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—— Abstract

Many modern parallel systems, such as MapReduce, Hadoop and Spark, can be modeled well by the
MPC model. The MPC model captures well coarse-grained computation on large data — data is
distributed to processors, each of which has a sublinear (in the input data) amount of memory and
we alternate between rounds of computation and rounds of communication, where each machine can
communicate an amount of data as large as the size of its memory. This model is stronger than the
classical PRAM model, and it is an intriguing question to design algorithms whose running time is
smaller than in the PRAM model.

In this paper, we study two fundamental problems, 2-edge connectivity and 2-vertex connectivity
(biconnectivity). PRAM algorithms which run in O(logn) time have been known for many years.
We give algorithms using roughly log diameter rounds in the MPC model. Our main results are, for
an n-vertex, m-edge graph of diameter D and bi-diameter D', 1) a O(log D loglog,, ,,, n) parallel
time 2-edge connectivity algorithm, 2) a O(log D log? log,,/, n + log D’ log log,,,/,, n) parallel time
biconnectivity algorithm, where the bi-diameter D’ is the largest cycle length over all the vertex
pairs in the same biconnected component. Our results are fully scalable, meaning that the memory
per processor can be O(n6) for arbitrary constant 6 > 0, and the total memory used is linear in the
problem size. Our 2-edge connectivity algorithm achieves the same parallel time as the connectivity
algorithm of [4]. We also show an Q(log D) conditional lower bound for the biconnectivity problem.
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1 Introduction

The success of modern parallel and distributed systems such as MapReduce [16, 17], Spark [41],
Hadoop [39], Dryad [23], together with the need to solve problems on massive data, is
driving the development of new algorithms which are more efficient and scalable in these
large-scale systems. An important theoretical problem is to develop models which are good
abstractions of these computational frameworks. The Massively Parallel Computation (MPC)
model [25, 21, 11, 3, 9, 15, 4] captures the capabilities of these computational systems while
keeping the description of the model itself simple. In the MPC model, there are machines
(processors), each with ©(N%) local memory, where N denotes the size of the input and
5 € (0,1). The computation proceeds in rounds, where each machine can perform unlimited
local computation in a round and exchange O(N?) data at the end of the round. The parallel
time of an algorithm is measured by the total number of computation-communication rounds.
The MPC model is a variant of the Bulk Synchronous Parallel (BSP) model [38]. It is also a
more powerful model than the PRAM since any PRAM algorithm can be simulated in the
MPC model [25, 21] while some problem can be solved in a faster parallel time in the MPC
model. For example, computing the XOR, of N bits takes O(1/§) parallel time in the MPC
model but needs near-logarithmic parallel time on the most powerful CRCW PRAM [10].

A natural question to ask is: which problems can be solved in faster parallel time in
the MPC model than on a PRAM? This question has been studied by a line of recent
papers [25, 19, 29, 3, 1, 6, 22, 15, 7, 14, 13, 32, 20]. Most of these results studied the graph
problems, which are the usual benchmarks of parallel/distributed models. Many graph
problems such as graph connectivity [35, 33, 30], graph biconnectivity [37, 36], maximal
matching [26], minimum spanning tree [27] and maximal independent set [31, 2] can be
solved in the standard logarithmic time in the PRAM model, but these problems have been
shown to have a better parallel time in the MPC model.

In addition, we hope to develop fully scalable algorithms for the graph problems, i.e.,
the algorithm should work for any constant § > 0. The previous literatures show that a
graph problem in the MPC model with large local memory size may be much easier than
the same problem in the MPC model but with a smaller local memory size. In particular,
when the local memory size per machine is close to the number of vertices n, many graph
problems have efficient algorithms. For example, if the local memory size per machine is
n/log®W
be solved in O(loglogn) parallel time. If the local memory size per machine is (n), then
the MPC model meets the congested clique model [12]. In this setting, the connectivity
problem and the minimum spanning tree problem can be solved in O(1) parallel time [24].
If the local memory size per machine is n't%(1) many graph problems such as maximal
matching, approximate weighted matchings, approximate vertex and edge covers, minimum
cuts, and the biconnectivity problem can be solved in O(1) parallel time [29, 8]. The
landscape of graph algorithms in the MPC model with small local memory is more nuanced
and challenging for algorithm designers. If the local memory size per machine is n' =%
then the best connectivity algorithm takes parallel time O(log D loglogn) where D is the
diameter of the graph [4], and the best approximate maximum matching algorithm takes
parallel time O(y/Iogn) [32].

Therefore, the main open question is: which kind of the graph problems can have faster
fully scalable MPC algorithms than the standard logarithmic PRAM algorithms?

