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Abstract

Many modern parallel systems, such as MapReduce, Hadoop and Spark, can be modeled well by the

MPC model. The MPC model captures well coarse-grained computation on large data – data is

distributed to processors, each of which has a sublinear (in the input data) amount of memory and

we alternate between rounds of computation and rounds of communication, where each machine can

communicate an amount of data as large as the size of its memory. This model is stronger than the

classical PRAM model, and it is an intriguing question to design algorithms whose running time is

smaller than in the PRAM model.

In this paper, we study two fundamental problems, 2-edge connectivity and 2-vertex connectivity

(biconnectivity). PRAM algorithms which run in O(log n) time have been known for many years.

We give algorithms using roughly log diameter rounds in the MPC model. Our main results are, for

an n-vertex, m-edge graph of diameter D and bi-diameter D
′, 1) a O(log D log logm/n n) parallel

time 2-edge connectivity algorithm, 2) a O(log D log2 logm/n n + log D
′ log logm/n n) parallel time

biconnectivity algorithm, where the bi-diameter D
′ is the largest cycle length over all the vertex

pairs in the same biconnected component. Our results are fully scalable, meaning that the memory

per processor can be O(nδ) for arbitrary constant δ > 0, and the total memory used is linear in the

problem size. Our 2-edge connectivity algorithm achieves the same parallel time as the connectivity

algorithm of [4]. We also show an Ω(log D
′) conditional lower bound for the biconnectivity problem.

2012 ACM Subject Classification Theory of computation → MapReduce algorithms; Mathematics

of computing → Paths and connectivity problems

Keywords and phrases parallel algorithms, biconnectivity, 2-edge connectivity, the MPC model

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.14

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/1905.00850.

Funding Alexandr Andoni: Research partly supported by NSF Grants (CCF-1617955 and CCF-

1740833), Simons Foundation (#491119) and Google Research Award.

Clifford Stein: Research partly supported by NSF Grants CCF-1714818 and CCF-1822809.

Peilin Zhong: Research partly supported by NSF Grants (CCF-1703925, CCF-1421161, CCF-1714818,

CCF-1617955 and CCF-1740833), Simons Foundation (#491119) and Google Research Award.

E
A
T
C
S

© Alexandr Andoni, Clifford Stein, and Peilin Zhong;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



14:2 Log Diameter Rounds Algorithms for 2-Vertex and 2-Edge Connectivity

1 Introduction

The success of modern parallel and distributed systems such as MapReduce [16, 17], Spark [41],

Hadoop [39], Dryad [23], together with the need to solve problems on massive data, is

driving the development of new algorithms which are more efficient and scalable in these

large-scale systems. An important theoretical problem is to develop models which are good

abstractions of these computational frameworks. The Massively Parallel Computation (MPC)

model [25, 21, 11, 3, 9, 15, 4] captures the capabilities of these computational systems while

keeping the description of the model itself simple. In the MPC model, there are machines

(processors), each with Θ(N δ) local memory, where N denotes the size of the input and

δ ∈ (0, 1). The computation proceeds in rounds, where each machine can perform unlimited

local computation in a round and exchange O(N δ) data at the end of the round. The parallel

time of an algorithm is measured by the total number of computation-communication rounds.

The MPC model is a variant of the Bulk Synchronous Parallel (BSP) model [38]. It is also a

more powerful model than the PRAM since any PRAM algorithm can be simulated in the

MPC model [25, 21] while some problem can be solved in a faster parallel time in the MPC

model. For example, computing the XOR of N bits takes O(1/δ) parallel time in the MPC

model but needs near-logarithmic parallel time on the most powerful CRCW PRAM [10].

A natural question to ask is: which problems can be solved in faster parallel time in

the MPC model than on a PRAM? This question has been studied by a line of recent

papers [25, 19, 29, 3, 1, 6, 22, 15, 7, 14, 13, 32, 20]. Most of these results studied the graph

problems, which are the usual benchmarks of parallel/distributed models. Many graph

problems such as graph connectivity [35, 33, 30], graph biconnectivity [37, 36], maximal

matching [26], minimum spanning tree [27] and maximal independent set [31, 2] can be

solved in the standard logarithmic time in the PRAM model, but these problems have been

shown to have a better parallel time in the MPC model.

In addition, we hope to develop fully scalable algorithms for the graph problems, i.e.,

the algorithm should work for any constant δ > 0. The previous literatures show that a

graph problem in the MPC model with large local memory size may be much easier than

the same problem in the MPC model but with a smaller local memory size. In particular,

when the local memory size per machine is close to the number of vertices n, many graph

problems have efficient algorithms. For example, if the local memory size per machine is

n/ logO(1) n, the connectivity problem [7] and the approximate matching problem [5] can

be solved in O(log log n) parallel time. If the local memory size per machine is Ω(n), then

the MPC model meets the congested clique model [12]. In this setting, the connectivity

problem and the minimum spanning tree problem can be solved in O(1) parallel time [24].

If the local memory size per machine is n1+Ω(1), many graph problems such as maximal

matching, approximate weighted matchings, approximate vertex and edge covers, minimum

cuts, and the biconnectivity problem can be solved in O(1) parallel time [29, 8]. The

landscape of graph algorithms in the MPC model with small local memory is more nuanced

and challenging for algorithm designers. If the local memory size per machine is n1−Ω(1),

then the best connectivity algorithm takes parallel time O(log D log log n) where D is the

diameter of the graph [4], and the best approximate maximum matching algorithm takes

parallel time Õ(
√

log n) [32].

Therefore, the main open question is: which kind of the graph problems can have faster

fully scalable MPC algorithms than the standard logarithmic PRAM algorithms?

