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Abstract

The paper studies the limiting distribution of the largest off-diagonal entry of
the sample correlation matrices of high-dimensional Gaussian populations with
equi-correlation structure. Assume the entries of the population distribution
have a common correlation coefficient p > 0 and both the population dimension
p and the sample size n tend to infinity with logp = o(n3). As 0 < p < 1, we
prove that the largest off-diagonal entry of the sample correlation matrix con-
verges to a Gaussian distribution, and the same is true for the sample covariance
matrix as 0 < p < 1/2. This differs substantially from a well-known result for
the independent case where p = 0, in which the above limiting distribution is an
extreme-value distribution. We then study the phase transition between these
two limiting distributions and identify the regime of p where the transition oc-
curs. It turns out that the thresholds of such a regime depend on n and converge
to zero. If p is less than the threshold, larger than the threshold or is equal to
the threshold, the corresponding limiting distribution is the extreme-value dis-
tribution, the Gaussian distribution and a convolution of the two distributions,
respectively. The proofs rely on a subtle use of the Chen-Stein Poisson approx-
imation method, conditioning, a coupling to create independence and a special
property of sample correlation matrices. The results are then applied to eval-
uating the power of a high-dimensional testing problem of identity correlation
matrix.
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1 Introduction

The correlation coefficient matrix is an important statistic in the multivariate analysis.
It plays pivotal roles in the statistical analysis of a multivariate normal data. The max-
imum likelihood estimator is the sample correlation matrix. This paper investigates
the limiting distribution of the largest off-diagonal entry of the sample correlation ma-
trix in the high-dimensional setting when the correlation matrix admits a compound
symmetry structure, namely, is of equi-correlation.

Let N,(0,X) stand for a p-variate normal population with the correlation matrix
R = (pij)pxp- Let Xq,---, X, be a random sample from the population N,(0,3). We
have the data matrix X = (X;,---, X,,). Write X = (2ij)nxp = (x1,x@ ... x@),
then the Pearson correlation coefficient between x® and xU) is given by
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where z; = %22:1 xr;. In particular, p; = 1 for all 1 < i < p. The sample correlation
matrix R is then defined by R = (pij)pxp- In contrast, X'X/n is refereed to as the
sample covariance matrix.

Define the largest magnitude of off-diagonal entries of the sample correlation matrix

by

1<i,j<p, (1.1)

Lon = max |Dij]- (1.2)
Assuming that z;;’s are independent and identically distributed but not necessarily
Gaussian-distributed, the asymptotic distribution of Ly, have been extensively studied
as both p and n tend to infinity.
The first result on the topic is due to Jiang [9], who uses the Chen-Stein Poisson
approximation method to get the limiting distribution of the Ly, as follows.

Assume El1i[*T < oo for some € > 0. Let p = p, and 2 — v € (0,00) as
n — oo, then

2
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P(nL, —4logn +loglogn < t) — ex (——e t/>
for any t € R, or equivalently,

1
P(nL3, —4logp +loglogp < t) — exp ( - —e*t/2>. (1.3)
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Zhou [19] proves that the moment condition can be relaxed to that lim, ., z® P(|z11212| >
r) = 0 and limsup,, ,,, 2 < co. Li and Rosalsky [12] consider the strong limit of L,
under some more relaxed assumption. Li et al. [11, 13] have further improved the
assumption of the result, under the assumption that % bounded away from zero or
infinity. They actually obtain some necessary and sufficient conditions for which (1.3)
holds. As p/n — oo, Liu et al. [15] establish similar results to (1.3) under the as-
sumption p = O(n®) where « is a constant. Cai and Jiang [3] consider the ultra-high
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dimensional case where p can be as large as €™ for some 0 < o < 1 and they extend
the result to dependent case. Cai and Jiang [4] derive the limiting distribution of Ly,
under the assumption that the population has a spherical distribution. In fact, a phase
transition phenomenon occur at three different regimes: 10% — 0, k’% — a € (0,00)
and 10% — 00. By using the limiting distribution of Lg,, Cai et al. [2] work on the
asymptotic behavior of the pairwise geodesic distances among n random points that are
independently and uniformly distributed on the unit sphere in the p-dimensional spaces.
The same phase transition phenomenon are also understood. Without the Gaussian
assumption, Shao and Zhou [18] obtain similar results to (1.3) as logp = o(n®) for
some 0 < o < 1.

Assuming the p entries of x are independent, most of the aforementioned work
mainly focus on the improvement of the moment assumption on x1; from the data
matrix X = (2;;)nxp as well as relaxing the range of p relative to n. The question of
how dependence impacts on the limiting distribution of the largest correlations remains
largely unknown.

In this paper, we will consider a case that all the entries of x are very dependent.
In fact, we assume x ~ N,(p, X), and the corresponding correlation matrix R has the
compound symmetry structure, which is also referred to as the intraclass covariance
or equi-correlation structure in literature, that is,

1 p .. p
1 ...
R - |/ P (1.4)
p p .o oe e 1

It is easy to see that R is positive definite if and only if 1 > p > —1/(p — 1). Since we
will be in the scenario that p = p,, — co, we will always assume p > 0 later.

When p > 0, the sample correlations p;;, 1 <14 < j < p are highly dependent and
new technical challenges arise in deriving the limiting distribution of the maximum
value of these entries. In addition, we found somewhat surprisingly that such a limiting
distribution is Gaussian. This is in sharp contrast to the independence case (p = 0)
in which the limiting distribution is a Gumbel distribution. Where does the phase
transition occur? In what way the limiting distribution changes over the regime of
correlation p? We provide sharp asymptotic results to describe these regimes of p and
their associated limiting distributions of the maximum correlation.

Related to our study is the maximum spurious correlation between each variable in
X and an independent variable Y in which the variables in X are correlated. Fan et
al. [8] derived the asymptotic distribution of such a maximum spurious correlation
using Gaussian approximation techniques of Chernozhukov et al. [6]. Unless the
correlation matrix of X is of a specific form, such a limiting distribution can not
be analytically derived and they require a multiplier bootstrap method to estimate the
limiting distribution. Their setting relates to our case with the last row of off-diagonal
correlation equal to zero and only computes the maximum sample correlation in the

last row, albeit these sample correlations are also dependent due to the dependence of
X.



Some notations will be used in the paper. The symbol <4 means convergence in

distribution, & 2 1 implies that & and n have the same distribution. Furthermore,

e b, = o(a,) if b,/a, — 0 and that b, = O(a,) if limsup,,_, |bn/an| < c0.

o & = op(ay) if &, /a, — 0 in probability as n — oco. And &, = Op(a,) if
lime oo limsup,, .. P(|¢,/a,| > C) = 0. In addition, we denote C' and C positive
constants independent of n or p, and their values may be different from line to line.

The rest of the paper is organized as follows. Section 2 gives the main results,
discussions and an application of the result. The proofs are relegated to Section 3,
where we develop necessary technical tools for our quests.

2 Main results and discussions

Let Xi,---,X, be a random sample from the population N,(x,¥) with the popu-
lation correlation matrix R defined as in (1.4). The data matrix is given by X =
(Xla te 7Xn)/ = (xij)nxp-

We will study the following two statistics in this paper:

n

J,= max n ! Trixg; and L, = max pyj, (2.1)
1<i<j<p P} 1<i<j<p

where p;; is defined as in (1.1).

The first is the maximum of normalized sample covariances when p = 0, whereas
the second one is the maximum of the sample correlations. The purpose having the
normalization in J,, is such that .J,, and L, have the same scale. To make our analysis
thoroughly, we allow p to depend on n. We will see from (iii) of Theorems 2.1 and 2.2
later on that J, and L, behave differently as p is a constant.

2.1 Main results

We first consider the limiting distribution for the statistics .J,,.

THEOREM 2.1 Let p, > 0 for each n > 1 and sup,>; pn < % Assume p = 0 and
3 = R, where R is given by (1.4). Suppose p = p(n) — oo and logp = o(n%) as
n — oo. Set

log logp) T

= nn+<2 logp —
1 = /np 8P loep

The following holds as n — oco.

(i). If pn/logp — 0, then
4+/logp (n1/2Jn — ,ul) 4, 0]

SRR : _ —Ke % - 1
where ¢ has distribution function F(x) =e , € R with K = YWors



(i1). If pn/logp — X € (0,00), then

nl/zjn — M1 d
—F=—— = {+ A9,
V2p,,
where £ ~ N(0,1), Ao = ﬁ, ¢ is as in (i) and ¢ is independent of €.
(111). If pn/logp — oo, then
1/2J — d

V2p,

The above theorem has the following implication.

< N(0,1).

COROLLARY 2.1 Let p € (0,3) be ﬁxed p =0 and ¥ = R, where R is as in (1.4).
Suppose p = p(n) — oo and logp—o(ns) asn — oo. Then

1/2J — I

V2p
as n — 0o, where 1 = \/np + 2+/(1 — p?)logp.

For the largest entry of the sample correlation matrix R, we have the following.

4 N(0,1)

THEOREM 2.2 Let p, > 0 for each n > 1 and sup,,>, pp < 1. Assume X = R, where
R is as in (1.4). Let p = p(n) — oo satisfying logp = o(n%) asn — oco. Set

lo lo
o =V = Tpu+ (1= p) /1 2p, — 2 - (2v/logp — > gp)

The following holds as n — oo.

(i). If pp\/logp — 0, then

logp (Vn — 1L, — o) 0,
where ¢ has distribution function F(x) = e*Kf%, r € R with K =
(11). If pu/logp — X € (0,00), then

vVn—1L,
V2p,,

where £ ~ N(0,1), Ao = ﬁ and ¢ is the same as in (i) and ¢ is independent of &.
(111). If pn/logp — oo, then

1
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If p is close to zero, presumably the behavior of L, is close to an extreme-value distri-
bution as in (1.3); if p is relatively large, L,, is asymptotically the normal distribution
as stated in Theorem 2.2. Item (ii) of the above theorem actually gives the phase
transition between the two cases. The following is an easy consequence of Theorem
2.2.

COROLLARY 2.2 Let p € (0,1) be fized and ¥ = R, where R is as in (1.4). Suppose
p = p(n) = 0o and logp = o(n3) as n — oo. Then, (v — 1L, — p2) /o5 4 N(0,1)
as n — 0o, where

Mzzpvn—1+2(1—p)-\/1+2p—p2-\/logp and 0'2:\/§p(1—p).

The above two results are totally different from Jiang [9], Zhou [19], Liu et al. [15],
Li et al. [11, 13], Cai and Jiang [3, 4], Cai et al. [2], Shao and Zhou [18]. They all end
up with the Gumbel distribution by arguing that p;;’s are roughly independent random
variables. In Theorems 2.1 and 2.2, the appearance of p creates a strong dependency
among the terms >} _; zyixy;, 1 <i < j < p, in the definition of J, from (2.1). This
is also true for the terms p;;, 1 < ¢ < j < p. The occurrence of p makes the situation
so delicate that, if p is a constant, the limiting distributions of J,, and L,, are no longer
the Gumbel distribution, they are the normal distribution instead.

For J, (similarly for L,), a key difference between the case p = 0 and the case
p > 0 is explained as follows. For p > 0, each term of the denominator in (1.1) can no
longer be regarded as roughly y/n as that in the case p = 0. In particular, if p > 0 is a
constant, the dependence really matters, and the difference can be seen from Corollary
2.2 by comparing the means and the variances.

