


tection (LIFD) Module to detect the line failures and recover
the phase angles inside the detected attacked area. The LIFD
Module builds upon the methods first introduced in [3], to
detect line failures using Linear Programming (LP) in more
general cases. In particular, we prove that in some cases
that the methods in [3] fail to detect line failures, the LIFD
Module can successfully detect line failures in expected
polynomial running time.

Finally, the REACT Algorithm combines the ATAC and
LIFD Modules to provide a comprehensive algorithm for
attacked area detection and information recovery following
a cyber-physical attack. We evaluate the performance of the
REACT Algorithm by considering two attacked areas, one
with 15 nodes and the other one with 31 nodes within the
IEEE 300-bus system [4]. We show that when the attacked
area is small, the REACT Algorithm performs equally well
after the data distortion and the data replay attacks. In
particular, it can exactly detect the attacked area in all the
cases, and accurately detect single, double, and triple line
failures within the attacked area in more than 80% of the
cases.

When the attacked area is large, however, the REACT
Algorithm’s performance is different after the data distor-
tion and the data replay attacks. It still performs very well
in detecting the attacked area after a data distortion attack
and accurately detects line failures after single, double, and
triple line failures in more than 60% of the cases. However,
it may face difficulties providing an accurate approximation
of the attacked area after a replay attack. Despite these
difficulties in approximating the attacked area, it accurately
detects single and double line failures in around 98% and
60% of the cases, respectively.

The main contributions of this paper are: (i) analyzing
the computational complexity of the attacked area detection
and information recovery problem after a cyber-physical
attack on the grid, (ii) introducing a module to detect the
attacked area after such an attack, and (iii) introducing a ran-
domized weight linear program for detecting line failures in
the large attacked areas in expected polynomial time.

2 RELATED WORK

Attacks on general networks was thoroughly studied in
the past (e.g., [5]–[9] and references therein). In particular,
[10], [11] studied a problem similar to the one studied
in this paper (failure detection from partial observations)
in the context of communication networks. However, due
to fundamental differences between power flows and data
flows, these works are not extendable to power systems.

Power systems’ vulnerability to failures and uncertain-
ties was also widely studied in the past few years [12]–[20].
In particular false data injection attacks on power grids and
anomaly detection were studied using the DC power flows
in [21]–[27]. These studies focused on the observability of
the failures and attacks in the grid. In the related problem
of Bad Data Detection (BDD) in the SCADA system [28], the
objective is to detect the bad data injected by the attacker
when the attack has no physical components. Hence, the
existing methods for BDD cannot be used in the scenarios
studied in this paper for detecting line failures.

The problem of line failures detection using phase angle
measurements during the normal operation of the grid were
studied in [29]–[31]. The problem of line failures detection in
an area based on the information from external nodes was
first studied in [32] using sparse recovery methods. In [3],
attack scenarios similar to the one in this paper was studied.
However, [3] only focused on the attacks that blocked the
information from the attacked area, and therefore, the at-
tacked area was detectable simply by checking the missing
data. Moreover, the line failures method provided in [3]
was limited to certain topologies for the attacked area. In
recent works [33], [34], the methods in [3] were extended
to function under the AC power flow model. Similar to [3],
problems in [33], [34] are focused on the attacks that block
the information from the attacked area. Hence, in these
works, detecting the attacked area is straight forward. More-
over, the techniques in [3], [33], [34] fail to detect all the
line failures as the attacked area becomes larger, but the
LIFD Module presented in this paper, uses randomization
to detect all the line failures in large attacked areas as well.

Finally, in a recent series of works, the vulnerability
of power grids to undetectable cyber-physical attacks is
studied [35]–[37] using the DC power flows. These studies
consider different scenarios in terms of available informa-
tion and are mainly focused on designing attacks that affect
the entire grid and therefore may be impossible to detect.

3 MODEL AND DEFINITIONS

3.1 DC Power Flow Model

In this work, we focus on the power systems’ transmission
network. Hence, the term “power grid” mainly denotes
the transmission network. We use the linearized DC power
flow model, which is widely used as an approximation for
the non-linear AC power flow model in studying vulner-
abilities of power grids [3], [18], [35]–[37]. The notation
is summarized in Table 1. In particular, we represent the
power grid by a connected undirected graph G = (V,E)
where V = {1, 2, . . . , n} and E = {e1, . . . , em} are the
set of nodes and edges corresponding to the buses and
transmission lines, respectively. Each edge ei is a set of two
nodes ei = {u, v}. pv is the active power supply (pv > 0)
or demand (pv < 0) at node v ∈ V (for a neutral node
pv = 0). We assume pure reactive lines, implying that each
edge {u, v} ∈ E is characterized by its reactance ruv = rvu.

Given the power supply/demand vector ~p ∈ R
|V |×1 and

the reactance values, a power flow is a solution P ∈ R
|V |×|V |

and ~θ ∈ R
|V |×1 of:

∑

v∈N(u)

puv = pu, ∀ u ∈ V (1)

θu − θv − ruvpuv = 0, ∀ {u, v} ∈ E (2)

where N(u) is the set of neighbors of node u, puv is the
power flow from node u to node v, and θu is the phase
angle of node u. Eq. (1) guarantees (classical) flow conser-
vation and (2) captures the dependency of the flow on the
reactance values and phase angles. Additionally, (2) implies
that puv = −pvu. When the total supply equals the total
demand in each connected component of G, (1)-(2) has a

unique solution P and ~θ up to a shift (since shifting all
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TABLE 1: Summary of notation.

