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Abstract

When huge amounts of data arrive in streams, online updating is an important method to alleviate
both computational and data storage issues. The scope of previous research for online updating
is extended in the context of the classical linear measurement error model. In the case where
some covariates are unknowingly measured with error at the beginning of the stream, but then
are measured without error after a particular point along the data stream, the updated estimators
ignoring the measurement error are biased for the true parameters. Once the covariates measured
without error are first observed, a method to correct the bias of the estimators, as well as to
correct the biases in their variance estimator, is proposed; after correction, the traditional online
updating method can then proceed as usual. Further, asymptotic distributions for the corrected
and updated estimators are established. Simulation studies and a real data analysis with an airline
on-time dataset are provided to illustrate the performance of the proposed method.
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1. Introduction

Continued advances in science and technology have led to a constantly evolving definition of
“big data”. Regardless of its formal definition, the amounts of data being collected in these fields
continue to grow at a remarkably fast pace. Applying statistical models and methods to such big
data can cause excessive computational burden, not only in terms of strains on computer memory
due to large volume, but also strains in terms of computational efficiency since even seemingly
very simple tasks can take an inordinate amount of time to compute [e.g., 19]. To overcome these
barriers, statistical and computational methodologies have largely focused on either subsampling-
based approaches [e.g., 9, 13, 21, 22], divide-and-conquer approaches [e.g., 12, 6, 16], or online
updating approaches [e.g., 15, 19, 20, 28, 29].

The online updating approach for big data analysis is different from the other two approaches
since the data is not assumed to exist all at once, but rather arrives sequentially in large chunks
from a data stream. In this framework for regression-type analyses, Schifano et al. [15] developed
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online updating algorithms that update the regression coefficient estimators and their variances
as new data arrive; these algorithms are computationally efficient and minimally storage-intensive.
Wang et al. [20] expanded the scope of the online updating method by accommodating the arrival of
new predictor variables mid-way along the data stream. Furthermore, Wu et al. [28] developed an
online updating method for survival analysis under the Cox proportional hazards models, while Xue
et al. [29] proposed an online updating-based test to evaluate the proportional hazards assumption.

In this paper, we focus on online updating in the context of the linear errors-in-variables model.
Errors-in-variables cause bias in the estimators for the true parameters in statistical models and a
loss of power for statistical inference [e.g., 5]. To solve these problems, measurement error models
have been discussed extensively under different assumptions and settings: linear models [e.g., 1,
8, 31], generalized linear models [e.g., 17, 2, 10], nonlinear models [e.g., 18, 4, 3, 26, 27], varying-
coefficient partially linear models [e.g., 24, 23, 25], and additive partial linear models [e.g., 11].

Unlike previous studies, we assume that the online-updating process begins with a subset of
covariates unknowingly measured with error, and then after a particular known point along the data
stream, they are measured precisely. Such phenomena may appear in many fields of application
with improved instruments for data measurement. For example Sapuppo et al. [14] developed
improved instruments for real-time measurement of blood flow velocity, which allows a wider range
of velocity measurement than the previous instrument. Similarly, Zhang et al. [30] have improved
the psychrometer, which is the sensor for relative humidity measurement, with higher accuracy
and stability. Under the online updating framework, the online updated estimators will be biased
in general if any of the covariates are measured with error. Once the covariates are no longer
measured with error, continuing to naively update the previous estimates (ignoring the measurement
error), will also lead to biased estimators for parameters. Thus, we propose to correct the bias of
the estimators once the covariates are no longer measured with error, and then proceed with the
traditional online updating algorithm after correction. We further derive the asymptotic distribution
for the corrected estimators.

The rest of the paper is organized as follows. In Section 2, we briefly review the online updating
method in data streams assuming no covariate measurement error, and then propose our method to
correct the bias due to covariate measurement error under the linear model framework. In Section
3, simulation studies and real data analysis are conducted. A discussion concludes in Section 4,
with technical details provided in the Supplementary Materials.

2. Model and Method

In this section, we first briefly review the online updating method for linear models assuming
no covariate measurement error. We then propose an online updating method for linear models to
correct for covariate measurement error, assuming after a specific point along the data stream that
the covariates are no longer measured with error.

