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Abstract

The use of monotonicity and Tarski’s theorem in existence proofs of equilibria is very widespread in

economics, while Tarski’s theorem is also often used for similar purposes in the context of verification.

However, there has been relatively little in the way of analysis of the complexity of finding the

fixed points and equilibria guaranteed by this result. We study a computational formalism based

on monotone functions on the d-dimensional grid with sides of length N , and their fixed points,

as well as the closely connected subject of supermodular games and their equilibria. It is known

that finding some (any) fixed point of a monotone function can be done in time logd N , and we

show it requires at least log2 N function evaluations already on the 2-dimensional grid, even for

randomized algorithms. We show that the general Tarski problem of finding some fixed point, when

the monotone function is given succinctly (by a boolean circuit), is in the class PLS of problems

solvable by local search and, rather surprisingly, also in the class PPAD. Finding the greatest or

least fixed point guaranteed by Tarski’s theorem, however, requires d · N steps, and is NP-hard

in the white box model. For supermodular games, we show that finding an equilibrium in such

games is essentially computationally equivalent to the Tarski problem, and finding the maximum

or minimum equilibrium is similarly harder. Interestingly, two-player supermodular games where

the strategy space of one player is one-dimensional can be solved in O(log N) steps. We also show

that computing (approximating) the value of Condon’s (Shapley’s) stochastic games reduces to the

Tarski problem. An important open problem highlighted by this work is proving a Ω(logd N) lower

bound for small fixed dimension d ≥ 3.
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1 Introduction

Equilibria are paramount in economics, because guaranteeing their existence in a particular

strategic or market-like framework enables one to consider “What happens at equilibrium?”

without further analysis. Equilibrium existence theorems are nontrivial to prove. The

best known example is Nash’s theorem [18], whose proof in 1950, based on Brouwer’s fixed

point theorem, transformed game theory, and inspired the Arrow-Debreu price equilibrium

results [1], among many others. Decades later, complexity analysis of these theorems and

corresponding solution concepts by computer scientists has created a fertile and powerful

field of research [19].

Not all equilibrium theorems in economics, however, rely on Brouwer’s fixed point theorem

for their proof (even though, in a specific sense made clear and proved in this paper, they

could have...). Many of the exceptions ultimately rely on Tarski’s fixed point theorem [22],

stating that all monotone functions on a complete lattice have a fixed point – and in fact a

whole sublattice of fixed points with a largest and smallest element [23, 17, 24]. In contrast

to the equilibrium theorems whose proof relies on Brouwer’s fixed point theorem, there has

been relatively little complexity analysis of Tarski’s fixed point theorem and the equilibrium

results it enables. (We discuss prior related work at the end of this introduction.)

Here we present several results in this direction. Let [N ] = {1, . . . , N}. To formulate the

basic problem, we consider a monotone function f on the d-dimensional grid [N ]d, that is,

a function f : [N ]d 7→ [N ]d such that for all x, y ∈ [N ]d, x ≥ y implies f(x) ≥ f(y); in the

black-box oracle model, we can query this function with specific vectors x ∈ [N ]d; in the

white-box model we assume that the function is presented by a boolean circuit1. Thus, d

and N are the basic parameters to our model; it is useful to think of d as the dimensionality

of the problem, while N is something akin to the inverse of the desired approximation ε.

Tarski’s theorem in the grid framework is easy to prove. Let 1̄ = (1, . . . , 1) denote

the (d-dimensional) all-1 vector. Consider the sequence of grid points 1̄, f(1̄), f(f(1̄)),

. . . , f i(1̄), . . .. From monotonicity of f , by induction on i we get, for all i ≥ 0, f i(1̄) ≤
f i+1(1̄). Unless a fixed point is arrived at, the sum of the coordinates must increase at

each iteration. Therefore, after at most dN iterations of f applied to 1̄, a fixed point is

found. In other words fdN (1̄) = fdN+1(1̄).

This immediately suggests an O(dN) algorithm. But an O(logd N) algorithm is also

known2: Consider the (d − 1)-dimensional function obtained by fixing the “input value”

in the d’th coordinate of the function f with some value rd (initialize rd := dN/2e).

Find a fixed point z∗ ∈ [N ]d−1 of this (d − 1)-dimensional monotone function f(z, rd)

(recursively). If the dth coordinate fd(z∗, rd) of f(z∗, rd), is equal to rd, then (z∗, rd)

is a fixed point of the overall function f , and we are done. Otherwise, a binary search

on the d’th coordinate is enabled: we need to look for a larger (smaller) value of rd if

fd(z∗, rd) > rd (respectively, if fd(z∗, rd) < rd). By an easy induction, this establishes

the O(logd N) upper bound ([5]).

We conjecture that this algorithm is essentially optimal in the black box sense, for small

fixed constant dimension d. In Theorem 7 we prove this result for the d = 2 case. We

provide a class of monotone functions that we call the herringbones: two monotonic paths,

1 Naturally, one could have addressed the more general problem in which the lattice is itself presented
in a general way through two functions meet and join; however, this framework (a) leads quickly and
easily to intractability; and (b) does not capture any more applications in economics than the one
treated here.

2 This algorithm appears to have been first observed in [5].
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one starting from 1̄ and the other from N̄ , meeting at the fixed point, while all other

points in the N × N grid are mapped diagonally: f(x) = x + (−1, +1) or x + (+1, −1),

whichever of the points is closer to the monotonic path that contains the fixed point. We

prove that any randomized algorithm needs to make Ω(log2 N) queries (in expectation)

to find the fixed point.

Can this lower bound result be generalized to fixed d ≥ 3? This is a key question left

open by this paper. There are several obstacles to a proof establishing, e.g., a Ω(log3 N)

lower bound in the 3-dimensional case (d = 3), and some possible ways for overcoming

them. First, it is not easy to identify a suitable “herringbone-like” function in three or

more dimensions – a monotone family of functions built around a path from 1̄ to N̄ . It

nevertheless seems plausible that logd N should still be (close to) a lower bound on any

such algorithm (assuming of course that N is sufficiently larger than d, so that the dN

algorithm does not violate the lower bound). We prove one encouraging result in this

context: We give an alternative proof of the d = 2 lower bound, in which we establish

that any deterministic black-box algorithm for Tarski in two dimensions must solve

a sequence of Ω(log N) one-dimensional problems (Theorem 13), a result pointing to a

possible induction on d (recall that this is precisely the form of the logd N algorithm).

Tarski’s theorem further asserts that there is a greatest and a least fixed point, and

these fixed points are especially useful in the economic applications of the result (see for

example [17]). It is not hard to see, however, that finding these fixed points is NP-hard,

and takes Ω(dN) time in the black box model (see Proposition 1).

In terms of complexity classes, the problem Tarski is obviously in the class TFNP of

total function (total search) problems. But where exactly? We show (Theorem 4) that it

belongs in the class PLS of local optimum search problems.

Surprisingly, Tarski is also in the class P PPAD of problems reducible to a Brouwer fixed

point problem (Theorem 5), and thus, by the known fact that the class PPAD is closed

under polynomial time Turing reductions ([2]) it is in PPAD (Corollary 6). This result

presents a heretofore unsuspected connection between two main sources of equilibrium

results in economics.

