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Abstract.  Recently, the concept of “drive-by” bridge monitoring system using indirect measurements 

from a passing vehicle to extract key parameters of a bridge has been rapidly developed. As one of the 

most key parameters of a bridge, the natural frequency has been successfully extracted theoretically and 

in practice using indirect measurements. The frequency of bridge is generally calculated applying Fast 

Fourier Transform (FFT) directly. However, it has been demonstrated that with the increase in vehicle 

velocity, the estimated frequency resolution of FFT will be very low causing a great extracted error. 

Moreover, because of the low frequency resolution, it is hard to detect the frequency drop caused by 

any damages or degradation of the bridge structural integrity. This paper will introduce a new technique 

of bridge frequency extraction based on Hilbert Transform (HT) that is not restricted to frequency 

resolution and can, therefore, improve identification accuracy and detect bridge damages represented as 

changing the fundamental frequency of the bridge. In this paper, deriving from the vehicle response, the 

closed-form solution associated with bridge frequency removing the effect of vehicle velocity is 

discussed in the analytical study. Then a numerical Vehicle-Bridge Interaction (VBI) model with a 

quarter car model is adopted to demonstrate the proposed approach. Finally, this proposed approach is 

applied to detect the bridge frequency drop caused by the structural damage so as to estimate the bridge 

condition.  

Keywords:  Hilbert Transform, bridge frequency, drive-by bridge inspection, bridge health monitoring, 

non-destructive evaluation; 

 

1. Introduction 
 

Bridge structures are the intrinsic components of transportation infrastructure network. 

Nowadays these structures are increasingly subject to degradation due to aging, environment and 

overload. Periodic monitoring of bridge is, therefore essential to maintain strategy since it can 

provide early warning if the inspected bridge becomes unsafe. Traditionally, bridge maintenance 

has mostly relied to visual inspection approaches which are highly dependent on staff member 

experience and subjective determine. These approaches can only detect bridge damage when it is 

visible. A number of bridges collapsed catastrophically such as I-35W Mississippi River bridge, 

whereas, they had been visually inspected just before the disaster. Thus, Chupanit and Phromsorn 
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(2012) have suggested that the visual inspection alone may not be sufficient to assess the bridge 

health condition.  

 

The last decades, the bridge structural health monitoring (SHM) has developed dramatically 

which rely on the automatic detection of anomalous structural behavior. One of the most popular 

SHM approaches assess bridge condition via extracting dynamic properties of the bridge such as 

natural frequency, damping ratio, and mode shapes from dynamic response of structures for non-

destructive damage assessment (Carden 2004, Malekjafarian, McGetrick et al. 2015). In these SHM 

systems using vibration data from the structure are referred to as the direct approach, which requires 

a larger number of sensors installed on bridge structures (Carden 2004). These SHM techniques 

have following drawbacks: expensive, time-consuming and even dangerous (Malekjafarian, 

McGetrick et al. 2015). From another perspective, the implementation of SHM for short and 

medium span bridges is not widespread, which represent a large portion of the bridge inventory of 

the road network (Malekjafarian, McGetrick et al. 2015). Therefore, there is a necessity to find a 

less expensive SHM method that can be applied to a wide range of bridges. 

 

Recently, the indirect approach or what has been known as ‘drive-by bridge inspection’ is 

becoming an intriguing topic in the application of bridge SHM technique. This indirect approach 

extracts bridge dynamic properties from dynamic response of a passing vehicle over the bridge, 

which is first proposed by Yang and Lin (2005), Yang and Chang (2009). The authors derived a 

closed-form solution of vehicle response, where a vehicle is modeled as a sprung mass and a bridge 

as a simple support beam. It has shown that the vehicle response contains the vibration components 

dominated by the natural frequency of bridge, and that has been demonstrated by the numerical 

simulation with VBI model. The feasibility of extracting natural frequency of bridge from a passing 

vehicle in practice has been experimentally verified by Lin and Yang (2005), Yang and Chang 

(2009).   

 

Following the idea of the indirect approach, González, Obrien et al. (2012), Keenahan, Obrien 

et al. (2013) have theoretically investigated the method of extracting related bridge damping from 

vehicle history. González, Obrien et al. (2012) have pointed out that the damping value of bridge 

can be calculated by the minimum road profile estimation error from two axles with a half car 

model. Keenahan, Obrien et al. (2013) have presented that the damping change in the bridge can 

be detected when the axle accelerations of the trailer are subtracted from one another. They pointed 

out that this method is more effective for monitoring damping in short bridges.  

 

On the other hand, a number of methods for constructing mode shape of the bridge based on 

such indirect approach have been proposed (Zhang, Wang et al. 2012, Malekjafarian and Obrien 

2014, Oshima, Yamamoto et al. 2014, Yang, Li et al. 2014, Obrien and Malekjafarian 2016, 

Malekjafarian and Obrien 2017). Yang, Li et al. (2014) theoretically constructed bridge modal 

shape from a passing vehicle over the bridge through applying HT combined with band-pass filter 

technique. They pointed out that such indirect measurements from the instrumented vehicle can 

provide a better screening for the bridge degrees of freedom (DOF) than the direct measurements 

from a sensor mounted on the bridge structure. Zhang, Wang et al. (2012) have developed a simple 

approach to approximately extract bridge mode shape squares from the passing vehicle response 

and proposed a new damage index based on this extraction of mode shape, which is more sensitive 

to structural damage. The validity of this proposed method has been demonstrated by numerical 

simulations and simple experiments in the lab.  

 



Furthermore, signal processing tool such as wavelet transform and HT are increasingly applied 

on the “drive by” bridge SHM (Cunha, Caetano et al. , Yang and Chang 2009, Nguyen and Tran 

2010, Hester and González 2012, Khorram, Bakhtiari-Nejad et al. 2012, McGetrick and Kim 2013, 

Mahato, Teja et al. 2017, Obrien, Malekjafarian et al. 2017, Tan, Elhattab et al. 2017, Tan, Elhattab 

et al. 2017). On account of their high sensitivity for discontinuity of signal, they are mostly used to 

localize the structural damage location. In addition, HT can assist to extract higher mode frequency 

or modal shape of the bridge from the vehicle response.  

 

The natural frequency of bridges as one of the most basic vibration parameters reflecting bridges 

dynamic characteristic, it was constantly referred as a damage index to estimate bridge condition. 