Notation Description
G = (V,E) The graph representing the power grid

A Admittance matrix of G
~θ Vector of the phase angles of the nodes in G

~p Vector of power supply/demand values
H A subgraph of G representing the attacked area
F Set of failed edges due to an attack
D Incidence matrix of G

N(i) Set of neighbors of node i

N(S) Set of neighbors of subgraph S

int(S) Interior of the subgraph S

∂(S) Boundary of the subgraph S

cl(S) Closure of the subgraph S

©′ The actual value of © after an attack
©? The observed value of © after an attack

© The complement of ©

θus by equal amounts does not violate (2)). Eqs.(1)-(2) are
equivalent to the following matrix equation:

A~θ = ~p (3)

where A ∈ R
|V |×|V | is the admittance matrix of G,1 defined

as:

auv =











0 if u 6= v and {u, v} /∈ E,

−1/ruv if u 6= v and {u, v} ∈ E,

−∑w∈N(u) auw if u = v.

Note that in power grids nodes can be connected by mul-
tiple edges, and therefore, if there are k multiple lines

between nodes u and v, auv = −∑k
i=1 1/ruvi

. Once ~θ is
computed, the flows, puv , can be obtained from (2).
Notation. Throughout this paper we use bold uppercase
characters to denote matrices (e.g., A), italic uppercase char-
acters to denote sets (e.g., V ), and italic lowercase characters

and overline arrow to denote column vectors (e.g., ~θ). For a
matrix Q, Qi denotes its ith row, and qij denotes its (i, j)th

entry. For a column vector ~y, ~y T denote its transpose, yi
denotes its ith entry, ‖~y‖1 :=

∑n
i=1 |yi| is its l1-norm, and

supp(~y) := {i|yi 6= 0} is its support.

3.2 Attack Model

We study cyber attacks on the power grid that affect both
grid’s physical infrastructure and the data at its control
center–which therefore are cyber-physical in nature. We as-
sume that an adversary attacks an area by: (i) disconnecting
some lines within the attacked area (by remotely activating
the circuit breakers), and (ii) modifying the information
(phase angle of the nodes and status of the lines) received
from the attacked area to mask the line failures and hide
the attacked area from the control center. We assume that
the system reaches a steady-state after the attack. Hence,
supply/demand values do not change after the attack and
disconnecting lines within the attacked area does not make
G disconnected. However, the developed methods in this
paper can also be used when these conditions do not hold,
if the control center is aware of the changes in the sup-
ply/demand values after the attack and in the case of the
grid separation. We also assume that system operator has

1. The matrix A can also be considered as the weighted Laplacian matrix
of the graph.

a complete knowledge of the state of the system before the

attack, namely A, ~θ, and ~p .
An attacked area is an induced subgraph of G like

H = (VH , EH). Fig. 1 depicts an example of such an
attack on the attacked area represented by H . Due to the
attack, some lines within the attacked area (i.e., in EH ) are
disconnected (we refer to these edges as failed lines), and
the reported phase angles and the status of the lines from
within the attacked area are modified. We denote the set
of failed lines in area H by F ⊆ EH . Upon failure, the
failed lines are removed from the graph and the flows are
redistributed according to (1)-(2). The objective is to detect
the attacked area H and the failed lines F after the attack
using the observed modified phase angles. Notice that the
attacked area represents the induced subgraph by a set of
nodes for which the measurements are manipulated by the
attacker. Hence, the scenario that the attacker manipulates
the measurements in larger area than the area for which he
can disconnect the lines, is a special case of the scenarios
studied here.

The vectors of phase angle of the nodes in H and in

its complement H̄ = G\H are denoted by ~θH and ~θH̄ ,
respectively. We use the prime symbol (′) to denote the

actual values after an attack. For instance, G′, A′, and ~θ′ are
used to represent the graph, the admittance matrix of the
graph, and the actual phase angles after the attack. Based

on our assumptions ~p = A~θ = A′~θ′ = ~p ′.

We also use ~θ? to denote the observed phase angles after

the attack. According to the attack model ~θ?H is modified and

is not necessarily equal to ~θ′H . We assume that the attacker
performs any of the following two types of data attacks:

1) Data distortion: We assume ~θ?H = ~θ′H + ~z for a
random vector ~z with an arbitrary distribution with
no positive probability mass in any proper linear
subspace (e.g., multivariate Gaussian distribution).

2) Data replay: We assume ~θ?H = ~θ′′H such that ~θ′′

satisfies A~θ′′ = ~p ′′ for an arbitrary power sup-
ply/demand vector ~p ′′ such that ~p ′′

H = ~pH . We
assume that ~p ′′

H̄
is selected generally enough and is

only known to the attacker. ~p ′′ can be considered as
the vector of supply/demand values from previous
hours or days.

Notice that adversarial modification of the reported phase
angles in H is not in the scope of this paper and is an
interesting problem on its own. For example, see the recent
work by Bienstock and Escobar [38].

Notation. Without loss of generality we assume that the
indices are such that VH = {1, 2, . . . , |VH |} and EH =
{e1, e2, . . . , e|EH |}. If X,Y are two subgraphs of G, AX|Y

and AVX |VY
both denote the submatrix of the admittance

matrix of G with rows from VX and columns from VY . For
instance, A can be written in any of the following forms,

A =

[

AH|H AH|H̄

AH̄|H AH̄|H̄

]

,A =
[

AG|H AG|H̄

]

,A =

[

AH|G

AH̄|G

]

.

3.3 Graph Theoretical Terms

In this paper, we use some graph theoretical terms most of
which are borrowed from [39].
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Subgraphs: Let X be a subset of the nodes of a graph G.
G[X] denotes the subgraph of G induced by X . We denote
the complement of a set X by X̄ = V \X .