Supermodular games [23, 17, 24] – or games with strategic complementarities – comprise

a large and important class of economic models, with complete lattices as strategy spaces,

in which a player’s best response is a monotone function (or monotone correspondence)

of the other player’s strategies. They always have pure Nash equilibria due to Tarski’s

theorem. We show that finding an equilibrium for a supermodular game with (discrete)

Euclidean grid strategy spaces is essentially computationally equivalent to the problem

of finding a Tarski fixed point of a monotone map (Proposition 14 and Theorem 16). If

there are two players and one of them has a one-dimensional strategy space, we show that

a Nash equilibrium can be found in logarithmic time (in the size of the strategy spaces).

Stochastic games [21, 4]. We show that the problems of computing the (irrational) value

of Shapley’s discounted stochastic games to desired accuracy, and computing the exact

value of Condon’s simple stochastic games (SSG), are both P-time reducible to the Tarski

problem. The proofs employ known characterizations of the value of both Shapley’s

stochastic games and Condon’s SSGs in terms of monotone fixed point equations, which

can also be viewed as monotone “polynomially contracting” maps with a unique fixed

point, and from properties of polynomially contracting maps, see [12].

Prior related work. In recent years a number of technical reports and papers by Dang,

Qi, and Ye, have considered the complexity of computational problems related to Tarski’s

theorem [5, 7, 6]. In particular, in [5] the authors provided the already-mentioned logd N

ITCS 2020
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algorithm for computing a Tarski fixed point for a discrete map, f : [N ]d → [N ]d, which is

monotone under the coordinate-wise order. In [5] they also establish that determining the

uniqueness of the fixed point of a monotone map under coordinate-wise order is coNP-hard,

and that uniqueness under lexicographic order is also coNP-hard (already in one dimension).

In [7] the authors studied another variant of the Tarski problem, namely computing another

fixed point of a monotone function in an expanded domain where the smallest point is a

fixed point; this variant is NP-hard (the claim in the paper that this problem is in PPA has

been withdrawn by the authors [8]). In earlier work, Echenique [10], studied algorithms

for computing all pure Nash equilibria in supermodular games (and games with strategic

complementaries) whose strategy spaces are discrete grids. Of course computing all pure

equilibria is harder than computing some pure equilibrium; indeed, we show that computing

the least (or greatest) pure equilibrium of such a supermodular game is already NP-hard

(Corollary 17). In earlier work Chang, Lyuu, and Ti [3] considered the complexity of Tarski’s

fixed point theorem over a general finite lattice given via an oracle for its partial order (not

given it explicitly) and given an oracle for the monotone function, and they observed that

the total number of oracle queries required to find some fixed point in this model is linear in

the number of elements of the lattice. They did not study monotone functions on euclidean

grid lattices, and their results have no bearing on this setting.

Organization of the paper. The rest of the paper is organized as follows. Section 2 provides

basic definitions on lattices and monotone functions, and presents some simple basic results.

In Section 3 we define the Tarski problem and show that it is in PLS and PPAD. Section 4

proves the lower bound of log2 N on black-box algorithms. Section 5 concerns supermodular

games. Section 6 reduces Condon’s and Shapley’s stochastic games to the Tarski problem.

Finally, Section 7 concludes and discusses open problems. Several of the proofs are only

sketched or omitted; more details can be found in the full version of the paper [11].

2 Basics

A partial order (L, ≤) is a complete lattice if every nonempty subset S of L has a least upper

bound (or supremum or join, denoted sup S or ∨S) and a greatest lower bound (or infimum

or meet, denoted inf S or ∧S) in L. A function f : L → L is monotone if for all pairs of

elements x, y ∈ L, x ≤ y implies f(x) ≤ f(y). A point x ∈ L is a fixed point of f if f(x) = x.

Tarski’s theorem ([22]) states that the set Fix(f) of fixed points of f is a nonempty complete

lattice under the same partial order ≤; in particular, f has a greatest fixed point (GFP) and

a least fixed point (LFP).

In this paper we will take as our underlying lattice L a finite discrete Euclidean grid,

which we fix for simplicity to be the integer grid [N ]d, for some positive integers N, d, where

[N ] = {1, . . . , N}. Comparison of points is componentwise, i.e. x ≤ y if xi ≤ yi for all

i = 1, . . . , d. We will also consider the corresponding continuous box, [1, N ]d that includes all

real points in the box. Both, the discrete and continuous box are clearly complete lattices.

Given a monotone function f on the integer grid [N ]d, the problem is to compute a fixed

point of f (any point in Fix(f)). A generally harder problem is to compute specifically the

LFP of f or the GFP of f . We consider mostly the oracle model, in which the function f is

given by a black-box oracle, and the complexity of the algorithm is measured in terms of the

number of queries to the oracle. Alternatively, we can consider also an explicit model in which

f is given explicitly by a polynomial-time algorithm (a polynomial-size Boolean circuit),

and then the complexity of the algorithm is measured in the ordinary Turing model. Note
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that the number of bits needed to represent a point in the domain is d log N , so polynomial

time here means polynomial in d and n = log N . The number Nd of points in the domain is

exponential.

Tarski’s value iteration algorithm provides a simple way to compute the LFP of f : Starting

from the lowest point of the lattice, which here is the all-1 vector 1, apply repeatedly f .

This generates a monotonically increasing sequence of points 1 ≤ f(1) ≤ f2(1) ≤ . . . until a

fixed point is reached, which is the LFP of f . In every step of the sequence, at least one

coordinate is strictly increased, therefore a fixed point is reached in at most (N − 1)d steps.

In the worst case, the process may take that long, which is exponential in the bit size d log N .

Similarly, the GFP can be computed by applying repeatedly f starting from the highest

point of the lattice, i.e., from the all-N point, until a fixed point is reached.

Another way to compute some fixed point of a monotone function f (not necessarily the

LFP or the GFP) is by a divide-and-conquer algorithm. In one dimension, we can use binary

search: If the domain is the set L(l, h) = {x ∈ Z|l ≤ x ≤ h} of integers between the lowest

point l and the highest point h, then compute the value of f on the midpoint m = (l + h)/2.

If f(m) = m then m is a fixed point; if f(m) < m then recurse on the lower half L(l, m),

and if f(m) > m then recurse on the upper half L(m, h). The monotonicity of f implies that

f maps the respective half interval into itself. Hence the algorithm correctly finds a fixed

point in at most log N iterations, where N is the number of points.

In the general d-dimensional case, suppose that the domain is the set of integer points in the

box defined by the lowest point l and the highest point h, i.e. L(l, h) = {x ∈ Zd|l ≤ x ≤ h}.

Consider the set of points with d-th coordinate equal to m = (l + h)/2; their first d − 1

coordinates induce a (d − 1)-dimensional lattice L′(l, h) = {x ∈ Zd−1|li ≤ xi ≤ hi, i =

1, . . . d − 1}. Define the function g on L′(l, h) by letting g(x) consist of the first d − 1

components of f(x, m). It is easy to see that g is a monotone function on L′(l, h). Recursively,

compute a fixed point x∗ of g. If fd(x∗, m) = m, then (x∗, m) is a fixed point of f (this holds

in particular if l = h). If fd(x∗, m) > m, then recurse on L(f(x∗, m), h). If fd(x∗, m) < m,

then recurse on L(l, f(x∗, m)). In either case, monotonicity implies that if the algorithm

recurses, then f maps the smaller box into itself and thus has a fixed point in it. An easy

induction shows that the complexity of this algorithm is O((log N)d), ([5]).