In the application of tradition bridge SHM, a published review paper (Carden 2004) have shown 

that there were 65 publications working on the detection of structural damage through frequency 

drops. However, rarely studies were focused on this point in the application of “drive-by” bridge 

SHM. One of the main reasons is that the higher vehicle velocity leads to short data of vehicle 

responses, resulting in low frequency resolution when applied with FFT. Consequently, the 

identification accuracy of bridge frequency is poor. Tan, Elhattab et al. (2017) have developed a 

wavelet-based approach to identify bridge frequency without restricting to frequency resolution 

and can be used to detect the frequency drop caused by structural damage. However, it has shown 

that with the increase in vehicle velocity, the identification accuracy will decrease either. Studies 

have pointed out that the higher vehicle velocity has a strong negative influence on the recognition 

of bridge frequency in “drive-by” bridge SHM.  

 

This paper will introduce a new bridge frequency extracting approach from a passing vehicle 

based on HT combined with band-pass filter technique. At first, in order to highlight the dynamic 

VBI response, a closed-form solution of vehicle response is adopted in the analytical study. In this 

regard, the bridge is modeled as a simply supported beam and vehicle as a sprung mass. Deriving 

this closed-form solution with HT combined with the band-pass filter, formulation representing the 

bridge frequency is divided. In addition, the vehicle velocity parameter is investigated and it can 

be removed from this formulation to improve identification accuracy. Then, a numerical VBI model 

with a quarter car model is adopted to demonstrate the proposed approach. Finally, this proposed 

approach is applied to detect the bridge frequency drop caused by the structural damage so as to 

estimate the bridge condition.  

 

 2 Hilbert Transform   
 

In this section, a brief introduction of HT is presented. Mathematically, given a real-valued 

mono-component function of s(t), the Hilbert transform of s(t) is defined as (Huang 2014): 

𝑠̂(𝑡) = 𝐻(𝑠(𝑡)) =
1

𝜋
𝑃𝑉 ∫

𝑠(𝜏)

𝑡 − 𝜏

+∞

−∞

𝑑𝜏 (1) 

where PV denotes the Cauchy principal value. Practically, it defines the HT as the convolution of 

s(t) with the kernel function 1/πt. Therefore, 𝑠̂(𝑡) is referred as the orthogonal projection of s(t). 

Using these two orthogonal component, the analytic signal z(t) can be constructed in the form 

𝑧(𝑡) = 𝑠(𝑡) + 𝑖𝑠̂(𝑡) = 𝐴(𝑡)𝑒𝑖𝜃(𝑡) (2) 

where 

𝐴(𝑡) = √𝑠2(𝑡) + 𝑠̂2(𝑡), 𝜃(𝑡)=arctan (
𝑠̂(𝑡)

𝑠(𝑡)
) (3,4) 



In above equation, the time-dependent functions of A(t) and θ(t) are the instantaneous amplitude 

function and instantaneous phase function, respectively, of the original function s(t). Using vector 

representations in complex plane, A(t) and θ(t) can be obtained easily. 

 

3. Formulation of the analytical theory  
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Fig. 1 Numerical model of VBI 

 

In order to highlight the major dynamic characteristics of the coupled VBI system, a simplified 

numerical model will be adopted, as given in Fig. 1. The vehicle is simply simulated as a lumped 

mass mv, supported by a spring of stiffness kv and passing with constant speed v across a simply 

supported beam of length L. This beam is assumed to be of the Bernoulli–Euler type with constant 

cross section and ideal smooth pavement. Through neglecting the damping effects of both bridge 

and vehicle, the equations of motion for the bridge and vehicle can be written as follows:  

𝑚̅𝑢̈ + 𝐸𝐼𝑢"" = 𝑓𝑐(𝑡)𝛿(𝑥 − 𝑣𝑡) 

𝑚𝑣𝑢̈ + 𝑘𝑣(𝑞𝑣 − 𝑢|𝑥=𝑣𝑡) = 0 

(5) 

(6) 

where 𝑚̅ denotes the bridge mass per unit length, 𝐸 young elastic modulus, 𝐼 moment of inertia, 

𝑢(𝑥, 𝑡) vertical displacement of beam, and qv(t) vertical displacement of the vehicle, measured from 

the static equilibrium position, and a dot and a prime represent the derivative with relative to time 

t and longitudinal coordinate x of the beam, respectively. The contact force between beam and 

vehicle 𝑓𝑐(𝑡) can be expressed as 

𝑓𝑐(𝑡) = −𝑚𝑣𝑔 + 𝑘𝑣(𝑞𝑣 − 𝑢|𝑥=𝑣𝑡) (7) 

where g represents the gravitational acceleration. 

 

Using the modal superposition method, the solution of the bridge displacement response 

𝑢(𝑥, 𝑡) in equation (5) can be expressed in term of modal shapes sin (𝑛𝜋𝑥/𝐿) and generalized 

coordinates 𝑞𝑏,𝑛(𝑡), 

𝑢(𝑥, 𝑡) = ∑ 𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿

∞

𝑛=1

𝑞𝑏,𝑛(𝑡) (8) 

Accordingly, one can obtain the solution of the displacement of the test vehicle in equation (6) 

as following (Yang and Lin 2005, Yang and Chang 2009, Yang, Li et al. 2014) 



𝑞𝑣(𝑡) = ∑ {𝐴1,𝑛 cos (
(𝑛 − 1)𝜋𝑣

𝐿
) 𝑡 + 𝐴2,𝑛 cos (

(𝑛 + 1)𝜋𝑣

𝐿
) 𝑡

∞

𝑛=1

+ 𝐴3,𝑛 cos(𝜔𝑣𝑡) + 𝐴4,𝑛 cos (𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
) 𝑡

+ 𝐴5,𝑛 cos (𝜔𝑏,𝑛 +
𝑛𝜋𝑣

𝐿
) 𝑡)} 

(9) 

where the coefficient of 𝐴4,𝑛  and 𝐴5,𝑛 are  

𝐴4,𝑛 =
−𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣

2

2(1 − 𝑆𝑛
2) (𝜔𝑣 − 𝜔𝑏,𝑛 +

𝑛𝜋𝑣
𝐿

) (𝜔𝑣 + 𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
)
 