Two fundamental graph problems in graph theory are 2-edge connectivity and 2-vertex

connectivity (biconnectivity). In this work, we studied these two problems in the MPC model.

Consider an n-vertex, m-edge undirected graph G. A bridge of G is an edge whose removal
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increases the number of connected components of G. In the 2-edge connectivity problem, the

goal is to find all the bridges of G. For any two different edges e, e′ of G, e, e′ are in the same

biconnected component (block) of G if and only if there is a simple cycle which contains

both e, e′. If we define a relation R such that eRe′ if and only if e = e′ or e, e′ are contained

by a simple cycle, then R is an equivalence relation [18]. Thus, a biconnected component is

an induced graph of an equivalence class of R. In the biconnectivity problem, the goal is to

output all the biconnected components of G. We proposed faster, fully scalable algorithms

for the both 2-edge connectivity problem and the biconnectivity problem by parameterizing

the running time as a function of the diameter and the bi-diameter of the graph. The

diameter D of G is the largest diameter of its connected components. The definition of

bi-diameter is a natural generalization of the definition of diameter. If vertices u, v are in

the same biconnected component, then the cycle length of (u, v) is defined as the minimum

length of a simple cycle which contains both u and v. The bi-diameter D′ of G is the largest

cycle length over all the vertex pairs (u, v) where both u and v are in the same biconnected

component. Our main results are 1) a fully scalable O(log D log logm/n n) parallel time

2-edge connectivity algorithm, 2) a fully scalable O(log D log2 logm/n n + log D′ log logm/n n)

parallel time biconnectivity algorithm. Our 2-edge connectivity algorithm achieves the same

parallel time as the connectivity algorithm of [4]. We also show an Ω(log D′) conditional

lower bound for the biconnectivity problem.

1.1 The Model

Our model of computation is the Massively Parallel Computation (MPC) model [25, 21, 11].

Consider two non-negative parameters γ ≥ 0, δ > 0. In the (γ, δ)-MPC model [4], there

are p machines (processors) each with local memory size s, where p ·s = Θ(N1+γ), s = Θ(N δ)

and N denotes the size of the input data. Thus, the space per machine is sublinear in N , and

the total space is only an O(Nγ) factor more than the input size. In particular, if γ = 0, the

total space available in the system is linear in the input size N . The space size is measured

by words each containing Θ(log(s · p)) bits. Before the computation starts, the input data is

distributed on Θ(N/s) input machines. The computation proceeds in rounds. In each round,

each machine can perform local computation on its local data, and send messages to other

machines at the end of the round. In a round, the total size of messages sent/received by a

machine should be bounded by its local memory size s = Θ(N δ). For example, a machine can

send s size 1 messages to s machines or send a size s message to 1 machine in a single round.

However, it cannot broadcast a size s message to every machine. In the next round, each

machine only holds the received messages in its local memory. At the end of the computation,

the output data is distributed on the output machines. An algorithm in this model is called

a (γ, δ)-MPC algorithm. The parallel time of an algorithm is the total number of rounds

needed to finish its computation. In this paper, we consider δ an arbitrary constant in (0, 1).

1.2 Our Results

Our main results are efficient MPC algorithms for 2-edge connectivity and biconnectivity

problems. In our algorithms, one important subroutine is computing the Depth-First-Search

(DFS) sequence [4] which is a variant of the Euler tour representation proposed by [37, 36] in

1984. We show how to efficiently compute the DFS sequence in the MPC model with linear

total space. Conditioned on the hardness of the connectivity problem in the MPC model, we

prove a hardness result on the biconnectivity problem.

ICALP 2019
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For 2-edge connectivity and biconnectivity, the input is an undirected graph G = (V, E)

with n = |V | vertices and m = |E| edges. N = n + m denotes the size of the representation

of G, D denotes the diameter of G, and D′ denotes the bi-diameter of G. We state our

results in the following.

Biconnectivity. In the biconnectivity problem, we want to find all the biconnected compon-

ents (blocks) of the input graph G. Since the biconnected components of G define a partition

on E, we just need to color each edge, i.e., at the end of the computation, ∀e ∈ E, there is a

unique tuple (x, c) with x = e stored on an output machine, where c is called the color of e,

such that the edges e1, e2 are in the same biconnected components if and only if they have

the same color.

I Theorem 1 (Biconnectivity in MPC). For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there

is a randomized (γ, δ)-MPC algorithm which outputs all the biconnected components of the

graph G in O
(

log D · log2 log n
log(N1+γ /n) + log D′ · log log n

log(N1+γ /n)

)
parallel time. The success

probability is at least 0.95. If the algorithm fails, then it returns FAIL.

The worst case is when the input graph is sparse and the total space available is linear in the

input size, i.e., N = n + m = O(n) and γ = 0. In this case, the parallel running time of our

algorithm is O(log D · log2 log n + log D′ · log log n). If the graph is slightly denser (m = n1+c

for some constant c > 0), or the total space is slightly larger (γ > 0 is a constant), then we

obtain O(log D + log D′) time.

A cut vertex (articulation point) in the graph G is a vertex whose removal increases the

number of connected components of G. Since a vertex v is a cut vertex if and only if there

are two edges e1, e2 which share the endpoint v and e1, e2 are not in the same biconnected

component, our algorithm can also find all the cut vertices of G.

2-Edge connectivity. In the 2-edge connectivity problem, we want to output all the bridges

of the input graph G. Since an edge is a bridge if and only if each of its endpoints is either a

cut vertex or a vertex with degree 1, the 2-edge connectivity problem should be easier than

the biconnectivity problem. We show how to solve 2-edge connectivity in the same parallel

time as the algorithm proposed by [4] for solving connectivity.