2.1. Online Updating Method

For now, assume that there is no measurement error in the covariates. Suppose that nk in-
dependent observations {(yki, xki) : i = 1, . . . , nk} arrive in blocks, k = 1, 2, . . ., where yki is the
response variable and xki is the p dimensional covariate vector. Let yk = (yk1, . . . , yknk

)′ and
X k = [xk1, . . . , xknk

]′, and assume the linear regression model

yk = X kθ + εk, (1)
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where θ is a p-dimensional vector and εk = [εk1, . . . , εknk
]′ is the random error with mean 0 and

covariance matrix σ2Ink
.

Schifano et al. [15] formulated an online updating algorithm for estimating cumulative quantities
for big stream data. At block k, the cumulative coefficient estimator of θ, based on all data observed
to that point, is

θ̂k = (Vk−1 + X ′kX k)−1(Vk−1θ̂k−1 + X ′kX kϑ̂nk,k), (2)

where Vk =
∑k

j=1 X
′
jX j for k = 1, 2, . . . , θ̂0 = 0, V0 = 0p is the p× p matrix of zeros, and ϑ̂nk,k

is the least squares estimator obtained from the kth block. At the final accumulation point, the
cumulative coefficient estimator is the same as the divide-and-recombine estimator [e.g., 12], and
in the special case of a linear model, both of these estimators also coincide with the full-data least
squares estimator, if it could be obtained with a super-computer. The sum of squared error (SSE)
based on the cumulative data at block k is

SSEk = SSEk−1 + SSEnk,k + θ̂′k−1Vk−1θ̂k−1 + ϑ̂′nk,k
X ′kX kϑ̂nk,k − θ̂′kVkθ̂k, (3)

where SSEnk,k is the SSE from the kth block. The corresponding mean squared errors (MSE) are

MSEnk,k = SSEnk,k/(nk − p) and MSEk = SSEk/(Nk − p), where Nk =
∑k

j=1 nj .
As can be observed from equations (2) and (3), online updating for estimation and inference

requires only quantities (ϑ̂nk,k, SSEnk,k, X ′kX k, nk) based on the current data (yk,X k), and cu-

mulative quantities (θ̂k−1, SSEk−1, Vk−1, Nk−1) computed at the previous accumulation point.
Thus, the online-updating method is advantageous in this respect, as it does not require storage of
historical data.

2.2. Online Updating at the Change of Measurement

As noted earlier, some covariates may actually be measured with error. Suppose we partition
X k from equation (1) as X k = (Zk,Xk), where Zk = [zk1, . . . , zknk

]′ are not measured with error,
but Xk = [xk1, . . . ,xknk

]′ are initially measured with error. We can rewrite equation (1) as

yk = Zkα+ Xkβ + εk, (4)

where θ from equation (1) is partitioned correspondingly as θ = (α′,β′)′ with α and β being
p1- and p2-dimensional vectors, respectively. Suppose for blocks k, k = 1, . . .K, we observe Wk

instead of Xk, where Wk follows the classical measurement error model, Wk = Xk + Uk and
Uk = [uk1, . . . ,uknk

]′ is the matrix associated with measurement error where uki has mean 0
and covariance matrix Σu for 1 ≤ i ≤ nk. We assume that uki, εki and (zki,xki) are mutually
independent for all k. For simplicity, we assume that (zki,xki,uki) are independent and identically
distributed each with the same joint distribution as (z,x,u).

We assume for any k ≤ K, the block-wise estimator ϑ̃nk,k = (ã′nk,k
, b̃′nk,k

)′ based on the kth

dataset is obtained by minimizing the following criterion

ϑ̃nk,k = arg min
(a′,b′)′

‖ yk − Zka−Wkb ‖2,

and cumulative coefficient estimator θ̃k = (ã′k, b̃
′
k)′, and SSE based on the cumulative data are

θ̃k = (Ṽk−1 + X̃
′
kX̃ k)−1(Ṽk−1θ̃k−1 + X̃

′
kX̃ kϑ̃nk,k) and
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S̃SEk = S̃SEk−1 + S̃SEnK ,K + θ̃′k−1Ṽk−1θ̃k−1 + ϑ̃′nk,k
X̃
′
kX̃ kϑ̃nk,k − θ̃′kṼkθ̃k,

respectively, where X̃ k = (Zk,Wk), Ṽk =
∑k

j=1 X̃
′
jX̃ j , θ̃k−1 = 0, and Ṽ0 = 0p.