𝐴5,𝑛 =
𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣

2

2(1 − 𝑆𝑛
2)(𝜔𝑣 + 𝜔𝑏,𝑛 +

𝑛𝜋𝑣
𝐿

)(𝜔𝑣 − 𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
)
 

(10,11) 

and the bridge frequency 𝜔𝑏,𝑛, vehicle frequency 𝜔𝑣, velocity parameter 𝑆𝑛, and vehicle-induced 

static deflection ∆𝑠𝑡,𝑛 of the beam, of the n-th mode are defined as 

𝜔𝑏,𝑛 = (
𝜋𝑣

𝐿
)2√

𝐸𝐼

𝑚̅
 

𝜔𝑣 = √
𝑘𝑣

𝑚𝑣
 

𝑆𝑛 =
𝑛𝜋𝑣

𝐿𝜔𝑏,𝑛
 

∆𝑠𝑡,𝑛=
−2𝜔𝑣𝑔𝐿3

𝑛4𝜋4𝐸𝐼
 

(12,13,14,15) 

Similar to the coefficient of 𝐴4,𝑛  and 𝐴5,𝑛 in equation (10, 11), 𝐴1,𝑛  𝐴2,𝑛  and 𝐴3,𝑛  are time 

irrelevant coefficients determined by parameters of 𝜔𝑣, 𝜔𝑏,𝑛, ∆𝑠𝑡,𝑛and 𝑆𝑛. However, it won’t be 

presented herein since it is not of concern in this study.  

 

Therefore, taking twice derivative of the vehicle displacement response, one can obtain the 

vehicle acceleration response 

𝑞̈𝑣(𝑡) = ∑ {𝐴̿1,𝑛 cos (
(𝑛 − 1)𝜋𝑣

𝐿
) 𝑡 + 𝐴̿2,𝑛 cos (

(𝑛 + 1)𝜋𝑣

𝐿
) 𝑡

∞

𝑛=1

+ 𝐴̿3,𝑛 cos(𝜔𝑣𝑡) + 𝐴̿4,𝑛 cos (𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
) 𝑡

+ 𝐴̿5,𝑛 cos (𝜔𝑏,𝑛 +
𝑛𝜋𝑣

𝐿
) 𝑡)} 

(16) 

with the coefficients of 𝐴̿4,𝑛  and 𝐴̿5,𝑛 as  

𝐴̿4,𝑛 =
𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣

2

2(1 − 𝑆𝑛
2)(𝜔𝑣 − 𝜔𝑏,𝑛 +

𝑛𝜋𝑣
𝐿 )(𝜔𝑣 + 𝜔𝑏,𝑛 −

𝑛𝜋𝑣
𝐿 )

(𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
)2 

𝐴̿5,𝑛 =
−𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣

2

2(1 − 𝑆𝑛
2)(𝜔𝑣 + 𝜔𝑏,𝑛 +

𝑛𝜋𝑣
𝐿 )(𝜔𝑣 − 𝜔𝑏,𝑛 −

𝑛𝜋𝑣
𝐿 )

(𝜔𝑏,𝑛 +
𝑛𝜋𝑣

𝐿
)2 

(17,18) 



Apparently, the vehicle acceleration response of equation (16) is dominated by five frequencies, 

i.e., two shifted driving frequencies (𝑛 − 1)𝜋𝑣/𝐿 and (n + 1)𝜋𝑣/𝐿, vehicle frequency 𝜔𝑣, and two 

shifted bridge frequencies 𝜔𝑏,𝑛 − 𝑛𝜋𝑣/𝐿 and 𝜔𝑏,𝑛 + 𝑛𝜋𝑣/𝐿 .  

 

To extract the frequency of bridge from the vehicle acceleration response with this proposed 

HT approach, the component response corresponding to the bridge frequency of n-th mode should 

be singled out via an appropriate filtering technique. According to equation (16), the extracted 

component response 𝑅𝑏 associated with single frequency of bridge (n-th mode) is (Yang, Li et al. 

2014) 

𝑅𝑏(𝑡) = 𝐴̿4,𝑛 cos (𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
) 𝑡 + 𝐴̿5,𝑛 cos (𝜔𝑏,𝑛 +

𝑛𝜋𝑣

𝐿
) 𝑡 (19) 

The filtering signal of 𝑅𝑏 is a narrow-band time series and thus can be applied with HT to 

produce its transform pair,  

𝑅̂𝑏(𝑡) = 𝐻[(𝑅𝑏(𝑡))]= 𝐴̿4,𝑛 sin (𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
) 𝑡 + 𝐴̿5,𝑛 sin (𝜔𝑏,𝑛 +

𝑛𝜋𝑣

𝐿
) 𝑡 (20) 

In general, the bridge frequency 𝜔𝑏,𝑛 is much greater than the driving frequency n 𝜋 v/L, 

especially at lower vehicle velocity. Accordingly, the coefficients 𝐴̿4,𝑛and 𝐴̿5,𝑛 can reduce to  

𝐴̿4,𝑛 = (𝜔𝑏,𝑛)2
𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣

2

2(1 − 𝑆𝑛
2)(𝜔𝑣 − 𝜔𝑏,𝑛)(𝜔𝑣 + 𝜔𝑏,𝑛)

 

𝐴̿5,𝑛 = −(𝜔𝑏,𝑛)2
𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣

2

2(1 − 𝑆𝑛
2)(𝜔𝑣 − 𝜔𝑏,𝑛)(𝜔𝑣 + 𝜔𝑏,𝑛)

 

(21,22) 

As equation (21) and (22) shown, the two coefficients 𝐴̿4,𝑛 and 𝐴̿5,𝑛 are equal in magnitude, but 

opposite in sign, i.e., 𝐴̿4,𝑛 +𝐴̿5,𝑛=0. Accordingly, the bridge component response 𝑅𝑏(𝑡) and its 

Hilbert transform 𝑅̂𝑏(t) can be expressed as 

𝑅𝑏(𝑡) = −2𝐴̿4,𝑛 sin(𝜔𝑏,𝑛𝑡) sin (
𝑛𝜋𝑣

𝐿
𝑡) 

𝑅̂𝑏(𝑡) = 2𝐴̿4,𝑛 cos(𝜔𝑏,𝑛𝑡) sin (
𝑛𝜋𝑣

𝐿
𝑡) 

(23,24) 

From the introduce of Hilbert transform aforementioned, the instantaneous amplitude history of 