I Theorem 2 (2-Edge connectivity in MPC). For any γ ∈ [0, 2] and any constant δ ∈ (0, 1),

there is a randomized (γ, δ)-MPC algorithm which outputs all the bridges of the graph G

in O
(

log D · log log n
log(N1+γ /n)

)
parallel time. The success probability is at least 0.97. If the

algorithm fails, then it returns FAIL.

DFS sequence. A rooted tree with a vertex set V can be represented by n = |V | pairs

(v1, par(v1)), (v2, par(v2)), · · · , (vn, par(vn)) where par : V → V is a set of parent pointers,

i.e., for a non-root vertex v, par(v) denotes the parent of v, and for the root vertex v,

par(v) = v. We show an algorithm which can compute the DFS sequence (Definition 6) of

the rooted tree in the MPC model with linear total space.

I Theorem 3 (DFS sequence of a tree in MPC). Given a rooted tree represented by a set

of parent pointers par : V → V , there is a randomized (0, δ)-MPC algorithm which outputs

the DFS sequence in O(log D) parallel time, where δ ∈ (0, 1) is an arbitrary constant, D is

the depth of the tree. The success probability is at least 0.99. If the algorithm fails, then it

returns FAIL.
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Conditional hardness for biconnectivity. A conjectured hardness for the connectivity prob-

lem is the one cycle vs. two cycles conjecture: for any γ ≥ 0 and any constant δ ∈ (0, 1), any

(γ, δ)-MPC algorithm requires Ω(log n) parallel time to determine whether the input n-vertex

graph is a single cycle or contains two disjoint length n/2 cycles. This conjectured hardness

result is widely used in the MPC literature [25, 11, 28, 34, 40]. Under this conjecture, we

show that Ω(log D′) parallel time is necessary for the biconnectivity problem, and this is

true even when D = O(1), i.e., the diameter of the graph is a constant.

I Theorem 4 (Hardness of biconnectivity in MPC). For any γ ≥ 0 and any constant δ ∈ (0, 1),

unless there is a (γ, δ)-MPC algorithm which can distinguish the following two instances: 1)

a single cycle with n vertices, 2) two disjoint cycles each contains n/2 vertices, in o(log n)

parallel time, any (γ, δ)-MPC algorithm requires Ω(log D′) parallel time for testing whether

a graph G with a constant diameter is biconnected.

1.3 Our Techniques

Biconnectivity. At a high level our biconnectivity algorithm is based on a framework

proposed by [36]. The main idea is to construct a new graph and reduce the problem of

finding biconnected components of G to the problem of finding connected components of the

new graph G′. At first glance, it should be efficiently solved by the connectivity algorithm [4].

However, there are two main issues: 1) since the parallel time of the MPC connectivity

algorithm of [4] depends on the diameter of the input graph, we need to make the diameter

of G′ small, 2) we need to construct G′ efficiently. Let us first consider the first issue, and

we will discuss the second issue later.

We give an analysis of the diameter of G′ = (V ′, E′) constructed by [36]. Without loss of

generality, we can suppose the input G = (V, E) is connected. Each vertex in G′ corresponds

to an edge of G. Let T be an arbitrary spanning tree of G with depth d. Each non-tree

edge e can define a simple cycle Ce which contains the edge e and the unique path between

the endpoints of e in the tree T . Thus, the length of Ce is at most 2d + 1. If there is a

such cycle containing any two tree edges (u, v), (v, w), vertices (u, v), (v, w) are connected in

G′. For each non-tree edge e, we connect the vertex e to the vertex e′ in graph G′ where

e′ is an arbitrary tree edge in the cycle Ce. By the construction of G′, any e, e′ from the

same connected components of G′ should be in the same biconnected components of G. Now

consider arbitrary two edges e, e′ in the same biconnected component of G. There must be

a simple cycle C which contains both edges e, e′ in G. Since all the simple cycles defined

by the non-tree edges are a cycle basis of G [18], the edge set of C can be represented by

the xor sum of all the edge sets of k basis cycles C1, C2, · · · , Ck where Ci is a simple cycle

defined by a non-tree edge ei on the cycle C. k is upper bounded by the bi-diameter of G.

Furthermore, we can assume Ci intersects Ci+1. There should be a path between e, e′ in G′,

and the length of the path is at most
∑k

i=1 |Ci| ≤ O(k · d). So, the diameter of G′ is upper

bounded by O(k · d). Thus, according to [4], we can find the connected components of G′ in

∼ (log k + log d) parallel time, where d and k are upper bounded by the diameter and the

bi-diameter of G respectively.

Now let us consider how to construct G′ efficiently. The bottleneck is to determine

whether the tree edges (u, v), (v, w) should be connected in G′ or not. Suppose w is the

parent of v and v is the parent of u. The vertex (u, v) should connect to the vertex (v, w) in

G′ if and only if there is a non-tree edge that connects a vertex x in the subtree of u and

a vertex y which is on the outside of the subtree of v. For each vertex x, let lev(x) be the

minimum depth of the least common ancestor (LCA) of (x, y) over all the non-tree edges

ICALP 2019
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(x, y). Then (u, v) should be connected to (v, w) in G′ if and only if there is a vertex x in

the subtree of u in G such that lev(x) is smaller than the depth of v. Since the vertices in a

subtree should appear consecutively in the DFS sequence, this question can be solved by

some range queries over the DFS sequence. Next, we will discuss how to compute the DFS

sequence of a tree.

