm(v)
c) ≤ P

( 1

m

m
∑

k=1

(1 + |ξk|3)evξ
2
k(log p)/m > 2τ

)

≤ exp
(

− 1

4
m1/2(logm)−2

)

for all n ≥ nv. Define Hn(δ, v) := Fm(δ)∩Gm(v)∩ K̃n. Join the above with (3.61) and
(3.64) to see

P (Hn(δ, v)
c) = o

( 1

p3

)

(3.67)

as n→ ∞ for all δ ∈ (0, 1) and v > 0. By Hölder’s inequality,

E3e
h|Wk|/

√
m

≤ eh|αn|/
√
m · E3 exp

(

hm−1/2|αn|U2
k + hm−1/2|βk||Uk|

)

≤ e|αn|h ·
[

E3 exp
(

2hm−1/2|αn|U2
1

)]1/2 ·
[

E3 exp
(

2hm−1/2|βk||U1|
)]1/2

< ∞ (3.68)

as long as 0 < h ≤
√
m

8|αn| . From (3.38) we see |αn| ≤ 1. Therefore, (3.68) holds for

all 0 < h ≤ hn := 1
8

√
m. Furthermore, by taking a = αn√

m
, d = βk√

m
, f = − αn√

m
and

b = c = e = 0, we have from Lemma 3.6 that

E3

( |Wk|3√
m3

ex|Wk|/
√
m
)

≤ C

m3/2
(|αn|3 + |βk|3) · exp

(2β2
k

m
x2
)

· e|αn|x/
√
m

≤ Ce

m3/2
· (1 + |βk|3) · exp

(2β2
k

m
x2
)

(3.69)

for all 0 < x ≤ 1
12

√
m since 1

12|αn|
√
m ≥ 1

12

√
m. Now take x3 =

s′p
σn3

. The assertions

(3.65) and (3.66) imply that 1
4
≤ σ2

n3 ≤ 2 on Fm(δ) for all δ ∈ (0, 1
4
]. Then x3 ≤ 2s′p on

Hn(δ, v) for all δ ∈ (0, 1
4
] and all v > 0. Moreover, due to the fact 0 ≤ ωn <

1
2
we see

that

0 < s′p ≤ sp +
1√
m

∣

∣

m
∑

k=1

γk
∣

∣

≤ sp +

√
7

2
ωnsp

≤ 2sp (3.70)

on K̃n. This says that 0 < x3 ≤ 2s′p ≤ 4sp ≤ 1
24

√
m as n ≥ nv,δ ≥ nv for all δ ∈ (0, 1

4
]
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and all v > 0, where nv,δ > 0 is a constant depending on δ and v. This and (3.69) yield

m
∑

k=1

E3

( |Wk|3√
m3

e2x3|Wk|/
√
m
)

≤ C

m3/2

m
∑

k=1

(1 + |βk|3) · exp
(

128s2p ·
β2
k

m

)

≤ 2τC√
m

(3.71)

on Hn(δ, 128) as n ≥ nδ ≥ n128,δ for all δ ∈ (0, 1
4
], where nδ depends on δ. The last

step follows from the definition of Gm(v) and the fact s2p ≤ 4 log p as n is sufficiently
large.

Step 3: a bound on P3(
1√
m

∑m
k=1 η

′
k12 > sp). Review (3.60) and the definition of

Wk, we see

P3

( 1√
m

m
∑

k=1

η′k12 > sp

)

= P3

( 1√
m

m
∑

k=1

Wk

σn3
> x3

)

(3.72)

since x3 =
s′p
σn3
. Set W ′

k =
Wk√
mσn3

for 1 ≤ k ≤ m. Then, (3.62) and (3.63) imply

EW ′
k = 0 and Var3

(

m
∑

k=1

W ′
k

)

= 1

for each 1 ≤ k ≤ m. Since 1
4
≤ σ2

n3 ≤ 2 on Fm(δ) for all δ ∈ (0, 1
4
], we see from (3.68)

that E3e
h|W ′

k| ≤ E3e
2h|Wk|/

√
m <∞ for all 0 < h ≤ hn :=

√
m

16
. Moreover, by (3.71),

γ : =
m
∑

k=1

E
(

|W ′
k|3ex3|W ′

k|
)

=
m
∑

k=1

E3

[ |Wk|3
σ3
n3

√
m3

exp
(

x3
|Wk|√
mσn3

)]

≤ 8
m
∑

k=1

E3

( |Wk|3√
m3

e2x3|Wk|/
√
m
)