Note that in the online-updating setting for linear models, cumulative estimator θ̃k is exactly the
same as the estimator resulting from fitting the all the data from blocks 1 through K simultaneously
via least-squares. It is also well known that in the classical measurement error setting, estimators
resulting from models with errors-in-covariates are biased, and the estimated variances are also
incorrect [e.g., 5].

If, after block K, the covariates in Xk are no longer measured with error, i.e., Xk is available
instead of Wk for k > K, we propose to correct the bias in the previous cumulative estimators θ̃k
and S̃SEk, based on covariates in Wk, before proceeding with the online-updating process. The
steps are described in the following subsections. For ease of readability, we summarize here some
notation that will be used in this paper. We use ϑ̂ for coefficient estimators from current data
block based on true covariates (X k), ϑ̃ for coefficient estimator from current data block based on

some covariates measured with error (X̃ k), θ̂ for cumulative coefficient estimators based on the true
covariates (X k), θ̃ for cumulative coefficient estimators based on some covariates measured with

error (X̃ k), θ̃c for cumulative coefficient estimators with bias correction of θ̃, and θ̂c for updated

cumulative coefficient estimators after bias correction. For sum of squared errors, we use S̃SE for

sum of squared errors when some covariates are measured with error (X̃ k), S̃SE
c

for sum of squared

errors with bias correction of S̃SE, and ŜSE
c

for updated sum of squared errors after bias correction.

2.2.1. Online Updating at the Change of Measurement

At block K+1 where XK+1 is first observed, we correct the bias occurring from the measurement
error before updating the estimators. In other words, we wish to approximate θ̂K = (α̂′K , β̂

′
K)′

and SSEK , the cumulative coefficient estimator from equation (2) and SSE from equation (3) at
the accumulation point k = K assuming no measurement error, before updating with the current
information measured without error in block K + 1. As before, write VK =

∑K
j=1 X

′
jX j . Since∑K

j=1 W′
jyj =

∑K
j=1 X′jyj + op(NK), θ̂K is approximated as

θ̂K = (VK)−1
K∑
j=1

X ′jyj = (VK)−1ṼK θ̃K + op(1).

However, VK cannot be calculated directly because Xk is not observable for k ≤ K. Note that for
large NK and nK+1,

∑K
j=1 X′jXj/NK ≈ X′K+1XK+1/nK+1 where nK+1 is the number of observa-

tions in block K + 1. Also,
∑K

j=1 Z′jWj =
∑K

j=1 Z′jXj + op(NK). Thus, we replace
∑K

j=1 X′jXj

and
∑K

j=1 Z′jXj by NK

nK+1
X′K+1XK+1 and

∑K
j=1 Z′jWj , respectively. Then, the (biased) cumulative

coefficient estimator for θ at accumulation point k = K, i.e., θ̃K , can be corrected to approximate
θ̂K as

θ̃
c

K = (Ṽc
K)−1ṼK θ̃K , (5)

where Ṽc
K = ṼK −T,

T =

[
0 0
0 t∗

]
, and t∗ =

K∑
j=1

W′
jWj − (NK/nK+1)X′K+1XK+1. (6)
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We have the following theorem describing asymptotic properties of θ̃
c

K . The proof is in Appendix
A of the Supplementary Material.

Theorem 1. Assume that E‖z‖2 < ∞ and E‖x‖4 < ∞. Suppose u, ε and (z,x) are mutually

independent and V = E

[
zz′ zx′

xz′ xx′

]
is positive definite. When NK , nK+1 → ∞, we have the

following results for θ̃
c

K defined in equation (5).
Case 1. If nK+1/NK → 0, then

√
nK+1(θ̃

c

K − θ)
d−→ N(0,V−1F1V

−1); (7)

Case 2. if NK/nK+1 → 0, then√
NK(θ̃

c

K − θ)
d−→ N(0,V−1F2V

−1); (8)

and Case 3. if NK/nK+1 → h for some constant 0 < h <∞, then√
NK(θ̃

c

K − θ)
d−→ N(0,V−1F3V

−1); (9)

here,
d−→ denotes convergence in distribution, F1 =

[
0 0
0 Var(xx′β)

]
, F2 =

[
f11 f12
f ′12 f22

]
, F3 =

F2 + hF1, f11 = E(zz′)(σ2I + β′Σuβ), f12 = E(zx′)(σ2I − ββ′Σu), and f22 = Var(xx′β) +
(E(xx′) + Σu)σ2 + Σuβ

′E(xx′)β.