Computing the least or the greatest fixed point is in general hard, even in one dimension,

both in the oracle and in the explicit model.

I Proposition 1. Computing the LFP or the GFP of an explicitly given polynomial-time

monotone function in one dimension is NP-hard. In the oracle model, the problem requires

Ω(N) queries for a domain of size N .

Proof. We prove the claim for the LFP; the GFP is similar. Reduction from Satisfiability.

Given a Boolean formula φ in n variables, let the domain D = {0, 1, . . . , 2n}, and define the

function f as follows. For x ≤ 2n − 1, viewing x as an n-bit binary number, it corresponds

to an assignment to the n variables of φ; let f(x) = x if the assignment x satisfies φ, and let

f(x) = x + 1 otherwise. Define f(2n) = 2n. Clearly f is a monotone function and it can be

computed in polynomial time. If φ is not satisfiable then the LFP of f is 2n, while if φ is

satisfiable then the LFP is not 2n.

For the oracle model, use the same domain D and let f map every x ≤ 2n − 1 to x or

x + 1, and f(2n) = 2n. The LFP is not 2n iff there exists an x ≤ 2n − 1 such that f(x) = x,

which in the oracle model requires trying all possible x ≤ 2n − 1. J

In the case of a continuous domain [1, N ]d, we may not be able to compute an exact

fixed point, and thus we have to be content with approximation. Given an ε > 0, an

ε-approximate fixed point is a point x such that |f(x) − x| ≤ ε, where we use the L∞ (max)

ITCS 2020
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norm, i.e. |f(x) − x| = max{|fi(x) − xi||i = 1, . . . , d}. In this context, polynomial time

means polynomial in log N, d, and log(1/ε) (the number of bits of the approximation). An

ε-approximate fixed point need not be close to any actual fixed point of f . A problem that

is generally harder is to compute a point that approximates some actual fixed point, and

an even harder task is to approximate specifically the LFP or the GFP of f . Tarski’s value

iteration algorithm, starting from the lowest point converges in the limit to the LFP (and if

started from the highest point, it converges to the GFP), but there is no general bound on the

number of iterations needed to get within ε of the LFP (or the GFP). The algorithm reaches

however an ε-approximate fixed point within Nd/ε iterations (note, this is exponential in

log N, log(1/ε)).

It is easy to see that the approximate fixed point problem for the continuous case reduces

to the exact fixed point problem for the discrete case.

I Proposition 2. The problem of computing an ε-approximate fixed point of a given monotone

function on the continuous domain [1, N ]d reduces to the exact fixed point problem on a

discrete domain [N/ε]d.

Proof. Given the monotone function f on the continuous domain D1 = [1, N ]d, consider

the discrete domain D2 = {x ∈ Zd|k ≤ xi ≤ Nk, i = 1, . . . , d}, where k = d1/εe, and define

the function g on D2 as follows. For every x ∈ D2, let g(x) be obtained from kf(x/k) by

rounding each coordinate to the nearest integer, with ties broken (arbitrarily) in favor of the

ceiling. Since f is monotone, g is also monotone. If x∗ is a fixed point of g, then kf(x∗/k) is

within 1/2 of x∗ in every coordinate, and hence f(x∗/k) is within 1/2k < ε of x∗/k. Thus

x∗/k is an ε-approximate fixed point of f . J

3 Computing a Tarski fixed point is in PLS ∩ PPAD

For a monotone function f : [N ]d → [N ]d (with respect to the coordinate-wise ordering),

we are interested in computing a fixed point x∗ ∈ Fix(f), which we know exists by Tarski’s

theorem. We shall formally define this as a discrete total search problem, using a standard

construction to avoid the “promise” that f is monotone.

Recall that a general discrete total search problem (with polynomially bounded outputs),

Π, has a set of valid input instances DΠ ⊆ {0, 1}∗, and associates with each valid input

instance I ∈ DΠ, a non-empty set OI ⊆ {0, 1}pΠ(|I|) of acceptable outputs, where pΠ(·) is

some polynomial. (So the bit encoding length of every acceptable output is polynomially

bounded in the bit encoding length of the input I.) We are interested in the complexity of

the following total search problem:

I Definition 3. Tarski:

Input: A function f : [N ]d → [N ]d with N = 2n for some n ≥ 1, given by a boolean

circuit, Cf , with (d · n) input gates and (d · n) output gates.

Output: Either a (any) fixed point x∗ ∈ Fix(f), or else a witness pair of vectors

x, y ∈ [N ]d such that x ≤ y and f(x) 6≤ f(y).

Note Tarski is a total search problem: If f is monotone, it will contain a fixed point in [N ]d,

and otherwise it will contain such a witness pair of vectors that exhibit non-monotonicity. (If it

is non-monotone it may of course have both witnesses for non-monotonicity and fixed points.)



K. Etessami, C. Papadimitriou, A. Rubinstein, and M. Yannakakis 18:7

Tarski ∈ PLS

Recall that a total search problem, Π, is in the complexity class PLS (Polynomial Local

Search) if it satisfies all of the following conditions (see [16, 26]):

1. For each valid input instance I ∈ DΠ ⊆ {0, 1}∗ of Π, there is an associated non-empty

set SI ⊆ {0, 1}p(|I|) of solutions, and an associated payoff function3, gI : SI → Z. For

each s ∈ SI , there is an associated set of neighbors, NI(s) ⊆ SI .

A solution s ∈ SI is called a local optimum (local maximum) if for all s′ ∈ NI(s),

gI(s) ≥ gI(s′). We let OI denote the set of all local optima for instance I. (Clearly OI is

non-empty, because SI is non-empty.)

2. There is a polynomial time algorithm, AΠ, that given a string I ∈ {0, 1}∗, decides whether

I is a valid input instance I ∈ DΠ, and if so outputs some solution s0 ∈ SI .

3. There is a polynomial time algorithm, BΠ, that given valid instance I ∈ DΠ and a string

s ∈ {0, 1}p(|I|), decides whether s ∈ SI , and if so, outputs the payoff gI(s).

4. There is a polynomial time algorithm, HΠ, that given valid instance I ∈ DΠ and s ∈ SI ,

decides whether s is a local optimum, i.e., whether s ∈ OI , and otherwise computes a

strictly improving neighbor s′ ∈ NI(s), such that gI(s′) > gI(s).

I Theorem 4. Tarski ∈ PLS.

Proof Sketch. Each valid input instance If ∈ DTarski ⊆ {0, 1}∗ of Tarski is an encoding of

a function f : [N ]d → [N ]d via a boolean circuit Cf . We can view the problem Tarski as a

polynomial local search problem, as follows:

Define the set of “solutions” associated with valid input If to be the disjoint union

SIf
= S′

If
∪ S′′

If
, where S′

If
= {x ∈ [N ]d | x ≤ f(x)} and S′′

If
= {(x, y) ∈ [N ]d × [N ]d | x ≤

y ∧ f(x) 6≤ f(y)}. Clearly, Fix(f) ⊆ S′
If

⊆ SIf
. Let the payoff function gIf

: SIf
→ Z, be

defined as follows. For x ∈ S′
If

, gIf
(x) :=

∑d
i=1 xi; for (x, y) ∈ S′′

If
, gIf

(x, y) := (dN)+1. We

define the neighbors of solutions as follows. For any x ∈ S′
If

, if f(x) ≤ f(f(x)) then let the

neighbors of x be the singleton-set NIf
(x) := {f(x)}. Note that in this case again f(x) ∈ S′

If
.