≤ 16τC√
m

on Hn(δ, 128) for all n ≥ nδ and δ ∈ (0, 1
4
]. Trivially, 0 < x3 ≤ 1

24

√
m < hn. The

inequality from (3.70) says that x33γ = O(s3p/
√
m) → 0 on Hn(δ, 128) by the condition

log p = o(n1/3). After verifying all conditions required in Lemma 3.5, we conclude

P3

(

m
∑

k=1

W ′
k > x3

)

≤ 2[1− Φ(x3)]
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on Hn(δ, 128) for all n ≥ nδ and δ ∈ (0, 1
4
]. The definition of s′p and (3.72) yield that

P3

( 1√
m

m
∑

k=1

η′k12 > sp

)

≤ 2
[

1− Φ
( sp
σn3

− 1

σn3
√
m

m
∑

k=1

γk

)]

on Hn(δ, 128) for all n ≥ nδ and δ ∈ (0, 1
4
]. On K̃n,

1√
mσn3

∣

∣

∣

m
∑

k=1

γk

∣

∣

∣
≤

√
7ωnsp
2σn3

≤
√
7

4
· sp
σn3

since 0 ≤ ωn <
1
2
by (3.39). By the fact 1

4
≤ σ2

n3 ≤ 2 on Hn(δ, 128) with δ ∈ (0, 1
4
].

Therefore, sp
σn3

− 1
σn3

√
m

∑m
k=1 γk → ∞ on Hn(δ, 128) as n → ∞. Since P (N(0, 1) ≥

x) ≤ e−x2/2 for x ≥ 1, we obtain that, given δ ∈ (0, 1
4
],

P3

( 1√
m

m
∑

k=1

η′k12 > sp

)2

≤ 4 · exp
[

−
( sp
σn3

− 1

σn3
√
m

m
∑

k=1

γk

)2]

on Hn(δ, 128) as n is sufficiently large. By (3.65) and (3.67), given δ ∈ (0, 1
4
],

E
[

P3

( 1√
m

m
∑

k=1

η′k12 > sp

)2]

≤ 4 · E
{

IHn(δ,128) · exp
[

− 1

σ2
n3

(

sp −
1√
m

m
∑

k=1

γk

)2]}

+ o
( 1

p3

)

≤ 4 · E
{

IK̃n
· exp

[

− 1

(σ2
03 + δ)

(sp − Vn)
2
]}

+ o
( 1

p3

)

as n is sufficiently large, where Vn = 1√
m

∑m
k=1 γk. Now

E
{

I(Vn ≤ 0) · exp
[

− 1

(σ2
03 +

1
5
)
(sp − Vn)

2
]}

≤ exp
[

−
s2p

(σ2
03 +

1
5
)

]

= o
( 1

p3

)

since 1
2
≤ σ2

03 ≤ 1 by (3.66). Denote

K ′
n =

{

0 <
1√
m

m
∑

k=1

γk <

√
7

2
ωnsp

}

.

Then, for given δ ∈ (0, 1
5
],

E
[

P3

( 1√
m

m
∑

k=1

η′k12 > sp

)2]

≤ 4 · E
{

IK′
n
· exp

[

− 1

(σ2
03 + δ)

(sp − Vn)
2
]}

+ o
( 1

p3

)

as n is sufficiently large. By (3.38) and (3.39), σ2
03 + ω2

n = 1. The desired conclusion
then follows from Lemma 3.13 and (3.59). �
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3.5 Proofs of Theorems 2.1 and 2.2

Review the notations (3.8)-(3.11). Let Jn and Ln be as in (2.1). Define Wn = nJn for
all n ≥ 2. To make a summary, we have

Wn = max
1≤i<j≤p

n
∑

k=1

xkixkj and Ln = max
1≤i<j≤p

ρ̂ij. (3.73)

The statistics Wn and Ln will be reduced to a sum of two random variables, each of
which has a limiting distribution. The lemma below, which is a coupling result, enables
us to prove that the two random variables are actually asymptotically independent.

Lemma 3.17 Assume p = pn → ∞ as n→ ∞. Set Cnij = n−1/2
∑n

k=1 ξk(ξki+ ξkj) for
all 1 ≤ i < j ≤ p. For any real numbers {λn; n ≥ 1} and any set of random variables
{Hij; 1 ≤ i < j ≤ p}, we have

max
1≤i<j≤p

{

Hi,j + λnCnij

}

= max
1≤i<j≤p

{

Hi,j + λn ·
√
n

‖ξ‖Cnij

}

+Op

(λn
√
log p√
n

)

as n→ ∞. The above also holds if “Cnij” is replaced by “Cmij” with m = n− 1.