2.2 Discussions

The paper investigates the limiting distributions of the largest off-diagonal entry of
sample covariance/correlation matrices generated by a random sample from a high-
dimensional normal distribution. We assume the normal distribution has the structure
of equi-correlation (1.4). Under the assumption that p — oo and logp = o(n'/?),
the asymptotical distributions of the largest off-diagonal entries of both matrices are
established. Their behaviors depend on the value of p. The limits are the normal
distribution if p is reasonably large; the limits are the extreme-value distribution if
p is very small. We also figure out the regime to differentiate the two scenarios.
In particular, for p in the regime, the limiting distribution is the convolution of the
Gaussian distribution and the extreme-value distribution.

Next we make some comments.

1. For the sample correlation matrix R, we get the limiting distribution of its largest
entry for each p € [0,1). The same result holds for the sample covariance matrix but
under the more stringent restriction 0 < p < 1/2, which is required in Lemma 3.9.
This difference will be easily understood by the fact that the sample correlation matrix
can be regarded as a type of self-normalized statistics. It is known that self-normalized
statistics are more “tamed”; see, for example, Shao and Wang [17]. And hence the
range of p is more relaxed in the case of the sample correlation matrix than that in the
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case of the sample covariance matrix. We do not know whether or not Theorem 2.1 is
still true for the case p € [%, 1). It is an interesting project for future.

2. Under the Gaussian assumption and that for the equi-correlation R in (1.4), the
decomposition structure of (3.77), i.e.,

X=vp& & +V1—pl&, &) (2.2)

where £, &, -+, &, are independent standard Gaussian random variables, plays a key
role in the proofs. Now let us remove the Gaussian assumption. Instead, we assume the
decomposition (2.2) continues to hold with &, &y, - - -, §, relaxed to independent random
variables with mean zero, variance one, and a sub-Gaussian tail. Then Theorems 2.1
and 2.2 may also hold except (ii) from each theorem. The conclusion of (ii) is derived
by using the Gaussian assumption essentially.

3. The paper deals with the equi-correlation matrix. If R = (7;;) has another
special structure, one may like to work on max;<;<;<p 7;; Or maxi<i<j<p % It seems
that, to get good properties for these two quantities, R can not be assumed to be too
arbitrary.

4. Assuming p = 0, Jiang [10] obtains the limiting spectral distribution of the
sample correlation matrix R. When n/p — ¢ € (0,00), the author proves that the
empirical spectral distribution of R asymptotically obeys the Marchenko-Pastur law.
If 0 < p < 1, by using the decomposition (3.77), it can be shown easily that the spectral
distribution of the sample covariance matrix also takes the Marchenko-Pastur law as
its limit. A similar result is expected for correlation matrix R for the case p > 0 by
employing the approximation method from Jiang [10].

5. Methodology of our proofs. The key elements in our proofs are a special property
for sample correlation matrices under Gaussian assumptions, the Chen-Stein Poisson
approximation method, conditioning arguments and a coupling to create independence.
Let us take L,, from Theorem 2.2 to elaborate this next through a few steps.

a). The special property (Lemma 3.2) for sample correlation matrices allows us
to remove z; and z; from the expression p;; in (1.1). So we get an easier form of the
target to work with.

b). With some efforts, we are able to write

Ln =an + BnQn + ’Yan (23)

where a,, 3., v, are constants, @), goes to N(0,1), R,, (the quantity M/ from Propo-
sition 3.2) is the maximum of sums of independent but non-identically distributed
random variables; see (3.100).

¢). We use the Chen-Stein Poisson approximation method to work on R,,. However,
due to the strong dependency, we are not able to apply the method directly. In par-
ticular, the methods for deriving the limiting distribution of R,, under the assumption
p = 0 in all earlier literature are no longer valid. We will use a conditioning trick. In
fact, conditioning on certain event, we obtain the asymptotic distribution of R, by the
Chen-Stein method. After taking the expectation of the conditional probability, we
finally derive the limiting distribution of R, (Proposition 3.2).

d). We construct R], such that it is independent of @, in (2.3) (see Lemma 3.17)
and it has the same asymptotic distribution as that of R,,. Furthermore, we show that
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the difference between L, and L! := «, + £,Q, + VR, is negligible. So, basically
speaking, L, is reduced to a linear combination of two independent random variables
such that one goes to the normal distribution and another goes to the extreme-value
distribution.

2.3 An application to a high-dimensional test

Let Xj,- -+, X, be a random sample from the population N,(u, X). We are interested
in testing whether X is diagonal. A natural nonparametric test is to use the test statis-
tic L,, which is powerful for sparse alternatives. The null distribution of such a test
statistic corresponds to the limiting distribution for case p = 0 in regime (i) of Theo-
rem 2.2. A question arises naturally how powerful it is under the dense alternatives.
The specific alternative of interest is

Hy:p=0 vs Hy:p=p

where p; € (0,1) is given.
Assume the dimension p and sample size n are all very large such that logp =
o(n'/3). By (i) of Theorem 2.2, under Hy,

4 logp(\/n - 1L, — [LQ()) LN o,

where pgy = 2+v/logp — fgll% and ¢ has distribution function F(z) = e‘K‘f%, reR
1

?l?dtK = 175 For 0 < <1, denote ¢, the (1 — a)-quantile of the distribution F(x),
at is,

Go = —log(327) — 2loglog(1 — )™t

Then, a rejection region of the asymptotic size-a test is given by
X = {\/n — 1L, > 2+/logp + (¢o — loglogp)/(4 10gp)}-

Using Theorem 2.2 (i) again, when p; = o(1/4/logp), the asymptotic power is still «,
like a random guess, as the asymptotic distribution under such a contiguous alternative
hypothesis is the same as that under the null hypothesis. Now the power starts to
emerge when p; = A\//logp for A € (0,00) in regime (ii). In this case, it can be
calculated that py in this regime is

In—1 2\ 1
Haz = A log p * [1 ~logp * O<(logp)3/2)}u20'

The power function is

B(p1) = P{Vn—1L, > pso + qa/(43/1ogp)|p:1 }
= P{4\/logp(vV/n — 1L, — p22) > qa — 4XVn — 1 4+ 16X% + o(1)|p1 }.
According to Theorem 2.2(ii), the power tends to 1 for each fixed A. By using a similar

argument, it is easy to show that the power in region (iii) has also asymptotic power
1.




3 Proofs

The proofs of Theorems 2.1 and 2.2 are quite involved. We break them into small
sections from each of which problems with a common feature are handled together.
See the detail of each section given at the end of the Introduction.

3.1 A result on sample correlation matrices

In the following, we will present a special property of the sample correlation matrix R
as defined below (1.1). An auxiliary fact has to be derived first.

LEMMA 3.1 Let Xy, -+, X, be i.i.d. random wvectors and X; ~ N,(0,X), where ¥
is a p X p non-negative definite matriz. Set X = (Xy,---,X,,). Then, for any n x n

orthogonal matriz O, we have OX <X

Proof. Let Yy, --,Y, beiid. and Y; ~ N,(0,I,). Then X; and $1/2Y; have the same
distribution for each ¢. By independence,

X = (Xh"' aXn),i (}/la 7Yn>/21/2‘ (31)
As a consequence,
oxX Loy, - ,Y,ys?

for any n x n orthogonal matrix O. Write (Y1, -+ ,Y,)" = (¥ij)nxp- Then y;;’s are i.i.d.

N(0, 1)-distributed random variables. Hence O(Yy,---,Y,) < (Y1,---,Y,)" by the
orthogonal invariance of independent Gaussian random variables. It follows that

ox < (v, - Y, 512 4 x

by (3.1). [

The following lemma provides a simple expression for the sample correlation matrix.

LEMMA 3.2 Let Xy,---, X, be i.i.d. random vectors and X1 ~ N,(u, X) where p € RP
and X is a positive definite matriz. Let p;; be as in (1.1). Suppose Yy,---,Y,_1 are
id.d. and Yy ~ Np(0,3). Write (Yr,--- , Y1) = Vi, ,Vp)n—1)xp- Then

. a(_ ViV
Bdoro = (77 e

Proof. Since p;; is invariant under translation and scaling of the vectors Xy, -, X,
without loss generality, we assume p = 0 next.

Denotes T = (1,1,---,1) € R™! and A,,x, = I, — %]I]I’. Trivially, A is an idempo-
tent matrix with ¢r(A) = n — 1, then there exists an n x n orthogonal matrix O such
that

_ / ]n—l 0
A_(9<O 0)(’).



Write

Lij — Tj L1j

Toj — T To;
=A

Tpj — X Tnj

for each 1 < j <p. Write X = (X,--- , X,,)’ = (%4;)nxp- Then

T11 —T1 T —To o Tip — Tp

To1r — X1 Tog —Tg -+ Toy — Ip
H = ) )

Tn1 — 1_71 Tn2 — ff2 o Tpp — i‘p

_ /[n—lo
- o (% Yox

i / [n—l O
L0 ( : O)X
by Lemma 3.1. Then

o . I,_: 0 . (Izj)(n—nx;;
X._( : O)X_( :

where 0 above is a p-dimensional row vector with all entries equal to zero. Therefore,
H < 0'X and hence

d ~ ~
H'H = X'X = (i) (n-1)p(Tij ) (n-1) xp-
Define (2i;)(n—1)xp = Vi, -+, V3) n—1)xp- The above implies
HH = (V/V}) . (3.2)

For a positive definite matrix M = (m;;),x,, define h(M) to be a p x p matrix such that
its (i, j)-entry is equal to mijmi_il/zm;jl/z. Let M, be the set of all p x p positive
definite matrices. Then, h : My, — M,y, is continuous map, and therefore is
Borel-measurable map. From (3.2) we conclude h(H'H) < h((ViV})pxp). The desired

conclusion then follows. [ |

3.2 Some technical tools

We will collect and prove some technical tools for the proof of Theorems 2.1 and 2.2.
The first one is the Chen-Stein Poisson approximation method, which is a special case
of Theorem 1 from Arratia, Goldstein and Gordon [1].

LEMMA 3.3 Let 1, be random variables on an index set I and {B,, o € I} be a set of
subsets of I, that is, for each o € I, B, C I. For anyt € R, set A\ =3 _, P(n, > 1),
Then we have

P(ma;cna <t) —e M < (LAXNTY(by 4 by + bs),
ae
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where

by = ZZ (Na > t)P(ng > 1),

a€l BEB,

by = Y. > Pla>tns>1),
a€l a#BEBqy

by = Y |P{na>tlo(ns, ¢ Ba)} — Plna > t)],
a€cl

and o(ng, B ¢ B.) is the o-algebra generated by {ngz, B ¢ Ba}. In particular, if n, is
independent of {ns, B ¢ Ba} for each «, then bs vanishes.

The next lemma is on the moderation deviation of the partial sum of i.i.d. random
variables. It can be seen, for instance, from Linnik [14].

LEMMA 3.4 Suppose {(, (1, (s, -} is a sequence of i.i.d. random variables with E¢; =
0 and E¢? = 1. Define S,, = >"_, ¢;. If EelI" < 0o for some 0 < a <1 and ty > 0,
then

1 S, 1
lim — 1 P(—> n):__
it 22 B\ =T 2

for any x, — 00, T, = o(n2ea).