Otherwise, if f(x) 6≤ f(f(x)), then let NIf
(x) := {(x, f(x))}. Note that in this case

(x, f(x)) ∈ S′′
If

, since f(x) 6≤ f(f(x)). For (x, y) ∈ S′′
If

, let NIf
(x, y) := ∅ be the empty set.

Thus, the set of local optima is by definition OIf
= {x ∈ S′

If
| ∑d

i=1 xi ≥ ∑d
i=1 fi(x)} ∪ S′′

If
.

Observe that in fact OIf
= Fix(f) ∪ S′′

If
. Indeed, if x ∈ OIf

then x ∈ S′
If

meaning

x ≤ f(x), and also
∑d

i=1 xi ≥ ∑d
i=1 fi(x). But this is only possible if f(x) = x, i.e.,

x ∈ Fix(f). Likewise, if (x, y) ∈ OIf
then (x, y) ∈ S′′

If
. On the other hand, if x ∈ Fix(f),

then clearly x ∈ S′
If

and
∑d

i=1 xi =
∑d

i=1 fi(x), hence x ∈ OIf
.

It is possible then to define polynomial time algorithms ATarski, BTarski and HTarski, as

required in conditions 2, 3, 4 in the definition of PLS; see the full paper for details. It follows

that Tarski is in PLS. J

Tarski ∈ PPAD

To show that Tarski ∈ PPAD, we first show that Tarski ∈ P PPAD meaning that the total

search problem Tarski can be solved by a polynomial time algorithm, M, with oracle access

to PPAD. The algorithm M should take an input If ∈ {0, 1}∗, and firstly decide whether

it is a valid instance If ∈ DTarski, and if so it can make repeated, adaptive, calls to an

3 Or, cost function, if we were considering local minimization. But here we focus on local maximization.

ITCS 2020
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oracle for solving a PPAD total search problem. After at most polynomial time (and hence

polynomially many such oracle calls) as a function of the input size |If |, M should output

either an integer vector x ∈ Fix(f), or else output a pair of vectors x, y ∈ [N ]d with x ≤ y

and f(x) 6≤ f(y), which witness non-monotonicity of the function f : [N ]d → [N ]d defined by

the input instance If .

Once we have established that Tarski ∈ P PPAD, the fact that Tarski ∈ PPAD will follow

as a simple corollary, using a prior result of Buss and Johnson [2], who showed that PPAD is

closed under polynomial-time Turing reductions.

There are a number of equivalent ways to define the total search complexity class PPAD.

Rather than give the original definition ([20]), we will use an equivalent characterization

of PPAD (a.k.a., linear-FIXP) from [12]. Informally, according to this characterization, a

discrete total search problem, Π, is in PPAD if and only if it can be reduced in P-time to

computing a Brouwer fixed point of an associated “polynomial piecewise-linear” continuous

function that maps a non-empty convex polytope to itself. That is, every instance I of Π can

be associated with a polynomial piecewise-linear function FI on a polytope W (I), such that

from any rational fixed point of FI we can obtain in polynomial time an acceptable output

for the instance I. By Brouwer’s theorem, the set Fix(FI) = {x ∈ W (I) | FI(x) = x} of fixed

points of FI is non-empty. Moreover, because of the “polynomial piecewise-linear” nature

of FI , Fix(FI) must also contain a rational fixed point x∗, with polynomial bit complexity

as a function of |I| (see [12], Theorem 5.2). See [12], section 5, for more details on this

characterization of PPAD.

Given two vectors l ≤ h ∈ Zd, let L(l, h) = {x ∈ Zd | l ≤ x ≤ h}, and let B(l, h) = {x ∈
Rd | l ≤ x ≤ h}.

I Theorem 5. Tarski ∈ P PPAD.

Proof Sketch. Suppose we are given an instance If ∈ DTarski of Tarski, corresponding to a

function f : [N ]d → [N ]d (given by a boolean circuit Cf ).

Let a = 1 ∈ Zd, and b = N ∈ Zd, denote the all 1, and all N , vectors respectively. We

first extend the discrete function f to a (polynomial piecewise-linear) continuous function

f ′ : B(a, b) → B(a, b), by a suitable linear interpolation. For this purpose we use a specific

simplicial subdivision of B(a, b), known as Freudenthal’s simplicial division [15], which has a

certain monotonicity property that is important for the proof. By Brouwer’s theorem, f ′

has a fixed point in B(a, b), and since it is polynomial piecewise-linear, finding a fixed point

x∗ is in PPAD. However, f ′ may have non-integer fixed points that do not correspond to

(and are not close to) any fixed point of f (indeed, since we do not apriori know that f is

monotone, there may not be any integer fixed points). Nevertheless, we show that finding

any such fixed point x∗ of f ′ allows us to make progress towards either finding a discrete

fixed point of f (if it is monotone), or finding witnesses for a violation of monotonicity of f .

Specifically, we argue that there are two (integer) vertices u ≥ v of the simplex of the

subdivision that contains x∗ such that, if f is monotone, then f(u) ≥ u and f(v) ≤ v (in all

coordinates). If f(u) 6≥ u, or f(v) 6≤ v, then f is not monotone, and we show that we can

find a witness pair for the non-monotonicity of f .

Assume on the other hand that f(u) ≥ u and f(v) ≤ v. Note that in that case, if f is

monotone, then f maps the sublattice L(u, b) to itself, and it also maps the disjoint sublattice

L(a, v) to itself. Thus, if f is monotone, f must have an integer fixed point in both L(a, v)

and L(u, b).

So, we can choose the smaller of these two sublattices, consider the function f restricted

to that sublattice, and continue recursively to find a fixed point in that sublattice (if f is

monotone) or a violation of monotonicity. If f is not monotone, it is possible that it maps
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some points in the sublattice L(a, v) (or L(u, b)) to points outside. Therefore, in the recursive

call for the sublattice, when we define the piecewise-linear function f ′ on the corresponding

box B(a, v) (or B(u, b)) we take the maximum with a and minimum with v (or u and b

respectively), i.e., threshold it, so that it maps the box to itself, and hence it is a Brouwer

function. When the PPAD oracle gives us back a fixed point for this (possibly thresholded)

function f ′, we argue that if the thresholding mattered in this regard, then we can detect it

and produce a violating pair to monotonicity.

Every iteration decreases the total number of points in our current lattice by a factor of

2, from the number of points in the original lattice L(a, b). So after a polynomial number of

iterations in (d + log N), we either find a fixed point of f , or we find a witness pair of integer

vectors that witness the non-monotonicity of f . J

I Corollary 6. Tarski ∈ PPAD.

Proof. This follows immediately from Theorem 5, combined with a result due to Buss and

Johnson ([2], Theorem 6.1), who showed that PPAD is closed under polynomial-time Turing

reductions. J

4 The 2-dimensional lower bound

Consider a monotone function defined on the N × N grid f : [N ]2 7→ [N ]2. Let A be any

(randomized) black-box algorithm for finding a fixed point of the function by computing a

sequence of queries of the form f(x, y) =?; A can of course be adaptive in that any query can

depend in arbitrarily complex ways on the answers to the previous queries. For example, the

divide-and-conquer algorithm described in the introduction is a black box algorithm. The

following result suggests that this algorithm is optimal for two dimensions.