Proof. Recall ‖ξ‖ = (ξ21 + · · ·+ ξ2n)
1/2. Then,

∣

∣

∣

√
n

‖ξ‖ − 1
∣

∣

∣
=

| ‖ξ‖2 − n|
‖ξ‖+√

n
· 1

‖ξ‖

≤ 1√
n
·
√
n

‖ξ‖ ·
∣

∣

∣

1√
n

n
∑

k=1

(ξ2k − 1)
∣

∣

∣
= Op

(

n−1/2
)

(3.74)

as n → ∞ since
√
n

‖ξ‖ → 1 in probability and 1√
n

∑n
k=1(ξ

2
k − 1) converges to N(0, 2)

weakly. For any real numbers {λn; n ≥ 1} and any set of random variables {Hij; 1 ≤
i < j ≤ p}, by a triangle inequality,

∣

∣

∣
max

1≤i<j≤p

{

Hi,j + λnCnij

}

− max
1≤i<j≤p

{

Hi,j + λn ·
√
n

‖ξ‖Cnij

}∣

∣

∣

≤ λn ·
∣

∣

∣

√
n

‖ξ‖ − 1
∣

∣

∣
· max
1≤i<j≤p

|Cnij|. (3.75)

Note that

max
1≤i<j≤p

|Cnij| ≤ 2 · max
1≤i≤p

1√
n

∣

∣

∣

n
∑

k=1

ξkξki

∣

∣

∣
.

Observe E(ξ1ξ11) = 0, Var(ξ1ξ11) = 1 and E exp(1
2
|ξ1ξ11|) < ∞. By Lemma 3.4 and

assumption log p = o(n1/3) we have

P
(

max
1≤i<j≤p

|Cnij| ≥ 2A
√

log p
)

≤ p · P
( 1√

n

∣

∣

∣

n
∑

k=1

ξkξk1

∣

∣

∣
≥ A

√

log p
)

≤ p · e−A2(log p)/3 → 0 (3.76)
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as long as A >
√
3. So max1≤i<j≤p |Cnij| = Op(

√
log p ). This joining with (3.74) and

(3.75) implies the desired result. Reviewing the arguments above, we see the assertion
is still true if “n” is replaced by “m”. �

Proof of Theorem 2.1. By assumption, µ = 0. Let {ξk, ξki, k, i = 1, 2, · · · }, ρ′n, ‖ξ‖
be as in (3.8)-(3.11). Write

xki =
√
ρnξk +

√

ρ′nξki, 1 ≤ k ≤ n, 1 ≤ i ≤ p. (3.77)

It is easy to check the n rows of the matrix (xij)n×p are i.i.d. random vectors, x1i ∼
N(0, 1) for each 1 ≤ i ≤ p and Cov(x1i, x1j) = ρn for 1 ≤ i < j ≤ p. That is, each
row follows Np(0,R). As a result, X and (xij)n×p have the same distribution. So we
assume X = (xij)n×p in the next. Denote

An =
1√
n

n
∑

k=1

ξ2k, Bnij =
1√
n

n
∑

k=1

ξkiξkj, Cnij =
1√
n

n
∑

k=1

ξk(ξki + ξkj)

for all 1 ≤ i ≤ j ≤ p. Then it follows from the expression (3.77) that

1√
n

n
∑

k=1

xkixkj = ρnAn + ρ′nBnij +
√

ρnρ′nCnij. (3.78)

First, by the central limit theorem, we are able to write

An =
√
n+

√
2Un1,

where Un1 :=
1√
2n

∑n
k=1(ξ

2
k − 1)

d−→ N(0, 1). Define

Mnij :=
ρ′nBnij +

√
ρnρ′nCnij

√

1− ρ2n
=

1√
n

n
∑

k=1

[

anξkiξkj + bnξk(ξki + ξkj)
]

,

where an =
√

1−ρn
1+ρn

and bn =
√

ρn
1+ρn

. Denote Mn = max1≤i<j≤pMnij. From these

notations we have

1√
n

n
∑

k=1

xkixkj = ρn
√
n+

√
2ρnUn1 +

√

1− ρ2nMnij, (3.79)

and hence

max
1≤i<j≤p

1√
n

n
∑

k=1

xkixkj =
√
nρn +

√
2ρnUn1 +

√

1− ρ2nMn. (3.80)

