Tarski’s Theorem, Supermodular Games, and the
Complexity of Equilibria

Kousha Etessami
School of Informatics, University of Edinburgh, UK
kousha@inf.ed.ac.uk

Christos Papadimitriou
Dept. of Computer Science, Columbia University, NY, USA
christos@cs.columbia.edu

Aviad Rubinstein
Dept. of Computer Science, Stanford University, CA, USA
aviad@cs.stanford.edu

Mihalis Yannakakis
Dept of Computer Science, Columbia University, NY, USA
mihalis@cs.columbia.edu

—— Abstract

The use of monotonicity and Tarski’s theorem in existence proofs of equilibria is very widespread in
economics, while Tarski’s theorem is also often used for similar purposes in the context of verification.
However, there has been relatively little in the way of analysis of the complexity of finding the
fixed points and equilibria guaranteed by this result. We study a computational formalism based
on monotone functions on the d-dimensional grid with sides of length N, and their fixed points,
as well as the closely connected subject of supermodular games and their equilibria. It is known
that finding some (any) fixed point of a monotone function can be done in time log? N, and we
show it requires at least logZ N function evaluations already on the 2-dimensional grid, even for
randomized algorithms. We show that the general Tarski problem of finding some fixed point, when
the monotone function is given succinctly (by a boolean circuit), is in the class PLS of problems
solvable by local search and, rather surprisingly, also in the class PPAD. Finding the greatest or
least fixed point guaranteed by Tarski’s theorem, however, requires d - N steps, and is NP-hard
in the white box model. For supermodular games, we show that finding an equilibrium in such
games is essentially computationally equivalent to the Tarski problem, and finding the maximum
or minimum equilibrium is similarly harder. Interestingly, two-player supermodular games where
the strategy space of one player is one-dimensional can be solved in O(log N) steps. We also show
that computing (approximating) the value of Condon’s (Shapley’s) stochastic games reduces to the
Tarski problem. An important open problem highlighted by this work is proving a Q(logd N) lower
bound for small fixed dimension d > 3.
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1 Introduction

Equilibria are paramount in economics, because guaranteeing their existence in a particular
strategic or market-like framework enables one to consider “What happens at equilibrium?”
without further analysis. Equilibrium existence theorems are nontrivial to prove. The
best known example is Nash’s theorem [18], whose proof in 1950, based on Brouwer’s fixed
point theorem, transformed game theory, and inspired the Arrow-Debreu price equilibrium
results [1], among many others. Decades later, complexity analysis of these theorems and
corresponding solution concepts by computer scientists has created a fertile and powerful
field of research [19].

Not all equilibrium theorems in economics, however, rely on Brouwer’s fixed point theorem
for their proof (even though, in a specific sense made clear and proved in this paper, they
could have...). Many of the exceptions ultimately rely on Tarski’s fized point theorem [22],
stating that all monotone functions on a complete lattice have a fixed point — and in fact a
whole sublattice of fixed points with a largest and smallest element [23, 17, 24]. In contrast
to the equilibrium theorems whose proof relies on Brouwer’s fixed point theorem, there has
been relatively little complexity analysis of Tarski’s fixed point theorem and the equilibrium
results it enables. (We discuss prior related work at the end of this introduction.)

Here we present several results in this direction. Let [N] = {1,..., N}. To formulate the
basic problem, we consider a monotone function f on the d-dimensional grid [N]?, that is,
a function f : [N]¢ +— [N]? such that for all x,y € [N]¢, >y implies f(z) > f(y); in the
black-box oracle model, we can query this function with specific vectors z € [N]?; in the
white-box model we assume that the function is presented by a boolean circuit!. Thus, d
and N are the basic parameters to our model; it is useful to think of d as the dimensionality
of the problem, while IV is something akin to the inverse of the desired approximation e.

Tarski’s theorem in the grid framework is easy to prove. Let 1 = (1,...,1) denote
the (d-dimensional) all-1 vector. Consider the sequence of grid points 1, f(1), f(f(1)),
.., f{(1),.... From monotonicity of f, by induction on i we get, for all i > 0, f{(1) <

fiL(1). Unless a fixed point is arrived at, the sum of the coordinates must increase at
each iteration. Therefore, after at most dN iterations of f applied to 1, a fixed point is
found. In other words f4V (1) = fIN+1(1).

This immediately suggests an O(dN) algorithm. But an O(log? N) algorithm is also
known?: Consider the (d — 1)-dimensional function obtained by fixing the “input value”
in the d’th coordinate of the function f with some value r4 (initialize rq := [N/2]).
Find a fixed point z* € [N]¢~! of this (d — 1)-dimensional monotone function f(z,74)
(recursively). If the dth coordinate fq(z*,74) of f(2*,74), is equal to rq, then (2*,74)
is a fixed point of the overall function f, and we are done. Otherwise, a binary search
on the d’th coordinate is enabled: we need to look for a larger (smaller) value of ry if
fa(z*,rq) > rq (respectively, if fq(z*,74) < r4). By an easy induction, this establishes
the O(log? N') upper bound ([5]).

We conjecture that this algorithm is essentially optimal in the black box sense, for small
fixed constant dimension d. In Theorem 7 we prove this result for the d = 2 case. We
provide a class of monotone functions that we call the herringbones: two monotonic paths,

! Naturally, one could have addressed the more general problem in which the lattice is itself presented
in a general way through two functions meet and join; however, this framework (a) leads quickly and
easily to intractability; and (b) does not capture any more applications in economics than the one
treated here.

2 This algorithm appears to have been first observed in [5].
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one starting from 1 and the other from N, meeting at the fixed point, while all other
points in the N x N grid are mapped diagonally: f(z) =z + (—=1,+41) or = + (+1,-1),
whichever of the points is closer to the monotonic path that contains the fixed point. We
prove that any randomized algorithm needs to make Q(log® N) queries (in expectation)
to find the fixed point.

Can this lower bound result be generalized to fixed d > 37 This is a key question left
open by this paper. There are several obstacles to a proof establishing, e.g., a Q(log3 N)
lower bound in the 3-dimensional case (d = 3), and some possible ways for overcoming
them. First, it is not easy to identify a suitable “herringbone-like” function in three or
more dimensions — a monotone family of functions built around a path from 1 to N. It
nevertheless seems plausible that logd N should still be (close to) a lower bound on any
such algorithm (assuming of course that N is sufficiently larger than d, so that the dN
algorithm does not violate the lower bound). We prove one encouraging result in this
context: We give an alternative proof of the d = 2 lower bound, in which we establish
that any deterministic black-box algorithm for TARSKI in two dimensions must solve
a sequence of (log N) one-dimensional problems (Theorem 13), a result pointing to a
possible induction on d (recall that this is precisely the form of the logd N algorithm).
Tarski’s theorem further asserts that there is a greatest and a least fixed point, and
these fixed points are especially useful in the economic applications of the result (see for
example [17]). Tt is not hard to see, however, that finding these fixed points is NP-hard,
and takes 2(dN) time in the black box model (see Proposition 1).