𝐴(𝑡) can be obtained as  

𝐴(𝑡) = √𝑅𝑏
2(𝑡)+𝑅̂𝑏

2(𝑡) =  |2𝐴̿4,𝑛 ∙ sin (
𝑛𝜋𝑣

𝐿
𝑡)| = 2|𝐴̿4,𝑛| ∙ |sin (

𝑛𝜋𝑣

𝐿
𝑡)| (25) 

Replacing 𝑥 with 𝑣𝑡 in equation (25) yields 

𝐴 (
𝑥

𝑣
) = 2|𝐴̿4,𝑛| ∙ |sin (

𝑛𝜋𝑥

𝐿
)| (26) 

This equation shows that the instantaneous amplitude history of 𝐴 (
𝑥

𝑣
) of the extracted 

component response is represented by the mode shape function sin (
𝑛𝜋𝑥

𝐿
) of the bridge (in absolute 

value) multiplied by a constant and time-irreverent coefficient 2|𝐴̿4,𝑛|, which is a function of the 

bridge frequency 𝜔𝑏,𝑛, vehicle frequency 𝜔𝑣 , velocity parameter 𝑆𝑛, and vehicle-induced static 

deflection ∆𝑠𝑡,𝑛 of the beam. It reveals that once the component response corresponding to the 

certain mode shape of the bridge can be extracted from the response of a passing vehicle when it 

passed over the bridge, its instantaneous amplitude history is representative of the corresponding 

mode of the bridge (Yang, Li et al. 2014).  

 



On the other hand, the instantaneous phase 𝜃(𝑡)can be derived as 

𝜃(𝑡) = arctan (
𝑅̂𝑏(𝑡)

𝑅𝑏(𝑡)
) = arctan(−𝑐𝑜𝑡𝜔𝑏,𝑛𝑡) = 𝜔𝑏,𝑛𝑡 −

𝜋

2
 (27) 

Herein, it is demonstrated that the bridge frequency can be represented by the slope of 

instantaneous phase. However, this result has relied on the assumption of that the driving 
frequency n𝜋𝑣/𝐿 is much smaller than the bridge frequency. In fact, with the increase of vehicle 

velocity, the driving frequency cannot be neglected in comparison to the bridge frequency. 

Therefore, the following section will focus on presenting formula derivation considering this 

driving frequency.  
 

Set a ratio 𝛼 of 𝐴̿5,𝑛 to 𝐴̿4,𝑛 from equations (17) and (18) and it can be expressed as  

𝛼 =
𝐴̿5,𝑛

𝐴̿4,𝑛

= −
(1 + 𝑆𝑛)2

(1 − 𝑆𝑛)2
∙

(1 − 𝜇𝑛
2(1 − 𝑆𝑛)2)

(1 − 𝜇𝑛
2(1 + 𝑆𝑛)2)

 (28) 

where 𝜇𝑛 is defined as the ratio of the n-th mode natural frequency of bridge 𝜔𝑏,𝑛 to the vehicle 

frequency 𝜔𝑣,  

𝜇𝑛 =
𝜔𝑏,𝑛

𝜔𝑣
 (29) 

Then, the component response of 𝑅𝑏 and its Hilbert transform 𝑅̂𝑏 can be expressed as 

𝑅𝑏 = 𝐴̿4,𝑛 ∙ [(1 + 𝛼)cos(𝜔𝑏,𝑛𝑡) cos(𝑆𝑛𝜔𝑏,𝑛𝑡) + (1

− 𝛼) sin(𝜔𝑏,𝑛𝑡) sin(𝑆𝑛𝜔𝑏,𝑛𝑡)] 

𝑅̂𝑏 = 𝐴̿4,𝑛 ∙ [(1 + 𝛼)sin(𝜔𝑏,𝑛𝑡) cos(𝑆𝑛𝜔𝑏,𝑛𝑡) − (1

− 𝛼) cos(𝜔𝑏,𝑛𝑡) sin(𝑆𝑛𝜔𝑏,𝑛𝑡)] 

(30,31) 

In this way, the instantaneous phase 𝜃(𝑡) can be derived as 

𝜃(𝑡) = arctan (
𝑅̂𝑏(𝑡)

𝑅𝑏(𝑡)
) = arctan(

tan(𝜔𝑏,𝑛𝑡) −
1 − 𝛼
1 + 𝛼

tan (𝑆𝑛𝜔𝑏,𝑛𝑡)

1 +
1 − 𝛼
1 + 𝛼 tan (𝑆𝑛𝜔𝑏,𝑛𝑡) tan(𝜔𝑏,𝑛𝑡)

) (32) 

Here assumes a time varying coefficient 𝛽(𝑡) and make it content  

tan(𝛽(𝑡)) =
1 − 𝛼

1 + 𝛼
tan(𝑆𝑛𝜔𝑏,𝑛𝑡) (33) 

Therefore, the instantaneous phase 𝜃(𝑡) of equation (30) can be expressed as follows 

𝜃(𝑡) = 𝜔𝑏,𝑛𝑡 − 𝛽(𝑡) (34) 

Obviously, the equation (34) shows that the slope of the sum of instantaneous phase 𝜃(𝑡) and 

𝛽(𝑡) represents the bridge frequency. Comparing to the equation (27), it needs to calculate the term 

of 𝛽(𝑡), which is related to the vehicle velocity parameter 𝑆𝑛.  

 

Although the proposed HT based approach indicates that the slope of sum 𝜃(𝑡) + 𝛽(𝑡)  is 

potential to extract the bridge nature frequencies from a passing vehicle removing vehicle speed 

effect, it is subject to two main challenges. One is imposed by the requirement of extracted 

component response 𝑅𝑏 associated with single frequency of bridge (n-th mode) from the passing 

vehicle acceleration history. For this point, it can carry out by feasible signal processing tools, such 

as singular spectrum and band-pass filters technique, and so on. In this regard, the bridge frequency 

actually has already been known in signal processing. But this is not contradictory to the present 

approach for improving extracting bridge frequency. Because this already known bridge frequency 



can obtain from applying FFT directly, wavelet analysis approach (Tan, Elhattab et al. 2017) or 

other ways, which does not remove the effect of the driving frequency and therefore, is considered 

as a poor identification (marked as ω̅b here). This present approach aims to obtain highly accurate 

identification of a bridge frequency. Although poor identification of bridge frequency can be easily 

obtained, how to extract 𝑅𝑏 from the passing vehicle acceleration is still challengeable. Equation 

(26) shows that the perfect extracted 𝑅𝑏 can obtain results of corresponding the mode shape of the 

bridge, which can instruct us to extract apposite 𝑅𝑏 from the axle responses.  