Review the notation ξ = (ξ1, · · · , ξn)′. Define

M̃n = max
1≤i<j≤p

1√
n

n
∑

k=1

[

anξkiξkj + bn

√
n

‖ξ‖ξk(ξki + ξkj)
]

= max
1≤i<j≤p

{

Hi,j + bn ·
√
n

‖ξ‖Cnij

}
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where Hi,j = n−1/2
∑n

k=1 anξkiξkj. By Lemma 3.17 and the fact 0 ≤ bn ≤ 1,

Mn = M̃n +Op

(

√
log p√
n

)

. (3.81)

This and (3.80) imply that

max
1≤i<j≤p

1√
n

n
∑

k=1

xkixkj

=
√
nρn +

√
2ρnUn1 +

√

1− ρ2nM̃n +Op

(

√
log p√
n

)

. (3.82)

Since ‖ξ‖ and ξ
‖ξ‖ are independent [see the discussion above (3.13)], Un1 =

1√
2n
(‖ξ‖2−n)

and M̃n, which is a function of ξ
‖ξ‖ and ξki’s, are also independent. This is a crucial

observation in the following argument.
Now, it follows from Lemma 3.8 and Proposition 3.1 that

Mn = 2
√

log p− log log p

4
√
log p

+
1

4
√
log p

Un2,

where Un2
d−→ η with distribution function Fη(x) = e

− 1
4
√
2π

e−
x
2
for all x ∈ R. From

(3.81),

M̃n = 2
√

log p− log log p

4
√
log p

+
1

4
√
log p

Un2 +Op

(

√
log p√
n

)

.

Then

Ũn2 := 4
√

log p ·
(

M̃n − 2
√

log p+
log log p

4
√
log p

)

d−→ η. (3.83)

Since Un1 and M̃n are independent, Un1 and Ũn2 are independent. Reviewing the
definition of Wn as in (3.73). Solve M̃n from the first identity in (3.83) and then plug
it into (3.82) to see

1√
n
Wn − µ1 =

√
2ρnUn1 +

√

1− ρ2n
4
√
log p

Ũn2 +Op

(

√
log p√
n

)

=
√
2ρnUn1 +

√

1− ρ2n
4
√
log p

Ũn2 + op

( 1√
log p

)

by the assumption log p = o(n1/3), where

µ1 =
√
nρn +

(

2
√

log p− log log p

4
√
log p

)

√

1− ρ2n.

We now derive the three conclusions by the above relation.
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Case (i): ρn
√
log p→ 0. For this case, by the Slutsky lemma,

4
√
log p

√

1− ρ2n

(

n−1/2Wn − µ1

) d−→ φ

where φ is the extreme-value distribution F (x) = e−Ke−
x
2 with K = 1

4
√
2π
. The conclu-

sion then follows by the assumption ρn → 0 and the Slutsky lemma again.
Case (ii): ρn

√
log p → λ ∈ (0,+∞). By using the independence between Un1 and

Ũn2 and the Slutsky lemma again, we have

n−1/2Wn − µ1√
2ρn

d−→ ξ + λ0φ,

where ξ ∼ N(0, 1), λ0 =
1

4
√
2λ

and φ is as in case (i) and φ is independent of ξ.

Case (iii): ρn
√
log p→ ∞. In this situation, by the Slutsky lemma,

n−1/2Wn − µ1√
2ρn

d−→ N(0, 1).

The proof is completed by using (3.73). �

The major contribution of Ln in Theorem 2.2 comes from (3.84) next, which will
be represented as a sum of two random variables well understood from earlier sections.

Lemma 3.18 Let ρn ∈ [0, 1) for all n ≥ 1. Review the notations in (3.8)-(3.9). Define
xki =

√
ρnξk +

√
1− ρnξki for 1 ≤ k ≤ m and 1 ≤ i ≤ p, where m = n − 1. Assume

log p = o(n
1
3 ) as n→ ∞. Then

( 1√
m

m
∑

k=1

xkixkj

)

·
[

1− 1

4m

m
∑

k=1

(x2ki + x2kj)
]

=
1

2
ρn
√
m+

1√
2
ρn(1− ρn)Um1 +

1

2

√

1− ρ2n ·
1√
m

m
∑

k=1

ψkij +∆nij

(3.84)

where Um1 =
1√
2m

∑m
k=1(ξ

2
k − 1),

ψkij = an

[

ξkiξkj −
ρn
2
(ξ2ki + ξ2kj − 2)

]