In terms of complexity classes, the problem TARSKI is obviously in the class TFNP of
total function (total search) problems. But where exactly? We show (Theorem 4) that it
belongs in the class PLS of local optimum search problems.

Surprisingly, TARSKI is also in the class PPPAP of problems reducible to a Brouwer fixed
point problem (Theorem 5), and thus, by the known fact that the class PPAD is closed
under polynomial time Turing reductions ([2]) it is in PPAD (Corollary 6). This result
presents a heretofore unsuspected connection between two main sources of equilibrium
results in economics.

Supermodular games [23, 17, 24] — or games with strategic complementarities — comprise
a large and important class of economic models, with complete lattices as strategy spaces,
in which a player’s best response is a monotone function (or monotone correspondence)
of the other player’s strategies. They always have pure Nash equilibria due to Tarski’s
theorem. We show that finding an equilibrium for a supermodular game with (discrete)
Euclidean grid strategy spaces is essentially computationally equivalent to the problem
of finding a Tarski fixed point of a monotone map (Proposition 14 and Theorem 16). If
there are two players and one of them has a one-dimensional strategy space, we show that
a Nash equilibrium can be found in logarithmic time (in the size of the strategy spaces).
Stochastic games [21, 4]. We show that the problems of computing the (irrational) value
of Shapley’s discounted stochastic games to desired accuracy, and computing the exact
value of Condon’s simple stochastic games (SSG), are both P-time reducible to the Tarski
problem. The proofs employ known characterizations of the value of both Shapley’s
stochastic games and Condon’s SSGs in terms of monotone fixed point equations, which
can also be viewed as monotone “polynomially contracting” maps with a unique fixed
point, and from properties of polynomially contracting maps, see [12].

Prior related work. In recent years a number of technical reports and papers by Dang,
Qi, and Ye, have considered the complexity of computational problems related to Tarski’s
theorem [5, 7, 6]. In particular, in [5] the authors provided the already-mentioned log? N
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algorithm for computing a Tarski fixed point for a discrete map, f : [N]? — [N]¢, which is
monotone under the coordinate-wise order. In [5] they also establish that determining the
uniqueness of the fixed point of a monotone map under coordinate-wise order is coNP-hard,
and that uniqueness under lexicographic order is also coNP-hard (already in one dimension).
In [7] the authors studied another variant of the Tarski problem, namely computing another
fixed point of a monotone function in an expanded domain where the smallest point is a
fixed point; this variant is NP-hard (the claim in the paper that this problem is in PPA has
been withdrawn by the authors [8]). In earlier work, Echenique [10], studied algorithms
for computing all pure Nash equilibria in supermodular games (and games with strategic
complementaries) whose strategy spaces are discrete grids. Of course computing all pure
equilibria is harder than computing some pure equilibrium; indeed, we show that computing
the least (or greatest) pure equilibrium of such a supermodular game is already NP-hard
(Corollary 17). In earlier work Chang, Lyuu, and Ti [3] considered the complexity of Tarski’s
fixed point theorem over a general finite lattice given via an oracle for its partial order (not
given it explicitly) and given an oracle for the monotone function, and they observed that
the total number of oracle queries required to find some fixed point in this model is linear in
the number of elements of the lattice. They did not study monotone functions on euclidean
grid lattices, and their results have no bearing on this setting.

Organization of the paper. The rest of the paper is organized as follows. Section 2 provides
basic definitions on lattices and monotone functions, and presents some simple basic results.
In Section 3 we define the TARSKI problem and show that it is in PLS and PPAD. Section 4
proves the lower bound of log® N on black-box algorithms. Section 5 concerns supermodular
games. Section 6 reduces Condon’s and Shapley’s stochastic games to the TARSKI problem.
Finally, Section 7 concludes and discusses open problems. Several of the proofs are only
sketched or omitted; more details can be found in the full version of the paper [11].

2 Basics

A partial order (L, <) is a complete lattice if every nonempty subset S of L has a least upper
bound (or supremum or join, denoted sup S or V.S) and a greatest lower bound (or infimum
or meet, denoted inf S or AS) in L. A function f : L — L is monotone if for all pairs of
elements z,y € L, x < y implies f(z) < f(y). A point x € L is a fized point of f if f(x) = .
Tarski’s theorem ([22]) states that the set Fiz(f) of fixed points of f is a nonempty complete
lattice under the same partial order <; in particular, f has a greatest fixed point (GFP) and
a least fixed point (LFP).

In this paper we will take as our underlying lattice L a finite discrete Euclidean grid,
which we fix for simplicity to be the integer grid [N]¢, for some positive integers N, d, where
[N] = {1,...,N}. Comparison of points is componentwise, i.e. x < y if x; < y; for all
i=1,...,d. We will also consider the corresponding continuous box, [1, N ]d that includes all
real points in the box. Both, the discrete and continuous box are clearly complete lattices.

Given a monotone function f on the integer grid [IN]¢, the problem is to compute a fixed
point of f (any point in Fiz(f)). A generally harder problem is to compute specifically the
LFP of f or the GFP of f. We consider mostly the oracle model, in which the function f is
given by a black-box oracle, and the complexity of the algorithm is measured in terms of the
number of queries to the oracle. Alternatively, we can consider also an explicit model in which
f is given explicitly by a polynomial-time algorithm (a polynomial-size Boolean circuit),
and then the complexity of the algorithm is measured in the ordinary Turing model. Note
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that the number of bits needed to represent a point in the domain is dlog N, so polynomial
time here means polynomial in d and n = log N. The number N? of points in the domain is
exponential.

Tarski’s value iteration algorithm provides a simple way to compute the LFP of f: Starting

from the lowest point of the lattice, which here is the all-1 vector 1, apply repeatedly f.

This generates a monotonically increasing sequence of points 1 < f(1) < f2(1) < ... until a
fixed point is reached, which is the LFP of f. In every step of the sequence, at least one

coordinate is strictly increased, therefore a fixed point is reached in at most (N — 1)d steps.
In the worst case, the process may take that long, which is exponential in the bit size dlog N.

Similarly, the GFP can be computed by applying repeatedly f starting from the highest
point of the lattice, i.e., from the all-IV point, until a fixed point is reached.

Another way to compute some fixed point of a monotone function f (not necessarily the
LFP or the GFP) is by a divide-and-conquer algorithm. In one dimension, we can use binary
search: If the domain is the set L(I,h) = {x € Z|l < x < h} of integers between the lowest

point { and the highest point h, then compute the value of f on the midpoint m = (I + h)/2.

If f(m) = m then m is a fixed point; if f(m) < m then recurse on the lower half L(l,m),
and if f(m) > m then recurse on the upper half L(m,h). The monotonicity of f implies that
f maps the respective half interval into itself. Hence the algorithm correctly finds a fixed
point in at most log NV iterations, where N is the number of points.

In the general d-dimensional case, suppose that the domain is the set of integer points in the

box defined by the lowest point [ and the highest point h, i.e. L(l,h) = {x € Z%|l <z < h}.