The neighbors, interior, boundary, and closure of a sub-
graph S are defined and denoted by N(S) := {i ∈
V \VS |∃j ∈ VS : i ∈ N(j)}, int(S) := {i ∈ VS |N(i) ⊆ VS},
∂(S) := {i ∈ VS |N(i) ∩ VS̄ 6= ∅}, and cl(S) := VS ∪N(S),
respectively.
Incidence Matrix: Assign arbitrary directions to the edges
of G. The (node-edge) incidence matrix of G is denoted by
D ∈ {−1, 0, 1}|V |×|E| and is defined as follows,

dij =











0 if ej is not incident to node i,

1 if ej is coming out of node i,

−1 if ej is going into node i.

When we use the incidence matrix, we assume an arbitrary
orientation for the edges unless we mention an specific
orientation. DH ∈ {−1, 0, 1}|VH |×|EH | is the submatrix of
D with rows from VH and columns from EH .

4 HARDNESS

Using the notation provided in the previous section, the
problem considered in this paper can be stated as follows:

Given A, ~θ, and ~θ?, detect the attacked area H and the set of
line failures F . In this section, we study the computational
complexity of this and related problems. To study the com-
putational complexity of this problem, we consider a more

general case of ~θ?H without any assumptions on the type of
the data attack.

First, we prove that the problem of finding the set of line
failures (F ) solely based on the given the phase angles of

the nodes before (~θ) and after the attack (~θ′) is NP-hard. We
prove this by reduction from the 3-partition problem.

Definition 1. Given a set S = {s1, s2, . . . , s3k} of 3k ele-

ments and a bound B, such that
∑3k

i=1 si = kB and
for 1 ≤ i ≤ 3k, B/4 < si < B/2, the 3-partition
problem is the problem of whether S can be partitioned
into k disjoint sets S1, . . . , Sk such that for 1 ≤ i ≤ k,
∑

sj∈Si
sj = B (note that each Si must therefore contain

exactly 3 elements from S).

Lemma 1 (Garey and Johnson [40]). The 3-partition problem
is strongly NP-complete.

Lemma 2. Given A, ~θ, and ~θ′, it is strongly NP-hard to
determine if there exists a set of line failures F such that
A′~θ′ = A~θ.

Proof: We reduce the 3-partition problem to this prob-
lem. Assume S is a given set as described in Def. 1, we
form a bipartite graph G = (V,E) such that V = X ∪ Y ,
E = {{x, y}|x ∈ X, y ∈ Y }, X = {1, . . . , k}, and
Y = {k+1, . . . , 4k}. For all edges in G, we set the reactance
values equal to 1. For each i ∈ X , we set pi = B and for
each j ∈ Y we set pj = −sj−k. Define the vector of phase

angles ~θ as follows:

θi =

{

0 i ≤ k

−si−k/k i > k.

If A is the admittance matrix of G, it is easy to check that

A~θ = ~p. Now define ~θ′ as follows:

θ′i =

{

0 i ≤ k

−si−k i > k.

We prove that there exist a set of line failures F such that

A′~θ′ = ~p if, and only if, there exists a solution to the 3-
partition problem.

First, lets assume that there exist a solution to
the 3-partition problem such as S1, . . . , Sk. Set ES =
{{i, j}|sj−k ∈ Si}. We show that F = E\ES implies

A′~θ′ = ~p. Notice that F = E\ES means that G′ = (V,ES).
Given the pi and the reactance values, it is easy to check that

the defined ~θ′ satisfies the DC power flow equations (1)-(2)

in G′. Hence, A′~θ′ = ~p.
Now, lets assume there exist a set of line failures F such

that A′~θ′ = ~p. Set ES = E\F and G′ = (V,ES). Given

the phase angles ~θ′, it is easy to see that for any {i, j} ∈
ES , pij = sj−k. This implies that for j ∈ Y , at most one
edge in ES is incident to j. On the other hand, using (1),
for any i ∈ X ,

∑

j∈N(i)′ sj−k = B in which by N(i)′ we
mean the set of neighbors of node i in G′. Given that each
node j ∈ Y is incident to at most one edge in ES , defining
Si = {sj−k|j ∈ N(i)′} for 1 ≤ i ≤ k gives a good solution
to the 3-partition problem.

Hence, determining if there exist a set of line failures F
is at least as hard as determining if the 3-partition problem
has a solution, and therefore, it is an NP-hard problem in
the strong sense.

Corollary 1. Given A, ~θ, and ~θ′, it is strongly NP-hard to
find the set of line failures F , even if such a set exists.

In Corollary 1, we proved that given the phase angle of the
nodes before and after the attack, it is NP-hard to detect the
set of line failures F . In the following lemma, we show that

even if the attack area H is known (since ~θ′H is not given)
the problem remains NP-hard.

Lemma 3. Given A, ~θ,H, and ~θ′
H̄

, it is strongly NP-hard to
determine if there exist a set of line failures F in H and
a vector ~θ′H , such that A′~θ′ = A~θ.

Proof: See Section 10.

Corollary 2. Given A, ~θ,H, and ~θ′
H̄

, it is strongly NP-hard
to find the set of line failures F in H , even if such a set
exists.

Finally, we prove that when the phase angles are mod-

ified (~θ?) and therefore H is not known in advance, it is
NP-hard to detect H and F . We assume that the attacked
area cannot contain more than half of the nodes, otherwise
this problem might have many solutions.

Lemma 4. Given A, ~θ, and ~θ?, it is strongly NP-hard to deter-
mine if there exists a subgraph H0 with |VH0

| ≤ |V |/2,

a set of line failures F in H0, and a vector ~θ′H0
such that

A~θ = A′

[

~θ′

H0

~θ?
H̄0

]

.