I Theorem 7. Given black-box access to a monotone function f : [N ]
2 → [N ]

2
, any (ran-

domized) algorithm for finding a fixed point of f requires Ω(log2 N) queries (in expectation).

Below, we sketch a proof. For the full proof see [11]. The proof constructs a hard

distribution of such functions.

The basic construction

Given a monotone path from (1, 1) to (N, N) on the N × N grid graph and a point (i∗, j∗)

on the path, we construct f as follows:

We let (i∗, j∗) be the unique fixed point of f , i.e. f (i∗, j∗) , (i∗, j∗).

At all other points on the path, f is directed towards the fixed point. For a point (x, y)

on the path that is dominated by (i∗, j∗), we let f(x, y) be the next point on the path,

i.e. f(x, y) = (x + 1, y) or f(x, y) = (x, y + 1). Similarly, for a point (x, y) that is on the

path and dominates (i∗, j∗), we let f(x, y) be the previous point on the path.

For all points outside the path, f is directed towards the path. Observe that the path

partitions [N ]
2

into three (possibly empty) subsets: below the path, the path, and above

the path. For a point (x, y) below the path, we set f (x, y) , (x − 1, y + 1). Similarly,

for a point (x, y) above the path, f (x, y) , (x + 1, y − 1).

An example of such a function f : [5]2 → [5]2 is given in Figure 1.

B Claim 8. For any choice of path and point (i∗, j∗) on the path, f constructed as above is

monotone.
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Figure 1 A 2-dimensional “herringbone” monotone function.

Choosing the fixed point

In our hard distribution, once we fix a path, we choose (i∗, j∗) uniformly at random among

all points on the path.

B Claim 9. Given oracle access to f and the path, any (randomized) algorithm that finds a

point (i′, j′) on the path that is within
√

N (Manhattan distance) from (i∗, j∗) requires (in

expectation) querying of f at Ω (log N) points on the path that are pairwise at least
√

N

apart.

Proof. Observe that once we fix the path, the values of f outside the path do not reveal

information about the location of (i∗, j∗). The lower bound now follows from the standard

lower bound for binary search. C

Choosing the central path

Our goal now is to prove that it is hard to find many distant points on the path. To simplify

the analysis, we will only consider the special case where all points (x, y) on the path satisfy

x − y ∈
[

−N1/4, N1/4
]

. We partition the N × N grid into Θ
(√

N
)

regions of the form

Ra ,
{

(x, y) | x + y ∈ [a, a +
√

N)
}

. Notice that each region intersects the path at exactly
√

N points. The path enters each region4 at a point (x, y) for a value x − y chosen uniformly

at random among
[

−N1/4, N1/4
]

. We will argue (Lemma 12 below) that in order to find

a point on the path in any region Ra, the algorithm must query the function at Ω (log N)

points in Ra or its neighboring regions.

Each region is further partitioned into Θ
(

N1/4
)

sub-regions

Sa ,
{

(x, y) | x + y ∈ [a, a + 2N1/4)
}

. For each region, we choose a special sub-region

uniformly at random. In all non-special sub-regions, the path proceeds while maintaining

4 For the first and last region, the path is obviously forced to start at (1, 1) (respectively end at (N, N));
but those two regions can only account for two of the Ω (log N) distant path points required by Claim
9, so we can safely ignore them.
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x − y fixed, up to ±1. Inside the special sub-region, the value of x − y for path points changes

from the value chosen at random for the current region, to the value chosen at random for

the next region.

Given a choice of random x − y entry point for each region, and a random special

sub-region for each region, we consider an arbitrary path that satisfies the description above.

This completes the description of the construction.

B Claim 10. Finding (i.e., querying any point in) the special sub-region in region Ra requires

Ω (log N) queries (in expectation) to points in Ra.

Let Sa and Sb be the special sub-regions of two consecutive regions. Let

T ,
{

(x, y) | x + y ∈ [a + 2N1/4, b)
}

be the union of all the sub-regions between Sa and Sb.

Observe that the value of x − y remains fixed (up to ±1) for all points in the intersection of

the path with T . Also, the construction of f outside Sa ∪ T ∪ Sb does not depend at all on

this value.

B Claim 11. If the algorithm does not query any point in Sa ∪ Sb, then in order to find

(i.e., query) any point in the intersection of the path and T , the algorithm must query (in

expectation) Ω (log N) points from T .

By Claim 10, finding Sa or Sb requires at least Ω (log N) queries to the regions containing

them. Therefore, the above two claims together imply:

I Lemma 12. In order to query a point in the intersection of the path and region Ra, any

algorithm must query at least Ω (log N) points (in expectation) in Ra or its neighboring

regions.

Therefore, in order to find Ω (log N) points on the path that are pairwise at least
√

N

apart, the algorithm must make a total of Ω
(

log2 N
)

queries (in expectation), completing

the proof of Theorem 7.

An alternative proof

In the full version of this paper (see [11]) we provide an alternative proof, showing that any

deterministic black box algorithm requires Ω(log2 N) oracle queries to find a Tarski fixed

point of a monotone function f : [N ]2 → [N ]2 given by an oracle.

I Theorem 13. Any deterministic black box algorithm for finding a Tarski fixed point in

two dimensions needs Ω(log2 N) queries.

The alternative proof appears to be more promising for generalization to higher dimensions.

However, the underlying monotone functions f : [N ]2 → [N ]2 on which the alternative lower

bound is established are again the “herringbone” functions used in the proof of Theorem 7.

The alternative proof uses a potential argument, and its gist amounts to showing that any

such algorithm must solve Ω(log N) independent one-dimensional problems.

5 Supermodular Games

A brief intro to supermodular games

A supermodular game is a game in which the set Si of strategies of each player i is a complete

lattice, and the utility (payoff) functions ui satisfy certain conditions. Let k be the number

of players and let S = Πk
i=1Si be the set of strategy profiles. As usual, we use si to denote

a strategy for player i and s−i to denote a tuple of strategies for the other players. The

conditions on the utility functions ui are the following:
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C1. ui(si, s−i) is upper semicontinuous in si for fixed s−i, and it is continuous in s−i for

each fixed si, and has a finite upper bound.

C2. ui(si, s−i) is supermodular in si for fixed s−i.

C3. ui(si, s−i) has increasing differences in si and s−i.

A function f : L → R is supermodular if for all x, y ∈ L, it holds f(x) + f(y) ≤
f(x ∧ y) + f(x ∨ y). A function f : L1 × L2 → R, where L1, L2 are lattices, has increasing

differences in its two arguments, if for all x′ ≥ x in L1 and all y′ ≥ y in L2, it holds that

f(x′, y′) − f(x, y′) ≥ f(x′, y) − f(x, y).

The broader class of games with strategic complementarities (GSC) relaxes somewhat the

conditions C2 and C3 into C2’, C3’ which depend only on ordinal information on the utility

functions, i.e. how the utilities compare to each other rather than their precise numerical

values. The supermodularity requirement of C2 is relaxed to quasi-supermodularity, where

a function f : L → R is quasi-supermodular if for all x, y ∈ L, f(x) ≥ f(x ∧ y) implies

f(y) ≤ f(x ∨ y), and if the first inequality is strict, then so is the second. The increasing

differences requirement of C3 is relaxed to the single-crossing condition, where a function

f : L1 × L2 → R, satisfies the single crossing condition, if for all x′ > x in L1 and all

y′ > y in L2, it holds that f(x′, y) ≥ f(x, y) implies f(x′, y′) ≥ f(x, y′), and if the first

inequality is strict then so is the second. All the structural and algorithmic properties below

of supermodular games hold also for games with strategic complementarities.