+ (1− ρn)bnξk(ξki + ξkj)

and

max
1≤i<j≤p

|∆nij| = Op

( log p√
m

)

(3.85)

as n→ ∞.
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Proof. Define

Mmij =
1√
m

m
∑

k=1

ηkij, 1 ≤ i ≤ j ≤ p,

where ηkij = anξkiξkj + bnξk(ξki + ξkj), an =
√

1−ρn
1+ρn

and bn =
√

ρn
1+ρn

. From (3.79) we

have

1√
m

m
∑

k=1

xkixkj = ρn
√
m+

√
2ρnUm1 +

√

1− ρ2nMmij; (3.86)

1√
m

m
∑

k=1

x2ki = ρn
√
m+

√
2ρnUm1 +

√

1− ρ2nMmii

where Um1 =
1√
2m

∑m
k=1(ξ

2
k − 1). In particular,

Mmii =
1√
m

m
∑

k=1

(anξ
2
ki + 2bnξkξki).

We can write

1

4m

m
∑

k=1

(x2ki + x2kj)

=
1

4
√
m

(

2ρn
√
m+ 2

√
2ρnUm1

)

+
1

4
√
m

√

1− ρ2n(Mmii +Mmjj)

=
1

2
ρn +

1

2
an
√

1− ρ2n +
ρn√
2m

Um1 +
1

4
√
m

√

1− ρ2n Tmij

=
1

2
+

ρn√
2m

Um1 +
1

4
√
m

√

1− ρ2n Tmij

where

Tmij =
1√
m

m
∑

k=1

[

an(ξ
2
ki + ξ2kj − 2) + 2bnξk(ξki + ξkj)

]

. (3.87)

So the product in (3.84) is equal to
(

ρn
√
m+

√
2ρnUm1 +

√

1− ρ2nMmij

)

·
(1

2
− ρn√

2m
Um1 −

1

4
√
m

√

1− ρ2n Tmij

)

=
1

2
ρn
√
m+

1√
2
ρn(1− ρn)Um1 +

1

2

√

1− ρ2nMmij −
ρn
4

√

1− ρ2n Tmij

+∆nij

where

∆nij = − ρ2n√
m
U2
m1 −

ρn
√

1− ρ2n√
2m

(Um1Mmij)

− 1

4
√
m

√

1− ρ2n Tmij

(
√
2ρnUm1 +

√

1− ρ2nMmij

)

.
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Observe that

1

2

√

1− ρ2nMmij −
ρn
4

√

1− ρ2n Tmij

=
1

2

√

1− ρ2n ·
1√
m

n
∑

k=1

ψkij,

where

ψkij = an

[

ξkiξkj −
ρn
2
(ξ2ki + ξ2kj − 2)

]

+ (1− ρn)bnξk(ξki + ξkj).

Use the trivial bound 1− ρ2n ≤ 1 to see

max
1≤i<j≤p

|∆nij|

≤ ρ2n√
m
U2
m1 +

ρn√
m
(Mm + Tm)|Um1|+

1√
m
(MmTm) (3.88)

where

Mm = max
1≤i<j≤p

|Mmij| and Tm = max
1≤i<j≤p

|Tmij|.

From Proposition 3.1, we know

Mm√
log p

→ 2 (3.89)

in probability. Now, from (3.87) we have

Tm ≤ max
1≤i<j≤p

1√
m

∣

∣

∣

m
∑

k=1

(ξ2ki + ξ2kj − 2)
∣

∣

∣+ max
1≤i<j≤p

1√
m

∣

∣

∣

m
∑

k=1

ξk(ξki + ξkj)
∣

∣

∣

≤ 2 max
1≤i≤p

1√
m

∣

∣

∣

m
∑

k=1

(ξ2ki − 1)
∣

∣

∣
+ 2 max

1≤i<j≤p

1√
m

∣

∣

∣

m
∑

k=1

ξkξki

∣

∣

∣

:= 2In + 2I ′n. (3.90)

Let ζk = (ξ2k1 − 1)/
√
2 for 1 ≤ k ≤ m. Then Eζk = 0, Var(ζk) = 1 and Ee|ζ1|/2 < ∞.