Remark 1. Since V−1F1V
−1 in (7) is not of full rank, there exists a p1 × p matrix M such that

√
nK+1M(θ̃

c

K − θ) = op(1) in Case 1 of Theorem 1. For this case,
[
Ip1 0

]
(Ṽc

K/NK) is a partic-

ular choice of M considered to derive the asymptotic normality. Since
[
Ip1

0
]

(Ṽc
K/NK)(θ̃

c

K −
θ) = Op(1/

√
NK), we obtain that

√
NK

[
Ip1

0
]

(Ṽc
K/NK)(θ̃

c

K − θ) converges in distribution to

N(0, f11). However, Ṽc
K/NK cannot be replaced by V because

√
NK

[
Ip1

0
]
V(θ̃

c

K − θ) does not
converge in distribution under the condition in Case 1 of Theorem 1. The detailed derivation of
the asymptotic normality is in Appendix B.

Now, we discuss SSE and wish to correct the bias from S̃SEK . SSEK can be expressed as

SSEK =

K∑
j=1

‖yj −X j θ̂K‖2

=

K∑
j=1

‖yj − X̃ j θ̃K‖2 +

K∑
j=1

‖X̃ j θ̃K −X j θ̂K‖2 + 2

K∑
j=1

(yj − X̃ j θ̃K)′(X̃ j θ̃K −X j θ̂K)

= S̃SEK −
K∑
j=1

A′jAj + 2

K∑
j=1

(yj −X j θ̂K)′Aj , (10)

where Aj = X̃ j θ̃K−X j θ̂K . Since
∑K

j=1 A′jAj =
∑K

j=1(θ̃K−θ̂K)′X ′jX j(θ̃K−θ̂K)+b̃′K
∑K

j=1(W′
jWj−

X′jXj)b̃K +op(NK), 2
∑K

j=1(yj −X j θ̂K)′Aj = op(NK) in the last two terms in equation (10), and
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θ̂K = θ̃
c

K + oP (1). SSEK is approximated as

SSEK ≈ S̃SEK − δ′kVKδK − b̃′K

K∑
j=1

(
W′

jWj −X′jXj

)
b̃K , (11)

where δK = θ̃K − θ̃
c

K . The detailed derivation of the approximation to SSEK is in Appendix C.

Since we cannot directly obtain VK and
∑K

j=1 X′jXj on the right-hand side in equation (11),

they are replaced with Ṽc
K and (NK/nK+1)X′K+1XK+1, respectively. Thus, we propose a corrected

SSE:

S̃SE
c

K = S̃SEK − δ′KṼc
KδK − θ̃′KTθ̃K ,

where T is defined as in (6).

2.2.2. Updating estimates

The updated estimates at block K + 1 can be calculated with the quantities after the bias

correction, (θ̃
c

K , S̃SE
c

K , Ṽ
c
K). Using these quantities and equation (2), we propose a cumulative

coefficient estimator at the accumulation point K + 1,

θ̂
c

K+1 = (Ṽc
K + X ′K+1XK+1)−1[Ṽc

K θ̃
c

K + X ′K+1XK+1ϑ̂nK+1,K+1], (12)

where ϑ̂nK+1,K+1 = (α̂′nK+1,K+1, β̂
′
nK+1,K+1)′ is the least squares estimator in the model (4) based

on (K + 1)th dataset. The following result illustrates the asymptotic properties of the updated

estimator θ̂
c

K+1.

Theorem 2. Assume that E‖z‖2 < ∞ and E‖x‖4 < ∞. Suppose u, ε and (z,x) are mutually

independent and V = E

[
zz′ zx′

xz′ xx′

]
is positive definite. When NK , nK+1 → ∞, we have the

following results of θ̂
c

K+1 in equation (12).
Case 1. If nK+1/NK → 0, then

√
nK+1(θ̂

c

K+1 − θ)
d−→ N(0,V−1F1V

−1); (13)

Case 2. if NK/nK+1 → 0, then√
NK+1(θ̂

c

K+1 − θ)
d−→ N(0,V−1F4V

−1); (14)

and Case 3. if NK/nK+1 → h for some constant 0 < h <∞, then√
NK+1(θ̂

c

K+1 − θ)
d−→ N(0,V−1F5V

−1); (15)

where F4 = Vσ2, F5 = (h2F1 + Vσ2)/(h + 1) + [h/(h + 1)]F2, and F1,F2 are the same as those
in Theorem 1.