The following lemma is on the moderation deviation of the partial sum of the
independent but not necessarily identically distributed random variables. It can be
seen in Proposition 4.5 from Chen et al. [5].

LEMMA 3.5 Let n;, 1 < @ < n be independent random variables with En; = 0 and
Eell < oo for some hy, >0 and 1 < i < n. Assume that St En?=1. Then

P(Z?:l n;i > )

=1 nl 3 43y
= + Cp (14 27)ve

for all 0 <z < hy and v = Y1 E(|n;*e”™1), where sup,», |C,| < C and C is an
absolute constant.

In our framework, 7; above is a quadratic form of two independent normals for each
i. We first need to control E(|n;*e®I"!).

LEMMA 3.6 LetU andV bei.i.d. N(0,1)-distributed random variables. Let a,b,c,d, e, f
be real numbers. Set n = aU? +bUV + cV? +dU + eV + f. Then

E(jnPe™) < C-(laf’ + b + [’ + [ + [e* + [f[) - Dl

as 0 <z < where C' is constant not depending on a,b,c,d, e or f.

1
12(lal+[b[+]cl)’

11



Proof. First, use [UV| < U? 4+ V? to see

[l < (lal+ DU + (1Bl + [e)V? + [dU + V| + | f]. (3.3)
In particular,

Bl < 4% E[(lal + [b])°U" + ([o] + [c)*V'® + |dU + eV + | f[°]

< Cu[(lal + b + (1] + [e])® + (@ + )2 + | f1°]
< Ci[(lal +16] + [e)? + (|d] +le])” + | fI"]
where C] is a constant not depending on a, b, ¢, d, e or f. We also use the facts E(U'8 +
V%) < 0o and dU + eV L /& ¥ e2U. Tt follows that

(ElI*)® < C1(Jal + [b] + |e] + |d] + le] + | £1)*.

From (3.3),

E(Inf'e) < (Bl")" - [Eexp (3x(lal + hU* + (] + |)v?)] "

[E exp(3z|dU + eV])] 3 enlfl,
First,
EeSx-|dU+eV\ _ E€3x\/d2+62|U|
< E63$\/d2+e2U + E6—3x\/d2+e2U _ 269382((12-1—62)/2
by using the identity EeNOD = ¢*/2 for all ¢ € R. Second, setting o = 3z(|a| + [b])
and 3 = 3z(|b| + |c|), and reviewing Fe*V” = (1 — 2s)7/2 for all s < 1, we have

Eexp (3z(|a| + |b])U? + 3z(|b] + |¢[)V?)
= (1-20)7"-(1-2p)""
4

IN

if @ < 1 and § < 1 by independence. Finally, combining the above, we see
E(Infe™™) < O (Jal 4+ [b] + le] 4 [d] + le] 4 [ f])*e> #4111

as <z < m The conclusion then comes from an inequality on convex func-
tion f(x) := x* for x > 0. [

In our setting, the parameter v from Lemma 3.5 needs a special care. This will be
done below with the help of Lemma 3.6.

LEMMA 3.7 Let {&; k > 1} be i.i.d. N(0,1)-distributed random variables. Set T =
E(|&°) + 1. Assume p = p, satisfies that p — oo and logp = o(n'/®). Let {y, >
0; n > 1} be real numbers such that y, = O(logp). Then,

1« 1
P(ﬁ ;(1 + &) e/ > 27’) < exp ( - anﬂ(log n)_2>

as n 1s sufficiently large.

12



Proof. By assumption, we assume y, < Nylogp for all n > 1, where Ny > 0 is a
constant For € > 0, set ©, = {max <<, & < en/y,}. By the inequality P(N(0,1) >
y) < e V2 < e7V?/2 for all y > 1, there exists a constant n; > 1 such that

vV 27ry

P(En) <nP(&l > (en/u)) <n-exp (=5 1)

as n > ny, which is again bounded by

o ( € n > < _n2/3
n-exp|l — —- n-e
P 2Ny logp/ —

as n > n, > ni, where n, > 1 is an integer depending on e. It follows that

n

1
P53 (4 falendin = 2r)

k=1
n

< P(% D> (4 [&P)e > 27) +n-e"

k=1

2/3

as n > n.. Take € = log %. Then 2e~ T = %7’. Consequently,

n

P(s > o1+ lfe 2 2r)
= P

S (6l — Bl > o)
< P(%k

k=1

S|

3

Ce = l“n)
=1

as n is sufficiently large, where (; = (|&]> — E(|&[?))/+/ Var(&}) and x,, = n'/*/logn.
Set ¢ = +/Var(¢}). Observe that %3 - |(|?/® < |&|* + (B|&)?)%3. This implies

Eexp(10%/3|¢|*?) < oo since & ~ N(0,1). Take a = 2 in Lemma 3.4 to see

P(% é{k > fn) < exp ( _ inl/Q(log n)_2>

as n is sufficiently large. In summary,

1 — ] |
P(g ;(1 + €] erni/m > 27’) < exp ( = n2(log n)~ ) -
This implies the desired inequality. =

The following result provides us with an equivalent expression on a limit theorem.
It will be applied to the proofs of Propositions 3.1 and 3.2 later, in which F(z) is an
extreme-value distribution.

13



LEMMA 3.8 Let M, be a random variable for each n > 1 satisfying

lim P(M, < +/4logp —loglogp + z) = F(x)

n—o0

for any x € R, where F(x) is a continuous distribution function on R. Then

_log 1ogp 1
=24/lo Un,
4+/logp  4+/logp

where U, converges weakly to a probability measure with distribution function F(z).

Proof. Easily, (1 +1t)"/? =1+ §t 4 r(t) where supy, . |r(t)| < * for some € > 0. Fix
o € R. Let Ag > 0 be given. For any x € [zg — Ao, xo + Ao,

log log p T\ /2
Llog p — log1 — 21 (1— )
V/4logp —loglogp + x Viogp togy T Tozp

log1
N e B L

8logp 8logp

where

r(p.2)] < 1oglogp x )2
sup 7P, T =
le—0|<Ao |o— xo\<A0 4logp  4logp

(loglog p)*
15(10gp)2

as n is large enough. By the given condition,

) loglog p x
1 P<Mn < 2\/Togp — , ) —F 3.4
lim < 2Wlogp = T+ ey T ) () (34)

as n — 0o, where s(p, x) := 2r(p, z)y/log p and

)| < (loglog p)?

sup |s(p, 3.9
\x7w0|§Ao| ( 7(10gp)3/2 ( )
as n is sufficiently large. Define
log log p
Uy = 4/logp (M, — 2¢/1 1 3.6
ogp 8P Tosp (3.6)
Then (3.4) implies that
lim P(U, <z +t(p,z)) = F(x) (3.7)
n—oo
where t(p, z) := 4s(p, )+/log p. Easily, from (3.5),
log log p)?
sup (. )| < LOB1BPS
|lz—z0|< Ao lng

14



as n is sufficiently large. Therefore, for any § > 0,
PU, <xz—6)<PU, <z+tpx) <PU, <z+9)
as n is sufficiently large. From (3.7),

limsup P(U, <z —0) < F(z) < liminf P(U, < x +0)
n—oo n—o0
for any = € [zg — Ao, xo + Ao]. For § € (0, Ap), taking © = zo +d and = = z¢ — 0,
respectively, we have

lim sup P(U,, < xo) < F(xo + 6);

n—oo
liminf P(U,, < ) > F(xo — 9).
n—oo
Letting § | 0, we obtain lim,_,, P(U, < ) = F(x¢). Since zq € R is arbitrary, the
limit together with (3.6) concludes the proof. [ |

3.3 A proposition on the largest entry of a sample covariance
matrix

In this section, we will use the Chen-Stein Poisson approximation method to get the
asymptotical distribution of a statistic M,, defined in Proposition 3.1 later. The quan-
tity M,, will serves as a key building block to understand the largest entry of a sample
covariance matrix. Literally, it will be used in the proof of Theorem 2.1.

For convenience, the following notation will be used throughout the rest of the
paper.

(1). The random variables

{&, &y piy ki =1,2,---} are ii.d. with N(0,1)-distribution. (3.8)
(2). Given p, € [0,1) for each n > 1, set p|, = 1 — p,,

P Pn
a, = 1| —2— and b, = ) 3.9
1+ pn 14+ pn (39)

(3). For x € R and integer p > 1, set

s, = \/4logp — loglogp + x. (3.10)

In our theorems we assume p — 00, so s, is well-defined as p is large. This clarification
will not repeated in the future.
(4). Let &’s be as in (3.8). we write

= (&, &) and [|¢g]| = (& + -+ &)V~ (3.11)

Before stating the main result in this section, we will first establish a technical tool,
which will play a key role in the proof of the Lemma 3.12 in the sequel.

15



LEMMA 3.9 Review the notations in (3.8)-(3.10). Assume p, > 0 for alln > 1 and
SUP, > Pn < 3. Define Z, = \b/—%zzzl & If p = p, — oo and logp = o(n'/?) as
n — oo, then there exists a constant 6 € (0,1) such that

14 pn 1
Eexp — 1——|—(5(Zﬂ — Sp)2:| = 0(]?)
as n — o00.

Proof. If p, = 0 for some n > 1, then Z,, = 0 and the expectation in the lemma is
identical to exp(—(4logp — loglogp + x)/(1 + 6)), which, by taking § € (0,1) small
enough, is bounded by p~3® as n is sufficiently large. Therefore, to prove the lemma,
w.l.o.g., we assume p, > 0 for all n > 1.

First, we show

1 a1 3?
B —a1(61—p1)? _ _ ( 171 ) 3.12
¢ \/20(1+1exp 20&1+1 ( )
for any ar; > 0 and S; € R. In fact
Ee—o1(&=p1)* — / e~ 2—% dz.
\/27‘(’
Write
2 1 2 2
—ai(z — B)* — % _ _( a +§x_ a1 ) B 20z1511
o1 + ; a
Now, define y such that
1 a1

a1+ r— ——

\/_

\/0414’—

It follows that

1 > a 2 12
— e~ (@B =% gy
V 2w /oo

2 o]
= exp < _ b eV 2 dy -

1
2a1+1 . \/27T /oo

\/20./1-}-]_‘

Thus, (3.12) holds.