By Lemma 3.4, from assumption
√
log p = o(n1/3) we see that

P
(

In ≥ 2A2

√

log p
)

≤ p · P
( 1√

m

∣

∣

∣

m
∑

k=1

ζk

∣

∣

∣
≥ A2

√

log p
)

≤ p · e−A2
2(log p)/3 → 0 (3.91)

as long as A2 >
√
3. So In = Op(

√
log p ). Furthermore, notice E(ξ1ξ11) = 0,

Var(ξ1ξ11) = 1 and E exp(1
2
|ξ1ξ11|) < ∞. By the same argument as obtaining (3.91),
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we have I ′n = Op(
√
log p ). In summary, Tm = Op(

√
log p ). This together with (3.89)

and the fact Um1 → N(0, 1) implies that

max
1≤i<j≤p

|∆nij| = Op

( log p√
m

)

by using (3.88). We then get (3.85). �

Now we prove the last result in this paper.
Proof of Theorem 2.2. As explained at the beginning of the proof of Lemma 3.2,
without loss of generality, we assume µ = 0.

Let {ξk, ξki, k, i = 1, 2, · · · } and ρ′n = 1− ρn be as in (3.8)-(3.9). As before, p = pn.
Define

xki =
√
ρnξk +

√

ρ′nξki, 1 ≤ k ≤ n− 1, 1 ≤ i ≤ p.

Review the beginning of the proof of Theorem 2.1, we know the n − 1 rows of the
matrix (xij)(n−1)×p are i.i.d. random vectors, each of which follows Np(0,R). Write
(xij)(n−1)×p = (V1, · · · , Vp) such that Vj = (x1j, · · · , xn−1,j)

′ for each 1 ≤ j ≤ p. By
Lemma 3.2, we have

√
n− 1 max

1≤i<j≤p
ρ̂ij

d
= max

1≤i<j≤p

1√
n−1

∑n−1
k=1 xkixkj

√

1
n−1

∑n−1
k=1 x

2
ki

√

1
n−1

∑n−1
k=1 x

2
kj

. (3.92)

Denote m = n− 1, hi =
√

1
m

∑m
k=1 x

2
ki and

Λnij =

1√
m

∑m
k=1 xkixkj

hihj
. (3.93)

So it suffices to prove the statements (i), (ii) and (iii) with “
√
n− 1Ln” replaced

by “max1≤i<j≤p Λnij” in the following. The arguments are divided into a few of steps.
Step 1: Reduction of Ln to a simple form. Write 1

hi
= (1 + 1√

m
ζni)

−1/2 where

ζni :=
1√
m

∑m
k=1(x

2
ki − 1). By the Taylor expansion, there exists δ ∈ (0, 1) such that

(1 + x)−
1
2 = 1− x

2
+ φ(x) where |φ(x)| ≤ x2 for all x ∈ [−δ, δ]. It follows that

1

hihj
=

[

1− ζni
2
√
m

+ φ
( ζni√

m

)]

·
[

1− ζnj
2
√
m

+ φ
( ζnj√

m

)]

= 1− ζni
2
√
m

− ζnj
2
√
m

+ ǫij (3.94)

where

ǫij =
ζniζnj
4m

+
(

1− ζni
2
√
m

)

· φ
( ζnj√

m

)

+
(

1− ζnj
2
√
m

)

· φ
( ζni√

m

)

+ φ
( ζni√

m

)

φ
( ζnj√

m

)

.
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Obviously, if | ζni√
m
| < δ and | ζnj√

m
| < δ, then maxk=i,j |1 − ζnk

2
√
m
| < 2 because δ ∈ (0, 1),

and hence

|ǫij| ≤ |ζni| · |ζnj|
4m

+
2ζ2ni
m

+
2ζ2nj
m

+
ζ2ni
m

·
ζ2nj
m

≤
4(ζ2ni + ζ2nj)

m
.

This gives that

max
1≤i<j≤p

|ǫij| ≤
8

m
· max
1≤i≤m

ζ2ni (3.95)

provided max1≤i≤p | ζni√
m
| < δ. Let ζk = (ξ2k1 − 1)/

√
2 for 1 ≤ k ≤ m. Then Eζk = 0,

Var(ζk) = 1 and Ee|ζ1|/2 < ∞. By assumption, (x1i, x2i, · · · , xmi)
d
= (ξ1, ξ2, · · · , ξk) for

each 1 ≤ i ≤ p. Set

Ωn =
{

max
1≤i≤p

|ζni| < 3
√

log p
}

.

Then it follows by (3.91) that

lim
n→∞

P (Ωn) = 1. (3.96)

Now we see from (3.93) and (3.94) that

Λnij =
( 1√

m

m
∑

k=1

xkixkj

)

·
(

1− ζni
2
√
m

− ζnj
2
√
m

+ ǫij

)

=
( 2√

m

m
∑

k=1

xkixkj

)

·
[

1− 1

4m

(

m
∑

k=1

x2ki +
m
∑

k=1

x2kj
)

]

+ ǫ′ij (3.97)

where

ǫ′ij :=
( 1√

m

m
∑

k=1

xkixkj

)

· ǫij.