DFS sequence. The DFS sequence of a tree is a variant of the Euler tour representation of

the tree. For an n-vertex tree T , [36] gives an O(log n) parallel time PRAM algorithm for the

Euler tour representation of T . However, since their construction method will destroy the

tree structure, it is hard to get a faster MPC algorithm based on this framework. Instead, we

follow the leaf sampling framework proposed by [4]. Although the DFS sequence algorithm

proposed by [4] takes O(log d) time where d is the depth of T , it needs Ω(n log d) total

space. The bottleneck is the subroutine which needs to solve the least common ancestors

problem and generate multiple path sequences. The previous algorithm uses the doubling

algorithm for the subroutine, i,e., for each vertex v, they store the 2i-th ancestor of v for

every i ∈ [dlog de]. This is the reason why [4] cannot achieve the linear total space. We show

how to compress the tree T into a new tree T ′ which only contains at most n/dlog de vertices.

We argue that applying the doubling algorithm on T ′ is sufficient for us to find the DFS

sequence of T .

2-Edge connectivity. Without loss of generality, we can assume the input graph G is

connected. Consider a rooted spanning tree T and an edge e = (u, v) in G. Suppose the

depth of u is at least the depth of v in T , i.e., v cannot be a child of u. The edge e is not a

bridge if and only if either e is a non-tree edge or there is a non-tree edge (x, y) connecting

the subtree of u and a vertex on the outside of the subtree of u. Similarly, the second case

can be solved by some range queries over the DFS sequence of T .

Conditional hardness for biconnectivity. We want to reduce the connectivity problem to

the biconnectivity problem. For an undirected graph G, if we add an additional vertex

v∗ and connects v∗ to every vertex of G, then the diameter of the resulting graph G′ is

at most 2 and each biconnected components of G′ corresponds to a connected component

of G. Furthermore, the bi-diameter of G′ is upper bounded by the diameter of G plus 2.

Therefore, if the parallel time of an algorithm A′ for finding the biconnected components

of G′ depends on the bi-diameter of G′, there exists an algorithm A which can find all the

connected components of G in the parallel time which has the same dependence on the

diameter of G.

1.4 A Roadmap

Section 2 introduces the notation and some useful definitions. Section 3 describes the offline

algorithms for 2-edge connectivity and biconnectivity. It also includes some crucial properties

of the algorithms. In Section 4, we show an linear space offline algorithm to find the DFS

sequence of a tree. All of these offline algorithms can be implemented in the MPC model

efficiently. Section 5 contains the conditional hardness result for the biconnectivity problem

in the MPC model. For the MPC implementations and all the missing technical proofs, we

refer readers to the full version of the paper.
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2 Preliminaries

2.1 Notation

We follow the notation of [4]. [n] denotes the set of integers {1, 2, · · · , n}.

Diameter and bi-diameter. Consider an undirected graph G with a vertex set V and an

edge set E. For any two vertices u, v, we use distG(u, v) to denote the distance between u and

v in graph G. If u, v are not in the same (connected) component of G, then distG(u, v) =∞.

The diameter diam(G) of G is the largest diameter of its connected components, i.e.,

diam(G) = maxu,v∈V :distG(u,v) 6=∞ distG(u, v). (v1, v2, · · · , vk) ∈ V k is a cycle of length k − 1

if v1 = vk and ∀i ∈ [k − 1], (vi, vi+1) ∈ E. We say a cycle (v1, v2, · · · , vk) is simple if k ≥ 4

and each vertex only appears once in the cycle except v1 (vk). Consider two different vertices

u, v ∈ V . We use cyclenG(u, v) to denote the minimum length of a simple cycle which

contains both vertices u and v. If there is no simple cycle which contains both u and v,

cyclenG(u, v) = ∞. cyclenG(u, u) is defined as 0. The bi-diameter of G, bi-diam(G), is

defined as maxu,v∈V :cyclenG(u,v) 6=∞ cyclenG(u, v).

Representation of a rooted forest. Let V denote a set of vertices. We represent a rooted

forest in the same manner as [4]. Consider a mapping par : V → V . For i ∈ N>0 and v ∈ V ,

we define par(i)(v) as par(par(i−1)(v)), and par(0)(v) is defined as v itself. If ∀v ∈ V,∃i > 0

such that par(i)(v) = par(i+1)(v), then we call par a set of parent pointers on V . For v ∈ V ,

if par(v) = v, then we say v is a root of par. Notice that par actually can represent a rooted

forest, thus par can have more than one root. The depth of v ∈ V , deppar(v) is the smallest

i ∈ N such that par(i)(v) is the same as par(i+1)(v). The root of v ∈ V , par(∞)(v) is defined

as par(deppar(v))(v). The depth of par, dep(par) is defined as maxv∈V deppar(v).

Ancestor and path. For two vertices u, v ∈ V , if ∃i ∈ N such that u = par(i)(v), then u is

an ancestor of v (in par). If u is an ancestor of v, then the path P (v, u) (in par) from v to u

is a sequence (v, par(v), par(2)(v), · · · , u) and the path P (u, v) is the reverse of P (v, u), i.e.,

P (u, v) = (u, · · · , par(2)(v), par(v), v). If an ancestor u of v is also an ancestor of w, then

u is a common ancestor of (v, w). Furthermore, if a common ancestor u of (v, w) satisfies

deppar(u) ≥ deppar(x) for any common ancestor x of (v, w), then u is the lowest common

ancestor (LCA) of (v, w).

Children and leaves. For any non-root vertex u of par, u is a child of par(u). For any

vertex v ∈ V , childpar(v) denotes the set of all the children of v, i.e., childpar(v) = {u ∈
V | u 6= v, par(u) = v}. If u is the kth smallest vertex in the set childpar(v), then we define

rankpar(u) = k, or in other words, u is the kth child of v. If v is a root vertex of par, then

rankpar(v) is defined as 1. childpar(v, k) denotes the kth child of v. For simplicity, if par

is clear in the context, we just use child(v), rank(v) and child(v, k) to denote childpar(v),

rankpar(v) and childpar(v, k) for short. If child(v) = ∅, then v is a leaf of par. We denote

leaves(par) as the set of all the leaves of par, i.e., leaves(par) = {v | child(v) = ∅}.