For the asymptotic variance in Theorem 2, we first discuss SSE. Using equation (3) and the quan-
tities with the bias correction, SSE at the accumulation point K + 1 can be estimated as

ŜSE
c

K+1 = S̃SE
c

K + SSEnK+1,K+1 + (θ̃
c

K)′Ṽc
K θ̃

c

K + ϑ̂
′
nK+1,K+1X

′
K+1XK+1ϑ̂nK+1,K+1

−θ̂
c

K+1(Ṽc
K + X ′K+1XK+1)θ̂

c

K+1.
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Note that when nK+1 → ∞, X ′K+1XK+1/nK+1 converges in probability to V. From the proof

of Theorem 2 (see Appendix D), an estimator for the asymptotic variance of θ̂
c

K+1 is V̂−1F̂V̂−1,

where V̂ = (Ṽc
K + X ′K+1XK+1)/NK+1,

F̂ = N−1K+1

{
(nK+1/NK+1)

(
(NK/nK+1)

2
F̂1 + (NK+1 − p)−1ŜSE

c

K+1V̂
)

+ (NK/NK+1) F̂2

}
, (16)

where

F̂1 = n−1K+1

nK+1∑
i=1

([
0 0

0
(
xK+1,ix

′
K+1,i − Ê(xx′)

)
β̂nK+1,K+1

])⊗2
,

F̂2 = N−1K

K∑
j=1

nj∑
i=1

([
zji
wji

]
yji −

[
zjiz

′
ji zjiw

′
ji

wjiz
′
ji Ê(xx′)

]
ϑ̂nK+1,K+1

)⊗2
,

G⊗2 = GG′ for any matrix G, and Ê(xx′) =

nK+1∑
i=1

xK+1,ix
′
K+1,i/nK+1.

2.2.3. Continue updating

We now discuss the cumulative coefficient estimator after block K + 1. By the online updating
algorithm, the cumulative coefficient estimator at the accumulation point s > K + 1 is

θ̂
c

s = (V̂c
s−1 + X ′sX s)

−1(V̂c
s−1θ̂

c
s−1 + X ′sX sϑ̂ns,s), (17)

where V̂c
s = V̂c

s−1 + X ′sX s. In a data stream where new data keep coming in, it is natural that
the size of the accumulated data since block K + 1 become much bigger than the size of the
prior data blocks. Thus, we study the estimator for the accumulation point s > K + 1 such that
NK/

∑s
j=K+1 nj → 0. For this scenario, we obtain the following result in the same way as Case 2

in Theorem 2,√
Ns(θ̂

c

s − θ)
d−→ N(0,V−1σ2). (18)

The variance-covariance matrix in (18) can be estimated by (V̂c
s/Ns)M̂SE

c

s where M̂SE
c

s = ŜSE
c

s/(Ns−
p).

3. Numerical Study

3.1. Simulation Study

In the simulation, we consider two blocks of data with sizes n1 and n2, respectively. The data
is generated by a linear regression model with

yi = α0 + z′iα+ x′iβ + εi, i = 1, . . . , n, (19)
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where εi’s are uncorrelated error terms and follow a normal distribution with mean zero and variance
σ2, and n = n1 +n2. Covariates (z′i x′i)

′ are generated from a multivariate normal distribution with
mean vector µ and covariance matrix Σ with σzx as off-diagonal entries and 1 as diagonal entries. At
the first block of data, the covariates with measurement error are wi = xi+ui where ui ∼ N(0,Σu)
for i = 1, . . . , n1 and Σu = σ2

u0.1I(i 6=j); the covariates in the second block are not measured with
error. To generate the covariates, we consider µ ∈ {0,1}, and σzx ∈ {0.1, 0.5}. The sizes of the two
blocks are considered as (n1, n2) ∈ {(9.99 ∗ 105, 103), (9 ∗ 105, 105), (105, 9 ∗ 105), (103, 9.99 ∗ 105)}.
We set (σ2, σ2

u) = (1, 1), (1, 2) or (3, 2), α0 = 1,α = (0.5, 0.5)′, and two different scenarios of β,
β = (0.2, 0.2)′ and β = (0.1, 0.1, 0.1, 0.1)′.