Recall the notation (3.11). By Proposition 7.3 from Eaton [7] or Theorem 1.5.6 from
Murihead [16], we know ||£]| and IIEH are independent. Also, H%”ZZZI &k ~ N(0,1)
by independence. Consequently,

1€l

Z. L, -
\/_

&) (3.13)

16



In particular, ”\% and &) are independent. Let 7 = %. Observe
2
Eexp | — (Zn = 5)° ] = Bem&=8)" = p[p e (6] (3.14)
T

where F; stands for the conditional expectation given ||£||,

balI€l” vns
= B and 3 = o
nt A

aq

By using (3.12), we obtain

Ee—o1&@-A)" < exp<_

2
Sp

= eXp{ T AF0) [T+t zbg]}

(3.15)

if @ < 1+ 4. Observe that (1+ p,)~! + 202 = %fp@ < ?3 < 3 foralln>1, Where

p i= Sup,>; pn < 3 by assumption. Take 6 € (0,1) such that 9 = (14 5)%25 < 3

Hence, given H§” <149,
5/0

Ele—al(fi—ﬁl)z < (logp)
DA

as n is sufficiently large. By the large deviations for i.i.d. random variables, there
2

exists a constant C' > 0 depending on 7 only such that P(@ >1+0) < e for all

n > 1. Combining the above inequality, (3.14) and (3.15), we arrive at

FEexp [— —(Zn — SP)Q}

-
2 2
_ E[Ele—algl <H£H <1+5>] <H£H 21+5>
n
(logp)” . _uc ( 1 )
- 7 e = o| —
/0 »?
where the last equality follows from the assumption logp = o(nl/ 3). [ |

Now we state the main result in the section. Review the notations in (3.8)-(3.10).
Define

Miij = anfki&cj + 0 (Eri + &y (3.16)

mg - anz] (317)

forall1 << j <np.
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Proposition 3.1 Let p, > 0 for eachn > 1 and sup,,, p, < 3. Let s, be as in (3.10).
Set M,, = maxi<j<j<p Myij. If p = p, — 00 and logp = O(nl/g), then

lim P(Mn <s,) = e~ Ke™®/?

n—o0

1
2m”

for any x € R, where K = yWeT

Proof. In the next we will assume p is large enough such that s, > 0. Set I =
{(1,7); 1 <i<j<p}. Fora=(ij) €I, define X, = M,;; and

B, = {(k,l) € I; cither k € {i,j} or l € {i,j}, but (k) # a}.

Let P, and Es stand for the conditional probability and the conditional expectation
given {&; 1 < k < n}, respectively. The crucial point is that, given {&; 1 < k < n},
random variable X, is independent of {X3; 8 ¢ B,}. Since {X,, o € I} are identically
distributed under P», by Lemma 3.3, we have

ALl <y A+ wy, (3.18)

Py(max X, <s,) —e”
acl

where
p(p—1) < 1 ¢ )
ey —P B —
Apl 2 2 Jn ;771412 > Sp
and
wi = Y Y Po(Xe > 5,)Pa(Xs > 5,)
a€l BEBy
p(p—1) 1 ¢ 2
< 27 . _
< 5 (2]?) P2<\/ﬁ ;ﬁmz > Sp>
and

wy = Z Z Py(Xo > sp, Xpg > 5p)

a€l BEB,

p(p—1)

1 <& 1 ¢
< —'(2p)~P2(— Nk12 > Sp, ——= nk13>5)'
2 \/ﬁ; ’ \/5; ’

Note that P(max,e; Xo < 8p) = EPs(maxaer Xo < sp). From (3.18),

|P(max X, < s,) — Ee ™| < E|Py(maxX, <s,)—e ™|
acl ael

< ZEUHV+-IZHQ.
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Now,

Ee"\’”:EeXp[ p(p . 1>p2<\/_277k12>8p)]
FEw, SPB'E[PQ(%ZW12>SP>2}

1 — 1 —
Ew2§p3'P<_ZT/k12>sp7 _an’13>8p>-
\/ﬁkzl ‘/ﬁkzl

The following three lemmas say that Ee 1 — exp( — ﬁe‘xﬂ), EFw; — 0 and
Ews; — 0. The proof is then completed. [ |

LEMMA 3.10 Let the assumptions in Proposition 3.1 hold. Review that Py stands for
the conditional probability given {&x; 1 < k <n}. Then

Eexp[ pp — 5 Pg(\/—me >sp>] %exp( \/1_ ””/2>

as n — oo for all x € R.

LEMMA 3.11 Let the assumptions in Proposition 3.1 hold. Review that Py stands for
the conditional probability given {&x; 1 < k <n}. Then

Elr S ) =o( 1)

as n — oQ.

LEMMA 3.12 Let the assumptions in Proposition 3.1 hold. Then

1 — 1 — 1
P<— Mk12 > Sp, —F= le13>8>:0(—)

p

as n — Q.

Now we start to prove the three results one by one.

Proof of Lemma 3.10. Write

Zﬁmz = Z iz + b (i1 + Er2)]. (3.19)

k=1

Given {&; 1 < k < n}, it is the sum of independent random variables with mean

EQ [anﬁklfkg + bnék(fkl + fkg)} =0 and variance Varg [an§k1§k2 + bnfk(&d + fm)F ==
a? + 2b2¢2. Thus,

Var, ( Z 77k12> = na; + 202, Z & (3.20)
k=1 k=1
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Define

3

V)

15
<=}

6 1
Fn:{max & < V/nand - < — <
n 14

1<k< T
k=1

Set 7 = E(|&1]?) + 1. For v > 0, set

n

Gn(v) = {% Z(l + |€k|3)evgz(10gp)/" < 27_}.

k=1

The parameter v will be chosen later. By the fact P(|N(0,1)] > z) < ﬁe‘zzﬂ for
all x > 0, the large deviations for i.i.d. random variables and Lemma 3.7, we have

P((F,NGy(v)°) < nP(|&] > Vn) +P< ka gii )

n

1 >
P(— 1 3)evéilogp)/n - 9 >
+P(= D (1 [&[)e T

k=1

1
< 3exp < - an/z(log n)_2> (3.21)

asn > n,, where n, > 1is a constant depending on v. Define 02y = a2+202 (= Y7 &7).
Then, on F},,
1 1, , 15 8
= 2b; 1 <a 207) < =
where the last inequality follows from the identity a2 + 2b2 = 1.
Next we will use Lemma 3.5 to get a precise estimate on Pg(\% D ket Th12 > Sp).-
To do so, Lemma 3.6 will be applied to control v defined in Lemma 3.5.
Reviewing (3.19), we take a = \/ggno, b= % Set nr = a1k + b(Ek1 + Ek2)-

Then, it follows from (3.20) that

(3.22)

Esyni =0 and ZVarg(nk) =1 (3.23)
k=1

for each k. Furthermore, by (3.22) we have
2 2|
la| < —= and [b] < —=
Vn vn

on F,. Then, on F,, use the Holder inequality, the facts that 2|¢;;&50| < & + €3, and
€11 + €12 ~ V2 N(0,1), and independence to see

<2 (3.24)

2h
Eeh‘ﬂk| < Eexp <%|£11€12| + Qh‘éll + 512’)

1/2

< [P (Z2c+ b)) [FeplavanN 0.1

2h
= Fexp (—

TN, 1)2) L < oo (3.25)
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for all h, k,n satisfying 0 < h < h,, := % n and 1 < k < n. Now, on F,, by Lemma
3.6 and (3.24) we have

C
Ey(|mPe™) < W(1+|§k|3)64b2$2

C

< e+ € [*)eto % (3.26)

for all z € (0, ) Observe that (0,%) C (0, o) on Fy by (3.24). Thus, (3.26)

) 24 ’ 12[a]
particularly holds for all = € (0, ¥"). Now take z( = >=. Then

724
vn

$0§2Sp<ﬂ

(3.27)

on F, by the assumption logp = o(n'/3). We then have

o= ZEQ(’WP@%WI)
k=1

C

7 >+ € ?)e! 6ot/

[C—

C < 3\ 256¢2(logp)/n

WZ(“‘!&J Je T OEosP
k=1

IN

<

on F,,. Thus, 7 < 2% on F,, N G,(256) := H,. The inequality in (3.21) implies

P(HS) < 3exp ( - inlﬂ(log n)_2> (3.28)

as n is sufficiently large. From (3.23), (3.25) and Lemma 3.5, we conclude
CIE e
2\ —F= Mk12 > S
Vi i~ ’
= P2<Z Mk > fo)
k=1

= [1—®(0)] - [1+O01)(1 + ag)ye'] (3.20)

on H, since zy < h, = £3/n by (3.27). Finally, 23y = O(s3n~'/?) — 0 on H, by the
assumption logp = o(n'/?). Reviewing (3.22), we have Z < US—:O < 2s, on H,. Hence,

from the formula P(N(0,1) > z) = ﬁe’zg/z(l +0(1)) as * — oo we obtain that, on
H,,

P2<%;77k12>3p> = [1_(1)(8_]))} ' [1_'_0(108;3)\/;?)]

Ono

_ _In0 | -s3/(202)
= -e /o) (1 4 o(1 3.30
T (1+0(1)) (3.30)
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as n — 0o, where the last term “o(1)” does not depend on &;’s.
To prove the lemma, it is enough to show

2 n
P 1 1
L= mn>s) -
2 P\ =) T e

in probability as n — oo. Since P(H,) — 1, to finish the proof, it suffices to check

e—x/2

2 n

P 1 L
L= > s) I, > “/
2\ ) e T

in probability as n — oo. Now 0,9 — 1 in probability as n — oo and s, ~ 2v/log p,
comparing this with (3.30), it suffices to show

2
D" s/ 1

_— Ay, —
4+/2m log p M 4 or
in probability. By the central limit theorem for i.i.d. random variables, o2, = 1 +

Op(\/%;). Hence 0,7 =1+ Op(\/iﬁ). It follows that

e~/ (3.31)

2

S 1 1 1
P (2logp— ~logl ) [1 O, (— ]
207 (2logp 5 loglogp + 2:6) + p(\/ﬁ)
1 1
= 210gp—§10glogp+§:v+op(1)
by the condition (logp)/n'/? — 0. This implies (3.31). |

Proof of Lemma 3.11. Review the proof of Lemma 3.10. Let H,, be defined as above
(3.28). By (3.29), there exists a constant n; > 1 not depending on &’s such that

1 n
P2<% ;nm >s) Iy, <2[1-@(22)] 1y,

Ono

as n > n, since xy = ;—”0 Recall the inequality 1 — ®(z) < \/21?9:6*””2/2 for all z > 0.
Then, from (3.22) we have

1 - 2 0'20 272
- . LY 58 /Un .
[P2<\/ﬁzk:1nm>sp)] f 5 O e A,

p

< ¢ . 6—753/8
log p
as p > no, where ns is a constant not depending on &;’s. Therefore, combining this
with (3.28), we see

E |:P2 (% g M1z > Sp) 2]



as n is sufficiently large since logp = o(n'/3). This proves the lemma. [ |

Proof of Lemma 3.12. Let P; and Ej3 stand for the conditional probability and the
conditional expectation given {&x,&x1; 1 < k < n}, respectively. By independence,

1 — 1 «
P(— Nk12 > Sp, —— 77k13>3>

E [Pg (% ki: s > sp)z} . (3.32)

Recall the notations in (3.16) and (3.17). Write >, k12 = (bn D op_y Eer1)+2pey (anr1+
bk )Ek2. Then, given {&k, &k1; 1 < k < n}, we have from independence that

n

1
= Mk1z ~ N (Hon, Ugn) (3.33)
Vi
where
Hon = b—niﬁkfm and  oj, = li(a Ex1 + bn&y)?
n — on — n n .
Vi [
Trivially, b} = 2~ < sup,>; 1% = #* < g and aj + b, = - € (3,1] for all
€ [0,1). Define
2
Ton
A:{|/L0n|<\/58p/2} and Bg—{1—5<m<1+5}

for 6 € (0,1). Observe a,&11 + b,& 4 Va2 + b2 - & since &y and & are i.i.d. N(0,1)-

2
distributed random variables. Thus, 20 1’22 41 EZ &2 Then, by the large deviations

for the sum of i.i.d. random Varlables we obtam

— P(% ;5,3 €l—6,1+ 5]0) < e (3.34)

for all 6 € (0,1) where Cs > 0 for each § € (0,1). Similarly, {&&k1; 1 < k < n} are
i.i.d. with mean zero and variance one. Notice |[§&11] < 5(|&[* + [€11]*). Therefore
Eexp (3|&&11]) < co. From Lemma 3.4 and the fact s, ~ 2y/logp = o(n'/%) we see
that, for any € € (0, 1),

P = P se 2 5)

_ zp(fzgk&ﬂ_fsp)

1—6.ﬁ)
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E—— Then%:%—l—$>1. This

N[ =

n is large enough. Since 2 < =, we choose € =
implies that

. 1—e 3s 1
pa) <200 (= 5 ) <o)
as n — oQ.