2.2 Depth-First-Search Sequence

The Euler tour representation of a tree is proposed by [37, 36]. It is a crucial building block

in many graph algorithms including biconnectivity algorithms. The Depth-First-Search

(DFS) sequence [4] of a rooted tree is a variant of the Euler tour representation. Let us first

introduce some relevant concepts of the DFS sequence.

ICALP 2019
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I Definition 5 (Subtree [4]). Consider a set of parent pointers par : V → V on a vertex set

V . Let v be a vertex in V , and let V ′ = {u ∈ V | v is an ancestor of u}. par′ : V ′ → V ′ is a

set of parent pointers on V ′. If ∀u ∈ V ′ \ {v}, par′(u) = par(u) and par′(v) = v, then par′

is a subtree of v in par. For u ∈ V ′, we say u is in the subtree of v.

The definition of the DFS sequence is the following:

I Definition 6 (DFS sequence [4]). Consider a set of parent pointers par : V → V on a

vertex set V . Let v be a vertex in V . If v is a leaf in par, then the DFS sequence of the

subtree of v is (v). Otherwise, the DFS sequence of the subtree of v is defined recursively as

(v, a1,1, a1,2, · · · , a1,n1
, v, a2,1, a2,2, · · · , a2,n2

, v, · · · , ak,1, ak,2, · · · , ak,nk
, v),

where k = | child(v)| and ∀i ∈ [k], (ai,1, ai,2, · · · , ai,ni
) is the DFS sequence of the subtree of

child(v, i), i.e., the ith child of v.

If par : V → V has a unique root v, then we define the DFS sequence of par as the DFS

sequence of the subtree of v. By the definition of the DFS sequence, for any two consecutive

elements ai and ai+1 in the sequence, ai is either a parent of ai+1 or ai is a child of ai+1.

Furthermore, for any vertex v, if both elements ai and aj (i < j) in the DFS sequence A are

v, any element ak between ai and aj (i.e., i ≤ k ≤ j) should be a vertex in the subtree of v.

3 2-Edge Connectivity and Biconnectivity

Consider a connected undirected graph G with a vertex set V and an edge set E. In the

2-edge connectivity problem, the goal is to find all the bridges of G, where an edge e ∈ E is

called a bridge if its removal disconnects G. In the biconnectivity problem, the goal is to

partition the edges into several groups E1, E2, · · · , Ek, i.e., E =
⋃k

i=1 Ei,∀i 6= j, Ei ∩Ej = ∅,
such that ∀e 6= e′ ∈ E, e and e′ are in the same group if and only if there is a simple cycle

in G which contains both e and e′. A subgraph induced by an edge group Ei is called a

biconnected component (block). In other words, the goal of the biconnectivity problem is to

find all the blocks of G.

In this section, we describe the algorithms for both the 2-edge connectivity problem and

the biconnectivity problem in the offline setting.

3.1 2-Edge Connectivity

The 2-edge connectivity problem is much simpler than the biconnectivity problem. We first

compute a spanning tree of the graph. Only a tree edge can be a bridge. Then for any

non-root vertex v, if there is no non-tree edge which crosses between the subtree of v and the

outside of the subtree of v, then the tree edge which connects v to its parent is a bridge.

I Lemma 7 (2-Edge connectivity). Consider an undirected graph G = (V, E). Let B be the

output of Bridges(G). Then B is the set of all the bridges of G.

3.2 Biconnectivity

In this section, we will show a biconnectivity algorithm. It is a modification of the algorithm

proposed by [36]. The high level idea is to construct a new graph G′ based on the input

graph G, and reduce the biconnectivity problem of G to the connectivity problem of G′.

Since the running time of the connectivity algorithm [4] depends on the diameter of the

graph, we also give an analysis of the diameter of the graph G′.
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Algorithm 1 2-Edge Connectivity Algorithm.

Input:

A connected undirected graph G = (V, E).

Output:

A subset of edges B ⊆ E.

Finding bridges (Bridges(G = (V, E)) ):

1. Compute a rooted spanning tree of G. The spanning tree is represented by a set of

parent pointers par : V → V .

2. Compute lev : V → Z≥0: for each v ∈ V,

lev(v)← min

(
deppar(v), min

w∈V \{par(v)}:(v,w)∈E
deppar(the LCA of (v, w))

)
.

3. Compute the DFS sequence A of par.

4. Initialize B ← ∅. For each non-root vertex v, let ai, aj be the first and the last

appearance of v in A respectively. If mink:i≤k≤j lev(ak) ≥ deppar(v), B ← B ∪
{(v, par(v))}. Output B.

Algorithm 2 Biconnectivity Algorithm.

Input:

A connected undirected graph G = (V, E).

Output:

A coloring col : E → V of the edges.

Finding blocks (Biconn(G = (V, E)) ):

1. Compute a rooted spanning tree of G. The spanning tree is represented by a set of

parent pointers par : V → V .

2. Compute lev : V → Z≥0: for each v ∈ V,

lev(v)← min

(
deppar(v), min

w∈V \{par(v)}:(v,w)∈E
deppar(the LCA of (v, w))

)
.

3. Compute the DFS sequence A of par.

4. Let r be the root of par. Initialize V ′ ← V \ {r}, E′ ← ∅.
5. For each v ∈ V ′, let ai, aj be the first and the last appearance of v in A respectively.