We will consider here games where each Si is a discrete (or continuous) finite box in

di dimensions of size N in each coordinate. We let d =
∑k

i=1 di be the total number of

coordinates. In the discrete case, condition C1 is trivial. Condition C2 is trivial if di = 1 (all

functions in one dimension are supermodular), but nontrivial for 2 or more dimensions. C3

is nontrivial.

Supermodular games (and GSC) have pure Nash equilibria. Furthermore, the pure Nash

equilibria form a complete lattice [17], thus there is a highest and a lowest equilibrium.

Another important property is that the best response correspondence βi(s−i) for each

player i has the property that (1) both sup βi(s−i) and inf βi(s−i) are in βi(s−i), and (2)

both functions sup βi(·) and inf βi(·) are monotone functions [24]. The function β̄(s) =

(sup β1(s−1), . . . , sup βk(s−k)) of the supremum best responses is a monotone function from

S to itself, and its greatest fixed point is the highest Nash equilibrium of the game. The

function β(s) = (inf β1(s−1), . . . , inf βk(s−k)) of the infimum best responses is also a monotone

function, and its least fixed point is the lowest Nash equilibrium of the game.

Complexity of equilibrium computation in supermodular games

Given a supermodular game, the relevant problems include: (a) find a Nash equilibrium

(anyone)5, and (b) find the highest or the lowest equilibrium. In the case of continuous

domains, we again have to relax to an approximate solution. We assume that we have access

to a best response function, e.g. β̄(·) and/or β(·), as an oracle or as a polynomial-time

function. The monotonicity of these functions implies then easily the following:

5 Whenever we speak of finding a Nash Equilibrium (NE) for a supermodular game, we mean a pure NE,
as we know that these exists.
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I Proposition 14.

1. The problem of computing a pure Nash equilibrium of a k-player supermodular game over

a discrete finite strategy space Πk
i=1[N ]di reduces to the problem of computing a fixed point

of a monotone function over [N ]d where d =
∑k

i=1 di. Computing the highest (or lowest)

Nash equilibrium reduces to computing the greatest (or lowest) fixed point of a monotone

function.

2. For games with continuous box strategy spaces, Πk
i=1[1, N ]di , and Lipschitz continuous

utility functions with Lipschitz constant K, the problem of computing an ε-approximate

Nash equilibrium reduces to exact fixed point computation point for a monotone function

with a discrete finite domain [NK/ε]d.

Proof.

1. Follows from the monotonicity of β̄(·) and β(·). If s is fixed point of β̄(·), then si =

sup βi(s−i) is a best response to s−i for all i (since sup βi(s−i) ∈ βi(s−i)), therefore s is a

Nash equilibrium of the game. The GFP of β̄(·) is the highest Nash equilibrium. Similarly,

every fixed point of β(·) is an equilibrium of the game, and the LFP of β(·) is the lowest

equilibrium.

2. Suppose that the utility functions are Lipschitz continuous with Lipschitz constant K.

To compute an ε-approximate Nash equilibrium of the game, it suffices to find a ε/K-

approximate fixed point of the function β̄(·). For, if s is such an approximate fixed point

and s′ = β̄(s), then |s′ −s| ≤ ε/K in every coordinate. Hence |ui(si, s−i)−ui(s
′
i, s−i)| ≤ ε,

and s′
i is a best response to s−i, hence s is an ε-approximate equilibrium. Computing an

ε/K-approximate fixed point of the function β̄(·) on the continuous domain, reduces by

Proposition 2 to the exact fixed point problem for the discrete domain [NK/ε]d. J

Not every monotone function can be the (sup or inf) best response function of a game.

In particular, a best response function has the property that the output values for the com-

ponents corresponding to a player depend only on the input values for the other components

corresponding to the other players. Thus, for example, for two one-dimensional players, if the

function f(x, y) is the best response function of a game, it must satisfy f1(x, y) = f1(x′, y) for

all x, x′, y, and f2(x, y) = f2(x, y′) for all x, y, y′. This property helps somewhat in improving

the time needed to find a fixed point, and thus an equilibrium of the game, as noted below.

For example, in the case of two one-dimensional players, an equilibrium can be computed

in O(log N) time, instead of the Ω(log2 N) time needed to find a fixed point of a general

monotone function in two dimensions.

I Theorem 15. Given a supermodular game with two players with discrete strategy spaces

[N ]di , i = 1, 2 with access to the sup (or inf) best response function β̄(·) (or β(·)), we

can compute an equilibrium in time O((log N)min(d1,d2)). More generally, for k players

with dimensions d1, . . . , dk, an equilibrium can be computed in time O((log N)d′

), where

d′ =
∑

i di − maxi di.

Proof. Suppose that we have access to the sup best response β̄(·). Assume without loss of

generality that the first player has the maximum dimension, d1 = maxi di. We apply the

divide-and-conquer algorithm, but take advantage of the property of the monotone function

β̄ that the first d1 components of β̄(x) do not depend on the first d1 coordinates of x. As

a consequence, for any fixed assignment to the other coordinates, i.e. choice of a strategy

profile s−1 for all the players except the first player, the induced function on the first d1

coordinates maps every point to the best response β̄1(s−1) of player 1. Thus the fixed point

of the induced function is simply β̄1(s−1), it can be computed with one call to β̄, and there

is no need to recurse on the first d1 coordinates. It follows that the algorithm takes time at

most O((log N)d′

), where d′ =
∑

i di − maxi di. J
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Conversely, we can reduce the fixed point computation problem for an arbitrary monotone

function to the equilibrium computation problem for a supermodular game with two players.

I Theorem 16.

1. Given a monotone function f on [N ]d (resp. [1, N ]d) we can construct a supermodular

game G with two players, each with strategy space [N ]d (resp. [1, N ]d), so that the pure

Nash equilibria of G correspond to the fixed points of f .

2. More generally, the fixed point problem for a monotone function f in d dimensions

can be reduced to the pure Nash equilibrium problem for a supermodular game with any

number k ≥ 2 of players with any dimensions d1, . . . , dk, provided that
∑

i di ≥ 2d and
∑

i di − maxi di ≥ d.

Proof Sketch.

1. We will define the utility functions ui so that the best responses βi of both players are

functions (i.e. are unique). For player 1, the best response will be β1(y) = y, for all

y ∈ [N ]d, and for player 2, the best response will be β2(x) = f(x), for all x ∈ [N ]d. If x is a

fixed point of f , then (x, x) is an equilibrium of the game, since β(x, x) = (x, f(x)) = (x, x).

Conversely, if (x, y) is an equilibrium of the game, then β(x, y) = (x, y), therefore x = y

and y = f(x), hence x = f(x). Thus, the set of equilibria of G is {(x, x)|x ∈ Fix(f)}.