Table 1: 102 × MSE when β = (0.2, 0.2)′. CCUE is the cumulative coefficient updated estimator, EWOF is the
estimator calculated without the first block, NCCUE is the no-correction cumulative updated estimator, and FULL
is the estimator from full data.

(n1, n2) = (9.99 ∗ 105, 103) (9 ∗ 105, 105) (105, 9 ∗ 105) (103, 9.99 ∗ 105)
σzx = 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

µ = 0
σ2 = 1, σ2

u = 1 CCUE 0.0296 0.1058 0.0010 0.0023 0.0006 0.0008 0.0005 0.0007
EWOF 0.5116 0.7360 0.0053 0.0074 0.0006 0.0008 0.0005 0.0007
NCCUE 2.1340 3.7389 1.9213 3.4075 0.0732 0.1582 0.0005 0.0007
FULL 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007

σ2 = 1, σ2
u = 2 CCUE 0.0280 0.1027 0.0012 0.0031 0.0006 0.0009 0.0005 0.0007

EWOF 0.5070 0.7619 0.0050 0.0074 0.0006 0.0008 0.0005 0.0007
NCCUE 3.7542 6.0741 3.5000 5.7249 0.2430 0.5047 0.0005 0.0008
FULL 0.0005 0.0008 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007

σ2 = 3, σ2
u = 2 CCUE 0.0293 0.1068 0.0029 0.0068 0.0017 0.0026 0.0014 0.0022

ECUR 1.5468 2.3193 0.0156 0.0226 0.0017 0.0024 0.0014 0.0022
NCCUE 3.7513 6.0749 3.4997 5.7263 0.2438 0.5047 0.0015 0.0022
FULL 0.0015 0.0023 0.0015 0.0022 0.0016 0.0022 0.0014 0.0022

µ = 1
σ2 = 1, σ2

u = 1 CCUE 0.2217 0.4325 0.0034 0.0053 0.0010 0.0010 0.0008 0.0008
EWOF 0.8404 0.9128 0.0081 0.0090 0.0010 0.0010 0.0008 0.0008
NCCUE 4.9007 4.3134 4.4106 3.9306 0.1676 0.1824 0.0008 0.0009
FULL 0.0008 0.0009 0.0008 0.0009 0.0009 0.0009 0.0008 0.0008

σ2 = 1, σ2
u = 2 CCUE 0.2133 0.4730 0.0038 0.0057 0.0009 0.0011 0.0008 0.0009

EWOF 0.8308 0.8830 0.0082 0.0095 0.0009 0.0010 0.0008 0.0009
NCCUE 8.6219 7.0102 8.0351 6.6053 0.5574 0.5838 0.0009 0.0010
FULL 0.0008 0.0009 0.0008 0.0009 0.0008 0.0009 0.0008 0.0009

σ2 = 3, σ2
u = 2 CCUE 0.2322 0.4999 0.0067 0.0100 0.0026 0.0033 0.0025 0.0027

EWOF 2.4457 2.7161 0.0233 0.0269 0.0026 0.0030 0.0025 0.0027
NCCUE 8.6151 7.0155 8.0291 6.6034 0.5581 0.5835 0.0026 0.0028
FULL 0.0024 0.0027 0.0025 0.0027 0.0024 0.0027 0.0025 0.0027

To evaluate the performance of our proposed method, four different estimators are considered
for the comparison: the proposed cumulative coefficient updated estimator (CCUE), an estimator
calculated without the first block (EWOF), a no-correction cumulative updated estimator (NC-
CUE), and the estimator from full data without any measurement error (FULL). The NCCUE
are updated without the correction of the previous (biased) cumulative estimates. The EWOF are
constructed with only the second block in this example. We repeat the simulation for 1000 times
to calculate empirical MSEs.