If mink∈{i,i+1,··· ,j} lev(ak) < deppar(par(v)), E′ ← E′ ∪ {(v, par(v))}.
6. For each (u, v) ∈ E, if neither u nor v is the LCA of (u, v) in par, E′ ← E′ ∪ {(u, v)}.
7. Compute the connected components of G′ = (V ′, E′). Let col′ : V ′ → V ′ be the

coloring of the vertices in V ′ such that ∀u′, v′ ∈ V ′, u′, v′ are in the same connected

component in G′ ⇔ col′(u′) = col′(v′).

8. Initialize col : E → V . For each e = (u, v) ∈ E, if deppar(u) ≥ deppar(v), set

col(e)← col′(u); otherwise, set col(e)← col′(v). Output col : E → V .
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I Lemma 8 (Biconnectivity). Consider an undirected graph G = (V, E). Let col : E → V be

the output of Biconn(G). Then ∀e, e′ ∈ E, e 6= e′, col satisfies col(e) = col(e′) ⇔ there is a

simple cycle in G which contains both e and e′. Furthermore, the diameter of the graph G′

constructed by Biconn(G) is at most O(dep(par) · bi-diam(G)), the number of vertices of G′

is at most |V |, and the number of edges of G′ is at most |E|.

Algorithm 3 Leaf Sampling Algorithm for DFS Sequence.

Pre-determined:

A threshold value s. //s will be the local memory size in the MPC model.

Input:

A rooted tree represented by a set of parent pointers par : V → V on a set V of n

vertices (i.e., par has a unique root r).

Output:

The DFS sequence of the rooted tree represented by par.

Leaf sampling algorithm (LeafSampling(s, par : V → V ) ):

1. If n ≤ s, return the DFS sequence of par directly.

2. Set t← Θ(s1/3 log n), L← leaves(par).

3. Each v ∈ L is independently chosen with probability p = min(1, t/|L|), and let

S = {l1, l2, · · · , lk} be the set of samples. If |S|2 > s, output FAIL.

4. For every pair of sampled leaves x, y ∈ S with x 6= y, find the least common ancestor

px,y of (x, y), and set pxy,x, pxy,y to be two children of px,y such that pxy,x is an

ancestor of x and pxy,y is an ancestor of y.

5. Sort l1, l2, · · · , lk ∈ S such that ∀i < j ∈ [k], rank(plilj ,li
) < rank(plilj ,lj

).

6. Find the paths A′
1 = P (r, l1), A′

2 = P (par(l1), pl1,l2
), A′

3 = P (pl1l2,l2
, l2), · · · , A′

2k−2 =

P (par(lk−1), plk−1,lk
), A′

2k−1 = P (plk−1lk,lk
, lk), A′

2k = P (l2k, r), i.e., the paths: r →
l1 → the LCA of (l1, l2)→ l2 → · · · → lk−1 → the LCA of (lk−1, lk)→ lk → r.

7. Set A′ ← A′
1A′

2 · · ·A′
2k, i.e., A′ is the concatenation of A′

1, A′
2, · · · , A′

2k.

8. For each element a′
i in the ith (i > 1) position of the sequence A′,

if the vertex a′
i is a leaf, keep a′

i as a single copy;

Otherwise,

∗ if a′
i−1 = par(a′

i), i.e., i is the first position that the vertex a′
i appears in A′, split

a′
i into rank(a′

i+1) copies; //a′
i+1 is a child of a′

i.

∗ if a′
i−1, a′

i+1 ∈ child(a′
i), split a′

i into rank(a′
i+1)− rank(a′

i−1) copies;

∗ if a′
i+1 = par(a′

i), i.e., i is the last position that the vertex a′
i appears in A′, split

a′
i into | child(a′

i)| − rank(a′
i−1) copies. //a′

i−1 is a child of a′
i.

Let A′′ be the result sequence.

9. For each v ∈ V , if par(v) appears in A′′ but v does not appear in A′′, recursively find

the DFS sequence of the subtree of v, and insert the such sequence into the position

after the rank(v)th appearance of par(v) in A′′. Output the final result sequence A.

4 An Offline DFS Sequence Algorithm in Linear Space

In Section 4.1, we will review an algorithmic framework proposed by [4] for the DFS sequence.

In Section 4.2, 4.3, 4.4, we will discuss the subroutines needed for our DFS sequence algorithm

in the offline setting.
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4.1 DFS Sequence via Leaf Sampling

In the following, we review the leaf sampling algorithmic framework proposed by [4] for

finding the DFS sequence of a rooted tree.

I Theorem 9 (Leaf sampling algorithm [4]). Consider a set of parent pointers par : V → V

on a set V of n vertices. Suppose par has a unique root. For any γ ≥ 0 and any constant

δ ∈ (0, 1), if both of step 4 and step 6 in LeafSampling(nδ, par) can be implemented in

the (γ, δ)-MPC model with O(log(dep(par))) parallel time, then the leaf sampling algorithm

with parameter s = nδ on input par : V → V can be implemented in the (γ, δ)-MPC model.

Furthermore, with probability at least 0.99, LeafSampling(nδ, par) can output the DFS

sequence of par in O(log(dep(par))) parallel time. If the algorithm fails, then it returns FAIL.

By Theorem 9, we only need to give a linear total space MPC algorithm for the LCA

problem and the path generation problem to design an efficient DFS sequence algorithm in

the (0, δ)-MPC model.

In [4], they proposed to use doubling algorithms to compute the LCA and generate the

paths. Since they need to store the every 2i-th ancestor for each vertex, the total space

needed is Θ(n · log(the depth of the tree)). We show that we only need to apply the doubling

algorithm for a compressed tree, instead of applying it for the original tree.

Algorithm 4 Construction of a Compressed Rooted Tree.

Input:

A rooted tree represented by a set of parent pointers par : V → V on a set V of n

vertices (par has a unique root r).