Two fundamental graph problems in graph theory are 2-edge connectivity and 2-vertex
connectivity (biconnectivity). In this work, we studied these two problems in the MPC model.
Consider an n-vertex, m-edge undirected graph G. A bridge of G is an edge whose removal

n, the connectivity problem [7] and the approximate matching problem [5] can
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increases the number of connected components of G. In the 2-edge connectivity problem, the
goal is to find all the bridges of G. For any two different edges e, e’ of G, e, ¢’ are in the same
biconnected component (block) of G if and only if there is a simple cycle which contains
both e, e’. If we define a relation R such that eRe’ if and only if e = ¢’ or e, ¢’ are contained
by a simple cycle, then R is an equivalence relation [18]. Thus, a biconnected component is
an induced graph of an equivalence class of R. In the biconnectivity problem, the goal is to
output all the biconnected components of G. We proposed faster, fully scalable algorithms
for the both 2-edge connectivity problem and the biconnectivity problem by parameterizing
the running time as a function of the diameter and the bi-diameter of the graph. The
diameter D of G is the largest diameter of its connected components. The definition of
bi-diameter is a natural generalization of the definition of diameter. If vertices u,v are in
the same biconnected component, then the cycle length of (u,v) is defined as the minimum
length of a simple cycle which contains both w and v. The bi-diameter D’ of G is the largest
cycle length over all the vertex pairs (u,v) where both u and v are in the same biconnected
component. Our main results are 1) a fully scalable O(log D loglog,, ,, n) parallel time
2-edge connectivity algorithm, 2) a fully scalable O(log D log? log,, /n v+ log D’ loglog,, /n )
parallel time biconnectivity algorithm. Our 2-edge connectivity algorithm achieves the same
parallel time as the connectivity algorithm of [4]. We also show an Q(log D’) conditional
lower bound for the biconnectivity problem.

1.1 The Model

Our model of computation is the Massively Parallel Computation (MPC) model [25, 21, 11].

Consider two non-negative parameters v > 0,0 > 0. In the (v, §)-MPC model [4], there
are p machines (processors) each with local memory size s, where p-s = O(N1+7), s = O(N?)
and N denotes the size of the input data. Thus, the space per machine is sublinear in NV, and
the total space is only an O(N7) factor more than the input size. In particular, if v = 0, the
total space available in the system is linear in the input size N. The space size is measured
by words each containing ©(log(s - p)) bits. Before the computation starts, the input data is
distributed on ©(N/s) input machines. The computation proceeds in rounds. In each round,
each machine can perform local computation on its local data, and send messages to other
machines at the end of the round. In a round, the total size of messages sent/received by a
machine should be bounded by its local memory size s = ©(N?). For example, a machine can
send s size 1 messages to s machines or send a size s message to 1 machine in a single round.
However, it cannot broadcast a size s message to every machine. In the next round, each
machine only holds the received messages in its local memory. At the end of the computation,
the output data is distributed on the output machines. An algorithm in this model is called
a (7v,0)-MPC algorithm. The parallel time of an algorithm is the total number of rounds
needed to finish its computation. In this paper, we consider ¢ an arbitrary constant in (0, 1).

1.2 Our Results

Our main results are efficient MPC algorithms for 2-edge connectivity and biconnectivity
problems. In our algorithms, one important subroutine is computing the Depth-First-Search
(DFS) sequence [4] which is a variant of the Euler tour representation proposed by [37, 36] in
1984. We show how to efficiently compute the DFS sequence in the MPC model with linear
total space. Conditioned on the hardness of the connectivity problem in the MPC model, we
prove a hardness result on the biconnectivity problem.
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For 2-edge connectivity and biconnectivity, the input is an undirected graph G = (V, E)
with n = |V| vertices and m = |E| edges. N = n + m denotes the size of the representation
of G, D denotes the diameter of G, and D’ denotes the bi-diameter of G. We state our
results in the following.

Biconnectivity. In the biconnectivity problem, we want to find all the biconnected compon-
ents (blocks) of the input graph G. Since the biconnected components of G define a partition
on E, we just need to color each edge, i.e., at the end of the computation, Ve € F| there is a
unique tuple (z,¢) with = = e stored on an output machine, where ¢ is called the color of e,
such that the edges e, e are in the same biconnected components if and only if they have
the same color.

» Theorem 1 (Biconnectivity in MPC). For any v € [0,2] and any constant § € (0,1), there
is a randomized (v, 8)-MPC algorithm which outputs all the biconnected components of the
logn

graph G in O (1ogD -log? oavir Ty + log D' - log bg&@{%) parallel time. The success
probability is at least 0.95. If the algorithm fails, then it returns FAIL.

The worst case is when the input graph is sparse and the total space available is linear in the
input size, i.e., N =n+m = O(n) and v = 0. In this case, the parallel running time of our
algorithm is O(log D - log® logn +log D’ - loglog n). If the graph is slightly denser (m = n!*¢
for some constant ¢ > 0), or the total space is slightly larger (v > 0 is a constant), then we
obtain O(log D + log D') time.

A cut vertex (articulation point) in the graph G is a vertex whose removal increases the
number of connected components of G. Since a vertex v is a cut vertex if and only if there
are two edges e, es which share the endpoint v and ey, es are not in the same biconnected
component, our algorithm can also find all the cut vertices of G.

2-Edge connectivity. In the 2-edge connectivity problem, we want to output all the bridges
of the input graph G. Since an edge is a bridge if and only if each of its endpoints is either a
cut vertex or a vertex with degree 1, the 2-edge connectivity problem should be easier than
the biconnectivity problem. We show how to solve 2-edge connectivity in the same parallel
time as the algorithm proposed by [4] for solving connectivity.

» Theorem 2 (2-Edge connectivity in MPC). For any v € [0,2] and any constant § € (0,1),
there is a randomized (v,0)-MPC algorithm which outputs all the bridges of the graph G

in O (logD -log bg(ll\(;l%) parallel time. The success probability is at least 0.97. If the
algorithm fails, then it returns FAIL.