 

Another challenge is imposed by the calculation of  𝛽(𝑡) , since it is related to the bridge 

frequencies as shown equation (33). The poor estimated frequency of a bridge ω̅b can be used 

instead. This section will investigate that how much the ω̅b influences on 𝛽(𝑡) as well as the final 

accuracy of the bridge frequency identification.  According to equation (28), assume  𝜔𝑏 =
3.86𝐻𝑧 ,  𝜔𝑣 = 10.33𝐻𝑧  and 𝑆𝑛 =0.1; a signal is created by  𝑠(𝑡) = cos(𝜔𝑏 − 𝑆𝑛𝜔𝑏) 𝑡 +
𝛼cos(𝜔𝑏 + 𝑆𝑛𝜔𝑏) 𝑡, where 𝛼 is calculated based on equation (28). In this case, the total effect time 

is 1.296s with time steps as 0.002s. Then the HT based approach is applied to extract 𝜔𝑏 from 

signal 𝑠(𝑡). In this processing, 𝛽(𝑡) is calculated using the given frequency ω̅b, whose errors varies 

from -40% to 40% with 10% increment.   

 

Fig. 2. 𝛽(𝑡) plot calculations at different 𝜔̅𝑏 

 

 

Fig. 3. the error of approximate slope of 𝛽(𝑡)  

Fig. 2 shows the β(t) plots computed at different given frequency ω̅b  with Sn =0.1. Fig. 3 

illustrates the error of approximate slope of these β(t) plots comparing to the theoretical one. As it 
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has shown, the lower the given frequency  ω̅b , the greater the error result, as well as to the 

greater ω̅b, although their errors are obviously lower than the lower given frequency ω̅b. It is no 

doubts that these errors of β(t) will result in the error to final ωb identification as well. Fig. 4 shows 

the error of  ωb identification after applied the proposed HT approach. As expected, the HT based 

approach apparently and effectively improve the ωb estimation. To further explain the feasibility 

of the proposed approach, the results of more cases analysis when  𝑆𝑛 = 0.01, 0.05, 0.15 and 0.20 

are illustrated in Fig. 4 as well. It is worth to notice that the total effect time of signal will be 

changed corresponding to  𝑆𝑛 . For instance, when  𝑆𝑛 = 0.2, the length of total effect time is 

changed to 0.648s. From the Fig. 4, the higher  𝑆𝑛 will magnify this estimated error, although all of 

the estimated frequencies have been dramatically improved after applied with the HT based 

approach in comparison to the given frequency ω̅b. Practically, the improved estimated frequency 

can be utilized as a newly given frequency ω̅b to recalculate β(t) and estimated frequency again 

and one can repeat these steps until the convergence of ωb. Fig. 5 shows the cycle calculation 

results in the condition of the first given ω̅b = −40% ωb with Sn=0.1. As it has shown, after 

enough cycles, the estimated frequency will be convergence and extremely close to theoretical one.  

Fig. 6 shows all case studies result after five loops’ calculation. All of the errors are lower than 

0.5%.  

 

Fig. 4. Final estimated frequency error  

 

 

Fig. 5. Cycle calculation results 
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It reaches the conclusion that the calculation of precise β(t)  is not a challenge anymore 

conducted by the repeat computation. Once the single component response 𝑅𝑏 can be extracted 

precisely, the bridge frequency can be identified with high accuracy. Therefore, the proposed HT 

based approach to improve bridge frequency identification of a passing vehicle is summarized as 

follows:  

(1) Acquisition of the vehicle acceleration responses. 

(2) Obtaining the poor bridge frequencies ω̅b applying FFT directly, or wavelet analysis (Tan, 

Elhattab et al. 2017), etc. 

(3) Extracting a series of single component response 𝑅𝑏 at a series of band-pass filters with ω̅b. 

(4) Calculating instantaneous amplitude history 𝐴(𝑡) of HT at each 𝑅𝑏; simultaneously calculating 

the MAC (modal assurance criteria) between 𝐴(𝑡) and theoretical mode shape of the bridge. 

(5) Choosing the optimum 𝑅𝑏 who provides the maximum MAC.  

(6) Calculating the instantaneous phase 𝜃(𝑡) of HT at the obtained optimum 𝑅𝑏 and calculating 

the time-varying coefficient 𝛽(𝑡). 

(7) Computing an improved bridge frequency with 𝛽(𝑡) and 𝜃(𝑡) and using the improved bridge 

frequency to calculate the time-varying coefficient 𝛽(𝑡) again.  

(8) Repeating step (7) until the improved identified frequency convergence (convergence is the 

final bridge frequency identification).  

 

Fig. 6. The estimated frequency error after 5 loops calculation 

 

4 Case studies    
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Fig. 7.the quarter car and bridge model 
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To verify the feasibility of the proposed approach on improving bridge frequency from a passing 

vehicle, a quarter-car of VBI model was adopted as shown in Fig. 7. The quarter-car travels with 

constant speed over the bridge. The vehicle is modeled as a quarter-car model crossing a 50-m 

approach distance followed by a 20-m simply supported finite element (FE) bridge. The vehicle 

masses are represented by a sprung mass, ms, and un-sprung mass, ma represents the vehicle axle 

mass and body mass respectively. The Degrees of Freedoms (DOFs) that correspond to the 

bouncing of the sprung and the axle masses are, us, and ua, respectively. All properties of VBI 

model is listed in Table 1 and based upon the work of Cebon (1999). The dynamic interaction 

between the vehicle and the bridge is implemented in MATLAB (Tan, Elhattab et al. 2017). The 

road surface profile is not considered in this simulation. Unless otherwise mentioned, the used 

scanning frequency is 500 Hz. The first two natural frequencies of bridge, fb is 2.171Hz and 

8.683Hz respectively. The vehicle frequencies are 0.581Hz and 10.333Hz respectively.  