It is easy to see that s, — pp, — 00 on A. By the inequality P(N(0,1) > y) <
e ¥’/ < 1e7v*/2 for all y > 1, we have from (3.33) that, on AN B,

27Ty

1 n
Py (ﬁ ;ﬁklz > Sp) = P (N(MOmU(Q)n) > Sp>

— p3<N(0’1) > M)
Oon
_ 2

< eXp(_lM)-

2
2 Opn

Note that o3, < (1+§)(a? 4+ b2) = % on Bs. Therefore, on AN Bs,

1+ p,

p3<%§w>sp> < e (= gy (o hon))

Review (3.32). We then have

P<T anlz > 5, \/— anlS > 8p>

1+ pn
< E[P3<\/—Z77k12 >sp> ]ACUBC] +EeXp< T -(sp—ﬂon)2>
14 p,
< P(A)+ P(BY) + Bexp (= S50 (s~ pion)?)

1 “n L+ pn
< 0<E)+e C5+Eexp(— 1+5 (MOn—Sp)>.

By Lemma 3.9, choosing § > 0 small enough, we know the last expectation is identical
to o %) The desired conclusion follows from the assumption logp = o(n'/?). |

3.4 A proposition on the largest entry of a sample correlation
matrix

Similar to Section 3.3, we now study a statistic M, which is essentially a key quantity
to understand the largest entry of a sample correlation matrix. The main result is
Proposition 3.2, which will be used in the proof of Theorem 2.2.
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Review the notations from (3.8) and (3.9). Throughout this section, we assume
02, = (1—pn)?* +2ppa?. Set

a, = In and b, = (—p); (3.35)
Onl On1
1
e = —pnty(Eh — 1)+ Gk (3.36)

for l<k<m:=n-—1.Set V, =(y1+-+7m)/V/m.

Similar to Lemma 3.9, the following technical result studies the behavior of the
moment generating function of a random variable. It will be used in the proof of
Lemma 3.16.

LEMMA 3.13 Let p, € [0,1) be constants. Suppose p = p, — oo and logp = o(n'/3)
as n — o0o. Let s, be as in (3.10). Then, there exists 6 € (0,1) such that
1-9 1
E{IK;L - exp [— (Vi — SP)Q} } = 0(—) (3.37)

1 —w? p3
as n — 0o, where K| :=={0 <V, < gwnsp} and wy, := / Var(y).

Proof. First, if p, = 0 for some n > 1, then 7, = 0 for all 1 < k < m. Hence V,, =0
and the expectation in (3.37) is zero by the definition of K. So it is enough to prove
the conclusion by assuming p, > 0 for all n > 1. The proof is divided into a few of
steps.

Step 1. Reduction of K], to a smaller set. From the definitions of @), and ¥, in
(3.35), it is easy to check that

(14 p2)a? + 202 = 1. (3.38)
Trivially, we have w2 = $p2a? + b2. Therefore,
1 Cl/2
2 — __In
T 9T
_ 1l oo
22 (1=pu)?+ (2p0) 1:—?
1 1 1
- (- —) <3 3.39
2 ( 1+ 2p, — p? 4 (3:39)

because 1 + 2z — 22 < 2 for all z € [0,1). In particular,

1 1 \? 1 \2_ /19%?
1——n) (1——n) >(—) > 0.8.
1—wg( 5n) = 57n) = \g0

This implies that

E{I(0<Vn < wnsp).exp[_ 11_— (Vs Sp)Q]}
< o[-0 )
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as n — oo if § > 0 is small enough. Therefore, it is enough to prove (3.37) with K],
being replaced by K = {fw,s, <V, < ‘/wnsp}
Step 2. The tail pmbabzlzty of V,,. By the formula w? = 1p2a/? + b/? again,

_1 I\ 2 2 -1
(Cimhy L By
W 2 p2al? 2

and

b2 1 a/2 -1
) = (1 optis) <L
() = (rarigs) <
Recall v, in (3.36). Set v}, = vi/(v/mwy,) for 1 < k < m. The above implies that

Vm -y < = (5k1 + 1) + |G| <&+ &+ 1.

In addition, 7}’s are i.i.d. with mean zero and satisfy Y j., Var(y;) = 1. Also, Eethl <
0o if 0 < t < 14/m. Observe

m ) 1 N
vi= Y B(Pett) < = B[(Eh &+ 1) i)
=1
C

S_

NLD

forall 0 <z < @, where C' = E[(&, + & + 1)3€i(£%1+§%+1)} < 00. By Lemma 3.5,

- x x
PV, > :P( ’>_><2[1—q>—} 3.40
oz =p(3o0k= ) <21 o) (3.40)
provided (w )3 \F —+0and 0 < = %\/m. In particular, by the assumption logp =

<
o(nl/S) and the fact P(N(0,1) > ) < \/21715672/2 for all t > 0 again, we have

PV, >z) <e @/ (3.41)

for all & FWnSp < T < ‘fwnsp

Step 3. The estimate of the expectation from (3.37). Let Ay, By and ay > 0 be

— r—s 2
constants. Assume [Aq, By] C [0, s,|. Notice deze2mon) 2005(8, — T cemo2(@=5)? e
p dr P )
have

v

e—02v=s)®  — gaa(himsp)? | 2042/ (sp — ) - e72@=0)" gy
Aq

0
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for any s, > v > A;. Replacing v with V,,, then multiplying both sides of the above
by I(A; <V, < By), we get

e—2Vn=) (4 <V, < B)

< emoa(imsp)? 2a25p/ e 2@ [(A) <2 <V, < By)dz
0

B
< 67012(141*817)2 + ZOéQSp/ 6*042(9”*511)2[(‘/” > ,SL’) dx.
Ay

ﬁwnsp. By taking expectations on both sides of the above,

Set Ay = wnsp and By = %5

we obtain from (3.41) that

E[e—az(Vn—sp)2I(A1 < Vn < Bl)]

B1
< e—a2(A1=sp)? 4 2a23p/ e’a"’(“’sf’yP(Vn > x)dx
Ay
) B 2
< emo2(ims)” 2a25p/ exp ( — (- 5,)% — —2) dx. (3.42)
Ay an
Now we evaluate the integral. Write
( ) + QS 042512,
—as(x — s, =5 = Qo ) -
2wz [avy + 2w2 2000wy + 1
Now, define y such that
(] 1 QS
==yt ;5T — . (3.43)

It follows that

By ) 2
208 / exp(—ozg(m—s ) ——) dx
p A p 20.)7%

2 B’
1o 2% 2 1
= 20098 ~exp<——p)-/ 67y/2d e
( 2 P) 20{2&)7% +1 , y (20[2 + w%
/o 2 o)
877'062 aQSp . 1 e_y2/2 dy

T (— 2 )
V202 + o5 ' 200w7 + 1/ /27

where A’ and B’ are the corresponding values of y in (3.43) as * = A; and By,
respectively. This combining with (3.42) implies

<

Elem2Ve=s[(A, <V, < By)]

s
< el 4 Jirans? - ex ( - —p),
- 2% P 2w2 + oyt
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where the inequality as(2as + w;?2)"Y? < \/ay/2 is used. Take ay = 11__32. Then
1—0 < < 3 by (3.39). Note
9 1—w2<1+wn 1+ w?

2002 L= 9 <
Wn O Ut TS S5 S 1 47

where w? 1= sup,,5; w2 < }l From (3.39), we know A4; < liosp. This concludes

Bt [ =200 o]}

5)7] +2/Br(log ) - exp (— 2.

14+ w? °p

< exp [—(1—5)(110

The first term on the right hand side is o(p™3) if (1 — (5)( +)? -4 > 3, which is true if
0 < § < Z; the second term is o(p~3) as long as 2 > Which is equivalent to that

55
0<d<1l— 4(1 + w?). The desired conclusion then follows from the fact w? < %. |

Let us continue to use the notations before Lemma 3.13. Set m =n — 1 and
Pn
Thoy = @i — DHEL + ) — )] + a6 + &)
1 m
M= S,
nz] kij
Vin
fork=1,2---,m
The main result of this section is given below.

Proposition 3.2 Set M| = maxi<;<j<, M,... Let p, € (0,1) for each n > 1. Let s,

nij

be as in (3.10). If p — oo and logp = o(n'/?), then

lim P(M, <s,) = e KT

n—o0

for any x € R, whereK*Mﬂ

Proof. The strategy of the proof is similar to that of Proposition 3.1. However, the
technical details are more involved. Let I, s, and B, be as in the proof of Proposition
3.1. For a = (i,j) € I, define X, = MT’W Let P, and FE, stand for the condi-
tional probability and the conditional expectation given {&; 1 < k < m}, respectively.
Again, the key observation is that, given {&; 1 < k < m}, random variable X, is
independent of {Xg; 6 ¢ B,}. Since {X,,« € I} are identically distributed under P,

by Lemma 3.3, we have

Py(max X, < s,) — e 2
acl

< w + wh, (3.44)

where

p(p—1) ( 1 «— )
P.
5 \ 7= 1;:1 Mk12 = Sp

)\pg -
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and
wy = Y Po(Xe > 5)Pa(Xs > 5,)
a€l BEB,
p(p - 1) 1 — ’ 2
< = (2p)- P2(_an12 > Sp)
2 vm p
and
wy = Z Z Py(Xy > sp, X > s,)
o€l BEB,
p(p _ 1) 1 — / 1 — ’
< = (2p)- P2(_Z77k12 > Sp, —Zﬁkw > Sp)‘
2 \/ﬁ k=1 \/m k=1
Note that P(max,er Xo < 5,) = EPy(maxaer Xo < sp). From (3.44),
‘P(maIxXa <sp) — Ee_’\ﬂ‘ < E|P2(maIXXa <sp,) — e‘AP2|
ac ac
< Euw) + Ews,.

Obviously,

_ pp=1) (1
Ee APQZEQXP[— Pz( 277212>5p)]5
2 \/mkzl
R
1 = k12 p )
Vi =

SRR S
Ew§§p3-P<—Zn,;12>sp, —2772;13>3p>'
vim i Vi

The following three lemmas say that Ee 2 — exp( — ﬁe*xﬂ), Ew{ — 0 and
Ew) — 0. The proof is then completed. [ |

LEMMA 3.14 Let the assumptions in Proposition 3.2 hold. Review m =n — 1 and P
stands for the conditional probability given {&; 1 < k < m}. Then

Eexp [_ p(P2— 1)p2<\/1ﬁ én}m > spﬂ

— exp ( — 4\/1%6’”/2) (3.45)

asn — oo for all x € R.