Consider the set of points with d-th coordinate equal to m = (I + h)/2; their first d — 1
coordinates induce a (d — 1)-dimensional lattice L'(l,h) = {x € Z97YI; < x; < hy,i =
1,...d — 1}. Define the function g on L’(I,h) by letting g(z) consist of the first d — 1
components of f(xz,m). It is easy to see that g is a monotone function on L'(l, h). Recursively,
compute a fixed point x* of g. If fy(x*, m) = m, then (z*,m) is a fixed point of f (this holds
in particular if [ = h). If fq(z*,m) > m, then recurse on L(f(z*,m),h). If fa(z*,m) <m,
then recurse on L(l, f(z*,m)). In either case, monotonicity implies that if the algorithm
recurses, then f maps the smaller box into itself and thus has a fixed point in it. An easy
induction shows that the complexity of this algorithm is O((log N)?), ([5]).

Computing the least or the greatest fixed point is in general hard, even in one dimension,
both in the oracle and in the explicit model.

» Proposition 1. Computing the LFP or the GFP of an explicitly given polynomial-time
monotone function in one dimension is NP-hard. In the oracle model, the problem requires
Q(N) queries for a domain of size N.

Proof. We prove the claim for the LFP; the GFP is similar. Reduction from Satisfiability.

Given a Boolean formula ¢ in n variables, let the domain D = {0,1,...,2"}, and define the
function f as follows. For x < 2™ — 1, viewing = as an n-bit binary number, it corresponds
to an assignment to the n variables of ¢; let f(x) = x if the assignment x satisfies ¢, and let
f(z) = 2+ 1 otherwise. Define f(2") = 2". Clearly f is a monotone function and it can be
computed in polynomial time. If ¢ is not satisfiable then the LFP of f is 2", while if ¢ is
satisfiable then the LFP is not 2™.

For the oracle model, use the same domain D and let f map every x < 2" — 1 to x or
x4+ 1, and f(2") = 2". The LFP is not 2" iff there exists an x < 2™ — 1 such that f(z) = =z,
which in the oracle model requires trying all possible z < 2™ — 1. <

In the case of a continuous domain [1, N]¢, we may not be able to compute an exact
fixed point, and thus we have to be content with approximation. Given an ¢ > 0, an
e-approximate fixed point is a point x such that |f(z) — z| < ¢, where we use the L, (max)
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norm, i.e. |f(z) — x| = max{|fi(z) — ;|[i = 1,...,d}. In this context, polynomial time
means polynomial in log N, d, and log(1/¢) (the number of bits of the approximation). An
e-approximate fixed point need not be close to any actual fixed point of f. A problem that
is generally harder is to compute a point that approximates some actual fixed point, and
an even harder task is to approximate specifically the LFP or the GFP of f. Tarski’s value
iteration algorithm, starting from the lowest point converges in the limit to the LFP (and if
started from the highest point, it converges to the GFP), but there is no general bound on the
number of iterations needed to get within e of the LFP (or the GFP). The algorithm reaches
however an e-approximate fixed point within Nd/e iterations (note, this is exponential in
log N,log(1/e)).

It is easy to see that the approximate fixed point problem for the continuous case reduces
to the exact fixed point problem for the discrete case.

» Proposition 2. The problem of computing an e-approximate fixed point of a given monotone
function on the continuous domain [1, N|? reduces to the ezact fized point problem on a
discrete domain [N/e]?.

Proof. Given the monotone function f on the continuous domain D; = [1, N]%, consider
the discrete domain Dy = {x € Z|k < x; < Nk,i=1,...,d}, where k = [1/¢], and define
the function g on Dy as follows. For every x € Da, let g(x) be obtained from kf(x/k) by
rounding each coordinate to the nearest integer, with ties broken (arbitrarily) in favor of the
ceiling. Since f is monotone, g is also monotone. If x* is a fixed point of g, then kf(x*/k) is
within 1/2 of z* in every coordinate, and hence f(z*/k) is within 1/2k < € of 2*/k. Thus
x*/k is an e-approximate fixed point of f. <

3 Computing a Tarski fixed point is in PLS N PPAD

For a monotone function f : [N]? — [N]? (with respect to the coordinate-wise ordering),
we are interested in computing a fixed point x* € Fix(f), which we know exists by Tarski’s
theorem. We shall formally define this as a discrete total search problem, using a standard
construction to avoid the “promise” that f is monotone.

Recall that a general discrete total search problem (with polynomially bounded outputs),
I1, has a set of valid input instances Dy C {0,1}*, and associates with each valid input
instance I € Dy, a non-empty set Oy C {0, 1}Pu(1D of acceptable outputs, where pri(-) is
some polynomial. (So the bit encoding length of every acceptable output is polynomially
bounded in the bit encoding length of the input I.) We are interested in the complexity of
the following total search problem:

» Definition 3. Tarski:

Input: A function f : [N]* — [N]% with N = 2" for some n > 1, given by a boolean
circust, Cy, with (d-n) input gates and (d - n) output gates.

Output: Fither a (any) fized point x* € Fix(f), or else a witness pair of vectors
z,y € [N]? such that x <y and f(z) £ f(y).

Note Tarski is a total search problem: If f is monotone, it will contain a fixed point in [N]¢,
and otherwise it will contain such a witness pair of vectors that exhibit non-monotonicity. (If it
is non-monotone it may of course have both witnesses for non-monotonicity and fixed points.)
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Tarski € PLS

Recall that a total search problem, II, is in the complexity class PLS (Polynomial Local
Search) if it satisfies all of the following conditions (see [16, 26]):

1. For each valid input instance I € Dy C {0,1}* of II, there is an associated non-empty
set S; C {0, 1}1’('1') of solutions, and an associated payoff function®, g; : S; — Z. For
each s € Sy, there is an associated set of neighbors, N7(s) C Sy.

A solution s € Sy is called a local optimum (local maximum) if for all s’ € Nj(s),
g1(8) > gr(s’). We let Oy denote the set of all local optima for instance I. (Clearly Oy is
non-empty, because Sy is non-empty.)

2. There is a polynomial time algorithm, Ay, that given a string T € {0, 1}*, decides whether
I is a valid input instance I € Dy, and if so outputs some solution sy € Sjy.

3. There is a polynomial time algorithm, By, that given valid instance I € Dy and a string
s € {0,1}P1D | decides whether s € Sr, and if so, outputs the payoff g7(s).

4. There is a polynomial time algorithm, Hyy, that given valid instance I € Dy and s € Sy,
decides whether s is a local optimum, i.e., whether s € O, and otherwise computes a
strictly improving neighbor s € N(s), such that gr(s’) > gr(s).

» Theorem 4. Tarski € PLS.