Proof: See Section 10.

Corollary 3. Given A, ~θ, and ~θ?, it is strongly NP-hard to
find a subgraph H , a set of line failures F in H , and a
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Module 2: LIne Failures Detection (LIFD)

Input: G, A, ~θ, S, T , and ~θ?

1: Compute ~p = A~θ
2: Compute a solution ~x, ~y to (7) for W = I

3: Set F † = supp(~x) and ~θ
†
S
= ~y

4: while c(F †, ~θ
†
S
) < 99.99% & counter< T do

5: counter++
6: Draw random numbers w1, w2, . . . , w|VS | from an

exponential distribution with rate λ = 1
7: Compute a solution ~x, ~y to (7) for

W = diag(w1, w2, . . . , w|VS |)

8: Set F † = supp(~x) and ~θ
†
S
= ~y

9: if c(F †, ~θ
†
S
) > 99.99% then

10: return F †, ~θ
†
S

11: else
12: return F †, ~θ

†
S

with maximum c(F †, ~θ
†
S
) in all iterations

problem can detect line failures in S accurately for a “good”
matrix W:

min
~x,~y

‖W~x‖1 s.t.

AS|S(~θS − ~y) + AS|S̄(~θS̄ − ~θ′S̄) = DS~x (7)

AS̄|S(~θS − ~y) + AS̄|S̄(~θS̄ − ~θ′S̄) = 0.

The idea behind optimizing the weighted norm-1 of vector
~x is to be able to detect the line failures when the solution to
(6) does not detect the correct set of line failures but a small
disturbance results in the correct detection.

Before we demonstrate the effectiveness of the optimiza-
tion (7) in detecting line failures, we provide a metric for
measuring the confidence of a solution. In a subgraph S, as-

sume F † = supp(~x) and ~θ †
S = ~y are the set of detected line

failures and the recovered phase angles using the solution
to (7). Also assume that A† is the admittance matrix after re-
moving the lines in F † and define ~p † := AG|S̄

~θ′
S̄
+ A

†
G|S

~θ †
S .

Notice that ~x and ~y satisfying (7) does not necessarily imply
~p † = ~p . Hence, one can use this difference to compute the
confidence of a solution as follows.

Definition 2. The confidence of the solution is denoted by

c(F †, ~θ †
S) and defined as:

c(F †, ~θ †
S) := (1− ‖~p † − ~p‖2/‖~p‖2)+ × 100, (8)

in which (z)+ := max(0, z).

The confidence of the solution, simply shows how much
the solution is consistent with the part of the observed data
that we detected as correct. In other words, it checks if the
solution fulfills the conditions provided in Lemma 4.

The confidence of the solution along with a random
selection of the weight matrix W in (7) can be used to
detect line failures that cannot be detected using (6). The
idea is to repeatedly solve (7) using a random weight matrix
until the confidence of the solution for F † = supp(~x) and
~θ †
S = ~y is 100% or reach a maximum number of iterations

(T ). Here, we consider the case when the diagonal entries
of matrix W are randomly selected from an exponential
distribution. This approach is summarized in Module 2 as
the LIne Failures Detection (LIFD) Module.

Through the rest of this section, we demonstrate why the
LIFD Module is effective and when the number of iterations

(T ) is enough to be polynomial in terms of the input size to
make sure that it finds the line failures accurately.

Lemma 16. Assume w1, w2, . . . , wm are i.i.d. exponential
random variables, then for 1 ≤ k ≤ m− 1:

Pr(
k
∑

i=1

wi <
m
∑

i=k+1

wi) =

∑m−1
j=k

(

m−1
j

)

2m−1
.

Proof: See Section 10.

Corollary 6. Assume w1, w2, . . . , wm are i.i.d. exponential
random variables, then for k ≤ m/2 + Θ(

√
m):

Pr(
k
∑

i=1

wi <
m
∑

i=k+1

wi) = Ω(
1√
m
).

Proof: See Section 10.

Lemma 17. If S = H , H is a cycle with m nodes and edges,
and there is a matching between the nodes inside and
outside of H that covers all the inside nodes, then any set
of line failures of size k can be found by the LIFD Module
for expectedly T = 2m−1/(

∑m−1
j=k

(

m−1
j

)

). Moreover, if

k ≤ m/2 + Θ(
√
m), then LIFD Module can detect line

failures for T = O(
√
m).

Proof: First, one can see that if S = H , and there is
a matching between the nodes inside and outside of H that
covers all the inside nodes, then AS̄|S = AH̄|H has uniquely
independent columns, almost surely [3, Corollary 2]. Hence,

the solution ~y to (7) is unique and ~y = ~θ′H . Therefore, we can

assume that ~θ′ is given. Without loss of generality assume
that F = {e1, . . . , ek}. We prove that the solution ~x to (7)

is unique and supp(~x) = F , if
∑k

i=1 wi <
∑m

i=k+1 wi, in
which W = diag(w1, . . . , wm).
Without loss of generality, assume that DH is the incidence
matrix of H when lines of H are oriented clockwise. Since H
is connected, it is known that rank(DH) = m− 1 [41, Theo-
rem 2.2]. Therefore, dim(Null(DH)) = 1. Suppose ~z ∈ R

|EH |

is the all one vector. It can be verified that DH~z = 0. Since
dim(Null(DH)) = 1, ~z forms a basis for the null space of D.