DFS sequence. A rooted tree with a vertex set V' can be represented by n = |V| pairs
(v1,par(v1)), (v, par(va)), - - -, (vn, par(v,)) where par : V.— V is a set of parent pointers,
i.e., for a non-root vertex v, par(v) denotes the parent of v, and for the root vertex v,
par(v) = v. We show an algorithm which can compute the DFS sequence (Definition 6) of
the rooted tree in the MPC model with linear total space.

» Theorem 3 (DFS sequence of a tree in MPC). Given a rooted tree represented by a set
of parent pointers par : V. — V, there is a randomized (0,8)-MPC algorithm which outputs
the DFS sequence in O(log D) parallel time, where 6 € (0,1) is an arbitrary constant, D is
the depth of the tree. The success probability is at least 0.99. If the algorithm fails, then it
returns FAIL.
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Conditional hardness for biconnectivity. A conjectured hardness for the connectivity prob-
lem is the one cycle vs. two cycles conjecture: for any v > 0 and any constant § € (0, 1), any
(7, 6)-MPC algorithm requires Q(logn) parallel time to determine whether the input n-vertex
graph is a single cycle or contains two disjoint length n/2 cycles. This conjectured hardness
result is widely used in the MPC literature [25, 11, 28, 34, 40]. Under this conjecture, we
show that Q(log D) parallel time is necessary for the biconnectivity problem, and this is
true even when D = O(1), i.e., the diameter of the graph is a constant.

» Theorem 4 (Hardness of biconnectivity in MPC). For any v > 0 and any constant 6 € (0,1),
unless there is a (v, 8)-MPC algorithm which can distinguish the following two instances: 1)
a single cycle with n vertices, 2) two disjoint cycles each contains n/2 vertices, in o(logn)
parallel time, any (v,8)-MPC algorithm requires Q(log D') parallel time for testing whether
a graph G with a constant diameter is biconnected.

1.3 Our Techniques

Biconnectivity. At a high level our biconnectivity algorithm is based on a framework
proposed by [36]. The main idea is to construct a new graph and reduce the problem of
finding biconnected components of G to the problem of finding connected components of the
new graph G’. At first glance, it should be efficiently solved by the connectivity algorithm [4].
However, there are two main issues: 1) since the parallel time of the MPC connectivity
algorithm of [4] depends on the diameter of the input graph, we need to make the diameter
of G’ small, 2) we need to construct G’ efficiently. Let us first consider the first issue, and
we will discuss the second issue later.

We give an analysis of the diameter of G’ = (V’/, E’) constructed by [36]. Without loss of
generality, we can suppose the input G = (V, E) is connected. Each vertex in G’ corresponds
to an edge of G. Let T be an arbitrary spanning tree of G with depth d. Each non-tree
edge e can define a simple cycle C, which contains the edge e and the unique path between
the endpoints of e in the tree T. Thus, the length of C, is at most 2d + 1. If there is a
such cycle containing any two tree edges (u,v), (v, w), vertices (u,v), (v, w) are connected in
G’. For each non-tree edge e, we connect the vertex e to the vertex ¢’ in graph G’ where
¢’ is an arbitrary tree edge in the cycle C.. By the construction of G’, any e, e’ from the
same connected components of G’ should be in the same biconnected components of G. Now
consider arbitrary two edges e, ¢’ in the same biconnected component of G. There must be
a simple cycle C' which contains both edges e, ¢’ in G. Since all the simple cycles defined
by the non-tree edges are a cycle basis of G [18], the edge set of C can be represented by
the xor sum of all the edge sets of k basis cycles C1,Cs, -+ ,Cy where C; is a simple cycle

defined by a non-tree edge e; on the cycle C. k is upper bounded by the bi-diameter of G.

Furthermore, we can assume C; intersects C; 1. There should be a path between e, e’ in G,
and the length of the path is at most Zle |Ci] < O(k - d). So, the diameter of G’ is upper
bounded by O(k - d). Thus, according to [4], we can find the connected components of G’ in
~ (log k + log d) parallel time, where d and k are upper bounded by the diameter and the
bi-diameter of G respectively.

Now let us consider how to construct G’ efficiently. The bottleneck is to determine
whether the tree edges (u,v), (v, w) should be connected in G’ or not. Suppose w is the
parent of v and v is the parent of u. The vertex (u,v) should connect to the vertex (v, w) in
G’ if and only if there is a non-tree edge that connects a vertex x in the subtree of v and
a vertex y which is on the outside of the subtree of v. For each vertex x, let lev(z) be the
minimum depth of the least common ancestor (LCA) of (x,y) over all the non-tree edges
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(z,y). Then (u,v) should be connected to (v,w) in G’ if and only if there is a vertex z in
the subtree of u in G such that lev(x) is smaller than the depth of v. Since the vertices in a
subtree should appear consecutively in the DFS sequence, this question can be solved by
some range queries over the DFS sequence. Next, we will discuss how to compute the DFS
sequence of a tree.