Proof Sketch. Each valid input instance Iy € Drarsxs € {0,1}* of Tarski is an encoding of
a function f : [N]? — [N]? via a boolean circuit C'y. We can view the problem Tarski as a
polynomial local search problem, as follows:

Define the set of “solutions” associated with valid input I; to be the disjoint union
Sp; =87, USY,, where §7 = {z € [N]¢ |z < f(x)} and ST, =A{(z,y) € [N]? x [N]? |z <
yA f(z) £ f(y)}. Clearly, Fix(f) C S}f C S1;. Let the payoff function g;, : S;; — Z, be
defined as follows. For z € 57 , g1, (x) := Z?Zl ai; for (z,y) € S7,, g1, (2,y) := (dN)+1. We
define the neighbors of solutions as follows. For any x € S}f, if f(x) < f(f(z)) then let the

neighbors of 2 be the singleton-set Ny, () := {f(x)}. Note that in this case again f(x) € S7,-

Otherwise, if f(z) £ f(f(x)), then let N7, (z) := {(z, f(x))}. Note that in this case

(z, f(z)) € S7,, since f(x) £ f(f(x)). For (z,y) € S7,, let Ni,(z,y) := 0 be the empty set.
Thus, the set of local optima is by definition Oy, = {z € 7, | Z?Zl x; > Z?:l fiz)}u Sy

Observe that in fact Or, = Fix(f) U S}’f Indeed, if x € Oy, then z € S}f meaning
z < f(z), and also Z?:l T, > Z?zl fi(x). But this is only possible if f(z) = =z, ie.,
z € Fix(f). Likewise, if (z,y) € Or, then (z,y) € 57 . On the other hand, if z € Fix(f),
then clearly = € 7 and Zle x; = Z?zl fi(z), hence x € Oy,.

It is possible then to define polynomial time algorithms Atarski, Brarski @nd Hrarski, as
required in conditions 2, 3, 4 in the definition of PLS; see the full paper for details. It follows
that Tarski is in PLS. |

Tarski € PPAD

To show that Tarski € PPAD, we first show that Tarski € PPPAP meaning that the total
search problem Tarski can be solved by a polynomial time algorithm, M, with oracle access
to PPAD. The algorithm M should take an input Iy € {0,1}*, and firstly decide whether
it is a valid instance Iy € Drarexi, and if so it can make repeated, adaptive, calls to an

3 Or, cost function, if we were considering local minimization. But here we focus on local maximization.
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oracle for solving a PPAD total search problem. After at most polynomial time (and hence
polynomially many such oracle calls) as a function of the input size |I¢|, M should output
either an integer vector z € Fix(f), or else output a pair of vectors z,y € [N]¢ with z <y
and f(z) £ f(y), which witness non-monotonicity of the function f : [N]? — [N]? defined by
the input instance Iy.

Once we have established that Tarski € PPPAP | the fact that Tarski € PPAD will follow
as a simple corollary, using a prior result of Buss and Johnson [2], who showed that PPAD is
closed under polynomial-time Turing reductions.

There are a number of equivalent ways to define the total search complexity class PPAD.
Rather than give the original definition ([20]), we will use an equivalent characterization
of PPAD (a.k.a., linear-FIXP) from [12]. Informally, according to this characterization, a
discrete total search problem, II, is in PPAD if and only if it can be reduced in P-time to
computing a Brouwer fixed point of an associated “polynomial piecewise-linear” continuous
function that maps a non-empty convex polytope to itself. That is, every instance I of II can
be associated with a polynomial piecewise-linear function F; on a polytope W (I), such that
from any rational fixed point of F; we can obtain in polynomial time an acceptable output
for the instance I. By Brouwer’s theorem, the set Fix(Fy) = {x € W(I) | Fi(z) = x} of fixed
points of F is non-empty. Moreover, because of the “polynomial piecewise-linear” nature
of Fr, Fix(F;) must also contain a rational fixed point z*, with polynomial bit complexity
as a function of |I| (see [12], Theorem 5.2). See [12], section 5, for more details on this
characterization of PPAD.

Given two vectors | < h € Z%, let L(l,h) = {x € Z¢ |l < x < h}, and let B(l,h) = {x €
RY |1 <x<h}

» Theorem 5. Tarski € PPPAD,

Proof Sketch. Suppose we are given an instance Iy € Drarski of Tarski, corresponding to a
function f: [N]¢ — [N]¢ (given by a boolean circuit C}).

Let a =1 € Z% and b = N € Z¢, denote the all 1, and all N, vectors respectively. We
first extend the discrete function f to a (polynomial piecewise-linear) continuous function
f': B(a,b) — B(a,b), by a suitable linear interpolation. For this purpose we use a specific
simplicial subdivision of B(a,b), known as Freudenthal’s simplicial division [15], which has a
certain monotonicity property that is important for the proof. By Brouwer’s theorem, f’
has a fixed point in B(a,b), and since it is polynomial piecewise-linear, finding a fixed point
x* is in PPAD. However, f/ may have non-integer fixed points that do not correspond to
(and are not close to) any fixed point of f (indeed, since we do not apriori know that f is
monotone, there may not be any integer fixed points). Nevertheless, we show that finding
any such fixed point z* of f’ allows us to make progress towards either finding a discrete
fixed point of f (if it is monotone), or finding witnesses for a violation of monotonicity of f.

Specifically, we argue that there are two (integer) vertices u > v of the simplex of the
subdivision that contains x* such that, if f is monotone, then f(u) > u and f(v) < v (in all
coordinates). If f(u) 2 u, or f(v) £ v, then f is not monotone, and we show that we can
find a witness pair for the non-monotonicity of f.

Assume on the other hand that f(u) > u and f(v) < v. Note that in that case, if f is
monotone, then f maps the sublattice L(u,b) to itself, and it also maps the disjoint sublattice
L(a,v) to itself. Thus, if f is monotone, f must have an integer fixed point in both L(a,v)
and L(u,b).

So, we can choose the smaller of these two sublattices, consider the function f restricted
to that sublattice, and continue recursively to find a fixed point in that sublattice (if f is
monotone) or a violation of monotonicity. If f is not monotone, it is possible that it maps
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some points in the sublattice L(a,v) (or L(u, b)) to points outside. Therefore, in the recursive
call for the sublattice, when we define the piecewise-linear function f’ on the corresponding
box B(a,v) (or B(u,b)) we take the maximum with a and minimum with v (or v and b
respectively), i.e., threshold it, so that it maps the box to itself, and hence it is a Brouwer
function. When the PPAD oracle gives us back a fixed point for this (possibly thresholded)
function f/, we argue that if the thresholding mattered in this regard, then we can detect it
and produce a violating pair to monotonicity.

Every iteration decreases the total number of points in our current lattice by a factor of
2, from the number of points in the original lattice L(a,b). So after a polynomial number of
iterations in (d + log V), we either find a fixed point of f, or we find a witness pair of integer
vectors that witness the non-monotonicity of f. |

» Corollary 6. Tarski € PPAD.

Proof. This follows immediately from Theorem 5, combined with a result due to Buss and
Johnson ([2], Theorem 6.1), who showed that PPAD is closed under polynomial-time Turing
reductions. <

4 The 2-dimensional lower bound

Consider a monotone function defined on the N x N grid f : [N]? — [N]?. Let A be any
(randomized) black-box algorithm for finding a fixed point of the function by computing a
sequence of queries of the form f(x,y) =7; A can of course be adaptive in that any query can
depend in arbitrarily complex ways on the answers to the previous queries. For example, the
divide-and-conquer algorithm described in the introduction is a black box algorithm. The
following result suggests that this algorithm is optimal for two dimensions.