 
Table 1 Vehicle and bridge properties 

Vehicle properties Bridge properties 

ms 14000 kg Span 20m 

ks 200 kN/m Density 4800kg/m3 

cs 10 kN s/m Width 4 m 

ma 700 kg Depth 0.8m 

ka 2750 kN/m Modulus 2.75×1010 N/m2 

 

 

 

Fig. 8. The vehicle acceleration response 

 



 

Fig. 9. Acceleration spectrum of vehicle acceleration history 

 

Fig. 8 illustrates the vehicle axle acceleration response for the VBI model mentioned above, 

where the vehicle velocity is 18m/s. As aforementioned in the analytical theory, this passing vehicle 

history contains the bridge frequency components. Therefore, the natural frequency of bridge can 

be extracted after FFT applying to the signal of Fig. 8. Fig. 9 illustrates the spectrum of the recorded 

response showing two distinctive peaks according to the frequency of 2.693Hz and 9.874Hz 

respectively, which represents the first two bridge natural frequencies of the bridge, respectively. 

Since the frequency resolution of FFT is low with short data at the condition of higher vehicle 

velocity. The spectrum of the test vehicle with FFT cannot point out the precious frequencies of 

bridges. With the increase in vehicle velocity, the frequency resolution of FFT will be worse. Thus, 

FFT can only provide a poor frequency identification for short data of the passing vehicle 

acceleration response. In addition, FFT cannot be used to detect the bridge frequency drop caused 

by bridge structure damages so as to assess bridge condition. The following section will utilize the 

proposed HT based approach to improve the extraction of the bridge frequencies.   

 

Generally, the maximum error applying FFT directly will be not greater than 2 times of the 

theoretical driving frequency (in this case: 𝑓𝑑 =
𝑣

𝐿
= 0.9𝐻𝑧) because both of the shift frequency 

and frequency resolution are equal to 𝑓𝑑. For example, in this case, the real first natural bridge 

frequency should be in the range of  𝑓𝑟1 = 2.693 − 2 × 0.9 = 0.893;  𝑓𝑟2 = 2.693 + 2 × 0.9 =
4.493. Then a zero-phase digital ‘Butterworth’ band-pass filter with a lower order as 6 is applied 

to the recorded acceleration response to extract the single modal component response. For this 

band-pass filter, the center frequency 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 varies from 𝑓𝑟1 to 𝑓𝑟2, and the two-cut-off frequencies 

are  𝑓𝑐1 =  𝑓𝑐𝑒𝑛𝑡𝑒𝑟 − 2 ×  𝑓𝑑 and 𝑓𝑐2 =  𝑓𝑐𝑒𝑛𝑡𝑒𝑟 + 2 ×  𝑓𝑑, respectively.   

 

  
(a) 1st bridge frequency (b) 2nd bridge frequency 



Fig. 10. Bridge frequencies identification at a series of band-pass filters 

 

Therefore, these band-pass filters are applied to extract the first two single component 

responses 𝑅𝑏1 and 𝑅𝑏2 of the bridge, and then these series of extracted 𝑅𝑏1 and 𝑅𝑏2 are used to 

improve the bridge frequency ωb identification based on the aforementioned procedures. For this 

case, the results are illustrated in Fig. 10. As it has shown, when the  𝑓𝑐𝑒𝑛𝑡𝑒𝑟 = 2.8𝐻𝑧 , the 

corresponding 𝑅𝑏1 has the maximum MAC and obtains the final ωb = 2.16𝐻𝑧, which is extremely 

close to the theoretical one with regard to the first bridge frequency. Similarly, the 2nd bridge 

frequency has been improved apparently after applying the proposed approach.   

 

 

Fig. 11. The improved 1st bridge frequency identification details; top left: single component Rb1 after band-

pass filter; top right: the instantaneous phase θ(t); bottom left: the time varying coefficient β(t); bottom 

right: θ(t)+β(t) 

 

 

 

 



 

Fig. 12. The improved 2nd bridge frequency identification details; top left: single component Rb2 after band-

pass filter; top right: the instantaneous phase θ(t); bottom left: the time varying coefficient β(t); bottom 

right :θ(t)+β(t) 

 

Fig. 11 and Fig. 12 show the details for improving the bridge frequency ωb identification based 

on HT approach. As they have shown, these 𝜃(𝑡) plots are represented by a nearly straight line and 

their approximate slopes are calculated as 2.39 and 9.55 respectively. These calculated slopes can 

be considered as bridge frequencies as equation (27) considering the vehicle velocity parameter 

effect. However, the errors are great comparing to the theoretical one. Actually, the 𝛽(𝑡) plots are 

represented by this vehicle speed effect and clearly, they cannot be ignored directly. From the 

equation (34), the slopes of plots of 𝜃(𝑡) + 𝛽(𝑡) represent the high accuracy identification of 

bridge frequency removing the effect of vehicle velocity effect and their approximate slopes are 

calculated as 2.16 and 8.56 respectively. 

 

4.1 Effect of vehicle speed 
 



 
 

Fig. 13. The improved 1st bridge frequency identification at different vehicle speeds. 

 

In this case, the effect of the vehicle speed on improving the bridge frequency identification is 

studied for a series of vehicle speeds: 𝑣  from 6 to 30 m/s with incensement of 2 m/s. Other 

parameters of VBI remain identical to that studied previously. By following the same procedure, 

the improved first two bridge frequencies can be extracted from a passing vehicle for each vehicle 

speed, as shown in Fig. 13 and Fig. 14. Table 2 lists the final bridge frequencies identification 

values of ωb and results from HHT directly comparing to theoretical ones.  

 

V=6m/s V=8m/s V=10m/s V=12m/s 

V=14m/s V=16m/s V=20m/s V=22m/s 

V=24m/s V=26m/s V=28m/s V=30m/s 



 
Fig. 14. The improved 2nd bridge frequency identification at different vehicle speeds. 