Now suppose ~x† is a solution to AH|G(~θ − ~θ′) = DH~x such
that supp(~x†) = F (from [3, Lemma 2], we know that such a
solution exists). Since ~z forms a basis for Null(D), all other

solutions of AH|G(~θ−~θ′) = DH~x can be written in the form

of ~x† + c~z. We want to prove that if
∑k

i=1 wi <
∑m

i=k+1 wi,

then for any c ∈ R\{0}, ‖W~x†‖1 < ‖W(~x† + c~z)‖1. Since

supp(~x†) = F , x†
1, x

†
2, . . . , x

†
k are the only nonzero elements

of ~x†. Moreover Wd :=
∑m

i=k+1 wi −
∑k

i=1 wi > 0. Hence,

‖W(~x† + c~z)‖1 =
k
∑

i=1

wi|x†
i − c|+ |c|

m
∑

i=k+1

wi

=
k
∑

i=1

wi(|x†
i − c|+ |c|) + |c|Wd

≥
k
∑

i=1

wi|x†
i |+ |c|Wd >

k
∑

i=1

wi|x†
i | = ‖W~x†‖1.

Therefore, the solution ~x to (7) is unique and supp(~x) =
F , if

∑k
i=1 wi <

∑m
i=k+1 wi. One the other hand, from

Lemma 16, Pr(
∑k

i=1 wi <
∑m

i=k+1 wi) =
∑m−1

j=k (m−1

j )
2m−1 .
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Algorithm 1: REcurrent Attack Containment and
deTection (REACT)

Input: G, A, ~θ, ~θ?, and T
1: Compute ~p = A~θ
2: Obtain S0, S1, . . . , St using the ATAC Module
3: for i = 1 to t do
4: Compute Sa = G[int(Si)]
5: if (5) is feasible for S = Sa then
6: Find a solution ~y to (5) for S = Sa

7: else
8: continue
9: Compute Sb = G[supp(~y −

~θ?S)]
10: Set S = Sb as an approximation for the attacked area H
11: Compute a solution ~x, ~y to (7) for W = I

12: Set F † = supp(~x) and ~θ
†
S
= ~y

13: if c(F †, ~θ
†
S
) < 99.99% then

14: Obtain F †, ~θ
†
S

from module LIFD for inputs S and T

15: if c(F †, ~θ
†
S
) > 99.99% then

16: return H = supp(~θ †
S
−

~θ ?

S) as the detected attacked
area and F †, ~θ

†
H

as the detected line failures and
recovered phase angle of the nodes inside H

17: return S and F †, ~θ
†
S

with maximum c(F †, ~θ
†
S
) in all

iterations

Hence, expectedly 2m−1

∑m−1

j=k (m−1

j )
number of iterations (T )

should be enough to satisfy this inequality. Corollary 6
also gives the expected number of iterations needed when
k ≤ m/2 + Θ(

√
m).

Lemma 17 clearly demonstrates the effectiveness of using a
weight matrix W in (7). It was previously proved in [3] that
if H is a cycle and there is a matching between the nodes
inside and outside of H that covers all the inside nodes, then
for any set of line failures of size less than half of the lines in H ,
supp(~x) of the solution ~x to (6) exactly reveals the set of line
failures. However, for the line failures with the size more
than half of the lines in H , this approach comes short. In
these cases, Lemma 17 indicates that solving (7) for random
matrices W for polynomial number of times can lead to the
correct detection.

Although providing a similar analytical bound for T
to ensure detecting line failures in general cases is very
difficult, in Section 8, we numerically show that small values
of T is enough to detect line failures in more complex
attacked areas as well.

7 REACT ALGORITHM

In this section, we present the REcurrent Attack Contain-
ment and deTection (REACT) Algorithm based on the re-
sults presented in the previous sections. The steps of the
REACT Algorithm are summarized in Algorithm 1.

The REACT Algorithm first obtains a set of possible
subgraphs S0, S1, . . . , St that may contain the attacked area
H using the ATAC Module. Then, for each subgraph Si

using the results in Subsection 5.4, it improves the approx-
imation of the attacked area. In particular, it first computes
Sa = G[int(Si)] and then finds a solution to (5) for S = Sa.
If (5) is not feasible, then it means that Si does not contain
the attacked area H , and therefore, the algorithm goes to
the next iteration and tries the next possible subgraph. If (5)
has a feasible solution ~y, it obtains a better approximation

of the attacked area H by computing Sb = G[supp(~y − ~θ?S)]
(Lemma 14).

Then, it solves the optimization (7) for W = I, in which
I is the identity matrix. Notice that this is basically similar
to solving (6). Then it checks the confidence of the solution

c(F †, ~θ †
S). If it is less than 99.99%, it calls the LIFD Module

to obtain another solution F †, ~θ †
S . Finally, it checks whether

the confidence of the solution is c(F †, ~θ †
S) > 99.99%. If so,

it approximates the attacked area H using this solution and

returns F †, ~θ †
H .

If the REACT Algorithm cannot find a solution with
confidence greater than 99.99%, it returns a solution with
the highest confidence between all the solutions obtained in
all the iterations.

Notice that the REACT Algorithm is a polynomial time
algorithm. Therefore, it cannot return the correct solution
to an NP-hard problem in all cases. However, in the next
section we numerically demonstrate that it performs very
well in reasonable settings.

8 NUMERICAL RESULTS

In this section, we evaluate the performance of the REACT
Algorithm in detecting the attacked area and recovering
the information after a cyber-physical attack as described
in Section 3.2. We consider two attacked areas H1 and H2

within the IEEE 300-bus system [4] as depicted in Fig. 5. H1

has 15 nodes and 16 edges, and H2 which contains H1, has
31 nodes and 41 edges. It can be verified that none of these
two subgraphs are acyclic and there is no matching between
the nodes inside and outside of these two subgraphs that
covers their insides nodes. Hence, the methods provided in [3]
cannot recover the information inside these areas even when the
attacked areas are known in advance.