The results for MSE are in Table 1 and 2 corresponding to the two scenarios for β. First, MSEs
the for FULL estimates decrease as µ, σzx, σ

2 and σ2
u decrease, and MSEs from other methods are
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Table 2: 102 × MSE when β = (0.1, 0.1, 0.1, 0.1)′. CCUE is the cumulative coefficient updated estimator, EWOF
is the estimator calculated without the first block, NCCUE is the no-correction cumulative updated estimator, and
FULL is the estimator from full data.

(n1, n2) = (9.99 ∗ 105, 103) (9 ∗ 105, 105) (105, 9 ∗ 105) (103, 9.99 ∗ 105)
σzx = 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

µ = 0
σ2 = 1, σ2

u = 1 CCUE 0.0282 0.1447 0.0014 0.0036 0.0008 0.0013 0.0007 0.0011
EWOF 0.7400 1.1235 0.0072 0.0111 0.0008 0.0013 0.0007 0.0011
NCCUE 1.1276 2.0970 1.0159 1.8947 0.0401 0.0769 0.0007 0.0011
FULL 0.0007 0.0011 0.0007 0.0011 0.0008 0.0011 0.0007 0.0011

σ2 = 1, σ2
u = 2 CCUE 0.0285 0.1396 0.0018 0.0049 0.0008 0.0015 0.0007 0.0011

EWOF 0.7405 1.0719 0.0074 0.0114 0.0008 0.0013 0.0007 0.0011
NCCUE 1.9680 3.6000 1.8344 3.3636 0.1310 0.2517 0.0008 0.0012
FULL 0.0007 0.0011 0.0007 0.0011 0.0007 0.0011 0.0007 0.0011

σ2 = 3, σ2
u = 2 CCUE 0.0352 0.1567 0.0061 0.0152 0.0026 0.0047 0.0022 0.0036

EWOF 2.2117 3.5363 0.0210 0.0330 0.0025 0.0039 0.0022 0.0035
NCCUE 2.4680 4.4767 2.3425 4.2578 0.2503 0.4769 0.0022 0.0036
FULL 0.0022 0.0035 0.0022 0.0034 0.0022 0.0035 0.0022 0.0035

µ = 1
σ2 = 1, σ2

u = 1 CCUE 0.3786 0.6881 0.0048 0.0081 0.0013 0.0016 0.0011 0.0013
EWOF 1.1218 1.2924 0.0112 0.0129 0.0012 0.0014 0.0011 0.0013
NCCUE 3.9645 2.5906 3.5691 2.3398 0.1389 0.0951 0.0012 0.0013
FULL 0.0011 0.0013 0.0012 0.0013 0.0011 0.0013 0.0011 0.0013

σ2 = 1, σ2
u = 2 CCUE 0.4011 0.7275 0.0060 0.0092 0.0013 0.0018 0.0011 0.0013

EWOF 1.1052 1.3161 0.0112 0.0129 0.0012 0.0015 0.0011 0.0013
NCCUE 6.9070 4.4445 6.4397 4.1558 0.4596 0.3105 0.0012 0.0013
FULL 0.0011 0.0013 0.0012 0.0013 0.0011 0.0013 0.0011 0.0013

σ2 = 3, σ2
u = 2 CCUE 0.3849 0.9236 0.0124 0.0198 0.0040 0.0054 0.0033 0.0038

EWOF 3.4223 3.9025 0.0347 0.0396 0.0037 0.0043 0.0033 0.0038
NCCUE 8.6628 5.5295 8.2268 5.2609 0.8730 0.5894 0.0035 0.0039
FULL 0.0033 0.0040 0.0032 0.0039 0.0033 0.0039 0.0033 0.0038

very close to those from FULL for (n1, n2) = (103, 9.99 ∗ 105). CCUE has better performance than
NCCUE and EWOF in most cases. When the size of the first block is relatively big compared to the
second block, the gaps of MSE between CCUE and the others (except for FULL) tend to increase.
In general, the MSE is reduced more when µ, σzx, σ2, and σ2

u are smaller. Second, the MSE for
NCCUE is generally larger than that for EWOF. The updating estimator ignoring measurement
error tends to lose more information on the true parameters in the process of the online updating
algorithm. It is worse when the ratio of n1 to n2 is bigger.

We also investigate the performance of the suggested estimator in (16). Table A.1 and A.2
in Appendix E provide the result of empirical standard error (Emp SE) and average standard
error (Avg SE) for α1 and β1 which are the first elements of α and β, respectively. In general, the
empirical and average standard error estimates are close to each other.