» Theorem 7. Given black-box access to a monotone function f : [N]> — [N]?, any (ran-
domized) algorithm for finding a fized point of f requires Q(log? N) queries (in expectation).

Below, we sketch a proof. For the full proof see [11]. The proof constructs a hard
distribution of such functions.

The basic construction

Given a monotone path from (1,1) to (N, N) on the N x N grid graph and a point (i*, j*)
on the path, we construct f as follows:
We let (i*,5*) be the unique fixed point of f,i.e. f(i*,5*) = (i*,5*).
At all other points on the path, f is directed towards the fixed point. For a point (z,y)
on the path that is dominated by (i*, j*), we let f(x,y) be the next point on the path,
ie. f(z,y)=(x+1,y) or f(z,y) = (z,y + 1). Similarly, for a point (z,y) that is on the
path and dominates (i*, j*), we let f(z,y) be the previous point on the path.
For all points outside the path, f is directed towards the path. Observe that the path
partitions [V ]2 into three (possibly empty) subsets: below the path, the path, and above
the path. For a point (x,y) below the path, we set f (z,y) = (x — 1,y + 1). Similarly,
for a point (z,y) above the path, f (z,y) = (z + 1,y — 1).

An example of such a function f : [5]* — [5]? is given in Figure 1.

> Claim 8. For any choice of path and point (i*, j*) on the path, f constructed as above is
monotone.
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Figure 1 A 2-dimensional “herringbone” monotone function.

Choosing the fixed point

In our hard distribution, once we fix a path, we choose (i*, j*) uniformly at random among
all points on the path.

> Claim 9. Given oracle access to f and the path, any (randomized) algorithm that finds a
point (i’, ') on the path that is within v N (Manhattan distance) from (i*, j*) requires (in
expectation) querying of f at € (log N) points on the path that are pairwise at least v N
apart.

Proof. Observe that once we fix the path, the values of f outside the path do not reveal
information about the location of (i*,j*). The lower bound now follows from the standard
lower bound for binary search. <

Choosing the central path

Our goal now is to prove that it is hard to find many distant points on the path. To simplify
the analysis, we will only consider the special case where all points (x,y) on the path satisfy

T—y € [—Nl/‘*,Nl/ﬂ. We partition the N x N grid into © (\/N) regions of the form
R, & {(:107 y)|z+y€la,a+ \/ﬁ)} Notice that each region intersects the path at exactly

V/N points. The path enters each region® at a point (z,y) for a value & — y chosen uniformly
at random among [—N'/4, N1/4]. We will argue (Lemma 12 below) that in order to find
a point on the path in any region R,, the algorithm must query the function at Q (log N)
points in R, or its neighboring regions.

Each region is further partitioned into C] (N 1/ 4) sub-regions
S, & {(z,y) |z +ye€ [a,a+2N1/4)}. For each region, we choose a special sub-region
uniformly at random. In all non-special sub-regions, the path proceeds while maintaining

4 For the first and last region, the path is obviously forced to start at (1,1) (respectively end at (N, N));
but those two regions can only account for two of the Q (log V) distant path points required by Claim
9, so we can safely ignore them.
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x —y fixed, up to £1. Inside the special sub-region, the value of x — y for path points changes
from the value chosen at random for the current region, to the value chosen at random for
the next region.

Given a choice of random x — y entry point for each region, and a random special

sub-region for each region, we consider an arbitrary path that satisfies the description above.

This completes the description of the construction.

> Claim 10. Finding (i.e., querying any point in) the special sub-region in region R, requires
) (log N) queries (in expectation) to points in R,.

Let S, and S, be the special sub-regions of two consecutive regions. Let

T2 {(z,y) |z +y € [a+2N"4b)} be the union of all the sub-regions between S, and S.

Observe that the value of x — y remains fixed (up to £1) for all points in the intersection of
the path with 7. Also, the construction of f outside S, UT U .S, does not depend at all on
this value.

> Claim 11. If the algorithm does not query any point in S, U Sy, then in order to find
(i.e., query) any point in the intersection of the path and T, the algorithm must query (in
expectation) € (log N) points from 7.

By Claim 10, finding S, or S, requires at least 2 (log N) queries to the regions containing
them. Therefore, the above two claims together imply:

» Lemma 12. In order to query a point in the intersection of the path and region R, any
algorithm must query at least Q (log N) points (in expectation) in R, or its neighboring
T€gIONs.

Therefore, in order to find 2 (log N) points on the path that are pairwise at least v N
apart, the algorithm must make a total of Q (log2 N ) queries (in expectation), completing
the proof of Theorem 7.

An alternative proof

In the full version of this paper (see [11]) we provide an alternative proof, showing that any
deterministic black box algorithm requires Q(log? N) oracle queries to find a Tarski fixed
point of a monotone function f : [N]?> — [N]? given by an oracle.

» Theorem 13. Any deterministic black box algorithm for finding a Tarski fized point in
two dimensions needs Q(log? N) queries.

The alternative proof appears to be more promising for generalization to higher dimensions.

However, the underlying monotone functions f : [N]? — [N]? on which the alternative lower

bound is established are again the “herringbone” functions used in the proof of Theorem 7.

The alternative proof uses a potential argument, and its gist amounts to showing that any
such algorithm must solve Q(log N) independent one-dimensional problems.

5 Supermodular Games

A brief intro to supermodular games

A supermodular game is a game in which the set S; of strategies of each player i is a complete
lattice, and the utility (payoff) functions u; satisfy certain conditions. Let k be the number
of players and let S = IT¥_, S; be the set of strategy profiles. As usual, we use s; to denote
a strategy for player i and s_; to denote a tuple of strategies for the other players. The
conditions on the utility functions u; are the following:
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C1. u;(s;,s—;) is upper semicontinuous in s; for fixed s_;, and it is continuous in s_; for
each fixed s;, and has a finite upper bound.

C2. wu;(s;,s—;) is supermodular in s; for fixed s_;.

C3. wu;(s;,s—;) has increasing differences in s; and s_;.

A function f : L — R is supermodular if for all x,y € L, it holds f(x) + f(y) <
flxAy)+ f(xVy). A function f: L1 x Ly — R, where Ly, Lo are lattices, has increasing
differences in its two arguments, if for all ' > x in L; and all ¥/ > y in Lo, it holds that
f(xl,yl) - f(x,y’) > f(xlvy) - f(x,y)

The broader class of games with strategic complementarities (GSC) relaxes somewhat the
conditions C2 and C3 into C2’, C3’ which depend only on ordinal information on the utility
functions, i.e. how the utilities compare to each other rather than their precise numerical
values. The supermodularity requirement of C2 is relaxed to quasi-supermodularity, where
a function f : L — R is quasi-supermodular if for all x,y € L, f(z) > f(z Ay) implies
fly) < f(z Vy), and if the first inequality is strict, then so is the second. The increasing
differences requirement of C3 is relaxed to the single-crossing condition, where a function
f L1 x Ly — R, satisfies the single crossing condition, if for all 2’ > z in L; and all
y' > y in Lo, it holds that f(2',y) > f(z,y) implies f(a',y") > f(z,v’), and if the first
inequality is strict then so is the second. All the structural and algorithmic properties below
of supermodular games hold also for games with strategic complementarities.