DFS sequence. The DFS sequence of a tree is a variant of the Euler tour representation of
the tree. For an n-vertex tree T', [36] gives an O(logn) parallel time PRAM algorithm for the
Euler tour representation of T'. However, since their construction method will destroy the
tree structure, it is hard to get a faster MPC algorithm based on this framework. Instead, we
follow the leaf sampling framework proposed by [4]. Although the DFS sequence algorithm
proposed by [4] takes O(logd) time where d is the depth of T, it needs Q(nlogd) total
space. The bottleneck is the subroutine which needs to solve the least common ancestors
problem and generate multiple path sequences. The previous algorithm uses the doubling
algorithm for the subroutine, i,e., for each vertex v, they store the 2°-th ancestor of v for
every i € [[logd]]. This is the reason why [4] cannot achieve the linear total space. We show
how to compress the tree T' into a new tree T’ which only contains at most n/[log d] vertices.
We argue that applying the doubling algorithm on 7" is sufficient for us to find the DFS
sequence of T'.

2-Edge connectivity. Without loss of generality, we can assume the input graph G is
connected. Consider a rooted spanning tree T' and an edge e = (u,v) in G. Suppose the
depth of u is at least the depth of v in 7', i.e., v cannot be a child of u. The edge e is not a
bridge if and only if either e is a non-tree edge or there is a non-tree edge (z,y) connecting
the subtree of u and a vertex on the outside of the subtree of u. Similarly, the second case
can be solved by some range queries over the DFS sequence of T'.

Conditional hardness for biconnectivity. We want to reduce the connectivity problem to
the biconnectivity problem. For an undirected graph G, if we add an additional vertex
v* and connects v* to every vertex of G, then the diameter of the resulting graph G’ is
at most 2 and each biconnected components of G’ corresponds to a connected component
of G. Furthermore, the bi-diameter of G’ is upper bounded by the diameter of G plus 2.
Therefore, if the parallel time of an algorithm A’ for finding the biconnected components
of G’ depends on the bi-diameter of G’, there exists an algorithm A which can find all the
connected components of G in the parallel time which has the same dependence on the
diameter of G.

1.4 A Roadmap

Section 2 introduces the notation and some useful definitions. Section 3 describes the offline
algorithms for 2-edge connectivity and biconnectivity. It also includes some crucial properties
of the algorithms. In Section 4, we show an linear space offline algorithm to find the DFS
sequence of a tree. All of these offline algorithms can be implemented in the MPC model
efficiently. Section 5 contains the conditional hardness result for the biconnectivity problem
in the MPC model. For the MPC implementations and all the missing technical proofs, we
refer readers to the full version of the paper.
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2 Preliminaries

2.1 Notation

We follow the notation of [4]. [n] denotes the set of integers {1,2,--- ,n}.

Diameter and bi-diameter. Consider an undirected graph G with a vertex set V and an
edge set E. For any two vertices u, v, we use distg(u, v) to denote the distance between u and
v in graph G. If u, v are not in the same (connected) component of G, then distg (u,v) = co.
The diameter diam(G) of G is the largest diameter of its connected components, i.e.,
diam(G) = max, yevdiste (u,v)£00 dista(u, v). (v1,va,- -+, vx) € V¥ is a cycle of length k — 1
if v1 = v, and Vi € [k — 1], (v;,v;41) € E. We say a cycle (vy, v, ,v) is simple if & > 4
and each vertex only appears once in the cycle except v; (vg). Consider two different vertices
u,v € V. We use cycleng(u,v) to denote the minimum length of a simple cycle which
contains both vertices u and v. If there is no simple cycle which contains both v and v,
cycleng(u,v) = oco. cycleng(u,u) is defined as 0. The bi-diameter of G, bi-diam(G), is
defined as max, ,ev:cycleng (u,v) 00 CYCleNG (u, V).

Representation of a rooted forest. Let V' denote a set of vertices. We represent a rooted
forest in the same manner as [4]. Consider a mapping par: V — V. For i € Nyg and v € V|
we define par® (v) as par(par®~(v)), and par(®) (v) is defined as v itself. If Vv € V,3i > 0
such that par(® (v) = par*t1)(v), then we call par a set of parent pointers on V. For v € V,
if par(v) = v, then we say v is a root of par. Notice that par actually can represent a rooted
forest, thus par can have more than one root. The depth of v € V', dep (. is the smallest
i € N such that par(?)(v) is the same as par**1)(v). The root of v € V, par(®)(v) is defined
as par(dCPPar(”))(v). The depth of par, dep(par) is defined as max, ey dep,,, (v).

Ancestor and path. For two vertices u,v € V, if 3i € N such that u = par(?(v), then v is
an ancestor of v (in par). If w is an ancestor of v, then the path P(v,u) (in par) from v to u
is a sequence (v, par(v), par® (v),--- ,u) and the path P(u,v) is the reverse of P(v,u), i.e.,
P(u,v) = (u,--- ,par®(v), par(v),v). If an ancestor u of v is also an ancestor of w, then
u is a common ancestor of (v, w). Furthermore, if a common ancestor u of (v,w) satisfies
dep,,, (u) > dep,,, (z) for any common ancestor z of (v, w), then u is the lowest common
ancestor (LCA) of (v,w).

Children and leaves. For any non-root vertex u of par, u is a child of par(u). For any
vertex v € V, child,a,(v) denotes the set of all the children of v, i.e., childpya,(v) = {u €
V | u # v,par(u) = v}. If u is the k*® smallest vertex in the set child,a,(v), then we define
rankpsy(u) = k, or in other words, u is the k™ child of v. If v is a root vertex of par, then
rankp,, (v) is defined as 1. childpa, (v, k) denotes the k'" child of v. For simplicity, if par
is clear in the context, we just use child(v), rank(v) and child(v, k) to denote childp,,(v),
rankp,, (v) and childya, (v, k) for short. If child(v) = @, then v is a leaf of par. We denote
leaves(par) as the set of all the leaves of par, i.e., leaves(par) = {v | child(v) = 0}.