LEMMA 3.15 Let the assumptions in Proposition 3.2 hold. Review m =n — 1 and Ps
stands for the conditional probability given {&; 1 < k < m}. Then

1 — 2 1
BP(=3 k> ) | =o(5)
2 \/ﬁ; k12 P pg
as n — 0o.
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LEMMA 3.16 Let the assumptions in Proposition 3.2 hold. Review m =n — 1. Then

1 & 1 & 1
P(_ / > " m / > ) - <_>
Jm E Mk12 = Sp Jm 1;:1 Mk13 = Sp 0 'S

k=1

as n — Q.

Now we start to prove the three results one by one.

Proof of Lemma 3.14. We will get a sharp estimate on Pg(\/% > o Mo > Sp) first
by using Lemma 3.5. To carry on this, we have to check the required conditions.

Step 1: the behaviors of 1,5 Write

Z Mhio = Z {a; [fklgkﬂ - %(5131 + & — 2)] + b, (&1 + fk2)}-

k=1

Given {&; 1 < k < m}, it is the sum of independent random variables. It is easy to

check that
Eyfa = 0, Var2(77;m'j> = af(l + Pi) + 2bf§,§.

So the conditional variance

Var,( Z Maz) = m(1+ pp)ay; + 207 Z i

k=1

Set

Recall the notation 7 = F(|;]?) 4+ 1 defined earlier. For v > 0, define
1 m
G, — { 1 v&2 (log p)/m <2 }
= {5 2+l .

The parameter v will be chosen later. The inequality (3.21) says that

1
P((F, 1 Ga(0))) < 3exp (= 50!/ (logn) 2)
as n > n,, where n, > 1 is a constant depending on v only. Define
1 m
2 2\ 12 2L 2
On2 = (1 + pn)an + 2bn m ng
k=1
Note (3.38). Then, on F,,
15

1
— 1 2 12 2bl2 < 2 < 1 2 12 2b/2 e < _
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Next we will use Lemma 3.5 to get a precise estimate on PQ(\/LR > o M2 > Sp)-
To do so, set

/ /
a = = — appPn b — an .
- - ) - )
2/ m oy L XIY
/ /
d =¢ = bngk‘ . r _ ApPn

Jmom' T Jmom

and 0, = '8 + V& + &y + d'&q + €&pa + f'. Then, it follows from (3.46) that

Eomj, = 0 for each 1 < k < n and ZVarQ(n;) =1 (3.51)
k=1

Furthermore, from (3.49), 0,2 > max{a/, b} on F,. Then

1
max{|a'|, [b'], '], ||} < 7 |d] = le| <

on F,,. Hence, on F,,, |n;| < —= (§k1 + &%) + &1 + Eral + - By the fact & + & ~
V2N (0,1) and 1ndependence,

5% <1 (3.52)

Bl < MV LB exp (ﬂ

\/ﬁ
SeW{MmG%@ﬁ%mmwmmm%MMﬂ

(61 + €) + hlén + )

1/2

4

= 2. Fexp <\/—}LN(O, 1)2> e < o0
m

(3.53)

for all h, k,n satisfying 0 < h < h,, := 1z¢/m and 1 < k < m. Now, on F,, by Lemma
3.6, (3.50) and (3.52) we have

x|n’ C 2262 /m z//m
By(Jni'eM) < 5 (Lt )t et/ - sV

C

w22m
(L et (3.54)

<

ifo<z< m A v/m, where C' here and later in the proof is a constant not

depending on &;’s and may be different from line to line. Observe that (0, ‘é?) C
(0, m) on F by (3.52). Thus, (3.54) particularly holds for all = € (0, *é;)
Now we take z;y = =%. Then, by (3.50),

vm (3.55)

r1 < 28, < 36
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on F, by the assumption log p = o(n'/?). We then have

vio= > Ba(|nfen)
k=1

IN

C m
3 Z(l + |& ?)eteisim
=1

k=

on F,, as n is sufficiently large. Thus, v < % on F,, NG,(64) := H, by (3.47). The

<

inequality in (3.48) implies
P(HE) = 0(—3) (3.56)
p
as n is sufficiently large since logp = o(n'/3) by assumption.
Step 2: a sharp estimate on ]32(\/—1771 Y ore i Merz > Sp) by Lemma 3.5. By (3.55), we

see that ¥ < 454/m < 15v/m = h,,. From (3.51), (3.53) and Lemma 3.5, we conclude
1 m
P2(ﬁ ;77212 > 5p>
- s
- (S 2)

= [1—®(21)] - [1+O(1)(1+ 23)ye™ D]
on H,. Just notice |O(1)] is bounded by an absolute constant. Finally, by (3.55),
3y = O(sim’lm) — 0 on H,. Reviewing (3.50), we have s,/2 < x; < 2s, on H,.

Hence, from the formula P(N(0,1) > z) = ﬁe’xzm(l +0(1)) as  — oo we obtain
that, on H,,,

On2

. On2 752/(202 )
_ ce 5/ 2%2) L (1 4+ o(1 3.57
/_27_‘_ Sp ( ( )) ( )

as n — oo, where o(1) does not depend on &;’s.
Step 3: proof of (3.45) by (3.57). By the bounded convergence theorem, to prove
the lemma, it is enough to show that

2 m
b 1 / 1 —x/2
—~P<— >5>—>—ex/
5 12 Jm ;771@12 P NG
in probability as n — oo. Since P(H,) — 1, to complete the proof, it is enough to

prove

2 m
p 1 / 1
—-P(—E: >s>-[ N
5 2\ 7 £ Mre12 P Hy N

e—x/Z
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in probability as n — oco. Recalling (3.38) and (3.49), it is trivial to see 0,2 — 1 in
probability as n — co. Also, s, ~ 2v/log p, comparing this with (3.57), it is enough to
prove

2
P Co—52/(20%,)

1
—_— Iy, —
4+/2m log p fin 44/ 21
in probability By the central limit theorem for iid random variables, we know
=140 ( -) from (3.38) and (3.49). Hence 0,5 =140 ( —). This leads to that

e~/ (3.58)

2

S 1 1 1
P~ (2logp — = logl S0)- (14 0,(—=)]
207, (2logp 5 108 ogp—l—Qa:) + p(\/ﬁ)
1 1
= 210gp—§1oglogp—|—§x—|—op(1)
by the condition (logp)/n'/? — 0. We then get (3.58). |

Proof of Lemma 3.15. Review the proof of Lemma 3.14. Let H,, be defined as above
(3.56). By (3.57), there exists a constant n; > 1 not depending on &’s such that

1 & n
P2<_ D T > 5p> Ay, < o T

2T s),

as n > ny. Then

1 o 2 0721 2
|:P2< Zn;{:12>8p>] "[Hn S 08_226 p/ n2.]Hn
k=1 P
< ¢ .6—75127/8
log p

on H, as n > ny by (3.50), where ny is a constant not depending on &;’s. Therefore,
combining this with (3.56), we see

T
< E[PQ(\}MZ%U > Sp)2']Hn} + P(H,,)

k=1
_ 1
< o)
as n is sufficiently large. This proves the lemma. [

Proof of Lemma 3.16. Let P; and E3 stand for the conditional probability and the
conditional expectation given {&x,&x1; 1 < k < n}, respectively. By independence,

1 & 1 &
P(ﬁ Zﬁfm > Sp; Jm 2177213 > 3p>

Ble(

M1z > 5p> } (3.59)

|MS
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Write

Mtz = an(U,f = 1)+ BUs +
where Uk = fkg,

1 /
n— 5 TLan7
2P

a
B = (an&i1 + b,6k),
and 7y, is defined in (3.36). Now,

1 m
PS(_ Zn;m > 5p>
Vi

— Pg(%;[anwﬁ— + BeUk] > sp — Z’yk) (3.60)

We will finish the proof with a couple of steps.

Step 1: the size of \/Lm > pei V- Unconditionally, {vx; 1 < k < m} are i.i.d. with

mean zero and variance w? = 1p2a/? + b/? mentioned below (3.38). By (3.39), w? < 1.

From (3.40) and the fact P(N(0,1) > ¢) < ﬁe‘tzp for all t > 0,

(\/—_Z 29wn3p> < 9e~(050)?/2
k=1
< p * (logp)”

as n is sufficiently large for all # > 0. Review the short argument as in getting (3.40),
the above inequality also holds if “v;” is replaced by “—~.”. It follows that

1 | ) 2
P(—‘ 'm‘ > Owy,s ) < 2p~*"(logp)’
Vit 2 p

as n is sufficiently large for all 6 > 0. Set

b= (o] ] < Y.

Then
~ 1
P(K®) = 0(—3> (3.61)
p
as n — 0o. Let
b
p P
ma



Set Wi = (U2 — 1) + ByUy, for 1 < k < m. Now we consider

P 2o [onU2 =1+ 0] > ) = o 3> )

Step 2: the behaviors of Wy’s on typical sets. Observe
Es(Wy) =0; (3.62)
1
Vary(Wi) = 203 + 5 = 3 (pat)? + (ar + B, )"

It follows that
o2y = Varg(—= > W,
3 3 ( Jm kz:: )

1 1 &
= §(Pn%)2 +— Z(%&ﬂ +b,6)?

Il
—
S
3
~—
_|_
—~
S
N
_|_
=
SR
~—
AN
Nl )

(3.63)

Set

Fn(é):{ max & <+vnand 1 -3 < — Z§£§1+5}
k=1

1<k<n

for n > 1 and 0 € (0,1). By the fact P(N(0,1) > ¢) < ﬁe‘tgm for all ¢ > 0 again
and (3.34), for any 6 > 0, there is a constant C > 0 such that

P(F,(6)) < e™"Cs (3.64)

as n is sufficiently large. Review m = n —1. Under F,,(0), it is easy to see from (3.38)
that

Oy — 03| <0 (3.65)

where 083 := (302 + 1)a? + b2. Evidently,

<05 <1 (3.66)

N —

by (3.38). Now, review the notation 7 = F(|¢;]?) + 1 defined earlier. For v > 0, define

m

G (v) = {% SO(1+ [Beferitesnin < o

k=1
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The parameter v will be chosen later. Now (51, , m) - VaZ + 02 (&, Em).
From (3.38) we know a? + 0> < 1. Then, by Lemma 3.7, for all v > 0, there exists

n, > 0 such that

m

PGu)) < P(- (1 +[&f)edosn/m > or)

k=1

1
< exp ( - Zml/Q(log m)_Q)

for all n > n,,. Define H,(6,v) := F,,(6) NG, (v) N K,,. Join the above with (3.61) and
(3.64) to see

P(H, (5, 0)°) = o(i) (3.67)

p3

as n — oo for all 6 € (0,1) and v > 0. By Holder’s inequality,

Byl Wel/vm
< Ml Byexp (hm 2 U + hin 2|y U
lon |h —1/2 2\11/2 —1/2 1/2
< e - [Esexp (2hm ™%, |UT)] " - [Es exp (2hm™"?| 8| |UL]) ]
< x (3.68)

as long as 0 < h < £| From (3.38) we see |a,,| < 1. Therefore, (3.68) holds for

all 0 < h < h,, := %y/m. Furthermore, by taking a = =&, d= ﬁk ,f = —J& and

— 8 vm
b=c=e =0, we have from Lemma 3.6 that

|W/€|3 xT m O 252 Qn |T
E3<ﬁe IWkI/W> < m3/2(|04n|3+|5k| ). eXp< - > planlz/vm

< O a e (2) (3.69)

for all 0 < z < &+/m since m\/ﬁ > &=/m. Now take z3 = ;—i The assertions
(3.65) and (3.66) imply that ; < 023 < 2 on F,(9) for all § € (0, ;]. Then x5 < 25/, on
H,(6,v) for all § € (0, 1] and all v > 0. Moreover, due to the fact 0 < w, < 3 we see
that

1 m
0<S; < Sp—i-ﬁ‘Z’yd
k=1

IA

Sp + 7@%3,,

< 2s, (3.70)

on K,,. This says that 0 < z3 < 2s;, < ds, < i\/ﬁ as m > n,s > n, for all § € (0, %]
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and all v > 0, where n, s > 0 is a constant depending on § and v. This and (3.69) yield

S E (|Wk 2z3|wk|/ﬁ)
k=1 Vm?