For the physical part of the attack, we consider all single
line failures, and 100 samples of all double and triple line
failures within H1 and H2. Figs. 7 and 8 illustrate the
REACT Algorithm’s performance after these attacks. In the
Algorithm, we set T = 20 so that the while loop in the LIFD
Module runs only for 20 iterations.

Fig. 7 shows the performance of the REACT Algorithm
in detecting the attacked area and recovering the informa-
tion after data distortion and data replay attacks on the
attacked area H1 accompanied by single, double, and triple
line failures. As can be seen in Fig. 7(a), the REACT Algo-
rithm can exactly detect the attacked area after all attack
scenarios under both the distortion attack and the replay
attack. Hence, the performance of the REACT Algorithm is
almost the same in detecting line failures and recovering the
phase angles after both data attack scenarios.

Fig. 7(b) shows the average number of False Negatives
(FN) and False Positives (FP) in detecting line failures. As
can be seen, the REACT Algorithm can detect line failures
with very low average number of FNs and FPs. Moreover,
as it is shown in Fig. 7(c), the REACT Algorithm exactly
detects single, double, and triple line failures in 94%, 87%,
and 82% of the cases, respectively.

Fig. 7(d) shows the average running time of the REACT
Algorithm in detecting all attacked scenarios in this case.
Our system has an Intel Core i7-2600 3.40GHz CPU and
16GB RAM. One can see that the running time of the
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Fig. 7: The REACT Algorithm’s performance in detecting
the attacked area and recovering the information after data
distortion and replay attacks on the attacked area H1 accom-
panied by single, double, and triple line failures. (a) Average
number of extra nodes detected as attacked in detecting the
attacked area, (b) average number of false positives and
negatives in detecting line failures, (c) percentage of the
cases with exact line failures detection, (d) running time of
the algorithm, (e) average confidence of the solutions, and
(f) average error in recovered phase angles.

of the replay attack, as the number of line failures within the
attacked area increases, the REACT Algorithm provides less
accurate approximation of the attacked area.

Despite its difficulty in detecting the attacked area after
a data replay attack, Figs. 8(b) and 8(c) demonstrate that
the REACT Algorithm detects the line failures relatively
accurately. For example, the REACT Algorithm accurately
detects the single and double line failures in 95% and 65%
of the cases, respectively. This clearly demonstrates the
advantage of the optimization (7) that is used in the LIFD
module compared to (6) that suggested in [3]. Since (6) fails
to detect the line failures accurately as the attacked zone
contains more cycles and more internal nodes (i.e., nodes
that are not connected to any nodes outside of the attacked
zone), as it is the case here.

As can be seen in Fig. 8(d), the running time of the
REACT Algorithm increases as the size of the attacked
area increases. However, it still detects line failures much
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Fig. 8: The REACT Algorithm’s performance in detecting
the attacked area and recovering the information after data
distortion and replay attacks on the attacked area H2 accom-
panied by single, double, and triple line failures. (a) Average
number of extra nodes detected as attacked in detecting the
attacked area, (b) average number of false positives and
negatives in detecting line failures, (c) percentage of the
cases with exact line failures detection, (d) running time of
the algorithm, (e) average confidence of the solutions, and
(f) average error in recovered phase angles.

faster than existing brute force methods [29], [30], [32],
[42], [43] which their running time increases exponentially
as the number of line failures and the total number of
possibilities increase. Notice that [29], [30], [32], [42], [43]
do not deal with the case that the attack area is unknown.
The comparison is only between the running time of the
LIFD module and the brute force methods. The exponential
running times of the brute force algorithms become more
problematic in the data replay attack case. Since in this
case, as described in Section 5, the attacked zone cannot be
approximated independently of the line failures detection
module and this module should be called for different
possible attacked zones in order to detect the one that
contains the actual attacked zone. Hence, the exponential
running time of the brute force search algorithms make
them completely impractical for this case.

Similar to the previous attack scenario, one can see in
Fig. 8(e) that the confidence of the solutions obtained by
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the REACT Algorithm are very high. It means that in these
attack scenarios, many good solutions exist near the optimal
solution. This demonstrates another difficulty of dealing
with recovery of information after a cyber-physical attack
on the power grid.

Finally, Fig. 8(f) indicates that the REACT Algorithm
performs very well in recovering the phase angles in this
case as well. As can be seen, for both the data distortion and
the data replay attacks accompanied by single, double, and
triple line failures, the REACT Algorithm recovers the phase
angles with less than 5% error.

Overall, the simulation results in this section demon-
strate that the REACT Algorithm performs very well in
detecting the attacked area and the line failures when the at-
tacked area is relatively small. As the attacked area becomes
larger, the Algorithm still performs very well in detecting
the attacked area after a distortion data attack. However, it
may face difficulties providing an accurate approximation
of the attacked area after a replay attack. Despite this, in
both data attack scenarios, it detects line failures relatively
well. One of the important observations in this section is
that the LIFD module outperforms the methods provided
in [3] for detecting line failures with an slight increase in
the running time, since it needs to find a solution to (7)
several times instead of once. The results in this section
clearly demonstrate that in the attacked areas H1 and H2

that do not have the conditions provided [3], the LIFD
Module can still detect the line failures relatively accurately
with less than 20 iterations. In most of theses cases, the LIFD
Module detects the line failures within much fewer number
of iterations.

9 CONCLUSION

In this paper, we considered a model for cyber-physical
attacks on power grids focusing on both data distortion and
data reply attacks. We proved that the problem of detecting
the line failures after such an attack is NP-hard in general
and even when the attacked area is known. However, using
the algebraic properties of the DC power flows, we devel-
oped the polynomial time REACT Algorithm for approx-
imating the attacked area and detecting the line failures
after a cyber-physical attack on the grid. We numerically
showed that the REACT Algorithm obtains accurate results
when there are few number of line failures and the attacked
area is small. We showed that as the attacked area becomes
larger and the number of line failures increases, the REACT
Algorithm faces some difficulties but still can approximate
the attacked area and detect line failures with few false
negatives and positives.