2.2 Depth-First-Search Sequence

The Euler tour representation of a tree is proposed by [37, 36]. It is a crucial building block
in many graph algorithms including biconnectivity algorithms. The Depth-First-Search
(DFS) sequence [4] of a rooted tree is a variant of the Euler tour representation. Let us first
introduce some relevant concepts of the DFS sequence.
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» Definition 5 (Subtree [4]). Consider a set of parent pointers par : V. — V on a vertex set
V. Let v be a vertex in V', and let V! = {u € V' | v is an ancestor of u}. par’ : V' = V' is a
set of parent pointers on V'. If Vu € V' \ {v}, par’(u) = par(u) and par’(v) = v, then par’
is a subtree of v in par. Foru € V', we say u is in the subtree of v.

The definition of the DFS sequence is the following;:

» Definition 6 (DFS sequence [4]). Consider a set of parent pointers par : V. — V on a
verter set V. Let v be a vertex in V. If v is a leaf in par, then the DFS sequence of the
subtree of v is (v). Otherwise, the DFS sequence of the subtree of v is defined recursively as

(’U, a1,1,01,2,"* ,A1,ny,V,021,022," " ;A2 ny, Uyt Ak 1,02, " 7ak,nkvv)7

where k = | child(v)| and Vi € [k], (i1, 0i2, - ,Qin,;) is the DFS sequence of the subtree of
child(v, 1), i.e., the it child of v.

If par : V. — V has a unique root v, then we define the DFS sequence of par as the DFS
sequence of the subtree of v. By the definition of the DFS sequence, for any two consecutive
elements a; and a;y1 in the sequence, a; is either a parent of a;41 or a; is a child of a;41.
Furthermore, for any vertex v, if both elements a; and a; (¢ < j) in the DFS sequence A are
v, any element a, between a; and a; (i.e., i <k < j) should be a vertex in the subtree of v.

3 2-Edge Connectivity and Biconnectivity

Consider a connected undirected graph G with a vertex set V and an edge set E. In the
2-edge connectivity problem, the goal is to find all the bridges of G, where an edge e € F is
called a bridge if its removal disconnects G. In the biconnectivity problem, the goal is to
partition the edges into several groups Fq, Fo,--- , E, ie., E = Ule E; Vi # j,E;NE; =0,
such that Ve # ¢’ € E, e and ¢’ are in the same group if and only if there is a simple cycle
in G which contains both e and €’. A subgraph induced by an edge group E; is called a
biconnected component (block). In other words, the goal of the biconnectivity problem is to
find all the blocks of G.

In this section, we describe the algorithms for both the 2-edge connectivity problem and
the biconnectivity problem in the offline setting.

3.1 2-Edge Connectivity

The 2-edge connectivity problem is much simpler than the biconnectivity problem. We first
compute a spanning tree of the graph. Only a tree edge can be a bridge. Then for any
non-root vertex v, if there is no non-tree edge which crosses between the subtree of v and the
outside of the subtree of v, then the tree edge which connects v to its parent is a bridge.

» Lemma 7 (2-Edge connectivity). Consider an undirected graph G = (V, E). Let B be the
output of BRIDGES(G). Then B is the set of all the bridges of G.

3.2 Biconnectivity

In this section, we will show a biconnectivity algorithm. It is a modification of the algorithm
proposed by [36]. The high level idea is to construct a new graph G’ based on the input
graph G, and reduce the biconnectivity problem of G to the connectivity problem of G’.
Since the running time of the connectivity algorithm [4] depends on the diameter of the
graph, we also give an analysis of the diameter of the graph G'.
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Algorithm 1 2-Edge Connectivity Algorithm.

Input:

A connected undirected graph G = (V, E).

Output:

A subset of edges B C F.

Finding bridges (BRIDGES(G = (V, E)) ):

1.

2.

Compute a rooted spanning tree of G. The spanning tree is represented by a set of
parent pointers par: V — V.
Compute lev : V — Zx(: for each v € V,

lev(v) < min (deppar(v), dep,,,, (the LCA of (v,w))) .

min
weV\{par(v)}:(v,w)EE

Compute the DFS sequence A of par.

Initialize B < (). For each non-root vertex v, let a;,a; be the first and the last
appearance of v in A respectively. If ming,;<r<jlev(ax) > dep,,, (v), B + B U
{(v, par(v))}. Output B.

Algorithm 2 Biconnectivity Algorithm.

Input:

A connected undirected graph G = (V, E).

Output:

A coloring col : E — V of the edges.

Finding blocks (BICONN(G = (V, E)) ):

1.

2.

Compute a rooted spanning tree of G. The spanning tree is represented by a set of
parent pointers par : V — V.
Compute lev : V' — Z>(: for each v € V,

lev(v) + min <deppar(v)7 dep,,,, (the LCA of (v,w))) .

min
weV\{par(v)}:(v,w)EE

Compute the DFS sequence A of par.
Let r be the root of par. Initialize V' < V' \ {r}, E’ + 0.

For each v € V', let a;,a; be the first and the last appearance of v in A respectively.