The utility function for player 1 is set to u1(x, y) = −(x − y)2 = − ∑d
j=1(xj − yj)2. The

utility function for player 2 is u2(x, y) = −(f(x) − y)2 = − ∑d
j=1(fj(x) − yj)2. Obviously,

the best response functions are as stated above, β1(y) = y and β2(x) = f(x).

It can be verified that the utility functions u1, u2 satisfy conditions C2 and C3 in the

definition of supermodular games (C2 with equality actually).

2. Order the players in increasing order of their dimension, let T be the ordering of all the
∑k

i=1 di coordinates consisting first of the set Co(1) of coordinates of player 1 (in any

order), then the set Co(2) of coordinates of player 2, and so forth. Number the coordinates

in the order T from 1 to
∑k

i=1 di, and label them cyclically with the labels 1, . . . , d.

We define the (unique) best response function β as follows. For every coordinate j ≤ d

(in the ordering T ), we set βj(x) = fj(x′), where x′ is a subvector of x with d coordinates

that have distinct labels 1, . . . , d and which belong to different players than coordinate

j. The subvector x′ is defined as follows. Suppose that coordinate j belongs to player r

(j ∈ Co(r)), and let t =
∑r−1

i=1 di. If dr ≤ d, then x′ is the subvector of x that consists

of the first t coordinates (in the order T ) and the coordinates t + 1 + d, . . . , 2d; note

that all these coordinates do not belong to player r. If dr > d, then r < k (since
∑

i di − maxi di ≥ d). In this case, let x′ be the subvector of x consisting of the last d

coordinates (in T ); all of these belong to player k 6= r. For coordinates j > d, we set

βj(x) = xj′ , where j′ ∈ [d] is equal to j mod d, unless j′ belongs to the same player r

as j, in which case dr > d, hence r 6= k; in this case we set βj(x) = xj” for some (any)

coordinate j” of the last player k that is labeled j′.

We define the utility functions of the players so that they yield the above best response

function β. Namely, we define the utility function of player i to be ui(x) = − ∑

j∈Co(i)(xj −
βj(x))2. It can be verified as in part 1 that the utility functions satisfy conditions C2

and C3. It can be easily seen also that at any equilibrium of the game, all coordinates

with the same label must have the same value, and the corresponding d-vector x is a fixed

point of f . Conversely, for any fixed point x of f , the corresponding strategy profile of

the game is an equilibrium. J
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Since the 2-dimensional monotone fixed point problem requires Ω(log2 N) queries by

Theorem 7, it follows that the equilibrium problem for two 2-dimensional players also requires

Ω(log2 N) queries, which is tight because it can be also solved in O(log2 N) time by Theorem

15. Similarly, for higher dimensions d, if the monotone fixed point problem requires Ω(logd N)

queries then the equilibrium problem for two d-dimensional players is also Θ(logd N).

The same reduction from monotone functions to supermodular games of Theorem 16,

combined with Proposition 1 implies the hardness of computing the highest and lowest

equilibrium.

I Corollary 17. It is NP-hard to compute the highest and lowest equilibrium of a supermodular

game with two 1-dimensional players with explicitly given polynomial-time best response (and

utility) functions.

6 Condon’s and Shapley’s stochastic games reduce to Tarski

In this section, we show that computing the exact (rational) value of Condon’s simple

stochastic games ([4]), as well as computing the (irrational) value of Shapley’s more general

(stopping/discounted) stochastic games [21] to within a given desired error ε > 0 (given in

binary), is polynomial time reducible to Tarski.

A simple stochastic game6 (SSG) is a 2-player zero-sum game, played on the vertices

of an edge-labeled directed graph, specified by G = (V, V0, V1, V2, δ), whose vertices V =

{v1, . . . , vn} include two special sink vertices, a 0-sink, vn−1, and a 1-sink, vn, and where

the rest of the vertices V \ {vn−1, vn} = {v1, . . . , vn−2} are partitioned into three disjoint

sets V0 (random), V1 (max), and V2 (min). The labeled directed edge relation is δ ⊆
(V \ {vn−1, vn}) × ((0, 1] ∪ ⊥) × V . For each “random” node u ∈ V0, every outgoing edge

(u, pu,v, v) ∈ δ is labeled by a positive probability pu,v ∈ (0, 1], such that these probabilities

sum to 1, i.e.,
∑

{v∈V |(u,pu,v,v)∈δ} pu,v = 1. We assume, for computational purposes, that

the probabilities pu,v are rational numbers (given as part of the input, with numerator and

denominator given in binary). The outgoing edges from “max” (V1) and “min” (V2) nodes

have an empty label, “⊥”. We assume each vertex u ∈ V \ {vn−1, vn} has at least one

outgoing edge. Thus in particular, for any node u ∈ V1 ∪ V2 there exists an outgoing edge

(u, ⊥, v) ∈ δ for some v ∈ V . Finally, there is a designated start vertex s ∈ V .

A play of the game transpires as follows: a token is initially placed on s, the start node.

Thereafter, during each “turn”, when the token is currently on a node u ∈ V , unless u is

already a sink node (in which case the game halts), the token is moved across an outgoing

edge of u to the next node by whoever “controls” u. For a random node u ∈ V0, which is

controlled by “nature”, the outgoing edge is chosen randomly according to the probabilities

(pu,v)v∈V . For u ∈ V1, the outgoing edge is chosen by player 1, the max player, who aims to

maximize the probability that the token will eventually reach the 1-sink. For u ∈ V2, the

outgoing edge is chosen by player 2, the min player, who aims to minimize the probability

that the token will eventually reach the 1-sink. The game halts if the token ever reaches

either of the two sink nodes.

6 The definition we give here for SSGs is slightly more general than Condon’s original definition in [4].
Specifically, Condon allows edge probabilities of 1/2 only, and also assumed that the game is a “stopping
game”, meaning it halts with probability 1, regardless of the strategies of the two players. It is well
known that our more general definition does not alter the difficulty of computing the game value and
optimal strategies: solving general SSGs can be reduced in P-time to solving SSGs in Condon’s more
restricted form.
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For every possible start node s = vi ∈ V , this zero-sum game has a well defined value,

q∗
i ∈ [0, 1]. This is, by definition, a probability such that player 1, the max player (and,

respectively, player 2, the min player) has a strategy to “force” reaching the 1-sink with

probability at least (respectively, at most) q∗
i , irrespective of what the other player’s strategy

is. In other words, these games are determined. Moreover q∗
i is a rational value whose

encoding size, with numerator and denominator in binary, is polynomial in the bit encoding

size of the SSG ([4]). Furthermore, both players have deterministic, memoryless (a.k.a., pure,

positional) optimal strategies in the game (which do not depend on the specific start node

s), in which for each vertex u ∈ V1 (or u ∈ V2) the max player (respectively the min player)

chooses the same specific outgoing edge every time the token visits vertex u, regardless of

the prior history of play prior to that visit to u.

Given an SSG, the goal is to compute the value of the game (starting at each vertex).

Condon ([4]) already showed that the problem of deciding whether the value is > 1/2 is in

NP ∩ co-NP, and it is a long-standing open problem whether this is in P-time. Moreover, the

search problem of computing the value for an SSG is known to be in both PLS and PPAD

(see [25] and [12]). In the full paper we show the following:

I Proposition 18. The following total search problem is polynomial-time reducible to Tarski:

Given an instance G of Condon’s simple stochastic game, and given a start vertex s = vi ∈ V ,

compute the exact (rational) value q∗
i of the game.