Now we estimate the size of max1≤i<j≤p
1√
m
|
∑m

k=1 xkixkj|. In fact, (3.86) implies that

max
1≤i<j≤p

1√
m

∣

∣

∣

m
∑

k=1

xkixkj

∣

∣

∣

≤
√
m+ |Um1|+ max

1≤i<j≤p

1√
m

∣

∣

∣

m
∑

k=1

[

anξkiξkj + bnξk(ξki + ξkj)
]

∣

∣

∣

≤
√
m+ |Um1|+ max

1≤i<j≤p

1√
m

∣

∣

∣

m
∑

k=1

ξkiξkj

∣

∣

∣
+ 2 max

1≤i≤p

1√
m

∣

∣

∣

m
∑

k=1

ξkξki

∣

∣

∣
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where Um1 = 1√
2m

∑m
k=1(ξ

2
k − 1). Observe that the last two maxima above have the

same distribution. By the estimate of I ′n from (3.90), each of them has size Op(
√
log p).

Using the assumption log p = o(n1/3), we see

Υn := max
1≤i<j≤p

1√
m

∣

∣

∣

m
∑

k=1

xkixkj

∣

∣

∣
= Op(

√
n)

as n→ ∞. Therefore, by (3.95),

max
1≤i<j≤p

|ǫ′ij| ≤ Υn · max
1≤i<j≤p

|ǫij|

≤ 8

m
·Υn · max

1≤i≤m
ζ2ni

provided max1≤i<j≤p | ζni√
m
| < δ. By assumption, 3

√
log p√
m

→ 0. This enables us to see

IΩn · max
1≤i<j≤p

|ǫ′ij| =
8

m
·Op(

√
n) · (3

√

log p)2 = O
( log p√

n

)

. (3.98)

By Lemma 3.18 and (3.97),

Λnij = ρn
√
m+

√
2ρn(1− ρn)Um1 +

√

1− ρ2n ·
1√
m

n
∑

k=1

ψkij + 2∆nij + ǫ′ij

= ρn
√
m+

√
2ρn(1− ρn)Um1 + σn1

√

1− ρ2n ·
1

σn1
√
m

n
∑

k=1

ψkij + ǫ′′ij

(3.99)

where ψkij and ∆nij are defined as in the lemma, ǫ′′ij = 2∆nij + ǫ′ij and σ2
n1 = (1 −

ρn)
2 + 2ρna

2
n. Easily

IΩn · max
1≤i<j≤p

|ǫ′′ij| ≤ 2 · max
1≤i<j≤p

|∆nij|+ IΩn · max
1≤i<j≤p

|ǫ′ij| = Op

( log p√
n

)

by (3.85) and (3.98). Let f(i, j) and g(i, j) be real functions defined on {(i, j); 1 ≤ i <
j ≤ m}. It is easy to see that

| max
1≤i<j≤p

f(i, j)− max
1≤i<j≤p

g(i, j)| ≤ max
1≤i<j≤p

|f(i, j)− g(i, j)|.

Therefore, from (3.99) we have

IΩn · max
1≤i<j≤p

Λnij

= IΩn ·
[

ρn
√
m+

√
2ρn(1− ρn)Um1

]

+σn1
√

1− ρ2n · max
1≤i<j≤p

{ 1

σn1
√
m

·
n

∑

k=1

ψkij

}

· IΩn +Op

( log p√
n

)

.
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Observe that the last maximum is exactly M ′
n appeared in Proposition 3.2. Writing

IΩn = 1− IΩc
n
, we eventually get

max
1≤i<j≤p

Λnij

= ρn
√
m+

√
2ρn(1− ρn)Um1 + σn1

√

1− ρ2nM
′
n +Op

( log p√
m

)

+ IΩc
n
·Ψn

(3.100)

for some random variable Ψn.
Step 2: Asymptotic independence between Um1 and M ′

n. Review the definition of
ψkij in Lemma 3.18. Set

η̃′kij = an

[

ξkiξkj −
ρn
2
(ξ2ki + ξ2kj − 2)

]

+ (1− ρn)bn

√
m

‖ξ‖ ξk(ξki + ξkj);

M̃ ′
n = max

1≤i<j≤p

{ 1

σn1
√
m

·
m
∑

k=1

η̃′kij

}

.