We will consider here games where each S; is a discrete (or continuous) finite box in
d; dimensions of size N in each coordinate. We let d = Zle d; be the total number of
coordinates. In the discrete case, condition C1 is trivial. Condition C2 is trivial if d; = 1 (all
functions in one dimension are supermodular), but nontrivial for 2 or more dimensions. C3
is nontrivial.

Supermodular games (and GSC) have pure Nash equilibria. Furthermore, the pure Nash
equilibria form a complete lattice [17], thus there is a highest and a lowest equilibrium.
Another important property is that the best response correspondence (;(s_;) for each
player i has the property that (1) both sup 8;(s—;) and inf 8;(s—;) are in 3;(s—;), and (2)
both functions sup 3;(-) and inf 3;(-) are monotone functions [24]. The function 3(s) =

(sup f1(5-1), . -.,sup Br(s_x)) of the supremum best responses is a monotone function from
S to itself, and its greatest fixed point is the highest Nash equilibrium of the game. The
function §(s) = (inf B1(s—1), ..., inf Bx(s_x)) of the infimum best responses is also a monotone

function, and its least fixed point is the lowest Nash equilibrium of the game.

Complexity of equilibrium computation in supermodular games

Given a supermodular game, the relevant problems include: (a) find a Nash equilibrium
(anyone)®, and (b) find the highest or the lowest equilibrium. In the case of continuous
domains, we again have to relax to an approximate solution. We assume that we have access
to a best response function, e.g. ((-) and/or B(+), as an oracle or as a polynomial-time
function. The monotonicity of these functions implies then easily the following:

5 Whenever we speak of finding a Nash Equilibrium (NE) for a supermodular game, we mean a pure NE,
as we know that these exists.
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» Proposition 14.

1. The problem of computing a pure Nash equilibrium of a k-player supermodular game over
a discrete finite strategy space Hle[N |9 reduces to the problem of computing a fived point
of a monotone function over [N]% where d = Zle d;. Computing the highest (or lowest)
Nash equilibrium reduces to computing the greatest (or lowest) fived point of a monotone
function.

2. For games with continuous box strategy spaces, TI¥_ [1, N]¢,
utility functions with Lipschitz constant K, the problem of computing an e-approximate
Nash equilibrium reduces to exact fized point computation point for a monotone function
with a discrete finite domain [N K /€]?.

and Lipschitz continuous

Proof.

1. Follows from the monotonicity of 8(-) and B(:). If s is fixed point of B(-), then s; =
sup Bi(s—;) is a best response to s_; for all ¢ (since sup 5;(s—;) € B;(s—;)), therefore s is a
Nash equilibrium of the game. The GFP of (+) is the highest Nash equilibrium. Similarly,
every fixed point of 5(-) is an equilibrium of the game, and the LFP of §(:) is the lowest
equilibrium. B B

2. Suppose that the utility functions are Lipschitz continuous with Lipschitz constant K.
To compute an e-approximate Nash equilibrium of the game, it suffices to find a €/K-
approximate fixed point of the function 3(-). For, if s is such an approximate fixed point
and s’ = f3(s), then |s’ — 5| < ¢/K in every coordinate. Hence |u;(s;, s_;) —ui(s},5_;)| < e,
and s} is a best response to s_;, hence s is an e-approximate equilibrium. Computing an
¢/ K-approximate fixed point of the function 3(-) on the continuous domain, reduces by
Proposition 2 to the exact fixed point problem for the discrete domain [N K/¢]%. <

Not every monotone function can be the (sup or inf) best response function of a game.
In particular, a best response function has the property that the output values for the com-
ponents corresponding to a player depend only on the input values for the other components
corresponding to the other players. Thus, for example, for two one-dimensional players, if the
function f(x,y) is the best response function of a game, it must satisfy fi(z,y) = fi1(2’,y) for
all z, 2’ y, and fo(z,y) = fo(x,y’) for all x,y,y’. This property helps somewhat in improving
the time needed to find a fixed point, and thus an equilibrium of the game, as noted below.
For example, in the case of two one-dimensional players, an equilibrium can be computed
in O(log N) time, instead of the Q(log® N) time needed to find a fixed point of a general
monotone function in two dimensions.

» Theorem 15. Given a supermodular game with two players with discrete strategy spaces
[N]%, i = 1,2 with access to the sup (or inf) best response function B(-) (or B(-)), we
can compute an equilibrium in time O((log N)™(d142))  More generally, for k players
with dimensions di,...,d, an equilibrium can be computed in time O((log N)d,), where
d = Zi dz — max; dz

Proof. Suppose that we have access to the sup best response 3 (). Assume without loss of
generality that the first player has the maximum dimension, d; = max; d;. We apply the
divide-and-conquer algorithm, but take advantage of the property of the monotone function
S that the first d; components of B(x) do not depend on the first d; coordinates of . As
a consequence, for any fixed assignment to the other coordinates, i.e. choice of a strategy
profile s_; for all the players except the first player, the induced function on the first d;
coordinates maps every point to the best response 1(s_1) of player 1. Thus the fixed point
of the induced function is simply 1 (s_1), it can be computed with one call to 3, and there
is no need to recurse on the first d; coordinates. It follows that the algorithm takes time at
most O((log N)¥), where d' = 3, d; — max; d;. <
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Conversely, we can reduce the fixed point computation problem for an arbitrary monotone

function to the equilibrium computation problem for a supermodular game with two players.

» Theorem 16.

1.

Given a monotone function f on [N]¢ (resp. [1,N]?) we can construct a supermodular
game G with two players, each with strategy space [N]? (resp. [1,N]¢), so that the pure
Nash equilibria of G correspond to the fized points of f.

More generally, the fized point problem for a monotone function f in d dimensions
can be reduced to the pure Nash equilibrium problem for a supermodular game with any
number k > 2 of players with any dimensions di, ..., dy, provided that ), d; > 2d and

Proof Sketch.

1.

We will define the utility functions wu; so that the best responses S; of both players are
functions (i.e. are unique). For player 1, the best response will be £ (y) = y, for all
y € [N]?, and for player 2, the best response will be 32(2) = f(z), for all z € [N]. If z is a
fixed point of f, then (z, x) is an equilibrium of the game, since 3(z, z) = (=, f(z)) = (z, x).
Conversely, if (z,y) is an equilibrium of the game, then S(z,y) = (z,y), therefore z =y
and y = f(z), hence x = f(x). Thus, the set of equilibria of G is {(x, x)|z € Fiz(f)}.
The utility function for player 1 is set to uy(z,y) = —(z — y)? = — z;lzl(a:j —y;)%. The
utility function for player 2 is ua(x,y) = —(f(z) —y)? = — Z?Zl(fj(ac) —y;)%. Obviously,
the best response functions are as stated above, f1(y) = y and B2(x) = f(z).