If mingegiita,... 53 lev(ag) < dep,,,(par(v)), £’ < E" U {(v,par(v))}.

For each (u,v) € E, if neither u nor v is the LCA of (u,v) in par, E' < E"U{(u,v)}.
Compute the connected components of G’ = (V', E’). Let col’ : V! — V' be the
coloring of the vertices in V'’ such that Vu',v’ € V’/, v/,v’ are in the same connected
component in G’ < col’(u') = col’(v').

Initialize col : £ — V. For each e = (u,v) € E, if dep,, (u) > dep,,,(v), set
col(e) + col’(u); otherwise, set col(e) < col’(v). Output col : E — V.

14:9
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» Lemma 8 (Biconnectivity). Consider an undirected graph G = (V,E). Let col: E — V be
the output of BICONN(G). Then Ve, e’ € E, e # €, col satisfies col(e) = col(e’) < there is a
simple cycle in G which contains both e and €'. Furthermore, the diameter of the graph G’
constructed by BICONN(G) is at most O(dep(par) - bi-diam(G)), the number of vertices of G’
is at most |V|, and the number of edges of G' is at most |E)|.

Algorithm 3 Leaf Sampling Algorithm for DFS Sequence.

Pre-determined:

A threshold value s. //s will be the local memory size in the MPC model.

Input:

A rooted tree represented by a set of parent pointers par : V' — V on a set V of n
vertices (i.e., par has a unique root r).

Output:

The DFS sequence of the rooted tree represented by par.

Leaf sampling algorithm (LEAFSAMPLING(s,par:V — V) ):

N

If n <'s, return the DFS sequence of par directly.
Set t + O(s'/%logn), L + leaves(par).
Each v € L is independently chosen with probability p = min(1,¢/|L|), and let
S ={ly,l2, -+ ,l;} be the set of samples. If |S|? > s, output FAIL.
For every pair of sampled leaves x,y € S with x # y, find the least common ancestor
P,y of (2,v), and set pyy 2, Payy to be two children of p, , such that p,, . is an
ancestor of x and pg,,, is an ancestor of y.
Sort Iy,1a,--- , 1) € S such that Vi < j € [k], rank(py,,,1,) < rank(py,1;.1;)-
Find the paths A} = P(r,11), A5 = P(par(l1), pi, 15)s A5 = P(Diyip,05:12), -+, Ay o =
P(par(lk_l),plk717lk),A/Qkil = P(plkfﬂmlk’lk)?Aék = P(l%,r), i.e., the paths: r —
Iy — the LCA of (Iy,l3) = ls — -+ — lg—1 — the LCA of (lg_1,lx) — I — 7.
Set A" «— AL AL --- A, ie., A’ is the concatenation of A}, A5, .-, A, .
For each element a/ in the i*" (i > 1) position of the sequence A’,
if the vertex af is a leaf, keep a/ as a single copy;
Otherwise,
if a;_, = par(a}), i.e., i is the first position that the vertex al appears in A’, split
a; into rank(aj ;) copies; //a;i,q is a child of aj.
if aj_;,aj,, € child(aj), split a; into rank(aj, ;) — rank(aj_,) copies;
if aj,, = par(aj), i.e., i is the last position that the vertex aj appears in A’, split
a}; into | child(a})| — rank(a}_,) copies. //ai_ is a child of af.
Let A” be the result sequence.
For each v € V, if par(v) appears in A” but v does not appear in A", recursively find
the DF'S sequence of the subtree of v, and insert the such sequence into the position
after the rank(v)'™ appearance of par(v) in A”. Output the final result sequence A.

4

An Offline DFS Sequence Algorithm in Linear Space

In Section 4.1, we will review an algorithmic framework proposed by [4] for the DFS sequence.
In Section 4.2, 4.3, 4.4, we will discuss the subroutines needed for our DFS sequence algorithm
in the offline setting.
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4.1 DFS Sequence via Leaf Sampling

In the following, we review the leaf sampling algorithmic framework proposed by [4] for
finding the DFS sequence of a rooted tree.

» Theorem 9 (Leaf sampling algorithm [4]). Consider a set of parent pointers par : V — V
on a set V of n vertices. Suppose par has a unique root. For any v > 0 and any constant
§ € (0,1), if both of step 4 and step 6 in LEAFSAMPLING(n®, par) can be implemented in
the (v, 6)-MPC model with O(log(dep(par))) parallel time, then the leaf sampling algorithm
with parameter s =n’ on input par : V. — V can be implemented in the (7y,8)-MPC model.
Furthermore, with probability at least 0.99, LEAFSAMPLING(n®, par) can output the DFS
sequence of par in O(log(dep(par))) parallel time. If the algorithm fails, then it returns FAIL.

By Theorem 9, we only need to give a linear total space MPC algorithm for the LCA
problem and the path generation problem to design an efficient DF'S sequence algorithm in
the (0, d)-MPC model.

In [4], they proposed to use doubling algorithms to compute the LCA and generate the
paths. Since they need to store the every 2°-th ancestor for each vertex, the total space
needed is ©(n -log(the depth of the tree)). We show that we only need to apply the doubling
algorithm for a compressed tree, instead of applying it for the original tree.

Algorithm 4 Construction of a Compressed Rooted Tree.