 

Table 2. The improved bridge frequencies identification results at different vehicle speeds 

Velocities 

(m/s) 
6 8 10 12 14 16 18 20 22 24 26 28 30 

1st  

HT 

(Hz) 
2.18 2.19 2.15 2.14 2.15 2.08 2.16 2.29 2.14 2.13 1.70 2.58 1.70 

Error 

(%) 
0.23 1.02 -0.78 -1.48 -0.75 -4.06 -0.48 5.68 -1.40 -1.71 -21.81 18.94 

-

21.46 

FFT 

(Hz) 
2.10 2.40 2.50 2.40 2.09 2.40 2.69 2.00 2.20 2.39 2.59 1.39 1.50 

Error 

(%) 
-3.33 10.48 15.06 10.48 -3.49 10.39 24.06 -8.05 1.25 10.21 19.35 

-

35.84 

-

31.04 

2n

d 

HT 

(Hz) 
8.65 8.64 8.62 8.60 8.58 8.57 8.56 8.66 8.51 8.64 8.61 8.59 8.57 

Error 

(%) 
-0.34 -0.46 -0.69 -0.91 -1.16 -1.29 -1.45 -0.30 -1.97 -0.49 -0.83 -1.05 -1.30 

FFT 

(Hz) 
8.99 9.19 8.99 8.99 9.08 9.58 9.87 9.98 9.89 9.57 10.36 9.75 10.48 

V=6m/s V=8m/s V=10m/s V=12m/s 

V=14m/s V=16m/s V=20m/s V=22m/s 

V=24m/s V=26m/s V=28m/s V=30m/s 



Error 

(%) 
3.57 5.87 3.55 3.57 4.55 10.38 13.72 14.94 13.90 10.21 19.34 12.28 20.68 

 

In the above processing analysis, all of the poor bridge frequencies identification 𝜔̅𝑏 are 

obtained from the FFT spectrum. As it has shown, the 𝜔̅𝑏 have a greater error at higher vehicle 

speed. In Table 2, the maximum identification error of FFT is -35.84% for 1st bridge frequency and 

20.68% for 2nd bridge frequency. Obviously, the proposed approach has improved the bridge 

frequencies from a passing vehicle in most the cases. The identification error is less than 1.97% for 

2nd bridge frequency. It is observed that when the vehicle speed is not greater than 26 m/s, the 

results of the improved 1st bridge frequencies are precious and error is less than 5.68%. In contrast, 

when the vehicle speed is equal to or greater than 26 m/s, the proposed HT based approach is not 

able to improve the bridge natural frequencies from the poor identification results with FFT.  

 

4.2 Effect of noisy  
 
To further investigate the feasibility of this proposed method, the effect of noisy are investigated. 

In order to simulate the polluted measurements, white noise is added to the simulated responses of 

the vehicle. The noisy response is calculated as following formula: 

𝑢̈𝑛𝑜𝑖𝑠𝑒 = 𝑢̈𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 + 𝐸𝑝𝑁𝑜𝑖𝑠𝑒𝜎(𝑢̈𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) 
(35) 

where 𝑢̈𝑛𝑜𝑖𝑠𝑒  is the polluted acceleration; 𝐸𝑝  is the noise level and 𝑁𝑜𝑖𝑠𝑒  is a standard normal 

distribution vector with zero mean value and unit standard deviation. 𝑢̈𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 is the calculated 

acceleration, and 𝜎(𝑢̈𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) is their standard deviations.  

 
Table 3. The errors of improved bridge frequencies results at different levels of noisy  

 

6 8 10 12 14 16 18 20 22 24 26 28 30 

1st  

0.05 
0.22 0.97 -0.73 -1.42 -0.85 -4.02 -1.96 2.67 -1.30 0.00 -24.86 17.31 -

21.39 

0.1 
0.06 1.01 -0.45 -2.06 -0.81 -3.88 -2.31 5.78 0.93 0.34 -24.60 17.45 -

22.44 

0.15 
5.28 0.88 -0.71 -3.61 -0.62 4.68 -0.75 5.89 3.54 0.52 -20.97 16.94 -

24.04 

0.2 
-1.72 0.74 -2.58 -1.55 -2.72 -6.37 -0.53 5.31 -1.22 -4.69 -26.78 -

63.09 

-

18.72 

0.25 
2.75 1.22 -0.64 -3.52 8.87 -6.42 -2.14 5.85 -4.46 -4.35 -25.42 -

55.91 

-

16.54 

2n

d 

0.05 -0.34 -0.46 -0.69 -0.93 -1.16 -1.28 -1.46 -0.29 -1.97 -0.48 -0.85 -0.94 -1.38 

0.1 -0.33 -0.47 -0.69 -0.87 -1.16 -1.32 -1.46 -0.29 -2.00 -0.54 -0.78 -1.17 -1.52 

0.15 -0.35 -0.45 -0.67 -0.92 -1.17 -1.34 -0.14 -0.24 -2.09 -0.41 -0.89 -1.37 38.81 

0.2 -0.34 -0.48 -0.71 -0.94 -1.09 -1.23 -0.21 0.10 -2.21 -0.42 -0.58 -1.08 38.71 

0.25 -0.31 -0.48 -0.69 -0.95 -1.15 -1.29 -1.45 -0.56 -2.28 -0.32 -0.94 -1.38 38.78 

Note: the errors are represented by percentage (%) comparing to theoretical ones. 

 

The different levels of noisy: 𝐸𝑝 = 0.05, 0.1, 0.15, 0.20 and 0.25 are investigated in this study. 

By following the same procedure, all the results of the improved bridge frequencies are listed in 

Table 3. As it has shown, the proposed approach is not sensitive to noisy, possibly because the 

Velocity  

(m/s) Noisy 

level 



procedure of band-pass filtering almost removes the effect of noisy, as long as the FFT can get the 

generally accurate bridge frequencies 𝜔̅𝑏. The result of the 2nd bridge frequency is better than that 

of 1st. The maximum identification error is 8.87% for 1st bridge frequency (except for 26, 28 and 

30 m/s) and 2.28% for 2nd bridge frequency (except for 30 m/s). 

 

4.3 Effect of surface roughness 
 
In this case, the effect of road surface roughness is investigated by letting the instrumented 

vehicle pass over the bridge with rough road profile. The road roughness profile is generated 

according to the PSD (power spectrum density) curve of “class A” (ISO 1995).  

 

  
(a) The vehicle acceleration response (b) Acceleration spectrum 

Fig. 15. The vehicle acceleration response and spectrum 

 

 

  
(a) 1st bridge frequency (b) 2nd bridge frequency 

Fig. 16. Bridge frequencies identification considering the road surface profile 

 

Fig. 15 shows the original crossing vehicle acceleration history at velocity 18 m/s with road 

roughness and the corresponding frequencies extracted using FFT. As it has shown, at the “class 

A” road roughness profile, the FFT can still extract the bridge frequency and the first two bridge 

frequencies are recognized as 2.693Hz and 9.874Hz respectively. Similar to the effect of noise, the 

following band-pass filtering process can effectively remove the component of response generated 

by the uneven road surface from the vehicle response. Therefore, the proposed approach can still 



improve the bridge frequency. The results are shown in Fig. 16. As expected, it provides the highly 

precious identification.  