Shapley’s original stochastic games are more general, and involve simultaneous (independ-

ent) choices by the two players at each state (they are thus imperfect information games).

The value of the game is in general irrational (even when all the input data is rational). We

show that approximating the value of a Shapley game to within any given desired accuracy,

ε > 0 (given in binary as part of the input), is polynomial time reducible to Tarski.

Shapley’s games are a class of two-player zero-sum “stopping”, or equivalently “discoun-

ted”, stochastic games. An instance of Shapley’s stochastic game is given by G = (V, A, P, s),

where V = {v1, . . . , vn} is a set of n vertices (or “states”). A = (A1, A2, . . . , An) is a n-tuple

of matrices, where, for each vertex, vi ∈ V , Ai is an associated mi × ni reward matrix,

where mi and ni are positive integers denoting, respectively, the number of distinct “actions”

available to player 1 (the maximizer) and player 2 (the minimizer) at vertex vi, and where

for each pair of such actions, j ∈ [mi] and k ∈ [ni], Ai
j,k ∈ Q is a reward for player 1 (which

we assume, for computational purposes, is a rational number given as input by giving its

numerator and denominator in binary). Furthermore, for each vertex vi ∈ V , and each pair

of actions j ∈ [mi] and k ∈ [ni], P i
j,k ∈ [0, 1]n is a vector of probabilities on the vertices V ,

such that 0 ≤ P i
j,k(r), and

∑n
r=1 P i

j,k(r) < 1, i.e., the probabilities sum to strictly less than

1. Again, we assume each such probability P i
j,k(r) ∈ Q is a rational number given as input

in binary. Finally, the game specifies a designated start vertex s ∈ V .

A play of Shapley’s game transpires as follows: a token is initially placed on s, the

start node. Thereafter, during each “round” of play, if the token is currently on some node

vi ∈ V , both players simultaneously and independently choose respective actions j ∈ [mi] and

k ∈ [ni], and player 1 then receives the corresponding reward Ai
j,k from player 2; thereafter,

for each r ∈ [n] with probability P i
j,k(r) the token is moved from node vi to node vr, and

with the remaining positive probability qi
j,k = 1 − ∑n

r=1 P i
j,k(r) > 0, the game “halts”. Let

q = min{qi
j,k | i, j, k} > 0 be the minimum such halting probability at any state, and under

any pair of actions. Since q is positive, i.e., since there is positive probability ≥ q > 0 of

halting after each round, a play of the game eventually halts with probability 1. The goal

of player 1 (player 2) is to maximize (minimize, respectively) the expected total reward

that player 1 receives from player 2 during the entire play. A strategy for each player
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specifies, based in principle on the entire history of play thusfar, a probability distribution

on the actions available at the current token location. Given strategies σ1 and σ2 for player

1 and 2, respectively, let ri(σ1, σ2) denote the expected total payoff to player 1, starting

at node s = vi ∈ V . Shapley [21] showed that these games have a value, meaning that

supσ1
infσ2

ri(σ1, σ2) = infσ2
supσ1

ri(σ1, σ2). In fact, Shapley showed that both players have

optimal stationary (but randomized) strategies in such games, i.e., optimal strategies that

only depend on the current node where the token is located, not the prior history of play,

but where players can randomize on their choice of actions at each node.

Let r∗
i = supσ1

infσ2
ri(σ1, σ2) denote the game value starting at vertex s = vi ∈ V .7 We

show the following in the full paper.

I Proposition 19. The following total search problem is polynomial-time reducible to Tarski:

Given an instance G of Shapley’s stochastic game, and given ε > 0 (in binary), compute a

vector r′ ∈ Qn such that ‖r∗ − r′‖∞ < ε.

7 Conclusions and Discussion

We have studied the complexity of computing a Tarski fixed point for a monotone function

over a finite discrete Euclidean grid, and we have shown that this problem essentially captures

the complexity of computing a (ε-approximate) pure Nash equilibrium of a supermodular

game. We have also shown that computing the value of Condon’s and Shapley’s stochastic

games reduces to this Tarski fixed point problem, where the monotone function is given

succinctly (by a boolean circuit).

We have provided several upper bounds for the Tarski problem, showing that it is

contained in both PLS and PPAD. On the other hand, in the oracle model, for 2-dimensional

monotone functions f : [N ]2 → [N ]2, we have shown a Ω(log2 N) lower bound for the

(expected) number of (randomized) queries required to find a Tarski fixed point, which

matches the O(logd N) upper bound for d = 2.

A key question left open by our work is to improve the lower bounds in the oracle model

to higher dimensions. It is tempting to conjecture that for small (fixed) dimension d, a lower

bound close to Ω(logd N) holds. On the other hand, we know that this cannot hold for

arbitrary d and N , because we also have the dN upper bound, which is better than logd N

when d = ω( log N
log log N ).

Another interesting open question is the relationship between the Tarski problem and

the total search complexity class CLS [9], as well as the closely related recently defined

class EOPL (which stands for “End of Potential Line” [13, 14]). EOPL is contained in CLS,

which is contained in both PLS and PPAD. Is Tarski in CLS (or in EOPL)? That would

be remarkable, as the proof that it is in PPAD is currently quite indirect. Conversely, can

Tarski be proved to be CLS-hard (EOPL-hard)? (Recall from the previous section that some

key problems in CLS related to stochastic games do reduce to Tarski.)

Another question worth considering is the complexity of the unique-Tarski problem,

where the monotone function is further assumed (promised) to have a unique fixed point.

Is unique-Tarski easier than Tarski? Note that our Ω(log2 N) lower bound in the oracle

model, in dimension d = 2, applies on the family of “herringbone” functions which do have a

unique fixed point.

7 Note that we could also define r∗

i as r∗

i = maxσ1
minσ2

ri(σ1, σ2), due to the existence of optimal
strategies.
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Finally, in this paper we have studied the Tarski fixed point problem only in the setting

of monotone functions on the Euclidean grid [N ]d. Let us remark, however, that it is possible

to consider a more general black box model, for monotone functions f : L → L, over an

arbitrary finite lattice (L, �), where the lattice’s elements L ⊆ {0, 1}n are encoded as binary

strings of some given length n, and where we assume the entire lattice (L, �) is known

explicitly by the querier, who moreover has unbounded computational power, but who only

has oracle access to the monotone function f : L → L. In the full version of this paper

([11]), generalizing the logd N algorithm for Euclidean grids, we show that in this black box

model there is a deterministic algorithm that computes a fixed point of f : L → L using

O(logd(|L|)) queries to the function f , where d is the dimension of the lattice (L, �). The

dimension of a lattice (L, �), and more generally the dimension of any partial order, can

be defined as the smallest integer d ≥ 1 such that the relation � is the intersection of d

total orders on the same underlying set L. Equivalently, it is the smallest d ≥ 1 such that

there is an injective embedding of (L, �) in the Euclidean grid ([|L|]d, ≤), where ≤ is the

standard coordinate-wise partial order on [|L|]d. Note that a lower bound of Ω(log2(|L|))
queries for computing a fixed point of a monotone function f : L → L in this black box

model follows directly from our lower bound of Ω(log2 N) for monotone functions on the 2D

grid f : [N ]2 → [N ]2. At present, we do not know any better lower bound than Ω(log2(|L|))
in this black box model for arbitrary finite lattices.8
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