Input:
A rooted tree represented by a set of parent pointers par : V — V on a set V of n
vertices (par has a unique root r).
Output:
A vertex set V/ C V, a set of parent pointers par’ : V/ — V' on V.
Tree compression (COMPRESS(par : V — V) ):
Compute the depth of par, the depth of each vertex and set d < dep(par), t + [logd].
V'« {v eV [dep,,(v) modt=0,dep,, (v)+t<d}.
Initialize par’ : V' — V. For each v € V', par’(v) « par® (v).
Output V', par’.

el o

4.2 Compressed Rooted Tree

Given a set of parent pointers par : V — V', we will show how to compress the rooted tree
represented by par.

» Lemma 10 (Properties of a compressed rooted tree). Let par: V. — V be a set of parent
pointers on a vertexr set V with |V| > 1, and par has a unique root. Let t = [log(dep(par))]
and let (V',par’) =COMPRESS(par). Then it has the following properties:

1. V7] < [V]/ log(dep(par)).

2. Yo e V')i € N, par')(v) = par( (v) € V'.

3. YoeV,3ie€{0,1,---,2t}, such that par) (v) € V',

4.3 Least Common Ancestor

Given a rooted tree represented by a set of parent pointers par : V. — V on a vertex set
V, and a set of ¢ queries Q = {(u1,v1), (u2,v2), -, (uq, vg)} where Vi € [q], u; # v, u;,v; €
leaves(par), we show a space efficient algorithm which can output the LCA of each queried

ICALP 2019
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Algorithm 5 Lowest Common Ancestor.

Input:
A rooted tree represented by a set of parent pointers par : V' — V on a set V of n vertices
(par has a unique root ), and a set of ¢ queries Q = {(u1,v1), (u2,v2), -+, (ug,vq)}
where Vi € [q], u; # v, u;, v; € leaves(par).

Output:

lca:Q -V xV xV.
Finding LCA (LCA(par: V = V,Q) ):
1. (V' par’) + COMPRESS(par). //(see Lemma 10).
2. Set d < dep(par),t < [logd] and compute mappings go, g1,---g: : V' — V' such that
Voe V', jed{0,1,---,t}, gj(v) = par’ ") (v).
3. For each query (u;,v;) € Q: //Suppose dep,,, (u;) > dep, (vi)-

a. Ifdep,,, (ui) > dep,,, (vi)+2t, find an ancestor u; of u; in par such that dep,,,, (u;) <
dep,a, (vi) + 2t and dep,,,, (U;) > dep,,, (vi). Otherwise, u; < u;.

b. If 35 € [4¢] par¥)(;) is the LCA of (@;, v;) in par, set lca(u;, v;) = (part) (a;), x, y)
where z, % are children of par)(%;) and z,y are ancestors of @;, v; respectively. The
query of (u;,v;) is finished.

c. Find an ancestor u} of @; in par such that u} is the closest vertex to w; in V', i.e.,
dep,,,, (Ui) — depp,, (u}) is minimized. Similarly, find an ancestor v; of v; in par such
that v} is the closest vertex to v; in V', i.e., dep,, (vi) — dep,,,(v}) is minimized.

d. Find w] # v] € V' such that they are ancestors of « and v} respectively, and
par’ (u}) = par’(v}) is the LCA of (u},v}) in par’.

e. Find the smallest j € [2t] such that par)(u/) = parl)(v/). Set lca(u;,v;) =
(par®) (u), parti =1 (u), pari=D (o).

pair of vertices. Notice that the assumption that queries only contain leaves is without loss
of generality: we can attach an additional child vertex v to each non-leaf vertex u. Thus, v
is a leaf vertex. When a query contains u, we can use v to replace u in the query, and the
result will not change.

Before we analyze the algorithm LCA (par, @), let us discuss some details of the algorithm.
1. We pre-compute dep,,,,(v) and dep,,, (u) for every v € V and u € V".

2. To implement step 3a, we firstly check whether dep,,, (u;) > depy,, (v;) +2t. If it is
not true, we can set u; to be wu; directly. Otherwise, according to Lemma 10, there
isaj € {0,1,---,2t} such that par¥)(u;) € V. Since deppa, (ui) > depp,, (vi) + 2t,
deppar(par(j)(ui)) > depp,, (vi). We initialize u; to be part)(u;) € V'. For k=t — 0, if
deppar(gk(ﬂi)) > deppar(vi) (i.e., deppar(par’@k)(ﬂi)) > deppar(vi)), we set u; « gr(u;) =
par’(zk)(ﬁi). Due to Lemma 10 again, the final @; must satisfy dep,,,(u;) > dep,,, (v;)
and dep,,, (U;) < dep,,,(v;) + 2t. This step takes time O(t).

» Lemma 11 (LCA algorithm). Let par: V — V be a set of parent pointers on a vertex set
V. par has a unique root. Let Q = {(u1,v1), (u2,v2),-- -, (uq,vq)} be a set of g pairs of
vertices where Vi € [q],u; # v;, u;,v; € leaves(par). Letlca: Q — V x V x V be the output
of LCA(par, Q). For (u;,v;) € Q, (Pi,Piui>Piw;) = lca(us, v;) satisfies that p; is the LCA
of (Wi, Vi), Dius»>Piw; are ancestors of u;,v; respectively, and p; u,,Piw, are children of p;.
Furthermore, the space used by the algorithm is at most O(|Q| + |V]).
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4.4 Multi-Paths Generation

Consider a rooted tree represented by a set of parent pointers par : V — V on a vertex set
V and a set of ¢ vertex-ancestor pairs @ = {(u1,v1), (ug,v2),- -+, (uq, vq)} where Vi € [¢], v;
is an ancestor of u;. We show a space efficient algorithm MULTIPATHS(par, Q) which can
generate all the paths P(uq,v1), P(ua,v2), -, P(ug,vq)-

Algorithm 6 Multi-Paths Generation.