It can be verified that the utility functions wu;,us satisfy conditions C2 and C3 in the
definition of supermodular games (C2 with equality actually).

. Order the players in increasing order of their dimension, let T' be the ordering of all the

Zle d; coordinates consisting first of the set C'o(1) of coordinates of player 1 (in any
order), then the set C'o(2) of coordinates of player 2, and so forth. Number the coordinates
in the order T from 1 to Zle d;, and label them cyclically with the labels 1,...,d.

We define the (unique) best response function § as follows. For every coordinate j < d
(in the ordering T'), we set B;(z) = f;(z’), where 2’ is a subvector of = with d coordinates
that have distinct labels 1,...,d and which belong to different players than coordinate
j. The subvector 2’ is defined as follows. Suppose that coordinate j belongs to player r
(j € Co(r)), and let t = Z:ll d;. If d,. < d, then z’ is the subvector of x that consists
of the first ¢ coordinates (in the order T') and the coordinates ¢ + 1 + d, ..., 2d; note
that all these coordinates do not belong to player r. If d,. > d, then r < k (since
>;di —max; d; > d). In this case, let 2’ be the subvector of x consisting of the last d
coordinates (in T'); all of these belong to player k # r. For coordinates j > d, we set
Bj(z) = xjr, where j' € [d] is equal to 7 mod d, unless j’ belongs to the same player r
as j, in which case d, > d, hence r # k; in this case we set §;(x) = x;» for some (any)
coordinate j” of the last player k that is labeled j'.

We define the utility functions of the players so that they yield the above best response
function 3. Namely, we define the utility function of player i to be u;(x) = — ZjeCo(i) (x;—
B;(z))?. It can be verified as in part 1 that the utility functions satisfy conditions C2
and C3. It can be easily seen also that at any equilibrium of the game, all coordinates
with the same label must have the same value, and the corresponding d-vector x is a fixed
point of f. Conversely, for any fixed point x of f, the corresponding strategy profile of
the game is an equilibrium. <
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Since the 2-dimensional monotone fixed point problem requires Q(log2 N) queries by
Theorem 7, it follows that the equilibrium problem for two 2-dimensional players also requires
Q(log? N) queries, which is tight because it can be also solved in O(log? N) time by Theorem
15. Similarly, for higher dimensions d, if the monotone fixed point problem requires Q(logd N)
queries then the equilibrium problem for two d-dimensional players is also 9(logd N).

The same reduction from monotone functions to supermodular games of Theorem 16,
combined with Proposition 1 implies the hardness of computing the highest and lowest
equilibrium.

» Corollary 17. [t is NP-hard to compute the highest and lowest equilibrium of a supermodular
game with two 1-dimensional players with explicitly given polynomial-time best response (and
utility) functions.

6 Condon’s and Shapley’s stochastic games reduce to Tarski

In this section, we show that computing the exact (rational) value of Condon’s simple
stochastic games ([4]), as well as computing the (irrational) value of Shapley’s more general
(stopping/discounted) stochastic games [21] to within a given desired error € > 0 (given in
binary), is polynomial time reducible to Tarski.

A simple stochastic game® (SSG) is a 2-player zero-sum game, played on the vertices
of an edge-labeled directed graph, specified by G = (V,Vp, V1, V4, d), whose vertices V' =
{v1,...,v,} include two special sink vertices, a 0-sink, v,_1, and a 1-sink, v, and where
the rest of the vertices V' \ {v,—1,vn} = {v1,...,v,—2} are partitioned into three disjoint
sets Vp (random), Vi (max), and V5 (min). The labeled directed edge relation is § C
(V\{vn-1,vs}) x ((0,1]U L) x V. For each “random” node u € Vj, every outgoing edge
(4, Puv,v) € § is labeled by a positive probability p, . € (0,1], such that these probabilities
sum to 1, i.e., Z{Uevl(uva,v)eé} Pu,y = 1. We assume, for computational purposes, that
the probabilities p, ., are rational numbers (given as part of the input, with numerator and
denominator given in binary). The outgoing edges from “max” (V1) and “min” (V) nodes
have an empty label, “1”. We assume each vertex u € V \ {v,_1,v,} has at least one
outgoing edge. Thus in particular, for any node u € V; U V5 there exists an outgoing edge
(u, L,v) € § for some v € V. Finally, there is a designated start vertex s € V.

A play of the game transpires as follows: a token is initially placed on s, the start node.
Thereafter, during each “turn”, when the token is currently on a node u € V, unless v is
already a sink node (in which case the game halts), the token is moved across an outgoing
edge of u to the next node by whoever “controls” u. For a random node u € V, which is
controlled by “nature”, the outgoing edge is chosen randomly according to the probabilities
(Puw)vev. For u € Vi, the outgoing edge is chosen by player 1, the max player, who aims to
maximize the probability that the token will eventually reach the 1-sink. For u € V5, the
outgoing edge is chosen by player 2, the min player, who aims to minimize the probability
that the token will eventually reach the 1-sink. The game halts if the token ever reaches
either of the two sink nodes.

8 The definition we give here for SSGs is slightly more general than Condon’s original definition in [4].
Specifically, Condon allows edge probabilities of 1/2 only, and also assumed that the game is a “stopping
game”, meaning it halts with probability 1, regardless of the strategies of the two players. It is well
known that our more general definition does not alter the difficulty of computing the game value and
optimal strategies: solving general SSGs can be reduced in P-time to solving SSGs in Condon’s more
restricted form.
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For every possible start node s = v; € V, this zero-sum game has a well defined value,
g € [0,1]. This is, by definition, a probability such that player 1, the max player (and,
respectively, player 2, the min player) has a strategy to “force” reaching the 1-sink with
probability at least (respectively, at most) g}, irrespective of what the other player’s strategy
is. In other words, these games are determined. Moreover ¢ is a rational value whose
encoding size, with numerator and denominator in binary, is polynomial in the bit encoding
size of the SSG ([4]). Furthermore, both players have deterministic, memoryless (a.k.a., pure,
positional) optimal strategies in the game (which do not depend on the specific start node
s), in which for each vertex u € V; (or u € V3) the max player (respectively the min player)
chooses the same specific outgoing edge every time the token visits vertex u, regardless of
the prior history of play prior to that visit to w.

Given an SSG, the goal is to compute the value of the game (starting at each vertex).
Condon ([4]) already showed that the problem of deciding whether the value is > 1/2 is in
NP N co-NP, and it is a long-standing open problem whether this is in P-time. Moreover, the
search problem of computing the value for an SSG is known to be in both PLS and PPAD
(see [25] and [12]). In the full paper we show the following:

» Proposition 18. The following total search problem is polynomial-time reducible to Tarski:
Given an instance G of Condon’s simple stochastic game, and given a start vertex s = v; € V,
compute the exact (rational) value ¢f of the game.