Output:

A vertex set V ′ ⊆ V , a set of parent pointers par′ : V ′ → V ′ on V ′.

Tree compression (Compress(par : V → V ) ):

1. Compute the depth of par, the depth of each vertex and set d← dep(par), t← dlog de.
2. V ′ ← {v ∈ V | deppar(v) mod t = 0, deppar(v) + t ≤ d}.
3. Initialize par′ : V ′ → V ′. For each v ∈ V ′, par′(v)← par(t)(v).

4. Output V ′, par′.

4.2 Compressed Rooted Tree

Given a set of parent pointers par : V → V , we will show how to compress the rooted tree

represented by par.

I Lemma 10 (Properties of a compressed rooted tree). Let par : V → V be a set of parent

pointers on a vertex set V with |V | > 1, and par has a unique root. Let t = dlog(dep(par))e
and let (V ′, par′) =Compress(par). Then it has the following properties:

1. |V ′| ≤ |V |/ log(dep(par)).

2. ∀v ∈ V ′, i ∈ N, par′(i)(v) = par(i·t)(v) ∈ V ′.

3. ∀v ∈ V, ∃i ∈ {0, 1, · · · , 2t}, such that par(i)(v) ∈ V ′.

4.3 Least Common Ancestor

Given a rooted tree represented by a set of parent pointers par : V → V on a vertex set

V , and a set of q queries Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} where ∀i ∈ [q], ui 6= vi, ui, vi ∈
leaves(par), we show a space efficient algorithm which can output the LCA of each queried
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Algorithm 5 Lowest Common Ancestor.

Input:

A rooted tree represented by a set of parent pointers par : V → V on a set V of n vertices

(par has a unique root r), and a set of q queries Q = {(u1, v1), (u2, v2), · · · , (uq, vq)}
where ∀i ∈ [q], ui 6= vi, ui, vi ∈ leaves(par).

Output:

lca : Q→ V × V × V .

Finding LCA (LCA(par : V → V, Q) ):

1. (V ′, par′)←Compress(par). //(see Lemma 10).

2. Set d← dep(par), t← dlog de and compute mappings g0, g1, · · · gt : V ′ → V ′ such that

∀v ∈ V ′, j ∈ {0, 1, · · · , t}, gj(v) = par′(2j)(v).

3. For each query (ui, vi) ∈ Q: //Suppose deppar(ui) ≥ deppar(vi).

a. If deppar(ui) > deppar(vi)+2t, find an ancestor ûi of ui in par such that deppar(ûi) ≤
deppar(vi) + 2t and deppar(ûi) ≥ deppar(vi). Otherwise, ûi ← ui.

b. If ∃j ∈ [4t] par(j)(ûi) is the LCA of (ûi, vi) in par, set lca(ui, vi) = (par(j)(ûi), x, y)

where x, y are children of par(j)(ûi) and x, y are ancestors of ûi, vi respectively. The

query of (ui, vi) is finished.

c. Find an ancestor u′
i of ûi in par such that u′

i is the closest vertex to ûi in V ′, i.e.,

deppar(ûi)− deppar(u
′
i) is minimized. Similarly, find an ancestor v′

i of vi in par such

that v′
i is the closest vertex to vi in V ′, i.e., deppar(vi)− deppar(v

′
i) is minimized.

d. Find u′′
i 6= v′′

i ∈ V ′ such that they are ancestors of u′
i and v′

i respectively, and

par′(u′′
i ) = par′(v′′

i ) is the LCA of (u′
i, v′

i) in par′.

e. Find the smallest j ∈ [2t] such that par(j)(u′′
i ) = par(j)(v′′

i ). Set lca(ui, vi) =

(par(j)(u′′
i ), par(j−1)(u′′

i ), par(j−1)(v′′
i )).

pair of vertices. Notice that the assumption that queries only contain leaves is without loss

of generality: we can attach an additional child vertex v to each non-leaf vertex u. Thus, v

is a leaf vertex. When a query contains u, we can use v to replace u in the query, and the

result will not change.

Before we analyze the algorithm LCA(par, Q), let us discuss some details of the algorithm.

1. We pre-compute deppar(v) and deppar′(u) for every v ∈ V and u ∈ V ′.

2. To implement step 3a, we firstly check whether deppar(ui) > deppar(vi) + 2t. If it is

not true, we can set ûi to be ui directly. Otherwise, according to Lemma 10, there

is a j ∈ {0, 1, · · · , 2t} such that par(j)(ui) ∈ V ′. Since deppar(ui) > deppar(vi) + 2t,

deppar(par(j)(ui)) > deppar(vi). We initialize ûi to be par(j)(ui) ∈ V ′. For k = t→ 0, if

deppar(gk(ûi)) > deppar(vi) (i.e., deppar(par′(2k)(ûi)) > deppar(vi)), we set ûi ← gk(ûi) =

par′(2k)(ûi). Due to Lemma 10 again, the final ûi must satisfy deppar(ûi) ≥ deppar(vi)

and deppar(ûi) ≤ deppar(vi) + 2t. This step takes time O(t).

I Lemma 11 (LCA algorithm). Let par : V → V be a set of parent pointers on a vertex set

V . par has a unique root. Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} be a set of q pairs of

vertices where ∀i ∈ [q], ui 6= vi, ui, vi ∈ leaves(par). Let lca : Q→ V × V × V be the output

of LCA(par, Q). For (ui, vi) ∈ Q, (pi, pi,ui
, pi,vi

) = lca(ui, vi) satisfies that pi is the LCA

of (ui, vi), pi,ui
, pi,vi

are ancestors of ui, vi respectively, and pi,ui
, pi,vi

are children of pi.