 

5. Estimation bridge condition from a passing vehicle 
 

In this section, the drop in bridge frequency is used as a damage indicator to quantify the damage 

in the bridge. In this study, bridge damage is simulated using the method proposed by Sinha, 

Friswell et al. (2002), where the damage is assumed to be extended over a region of three times the 

beam depth. The element stiffness in this damage region varies from a minimum value at the exact 

crack location to full stiffness at the edge of the damaged area. The damage level is defined as a 

ratio of the depth of the crack to the depth of the intact bridge. For example, if the damage level is 

0.2 or 20%, it means that the crack depth is 0.16 meters for a 0.8 meters deep bridge.  

 

The FFT method, as mentioned previously, could not be used to accurately identify the bridge 

frequency at higher speeds. This is due to the low frequency resolution associated with higher 

vehicle speeds. Therefore, and for the same reason, FFT cannot be used to monitor the shift in the 

bridge frequency due to structural damages. The frequency step of FFT will not pick up the minor 

changes happened to the bridge frequency due to structural damages. Therefore, the next section 

will focus only on using the HT based approach to track the change in the bridge frequency due to 

the existence of structural damages.  

 

  
(a) Rb1 (b) Rb2 

Fig. 17. β(t)+θ(t) plots at different damage levels 

 

In this case, the damage located at the 0.7L (L=span length) of the bridge. The bridge is modeled 

three times, one as an intact bridge, and other two cases of different damage levels (e.g. 20% and 

40%). By following the procedures mentioned above using the same band-pass filter, Fig. 17 

illustrates results of 𝛽(𝑡) + 𝜃(𝑡)  plots representing the final bridge identification. Herein, all 

parameters of the VBI model are kept same with the above and the vehicle velocity is 18m/s. As it 

has shown, there is clear difference of slope in 𝛽(𝑡) + 𝜃(𝑡) plots in these three cases. With the 

increase of damage level, the slope in 𝛽(𝑡) + 𝜃(𝑡)plots representing bridge frequency decreases, 

which can point out the drop of bridge natural frequency due to the structural damage.  

 

In order to investigate the efficacy of the proposed approach in bridge damage detection, 

different velocities (6m/s, 8m/s, 10m/s, 12m/s and 14m/s) are studied, and the results are illustrated 



in Fig. 18 and Fig. 19. In this study, other parameters of VBI remain identical to that studied 

previously. 

 

As they are shown, with the increment of damage level, the theoretical frequencies of bridge 

decrease (fTI> fTD1> fTD2). Similarly, the identified frequencies of damaged bridge decrease as well 

(fII> fID1> fID2). Although the improved bridge frequencies applying HT based approach are not 

exact to the theoretical ones, the drop of frequencies is clearly found. The error is less than 2.77% 

for the 1st bridge frequency and 1.16% for the 2nd bridge frequency. It has concluded that the 

proposed approach is not restricted to frequency resolution, which can be used to quantify the 

existence of damage using indirect measurements from an inspection vehicle. 

 

 

Fig. 18. The 1st bridge frequency estimation at different bridge conditions 

*Note: fTI presents the 1st theoretical frequency of the intact bridge, fTD1 presents the 1st theoretical frequency 

of the damaged bridge at level 0.2, fTD2 presents the 1st theoretical frequency of the damaged bridge at level 

0.4, fII presents the 1st identified frequency of the intact bridge, fID1 presents the 1st identified frequency of 

the damaged bridge at level 0.2, fID2 presents the 1st identified frequency of the damaged bridge at level 

0.4. 

 

 

Fig. 19.  The 2nd bridge frequency estimation at different bridge conditions 

* Note: fTI presents the 2nd theoretical frequency of the intact bridge, fTD1 presents the 2nd theoretical 

frequency of the damaged bridge at level 0.2, fTD2 presents the 2nd theoretical frequency of the damaged 



bridge at level 0.4, fII presents the 2nd identified frequency of the intact bridge, fID1 presents the 2nd identified 

frequency of the damaged bridge at level 0.2, fID2 presents the 2nd identified frequency of the damaged 

bridge at level 0.4. 

 

 

Conclusions  

 
This paper introduces a new approach combined with HT and band-pass filter technique to 

improve the bridge natural frequency identification from a passing vehicle. A closed-form solution 

associated with the bridge frequency removing the effect of vehicle velocity is derived from a 

passing vehicle response. To implement the proposed approach, a rough bridge frequency is known 

in advance, which can be achieved by FFT directly. Since FFT is restricted to the frequency 

resolution as well as the effect of vehicle velocity, the identified frequency accuracy is low. The 

proposed approach is applied to improve the bridge frequency from a passing vehicle.  

 

In this approach, the most important procedure is to extract the perfect single modal component 

response from a vehicle response. It has demonstrated that as long as the single modal component 

response is achieved well enough, the slop of 𝛽(𝑡) + 𝜃(𝑡) can give the extremely high-precious 

improved bridge frequency identification by the loop calculation. In this paper, it obtains the 

appropriate single modal component response  𝑅𝑏  who reaches the maximum MAC of 

instantaneous amplitude history 𝐴(𝑡) with HT from a series of band-pass filters. Followed by this 

way, the HT based approach has effectively and clearly improved the bridge frequency extraction. 

The improved identification error is less than 1.97% for the 2nd bridge frequency, and 5.68% for 

the 1st bridge frequencies (vehicle speed is not greater than 26 m/s).   

 

This study investigates the approach feasibility on the effect of noisy and road surface roughness. 

It has concluded that because of the procedure of band-pass filtering, the proposed approach is not 

sensitive to the noise and road surface roughness, as long as the FFT can still achieve the rough 

bridge frequency from the response of the vehicle. In addition, the proposed approach is not 

restricted to the frequency resolution. The improved bridge frequencies represented by the slope of 

𝛽(𝑡) + 𝜃(𝑡) can point out the drop of frequency as the damage extent increases. Therefore, the 

approach has strong potential to provide a quick estimation of the bridge health condition. 
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