Input:
A rooted tree represented by a set of parent pointers par : V. — V on a set V
of m vertices (par has a unique root r), and a set of ¢ vertex-ancestor pairs Q =

{(u1,v1), (u2,v2),-- -, (uq,vq)} where Vi € [g],v; is an ancestor of u;.
Output:
P, P, P,
Generating multiple path sequences (MULTIPATHS(par : V — V, Q) ):
1. (V/,par’) «+ COMPRESS(par). //(see Lemma 10).
2. Set d < dep(par),t < [logd] and compute mappings go, g1, --g¢ : V' — V' such that

Yoe V', je{0,1,---,t}, g;(v) = par’®)(v).
3. For each vertex-ancestor pair (u;,v;) € @Q:

a. If dep,,(u;) — dep,,, (v;) < 2t, generate the path sequence
P; = (u, par™ (u;), par® (u;), - - -, v;) directly.

b. Otherwise, find the minimum j € [2¢] such that par?) (u;) € V'. Set u} < par)(u;).
Find an ancestor v; of v} in par’ such that dep,,,(v;) > dep,,,(v;) and dep,, (v;) —
2t < depy,, (vi)-

c. Generate the path P’(u},v}) in par’.

d. Initialize a sequence A as the concatenation of (u;), P'(u},v;) and (v;).

e. Repeat: for each element a; in A, if a; is not the last element and a;41 # par(a;),
insert par(a;) between a; and a;41; until A does not change. Output the final
sequence A as the path sequence P;.

Before we analyze the correctness of the algorithm, let us discuss some details.

1. In step 3a, if the length of the path is at most 2¢, then we can generate the path in O(¥)
rounds. In the j-th round, we can find the vertex part) (u;) = par(par =1 (u;)).

2. In step 3b, we want to find v;. We initialize v; as u}. For k =t — 0, if dep ,, (gx(v})) >

dep,,, (vi) (i-e., deppar(par’@k)(vz’-)) > depp,, (vi)), we set v} + gr(v)) = par’(Qk)(vg).

» Lemma 12 (Generation of multiple paths). Let par: V — V be a set of parent pointers on
a vertex set V. par has a unique root. Let Q = {(u1,v1), (u2,v2), -, (ug,vq)} CV XV be
a set of pairs of vertices where ¥j € [q], vj is an ancestor of u; in par. Let Py, Ps,--- , P,
be the output of MULTIPATHS(par, Q). Then Vj € [q], P; = P(uj,v;), i.e., P; is a sequence
which denotes a path from u; to v; in par. Furthermore, the space used by the algorithm is
at most O(|V| + 3,1y 1P51)-

5 Hardness of Biconnectivity in MPC

There is a conjectured hardness which is widely used in the MPC literature [25, 11, 28, 34, 40].

> Conjecture 1 (1-cycle vs. 2-cycles). For any v > 0 and any constant ¢ € (0, 1), distinguishing
the following two instances in the (v, 0)-MPC model requires Q(logn) parallel time:
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1. a single cycle contains n vertices,
2. two disjoint cycles, each contains n/2 vertices.

Under the above conjecture, we show that (log bi-diam(G)) parallel time is necessary to
compute the biconnected components of G. This claim is true even for the constant diameter
graph G, i.e., diam(G) = O(1).

» Theorem 13 (Hardness of biconnectivity in MPC). For any v > 0 and any constant
d € (0,1), unless the one cycle vs. two cycles conjecture (Conjecture 1) is false, any (v,9)-
MPC algorithm requires 2(log bi-diam(G)) parallel time for testing whether a graph G with
a constant diameter is biconnected.

Proof. For v > 0 and an arbitrary constant § € (0,1), suppose there is a (v,0)-MPC
algorithm A which can determine whether an arbitrary constant diameter graph G is
biconnected in o(log bi-diam(G)) parallel time. Then we give a (y,)-MPC algorithm for
solving one cycle vs. two cycles problem as the following;:

1. For a one cycle vs. two cycles instance n-vertex graph G’ = (V' E’), construct a new

graph G = (V,E): V=V ' U{v*},E = F'U{(v,v*) |veV'}.

2. Run A on G. If G is not biconnected, G’ has two cycles. Otherwise G’ is a single cycle.
It is easy to see that the diameter of G is 2. If G’ is a single cycle, then G is biconnected and
bi-diam(G) = ©(n). If G’ contains two cycles, then G contains two biconnected components
and bi-diam(G) = ©(n).

The first step of the above algorithm takes O(1) parallel time and only requires linear
total space. The graph G has n + 1 vertices and 2n edges. Thus, the above algorithm is also
a (v,9)-MPC algorithm. The parallel time of the above algorithm is the same as the time
needed for running A on G which is o(log bi-diam(G)) = o(logn). Thus the existence of the
algorithm A implies that the one cycle vs. two cycles conjecture (Conjecture 1) is false. <
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