Furthermore, the space used by the algorithm is at most O(|Q|+ |V |).
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4.4 Multi-Paths Generation

Consider a rooted tree represented by a set of parent pointers par : V → V on a vertex set

V and a set of q vertex-ancestor pairs Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} where ∀i ∈ [q], vi

is an ancestor of ui. We show a space efficient algorithm MultiPaths(par, Q) which can

generate all the paths P (u1, v1), P (u2, v2), · · · , P (uq, vq).

Algorithm 6 Multi-Paths Generation.

Input:

A rooted tree represented by a set of parent pointers par : V → V on a set V

of n vertices (par has a unique root r), and a set of q vertex-ancestor pairs Q =

{(u1, v1), (u2, v2), · · · , (uq, vq)} where ∀i ∈ [q], vi is an ancestor of ui.

Output:

P1, P2, · · · , Pq.

Generating multiple path sequences (MultiPaths(par : V → V, Q) ):

1. (V ′, par′)←Compress(par). //(see Lemma 10).

2. Set d← dep(par), t← dlog de and compute mappings g0, g1, · · · gt : V ′ → V ′ such that

∀v ∈ V ′, j ∈ {0, 1, · · · , t}, gj(v) = par′(2j)(v).

3. For each vertex-ancestor pair (ui, vi) ∈ Q:

a. If deppar(ui)− deppar(vi) ≤ 2t, generate the path sequence

Pi = (ui, par(1)(ui), par(2)(ui), · · · , vi) directly.

b. Otherwise, find the minimum j ∈ [2t] such that par(j)(ui) ∈ V ′. Set u′
i ← par(j)(ui).

Find an ancestor v′
i of u′

i in par′ such that deppar(v
′
i) ≥ deppar(vi) and deppar(v

′
i)−

2t ≤ deppar(vi).

c. Generate the path P ′(u′
i, v′

i) in par′.

d. Initialize a sequence A as the concatenation of (ui), P ′(u′
i, v′

i) and (vi).

e. Repeat: for each element ai in A, if ai is not the last element and ai+1 6= par(ai),

insert par(ai) between ai and ai+1; until A does not change. Output the final

sequence A as the path sequence Pi.

Before we analyze the correctness of the algorithm, let us discuss some details.

1. In step 3a, if the length of the path is at most 2t, then we can generate the path in O(t)

rounds. In the j-th round, we can find the vertex par(j)(ui) = par(par(j−1)(ui)).

2. In step 3b, we want to find v′
i. We initialize v′

i as u′
i. For k = t→ 0, if deppar(gk(v′

i)) >

deppar(vi) (i.e., deppar(par′(2k)(v′
i)) > deppar(vi)), we set v′

i ← gk(v′
i) = par′(2k)(v′

i).

I Lemma 12 (Generation of multiple paths). Let par : V → V be a set of parent pointers on

a vertex set V . par has a unique root. Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} ⊆ V × V be

a set of pairs of vertices where ∀j ∈ [q], vj is an ancestor of uj in par. Let P1, P2, · · · , Pq

be the output of MultiPaths(par, Q). Then ∀j ∈ [q], Pj = P (uj , vj), i.e., Pj is a sequence

which denotes a path from uj to vj in par. Furthermore, the space used by the algorithm is

at most O(|V |+ ∑
j∈[q] |Pj |).

5 Hardness of Biconnectivity in MPC

There is a conjectured hardness which is widely used in the MPC literature [25, 11, 28, 34, 40].

B Conjecture 1 (1-cycle vs. 2-cycles). For any γ ≥ 0 and any constant δ ∈ (0, 1), distinguishing

the following two instances in the (γ, δ)-MPC model requires Ω(log n) parallel time:
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1. a single cycle contains n vertices,

2. two disjoint cycles, each contains n/2 vertices.

Under the above conjecture, we show that Ω(log bi-diam(G)) parallel time is necessary to

compute the biconnected components of G. This claim is true even for the constant diameter

graph G, i.e., diam(G) = O(1).

I Theorem 13 (Hardness of biconnectivity in MPC). For any γ ≥ 0 and any constant

δ ∈ (0, 1), unless the one cycle vs. two cycles conjecture (Conjecture 1) is false, any (γ, δ)-

MPC algorithm requires Ω(log bi-diam(G)) parallel time for testing whether a graph G with

a constant diameter is biconnected.

Proof. For γ ≥ 0 and an arbitrary constant δ ∈ (0, 1), suppose there is a (γ, δ)-MPC

algorithm A which can determine whether an arbitrary constant diameter graph G is

biconnected in o(log bi-diam(G)) parallel time. Then we give a (γ, δ)-MPC algorithm for

solving one cycle vs. two cycles problem as the following:

1. For a one cycle vs. two cycles instance n-vertex graph G′ = (V ′, E′), construct a new

graph G = (V, E): V = V ′ ∪ {v∗}, E = E′ ∪ {(v, v∗) | v ∈ V ′}.
2. Run A on G. If G is not biconnected, G′ has two cycles. Otherwise G′ is a single cycle.

It is easy to see that the diameter of G is 2. If G′ is a single cycle, then G is biconnected and

bi-diam(G) = Θ(n). If G′ contains two cycles, then G contains two biconnected components

and bi-diam(G) = Θ(n).

The first step of the above algorithm takes O(1) parallel time and only requires linear

total space. The graph G has n + 1 vertices and 2n edges. Thus, the above algorithm is also

a (γ, δ)-MPC algorithm. The parallel time of the above algorithm is the same as the time

needed for running A on G which is o(log bi-diam(G)) = o(log n). Thus the existence of the

algorithm A implies that the one cycle vs. two cycles conjecture (Conjecture 1) is false. J
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