Shapley’s original stochastic games are more general, and involve simultaneous (independ-
ent) choices by the two players at each state (they are thus imperfect information games).
The value of the game is in general irrational (even when all the input data is rational). We
show that approximating the value of a Shapley game to within any given desired accuracy,
€ > 0 (given in binary as part of the input), is polynomial time reducible to Tarski.

Shapley’s games are a class of two-player zero-sum “stopping”, or equivalently “discoun-
ted”, stochastic games. An instance of Shapley’s stochastic game is given by G = (V, A, P, s),
where V = {vy,...,v,} is a set of n vertices (or “states”). A = (A, A%,..., A") is a n-tuple
of matrices, where, for each vertex, v; € V, A’ is an associated m; x n; reward matriz,
where m; and n; are positive integers denoting, respectively, the number of distinct “actions”
available to player 1 (the maximizer) and player 2 (the minimizer) at vertex v;, and where
for each pair of such actions, j € [m;] and k € [n;], A? ; € Q is a reward for player 1 (which
we assume, for computational purposes, is a rational number given as input by giving its
numerator and denominator in binary). Furthermore, for each vertex v; € V, and each pair
of actions j € [m;] and k € [n,], P}, € [0,1]™ is a vector of probabilities on the vertices V,
such that 0 < Pj’k(r)7 and >, Jlk(r) < 1, i.e., the probabilities sum to strictly less than
1. Again, we assume each such probability " x(r) € Q is a rational number given as input
in binary. Finally, the game specifies a designated start vertex s € V.

A play of Shapley’s game transpires as follows: a token is initially placed on s, the
start node. Thereafter, during each “round” of play, if the token is currently on some node
v; € V, both players simultaneously and independently choose respective actions j € [m;] and
k € [n;], and player 1 then receives the corresponding reward Azk from player 2; thereafter,
for each 7 € [n] with probability P} (r) the token is moved from node v; to node v,, and
with the remaining positive probability q;k =1->"_, P;k(r) > 0, the game “halts”. Let
q= min{q;:’k | 4,7,k} > 0 be the minimum such halting probability at any state, and under
any pair of actions. Since ¢ is positive, i.e., since there is positive probability > ¢ > 0 of
halting after each round, a play of the game eventually halts with probability 1. The goal
of player 1 (player 2) is to maximize (minimize, respectively) the expected total reward
that player 1 receives from player 2 during the entire play. A strategy for each player
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specifies, based in principle on the entire history of play thusfar, a probability distribution
on the actions available at the current token location. Given strategies o1 and o9 for player
1 and 2, respectively, let r;(c1,02) denote the expected total payoff to player 1, starting
at node s = v; € V. Shapley [21] showed that these games have a value, meaning that
sup,,, infy, 75(01,09) = inf,, sup,, ri(o1,02). In fact, Shapley showed that both players have
optimal stationary (but randomized) strategies in such games, i.e., optimal strategies that
only depend on the current node where the token is located, not the prior history of play,
but where players can randomize on their choice of actions at each node.

Let rf = sup,, inf,, r;(01,02) denote the game value starting at vertex s = v; € V.7 We
show the following in the full paper.

» Proposition 19. The following total search problem is polynomial-time reducible to Tarski:
Given an instance G of Shapley’s stochastic game, and given € > 0 (in binary), compute a
vector r’ € Q™ such that ||r* —r'||« < €.

7 Conclusions and Discussion

We have studied the complexity of computing a Tarski fixed point for a monotone function
over a finite discrete Euclidean grid, and we have shown that this problem essentially captures
the complexity of computing a (e-approximate) pure Nash equilibrium of a supermodular
game. We have also shown that computing the value of Condon’s and Shapley’s stochastic
games reduces to this Tarski fixed point problem, where the monotone function is given
succinctly (by a boolean circuit).

We have provided several upper bounds for the Tarski problem, showing that it is
contained in both PLS and PPAD. On the other hand, in the oracle model, for 2-dimensional
monotone functions f : [N]? — [N]?, we have shown a Q(log? N) lower bound for the
(expected) number of (randomized) queries required to find a Tarski fixed point, which
matches the O(logd N) upper bound for d = 2.

A key question left open by our work is to improve the lower bounds in the oracle model
to higher dimensions. It is tempting to conjecture that for small (fixed) dimension d, a lower
bound close to Q(logd N) holds. On the other hand, we know that this cannot hold for
arbitrary d and N, because we also have the dIN upper bound, which is better than logd N
when d = w(lolg‘)iIgVN).

Another interesting open question is the relationship between the Tarski problem and

the total search complexity class CLS [9], as well as the closely related recently defined
class EOPL (which stands for “End of Potential Line” [13, 14]). EOPL is contained in CLS,
which is contained in both PLS and PPAD. Is Tarski in CLS (or in EOPL)? That would
be remarkable, as the proof that it is in PPAD is currently quite indirect. Conversely, can
Tarski be proved to be CLS-hard (EOPL-hard)? (Recall from the previous section that some
key problems in CLS related to stochastic games do reduce to Tarski.)

Another question worth considering is the complexity of the unique-Tarski problem,

where the monotone function is further assumed (promised) to have a unique fixed point.

Is unique-Tarski easier than Tarski? Note that our Q(log® N) lower bound in the oracle
model, in dimension d = 2, applies on the family of “herringbone” functions which do have a
unique fixed point.

7 Note that we could also define r} as rj = max,, miny, r;(01,02), due to the existence of optimal
strategies.
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Finally, in this paper we have studied the Tarski fixed point problem only in the setting
of monotone functions on the Euclidean grid [N]?. Let us remark, however, that it is possible
to consider a more general black box model, for monotone functions f : L — L, over an
arbitrary finite lattice (L, <), where the lattice’s elements L C {0,1}" are encoded as binary
strings of some given length n, and where we assume the entire lattice (L, <) is known
explicitly by the querier, who moreover has unbounded computational power, but who only
has oracle access to the monotone function f : L — L. In the full version of this paper
([11]), generalizing the log? N algorithm for Euclidean grids, we show that in this black box
model there is a deterministic algorithm that computes a fixed point of f : L — L using
O(log?(|L|)) queries to the function f, where d is the dimension of the lattice (L, <). The
dimension of a lattice (L, <), and more generally the dimension of any partial order, can
be defined as the smallest integer d > 1 such that the relation < is the intersection of d
total orders on the same underlying set L. Equivalently, it is the smallest d > 1 such that
there is an injective embedding of (L, <) in the Euclidean grid ([|L[]%, <), where < is the
standard coordinate-wise partial order on [|L|]%. Note that a lower bound of Q(log?(|L|))
queries for computing a fixed point of a monotone function f : L — L in this black box
model follows directly from our lower bound of Q(log? N) for monotone functions on the 2D
grid f : [N]? — [N]2. At present, we do not know any better lower bound than Q(log?(|L|))
in this black box model for arbitrary finite lattices.®
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