The goal of this paper was to provide a theoretical
foundation for the problem of attacked area and line failures
detection after a cyber-physical attack on the power grid.
Hence, in this work, we neglected the measurement noise
in our analysis and also considered the availability of PMUs
at all the nodes. Nevertheless, we demonstrated that this
problem is already very challenging without considering
these constraints. Extending the results and methods of this
paper to the cases where the measurements are noisy and
there are limited number of PMUs in the system is part of
our future work.

Although the DC power flows only provide an ap-
proximation for the more accurate AC power flows, since
the ATAC Module for detecting the attacked area mostly
depends on the flow conservation checks at each node, the
ATAC Module can be easily applied under the AC power
flows as well. Moreover, the weight randomization tech-
nique and the confidence metric used in the LIFD Module
can also be extended to the AC power flows using the
methods provided in a recent paper [34]. Extending the
results provided in this paper to the transient state of power
grids, however, is of particular interest to the power systems
community and is part of our future work.

As we proved in Section 6, when the attacked area is a
cycle, the weight randomization technique in the LIFD Mod-
ule can detect the line failures accurately in the expected
polynomial running time. Extending this analytical result to
the attacked areas with arbitrary topology is an interesting
and challenging future work.

Finally, we analytically and numerically showed that the
data replay attacks are harder to deal with than the data
distortion attacks. Moreover, It is possible for an adversary
to devise more sophisticated attacks to further obscure the
system’s state. We believe that by trading running time for
accuracy, we may be able to improve the accuracy of the
REACT Algorithm in detecting the attacked area and the
line failures after replay attacks. However, depending on
the situation, a faster but approximately accurate algorithm
may be more desirable than a more accurate but slower one.
Careful speculation of such trade-offs and exploring more
sophisticated attacks are part of our future work.

10 OMITTED PROOFS

Proof of Corollary 1: It is easy to see that if one can
find a set of line failures F with an algorithm, the output
of that algorithm can be used here to verify the correctness
and existence of such a set as well. Therefore, this problem
is at least as hard as the existence problem.

Proof of Lemma 3: The idea of the proof is very
similar to the proof of Lemma 2. Again we reduce the
3-partition problem with a given set S as described in
Def. 1 to this problem. Consider sets X1 = {1, . . . , k},
X2 = {k + 1, . . . , 2k}, Y2 = {2k + 1, . . . , 5k}, Y1 =
{5k+1, . . . , 8k}. We form a bipartite graph G = (V,E) such
that V = X1 ∪ X2 ∪ Y2 ∪ Y1 and E = {{i, k + i}|1 ≤ i ≤
k}∪{{x, y}|x ∈ X2, y ∈ Y2}∪{{j, j+3k}|2k+1 ≤ j ≤ 5k}.
Notice that the defined bipartite graph here is very similar to
the one defined in the proof of Lemma 2 except that here for
each node in X2 and Y2 there exist a dummy node in X1 and
Y1, accordingly, that is directly connected to its counterpart.
We set H = G[X2 ∪ Y2]. It is easy to see that H has exactly
the same topology as the graph G in the proof of Lemma 2.
Again for all edges in G, we set the reactance values equal
to 1. For each i ∈ X2 ∪Y2 we set pi = 0, for each i ∈ X1, we
set pi = B, and for each j ∈ Y1 we set pj = −sj−5k. Define

the vector of phase angles ~θ as follows:

θi =



















B 1 ≤ i ≤ k

0 k + 1 ≤ i ≤ 2k

−si−2k/k 2k + 1 ≤ i ≤ 5k

−si−5k/k − si−5k 5k + 1 ≤ i ≤ 8k
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If A is the admittance matrix of G, it is easy to check that

A~θ = ~p. Now define ~θ′ as follows:

θ′i =



















B 1 ≤ i ≤ k

0 k + 1 ≤ i ≤ 2k

−si−2k 2k + 1 ≤ i ≤ 5k

−2si−5k 5k + 1 ≤ i ≤ 8k

Now given ~θ′
H̄

, since each node in H is connected to an
exactly one distinct node in H̄ , there exist a matching
between the nodes in H and H̄ that covers nodes in H
and therefore from [3, Corollary 2], ~θ′H will be determined

uniquely. Hence, we can assume that ~θ′ is given for all the
nodes. Now we prove that there exist a set of line failures

F in H such that A′~θ′ = ~p if, and only if, there exist a
solution to the 3-partition problem. Given the way we build
the graph G and since the set of failures should be in H , the
rest of the proof is exactly similar to the proof of Lemma 2.

Proof of Lemma 4: Again we reduce the 3-partition
partition problem to this problem. The proof is similar to
the proof of Lemma 3. Given an instance of a 3-partition
problem, we build a graph G, subgraph H , and supply and
demand vector ~p exactly as in the proof of Lemma 3. Define
~θ?
H̄

= ~θ′
H̄

as defined in Lemma 3 and ~θ?H = ~z, in which
~z is a random vector with arbitrary distribution with no
positive probability mass in any proper linear subspace. For
any i ∈ X1, node i is only connected to node i + k. Since
θi = B and θk+i = zi for a random variable zi, θi−θk+i 6= B
almost surely. So in order for the flow equations to hold,
either both i, i+ k ∈ H0 or i+ k ∈ H0. The same argument
holds for any node j ∈ Y1 and its only neighbor j−3k. So in
order for the problem to have a solution, H0 should contain
both X2 and Y2. On the other hand, since |VH0

| ≤ |V |/2,
therefore H0 = G[X2∪Y2] = H is the only possible attacked
area. Now since H0 = H , we can assume that the attacked
area is given and the rest of the proof is exactly similar to
the proof of Lemma 3.