By (3.38), (1 + ρ2n)a
′2
n + 2b′2n = 1. Since b′n = (1−ρn)bn

σn1
, we get | (1−ρn)bn

σn1
| ≤ 1

2
. By Lemma

3.17,

M̃ ′
n −M ′

n = Op

((1− ρn)bn
σn1

·
√
log p√
n

)

= Op

(

√
log p√
n

)

. (3.101)

By Lemma 3.8 and Proposition 3.2,

M ′
n = 2

√

log p− log log p

4
√
log p

+
1

4
√
log p

Vn,

where Vn
d−→ φ with distribution function F (x) = e−Ke−

x
2 for all x ∈ R, where K =

1
4
√
2π
. The above two assertions tell us that

M̃ ′
n = 2

√

log p− log log p

4
√
log p

+
1

4
√
log p

Vn + op

( 1√
log p

)

.

Then

Ũn2 := 4
√

log p ·
(

M̃ ′
n − 2

√

log p+
log log p

4
√
log p

)

d−→ φ. (3.102)

Since Um1 =
1√
2m

∑m
k=1(ξ

2
k −1) and M̃ ′

n are independent by the same argument as that

after (3.82), Um1 and Ũn2 are independent. Evidently,

σn1
√

1− ρ2n =
(

(1− ρn)
2 + 2ρn ·

1− ρn
1 + ρn

)1/2

·
√

1− ρ2n

= (1− ρn) ·
√

1 + 2ρn − ρ2n.
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In particular, σn1
√

1− ρ2n ≤ 2. Combining (3.100), (3.101) and (3.102), we obtain

max
1≤i<j≤p

Λnij − ρn
√
m−

√
2ρn(1− ρn)Um1

= σn1
√

1− ρ2nM̃
′
n +Op

( log p√
n

)

+ IΩc
n
·Ψn

= σn1
√

1− ρ2n

(

2
√

log p− log log p

4
√
log p

+
1

4
√
log p

Ũn2

)

+Op

( log p√
n

)

+ IΩc
n
·Ψn.

Set

µ2 = ρn
√
m+ (1− ρn) ·

√

1 + 2ρn − ρ2n ·
(

2
√

log p− log log p

4
√
log p

)

.

Then,

max
1≤i<j≤p

Λnij − µ2

=
√
2ρn(1− ρn)Um1 + (1− ρn) ·

√

1 + 2ρn − ρ2n ·
Ũn2

4
√
log p

+ op

( 1√
log p

)

+ IΩc
n
·Ψn

where the equality Op(
log p√

m
) = op(

1√
log p

) holds due to the assumption log p = o(n1/3).

Notice that P (|IΩc
n
· Ψn| ·

√
log p ≥ ǫ) ≤ P (Ωc

n) → 0 for any ǫ > 0 by (3.96), hence
IΩc

n
·Ψn = op(

1√
log p

). It follows that

max
1≤i<j≤p

Λnij − µ2

=
√
2ρn(1− ρn)Um1 + (1− ρn) ·

√

1 + 2ρn − ρ2n ·
Ũn2

4
√
log p

+ op

( 1√
log p

)

.

Step 3: Derivation of conclusions (i), (ii) and (iii). Recall the assumption that
ρn ≥ 0 for each n ≥ 1 and supn≥1 ρn < 1.

Case (i): ρn
√
log p→ 0. For this case, by the Slutsky lemma,

4

(1− ρn) ·
√

1 + 2ρn − ρ2n
·
√

log p ·
(

max
1≤i<j≤p

Λnij − µ2

) d−→ φ,

where φ has distribution function F (x) = e−Ke−
x
2 with K = 1

4
√
2π
. The conclusion

follows by the assumption ρn → 0 and the Slutsky lemma again.
Case (ii): ρn

√
log p→ λ ∈ (0,∞). By the Slutsky lemma and independence,

max1≤i<j≤p Λnij − µ2√
2ρn(1− ρn)

d−→ ξ + λ0φ,

where ξ ∼ N(0, 1), λ0 =
1

4
√
2λ

and φ is the same as in case (i) and φ is independent of
ξ. The conclusion is yielded by the assumption ρn → 0 and the Slutsky lemma again.

Case (iii): ρn
√
log p→ ∞. In this situation, by the Slutsky lemma,

max1≤i<j≤p Λnij − µ2√
2ρn(1− ρn)

= Um1 + op(1)
d−→ N(0, 1).

The proof is completed. �
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