C - B2
= m3/2 Z (14 1B%]?) - exp (1288 k)
k=1
21C
< — 71
NG (3.71)
on H,(0,128) as n > ns > nysss for all 6 € (0, 1], where ns depends on §. The last

step follows from the definition of G,,(v) and the fact 812, < 4logp as n is sufficiently
large.

Step 3: a bound on P;;,(\%m > e s > Sp). Review (3.60) and the definition of
Wi, we see

&(\% in;n > sp> - g(\% 3 We :cg) (3.72)

=1 k=1

since 3 = —=. Set W} = \/ggng for 1 <k <m. Then, (3.62) and (3.63) imply

m

EW; =0 and Vars(Y W/)=1
k=1

for each 1 < k < m. Since < ¢2; < 2 on F,(8) for all § € (0, 1], we see from (3.68)
that EseWil < E3e?IWel/Vim < o0 for all 0 < h < hy, = \F Moreover, by (3.71),

v = Y B(wipe)
- ZE["r P (o e )

. (Wil® ougiwil/vim
< sy m(gEe)

<

on H,(6,128) for all n > ns and § € (0,]. Trivially, 0 < 23 < 5v/m < hy,. The
inequality from (3.70) says that z3y = O(s3/y/m) — 0 on H,(d,128) by the condition
log p = o(n'/?). After verifying all conditions required in Lemma 3.5, we conclude

PSS > ) <201 - B(ay)
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on H,(6,128) for all n > ns and § € (0, 5]. The definition of s, and (3.72) yield that

P Do > w) <21 0(22 - >

on H,(5,128) for all n > n; and 6 € (0, 1]. On K,,

1 i ‘ VTw, \/7 Sy
man3 k=1 Tk 20n3 4 On3

since 0 < w, < & by (3.39). By the fact 3 < ¢2; < 2 on H,(4,128) with 6 € (0

1
) Z]
Therefore, 2 — ﬁg;ﬂzl Ye — 00 on H (6,128) as n — oo. Since P(N(0,1) >

z) < e /2 for > 1, we obtain that, given § € (0, ik

P3<\/—Z77k12>5p> <4 exp[ <Sp i/ﬁg%)?

On3 On3

on H,(6,128) as n is sufficiently large. By (3.65) and (3.67), given ¢ € (0, 1],
1« ?
E[P?)(ﬁ;%lz > SP) ]
1 2
< 4'E{IHn(6,128) exp [_ 3 (SP - ) ]} ( )
On3

< 4'E{I]~(n~exp[ (0031+5 ” <]%)

as n is sufficiently large, where V,, = \/_m > e k- Now

Then, for given 4 € (0, £],
1 « 2
E[Pg(ﬁ ;77;12 > Sp) ]
1 2 1
< 4'E{]K4L - exp [— = (5p = Vi) }}4'0(_3)

(03 +9) p
as n is sufficiently large. By (3.38) and (3.39), 023 + w? = 1. The desired conclusion
then follows from Lemma 3.13 and (3.59). [
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3.5 Proofs of Theorems 2.1 and 2.2

Review the notations (3.8)-(3.11). Let J,, and L,, be as in (2.1). Define W,, = n.J, for
all n > 2. To make a summary, we have

W, = max Trixy; and L, = max p;;. (3.73)

1<i<j<p P 1<i<j<p

The statistics W,, and L,, will be reduced to a sum of two random variables, each of
which has a limiting distribution. The lemma below, which is a coupling result, enables
us to prove that the two random variables are actually asymptotically independent.

LEMMA 3.17 Assumep = p, — o0 asn — oo. Set Ciy =n Y230 (& +Exj) for
all 1 <i < j <p. For any real numbers {\,; n > 1} and any set of random variables
{Hj; 1 <i<j <p}, we have
vn Anv/10g p
Hij+ An - YiCus | + Op (221 )
{ ’ [13] I Novn

as n — oo. The above also holds if “Cy;;” is replaced by “Ch,i; 7 with m =n — 1.

Proof. Recall [|€]| = (€2 + --- 4 €2)'/2. Then,

Vi) a1
€]

max {H” + A\, C’m]} = max
1<i<j<p 1<i<j<p

€l + v/l
< Sl RREl-oe e

as n — oo since H\/Tﬁ — 1 in probability and \/%2211(5;3 — 1) converges to N(0,2)
weakly. For any real numbers {\,; n > 1} and any set of random variables {H;;; 1 <

i < j < p}, by a triangle inequality,

max {H”—l—)\ C'm]} max {Hi7j+)\n~@0 H

1, 1<i<j<p Eq
er =1z,

Note that

max |Ch;j| < 2- max —‘ kazém

1<i<j<p 1<’L<p

Observe FE(&1&11) = 0, Var(§&1) = 1 and Eexp(§|§1§11|) < oco. By Lemma 3.4 and
assumption log p = o(n'/?) we have

( max  |Chj] >2A\/@>

1<i<j<p
p~P(ﬁ\;@§k1 > Ay/logp)

< peeAloen)/s (3.76)

IA
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as long as A > /3. So max;<i<j<p|Cnijl = O,(v/Iogp). This joining with (3.74) and
(3.75) implies the desired result. Reviewing the arguments above, we see the assertion
is still true if “n” is replaced by “m”. |

Proof of Theorem 2.1. By assumption, u = 0. Let {&, &y ki = 1,2, }, ol [[€]]
be as in (3.8)-(3.11). Write

Thi = /Pl + Pk, 1<k <n, 1<i<p. (3.77)

It is easy to check the n rows of the matrix (x;;)nx, are i.i.d. random vectors, xy; ~
N(0,1) for each 1 < i < p and Cov(zy;,21;) = pn for 1 < i < j < p. That is, each
row follows N,(0,R). As a result, X and (x;;)nx, have the same distribution. So we
assume X = (;j)nxp in the next. Denote

R 1 <« 1 «
\/ﬁ ; k J \/ﬁ kz:; J J \/ﬁ ; J
for all 1 < i < j <p. Then it follows from the expression (3.77) that
1 n
k=1

First, by the central limit theorem, we are able to write
An = v+ V22U,

where U, := \/LT” S (& —1) 4 N(0,1). Define

0 Brij + v/ PrplyCrij 1 <
M,y = = —= [an&m‘fk;’ + 0n & (i + §kj)],
V1= v ;
where a, = ,/% and b, = %' Denote M,, = maxj<i<j<p M,;;. From these
notations we have
1 n
- Z Tpilkj = Pn\/E + \/iannl +v1- P% Mnija (3~79)
Vi
and hence
1 n
il e — — 2
lgr?gpép NG ;xkzx;ﬁ Vpn + V20uUni + /1 p2 M, (3.80)

Review the notation £ = (&, -+ ,&,)". Define

- 1 <
M, = max —— [an i&ri + by,
15i<5%p \/n Skib €]

= max {Hz’,j -+ bn . @an}

15 €T
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where H; ; = n Y23 a,6ri€y;. By Lemma 3.17 and the fact 0 < b, <1,

@)
7 )

M, = M, + Op< (3.81)

This and (3.80) imply that

n

1
max ——= T i L5

1<i<j<p \/ﬁ —

. VIogp
Vo + V20U + /T = 020, + O, \;)T_glp ). (3.82)

are independent [see the discussion above (3.13)], U,,; = \/szn(HfHZ—n)

Since ||£|| and ng

and M,,, which is a function of |I£H and &;’s, are also independent. This is a crucial
observation in the following argument.
Now, it follows from Lemma 3.8 and Proposition 3.1 that

log log p 1

Una,
4/logp  4+/logp ?

M, = 2+/logp —

where Upy % 5 with distribution function F,(z) = e &= " for all z € R. From
(3.81),

:

_2\/— loglogp 1 Un2+0p( log )

4+/log p 4\/logp

B

Then

- ~ log lo
Oy = 41/Tog p - (Mn —9\/logp + 4%) L (3.83)

Since U,; and Mn are independent7~ U,1 and (~Jn2 are independent. Reviewing the
definition of W, as in (3.73). Solve M, from the first identity in (3.83) and then plug
it into (3.82) to see

1 1—p? - V1
_Wn —H1 = \/_pn nl + an 2 + Op( ng)
\/ﬁ

by the assumption logp = o(n'/?), where

log log p
= np, + (24/logp — ) 1— 2.
1 = \/np +( 8P I Toep I

We now derive the three conclusions by the above relation.
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Case (i): pny/logp — 0. For this case, by the Slutsky lemma,

where ¢ is the extreme-value distribution F(z) = e=¥ % with K = I W The conclu-
sion then follows by the assumption p, — 0 and the Slutsky lemma again.

Case (ii): ppy/logp — XA € (0,400). By using the independence between U,; and
U,» and the Slutsky lemma again, we have

n_l/QWn — M1 d
—=—— = §{+ Moo,
V2p,

where £ ~ N(0,1), Ay = ﬁ and ¢ is as in case (i) and ¢ is independent of &.
Case (ii1): pn\/logp — oo. In this situation, by the Slutsky lemma,

n—l/QW — d

V2py,

The proof is completed by using (3.73). [ |

4 N0, 1).

The major contribution of L, in Theorem 2.2 comes from (3.84) next, which will
be represented as a sum of two random variables well understood from earlier sections.