Proof of Lemma 16: Define sk :=
∑k

i=1 wi. It is known
that

fsk(x) =
λe−λx(λx)k−1

(k − 1)!
.

Now since wis are i.i.d. random variables,
∑m

i=k+1 wi ∼
sm−k. Therefore, all we need to compute is Pr(sk < sm−k).

Pr(
k
∑

i=1

wi <
m
∑

i=k+1

wi) =

∫ ∞

0
Pr(sm−k − sk = a) da

=

∫ ∞

0

∫ ∞

0
Pr(sk = y)Pr(sm−k = y + a) dy da

=

∫ ∞

0

∫ ∞

0

λe−λy(λy)k−1

(k − 1)!

λe−λ(y+a)(λ(y + a))m−k−1

(m− k − 1)!
dy da

=

∫ ∞

0

λme−2λyyk−1

(k − 1)!(m− k − 1)!

(

∫ ∞

0
e−λa(y + a)(m−k−1)da

)

dy.

(9)

On the other hand, by defining z := λ(y + a), we have:
∫ ∞

0
e−λa(y + a)(m−k−1)da =

eλy

λm−k

∫ ∞

λy

e−zzm−k−1 dz.

Define T (n+ 1) :=
∫∞
λy

e−zzn dz. Using partial integration:

T (n+ 1) =
[

−e−zzn
]∞

λy
+

∫ ∞

λy

nzn−1e−z dz

= e−λy(λy)n + nT (n) = n!e−λy
n
∑

i=0

(λy)i

i!
.

Using equation above in (9) results in:

Pr(
k
∑

i=1

wi<
m
∑

i=k+1

wi) =

=

∫ ∞

0

λne−2λyyk−1

(k − 1)!(m− k − 1)!

eλy

λm−k
T (m− k)

=
λk

(k − 1)!

∫ ∞

0
e−2λyyk−1

(

m−k−1
∑

i=0

(λy)i

i!

)

dy

=
λk

(k − 1)!

m−k−1
∑

i=0

(

∫ ∞

0
e−2λyyk−1 (λy)

i

i!
dy
)

.

By defining x := 2λy and using Gamma function:

Pr(
k
∑

i=1

wi<
m
∑

i=k+1

wi) =

=
λk

(k − 1)!

m−k−1
∑

i=0

( λ−k

i!2i+k

∫ ∞

0
e−xxk+i−1 dx

)

=
λk

(k − 1)!

m−k−1
∑

i=0

( λ−k

i!2i+k
(k + i− 1)!

)

=
m−k−1
∑

i=0

2−i−k

(

k + i− 1

i

)

= 2−(m−1)
m−k−1
∑

i=0

2(m−1)−(i+k)

(

k + i− 1

k − 1

)

. (10)

Now notice that
∑m−k−1

i=0 2(m−1)−(i+k)
(

k+i−1
i

)

is equal to
the total number of subsets of {1, . . . ,m − 1} with at least
k elements. The reason is that this summation is equal to
the total number of subsets that contain k + i and exactly
k − 1 elements from {1, 2, . . . , k + i− 1}. It is easy to verify
that by summing this up on i, we count all the subsets of
{1, . . . ,m− 1} with at least k elements. On the other hand,
we can count the total number of subsets of {1, . . . ,m− 1}
with at least k elements using the complement rule. The
total number of subsets with at least k elements is equal to
the total number of subsets minus number of subsets of size
0,1,. . . ,k − 1. Hence,

m−k−1
∑

i=0

2(m−1)−(i+k)

(

k + i− 1

k − 1

)

= 2m−1 −
k−1
∑

i=0

(

m− 1

j

)

.

Now using the equation above in (10) and using the equality
2m−1 =

∑m−1
i=0

(

m−1
j

)

, proves the lemma.

Proof of Corollary 6: It is easy to see that if k ≤ (m −
1)/2, then

∑m−1
j=k

(

m−1
j

)

≥ 2m−2. Therefore from Lemma 16,

Pr(
∑k

i=1 wi <
∑m

i=k+1 wi) ≥ 1/2 and there is nothing left
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to prove. So assume k = m/2 + Θ(
√
m). It is proved in [44,

Lemma 10.8] that for any 1/2 < α < 1,

2nH(α)

√

8nα(1− α)
≤

n
∑

j=αn

(

n

k

)

,

in which H(α) = −α log2(α) − (1 − α) log2(1 − α) is the
entropy function. Now to prove Corollary 6, select n = m−
1, and α = 1/2 + ε for ε = Θ(1/

√
n). First notice that one

can show that the Taylor expansion of the entropy function
around 1/2 can be computed as:

H(α) = 1− 1

2 ln 2

∞
∑

i=1

(1− 2α)2i

i(2i− 1)
.

Using approximation above, it is easy to see that H(α) ≈
1 − Θ(ε2) = 1 − Θ(1/n). Hence, 2nH(α) = 2n−Θ(1). On the
other hand,
√

8nα(1− α) =
√

8n(1/2 + ε)(1/2− ε) =
√

8n(1/4− ε2)

=
√

2n−Θ(1) ≈ Θ(
√
n).

Hence, by replacing n by m − 1 and using Lemma 16, one
can verify:

Pr(
k
∑

i=1

wi <
m
∑

i=k+1

wi) = Ω(
1√
m
).
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