LEMMA 3.18 Let p, € [0,1) for alln > 1. Review the notations in (3.8)-(3.9). Define
Thi = /Pnék + V1 — pn&ri for 1 <k <m and 1 <i < p, where m =n — 1. Assume
logp = o(n3) as n — oo. Then

= _pn\/_+ \/— ( ;On ml + \/ 1 - pn \/— Zwlﬂj + Am]

(3.84)
where Uny = 2= Y7, (6 ~ 1),
VYrij = an |Ekikj — %(&%x + 5133 - 2)} + (1 = pn)0n&r(Epi + &ij)
and
log p
s (Bl = 0,(25) (3:85)
as n — 00.
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Proof. Define

1 . .
Mmij:ﬁ;nki]’a 1<:<j<p,

where 1i; = an&rilkj + 0k (Eri + &kj)s an = y/ 1+,0 15py and by =

have

- From (3.79) we

1 m
NG > wpir; = pavm + V20uUn1 + /1 = p2 My (3.86)
k=1

1 m
k=1

where Uy,; = \/%Tn S (€2 —1). In particular,

1 m
mu = m kz_; anélgz‘ + anfkgkz)

We can write

(xiz + ng)

B
Il
—

W~
~ 5=
NE

= (Qpn\/_ +2v2p,U, ml) 4\/— V1= pp(Mpii + M)

4
_ %pn—F%a 1—pn+\/pn—Uml+4\/— — P Tonij
= %-1— \/pn—Uml + — 4\/— p?szij
where
Tnij = % g [Gn(fii + fij —2) + 26,85 (Eri + fk])} (3.87)

So the product in (3.84) is equal to

1 p 1
—— U — ——/1 — 2Tm2“>
(2 v 2m ! 4/m Pr J
1 Pn
= an m—+ —= \/— ( pn)Uml + 2 1- :0121 My — 1 I Pn Tnij
+ Anij

where

2 /1 _ 2
Am'j = _%Ugﬂ - pnT\/—pn(Umleij)
m

1
/1= 2 T0i; (V290 Un, 1— p2 M)
4@ Pn J(\/_p 1+ Pn J)
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Observe that

1 n
SV = PMmij —

where

Yij = an [fkifkj — %(fiz + 6@ -

2)}

Use the trivial bound 1 — pi <1 to see

P
1 1= 3 Tinij

1 - 1
5\/1—;)”-%;%@,

max  |A,;]
1<i<j<p
< Pig P (0 T U]+ —— (M) (3.88)
vt N
where
M,, = max |M,,;| and T, max [T
1<i<j<p 1<Z<]<
From Proposition 3.1, we know
M,
T 52 (3.89)
Viogp
in probability. Now, from (3.87) we have
Tn < 1%5133?;[) ‘ ; Gt & —2)|+ 1513}}219 ’ Z Er(Epi + &ij)
< 9 ‘ - ‘ +2 —( Z-
S o oo Z & 1 Tm gfkfk
= 2I,+2I. (3.90)

Let Clc =
By Lemma 3.4, from assumption

o

logp =

(€3, —1)/v/2 for 1 <k <m. Then E¢, =0, Var((;) = 1 and Fel/? < cc.
n'/3) we see that

P(In > 2@@)
< p-P(V%\ijck\ > Az/log)
k=1

< —A3(logp)/3 _y

pb-c

as long as Ay > /3. So I, = O,(y/Iogp).

0 (3.91)

Furthermore, notice E(£&1) = 0,

Var(§,&11) = 1 and Eexp(3]&&1|) < oo. By the same argument as obtaining (3.91),
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we have I/, = Oy(v/logp). In summary, T,, = O,(v/logp). This together with (3.89)
and the fact U,,; — N(0, 1) implies that

log p
e 1Al = 0p(“20)

by using (3.88). We then get (3.85). |

Now we prove the last result in this paper.
Proof of Theorem 2.2. As explained at the beginning of the proof of Lemma 3.2,
without loss of generality, we assume p = 0.

Let {&k, &ris ki =1,2,---} and p/, = 1 — p, be as in (3.8)-(3.9). As before, p = p,,.
Define

Thi = /Pl + Pk, 1<k<n-—11<i<p.

Review the beginning of the proof of Theorem 2.1, we know the n — 1 rows of the
matrix () m-1)xp are i.i.d. random vectors, each of which follows N,(0,R). Write
(%ij)(n—1)xp = (V1,---,V,) such that V; = (2y;,--+ ,2,_1;) for each 1 < j < p. By
Lemma 3.2, we have

—— i
. d 1 2uk=1 TkiTlkj
vn—1 max p;; = max . (3.92)
1<i<y<p 1<i<y<p 1 anl 2 1 anl 2
=1 2sk=1 Tki\| n-1 2uk=1 Lkj

Denote m =n — 1, h; = 4/ # > her Ty and

1 m
A T 2kt Thikj
nij hzh]

(3.93)

So it suffices to prove the statements (i), (ii) and (iii) with “y/n — 1L,” replaced
by “maxi<;<;j<p Ani;” in the following. The arguments are divided into a few of steps.
Step 1: Reduction of L, to a simple form. Write h% = (1+ \/L,—,LC}“')*I/2 where
Cni = \/Lm S (23, — 1). By the Taylor expansion, there exists 6 € (0,1) such that

(14+z)2=1- 2 + ¢(z) where |p(z)| < 2* for all x € [—4,4]. It follows that

= Loam o)) -2k + ()

=1

where

+(1-308) o(G5) +o(()o ()
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Obviously, if | ‘| < § and |<"] | < 0, then maxj_;; |1 — 52k L[ < 2 because 6 € (0,1),
and hence

Guil “[Cusl 2G5 260 G G

leij] < i
m m m m
- m
This gives that
8 2
max |e;| < — - max ( (3.95)
1<i<<p m 1<i<m

provided max<;<, |f/%| < 6. Let ¢ = (€2, —1)/v2 for 1 <k < m. Then E¢, = 0,

Var(¢) = 1 and Eel91/2 < o0, By assumption, (T1i, Ty 5 Tini) 4 (&1,&, -+, &) for
each 1 <i < p. Set

Q= { max |Gul < 3v/logp}.
Then it follows by (3.91) that

lim P(Q,) = 1. (3.96)

n—o0

Now we see from (3.93) and (3.94) that

k=1
_ (2 . b 2 2 } /
— ( B ; xkzxk]> [1 yo. ( ; Ty + ; xkj) + € (3.97)

where

Now we estimate the size of maxj<;<j<, \/Lﬁ\ Y e Trixk;|. In fact, (3.86) implies that

max —— E Li Lo q
1<z<]<p ‘ e

< \/_—|— |Um1| + max _‘ Z anészlﬂ] + bn&k(sz + &W)] ’

1<Z<]<p

< Vm A [Upa| + max —‘Zﬁkz&q

1<z<]<p

+2 max —‘ ngg,m

<<p
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where Uy,,; = \/%—m S (&8 — 1). Observe that the last two maxima above have the

same distribution. By the estimate of I}, from (3.90), each of them has size O,(y/logp).
Using the assumption log p = o(n'/?), we see

as n — 0o. Therefore, by (3.95),

max |e;| < T, - max |e;]
1<i<j<p 1<i<j<p
8
< — 7T, max (3
m 1<i<m

provided maxi<j<j<p |\C/—”mi| < 9. By assumption, 3—:1}51” — 0. This enables us to see

P 8 2 log p
o, - max [¢;] = - 0,(vn) - (3v/10g ) _o(\/ﬁ). (3.98)

By Lemma 3.18 and (3.97),

1 n
Avij = paV'm+ V2, (1 = pp)Upit + /1= p2 - T Z%ij + 205 + €
k=1
1 n
P10+ V2P0 (1 = pp)Upit + 0m1y/1 = p2 Unlm;%ﬁ%
(3.99)
where 1y;; and A,;; are defined as in the lemma, e;’J = 2A,;; + e;j and 0%, = (1 —

pn)? + 2ppa’. Easily

Ig, -

n

)

n

by (3.85) and (3.98). Let f(i,7) and g(i,j) be real functions defined on {(7,7); 1 <i <
Jj < m}. It is easy to see that

"< 9. y ) . (
B ool 20,08 Bnal o, g, leul = O

max f(i,7) — max ¢(i,j)| < max |f(4,5) — g(i,7)].

1<i<j<p 1<i<j<p T 1<i<g<p
Therefore, from (3.99) we have

IQn - Imax Am’j
1<i<j<p
= I, - [Pn\/m + \/épn(l - pn)Uml]

+ou1y/1— p2 - max { 1\/ﬁ : iwmj} Mg, + Op<logp>.
k=1

1<i<j<p Lo, vn
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Observe that the last maximum is exactly M/ appeared in Proposition 3.2. Writing
Io, = 1 — Iq:, we eventually get

max  Ay;j
1<i<j<p

I
= ppv/m + \/§pn(1 — ) U1 + 0/ 1 — p2 M), + Op< \O/gﬁp) + Ige -V,
(3.100)

for some random variable W,,.
Step 2: Asymptotic independence between U,,; and M) . Review the definition of
Yri; in Lemma 3.18. Set

7
ok k)

- Pn

Ty = an[Suhs — BHE+E —2)] + (L= pulb
.

R e

By (3.38), (14 p2)a? + 2b/* = 1. Since V], = % we get |1p—”b"\ < 1. By Lemma
3.17,

(3.101)

ol ) < 0,(VEL),

By Lemma 3.8 and Proposition 3.2,

it - a1, = 0, !

log log p 1

Vi,
4+/log p * 4+/log p

where V,, % ¢ with distribution function F (x) = e K forall 2 € R, where K =
ﬁﬂ. The above two assertions tell us that

loglogp 1 1
= 2,/log Vot op( = ).
4+/log p 4\/1ogp o Vlogp

M =2+/logp —

Then

. - loglog p\ 4
Uy = 41/1 -(M’—Z ] >—> . 3.102

Since Uy, = \/%Tn S (& —1) and M, are independent by the same argument as that
after (3.82), Uy and U, are independent. Evidently,

1— p,\1/2
Unl\/l_p% = ((1_pn)2+2pn' p) ) 1_pgz

1+ pn
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In particular, 0,11/1 — p2 < 2. Combining (3.100), (3.101) and (3.102), we obtain

max Am] pn\/% - \/épn<1 - pn)Uml

1<i<j<p
= ou\/1— M. + 0, (‘35?) +Ige - 0,

log log p 1 - log p
— o, 1—2(21 - Un> O( ) I -0,
VLA VIR = e T o) T O ) e

Set
log log p
— puv/m+ (1= pn) - /T + 2p — §~<2 logp — )
p2 = ppv/m + (1 — pn) Pn = P 8P I oss

Then,

max A 9
1<i<j<p nij —

Uy 1
20n(1 = po) Uit + (1= pn) - /T + 290 — p2.- (=
V2pu(1 = pu)Unna + (1 = pa) on =t o T\ ey

)+ Iog - W,

where the equality O ( L) = op(— ) holds due to the assumption logp = o(n'/?).
Notice that P(|Iqe - \ Viogp > P(Q¢) — 0 for any € > 0 by (3.96), hence
Iae - Wy, = 0,( \/7) It follows that
(nax Ay = piz
V20 (1 = p) Ui + (1 = pp) - /1 + 2pn — p2 - Unz + o0 <;>
! T 4ylogp "\ Vlogp

Step 3: Derivation of conclusions (i), (ii) and (iii). Recall the assumption that
pn = 0 for each n > 1 and sup,,>; pp, < 1.
Case (i): pp/logp — 0. For this case, by the Slutsky lemma,

4

d
(1—pn) - /I+ 20— p2 logp'(lgnf}ipA”” ) = 6

where ¢ has distribution function F'(z) = e et with K = I W The conclusion
follows by the assumption p, — 0 and the Slutsky lemma again.
Case (ii): pnv/logp — A € (0,00). By the Slutsky lemma and independence,

maXj<i<j<p Am‘j -
\/§pn(1 - pn)

where £ ~ N(0,1), Ao = ﬁ and ¢ is the same as in case (i) and ¢ is independent of
€. The conclusion is yielded by the assumption p, — 0 and the Slutsky lemma again.
Case (iit): pny/logp — oco. In this situation, by the Slutsky lemma,

2 4y ¢4 Mo,

maXj<i<j<p Anij — M2
ﬁpn(l - pn)

The proof is completed. n

= Upi1 + 0,(1) % N(0,1).
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