Figures 1 and 2, and Figures A.1 and A.2 in Appendix F present the bias and variance for
estimation of α1 and β1 corresponding to the two scenarios for β and two values of σzx. They are
plotted for varying ratios between n1 and n2. The panels in each figure are divided by µ as two
parts, and each column is separated by σ2 and σ2

u. Generally, NCCUE is more biased than CCUE
and EWOF, and the gaps for the bias between CCUE and NCCUE tend to be wider in the cases
(n1, n2) = (9∗105, 105) and (105, 9∗105) than in other cases. The variance corresponding to CCUE
is smaller than EWOF in the cases (n1, n2) = (9.99 ∗ 105, 103) and (9 ∗ 105, 105).
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Table 3: MSE of CCUE, NCCUE, EWOF and FULL methods when β = (0.2, 0.2)′, σzx = 0.1 and µ = 0, and 4
datasets with true covariates arrive in stream. The covariates from block 2 and block 5 are not measured with error.
CCUE is the cumulative coefficient updated estimator, EWOF is the estimator calculated without the first block,
NCCUE is the no-correction cumulative updated estimator, and FULL is the estimator from full data.

Block 2 Block 3 Block 4 Block 5

σ2 = 1, σ2
u = 1 CCUE 0.0005 0.0003 0.0003 0.0002

EWOF 0.0010 0.0005 0.0003 0.0003
NCCUE 0.0141 0.0099 0.0073 0.0056
FULL 0.0003 0.0003 0.0002 0.0002

σ2 = 1, σ2
u = 2 CCUE 0.0006 0.0004 0.0003 0.0002

EWOF 0.0010 0.0005 0.0003 0.0003
NCCUE 0.0281 0.0216 0.0171 0.0139
FULL 0.0003 0.0003 0.0002 0.0002

σ2 = 3, σ2
u = 2 CCUE 0.0017 0.0011 0.0008 0.0007

EWOF 0.0030 0.0015 0.0010 0.0008
NCCUE 0.0286 0.0220 0.0175 0.0142
FULL 0.0010 0.0008 0.0006 0.0005

We further examine the effect of sample size of the data containing the true covariates by con-
sidering additional simulations with multiple blocks of data containing the true covariates. Table 3
shows the MSE when β = (0.2, 0.2)′, µ = 0 and σzx = 0.1, and four blocks with true covariates
arrive in the stream. The first block has the covariates with measurement error and the size of this
block is 10,000. In blocks 2 to 5, the covariates are measured without error and the size of each
of these blocks is 5,000; the simulation set-up is otherwise the same as the two-block scenario. We
observe that the MSE of CCUE is smaller than the MSEs of NCCUE and EWOF. Also, as expected,
the MSE of CCUE is smaller when the number of blocks with true covariates is larger. Figure A.3
and A.4 in Appendix G show the results of bias for estimating α1, β1, and σ2. The estimates from
CCUE perform well in terms of bias; the biases are very close to zero at all the blocks from 2 to 5,
and dispersion of empirically calculated biases from all repetitions centered around zero decreases
as more blocks with the true covariate arrive in the stream.

3.2. Airline On-time Data Analysis

In this section, we examine the airline on-time data obtained from the 2009 ASA Data Expo.
The data contains information on the flight arrival and departure details for all commercial flights
within the U.S., from October 1987 to April 2008. For the linear regression model, we used the
arrival delay (in minutes) as the response and Taxi-Out time which is the elapsed time (in minutes)
between departure from the airport and wheels off, Flight Time (in minutes), Security Delay (in
minutes), and Elapsed Time of Flight (in minutes), as covariates with the data of 2005. For one of
the covariates, Elapsed Times of Flight, there are two types; one is the Computerized Reservations
Systems (CRS) Elapsed Times of Flight, and the other is Actual Elapsed Times of Flight. Similar
to the simulations, we considered the case of two blocks of data. In the first block, we used the CRS
Elapsed Times of Flight as the covariate from June 1, 2004 to September 29, 2005 and considered
it as the covariate measured with error; the Actual Elapsed Times of Flight is used as the covariate
only with data of September 30, 2005 in the second block. With the data from June 1, 2004 to
September 29, 2005 including the CRS time, the linear regression model is fitted first to the first
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Figure 1: Logarithm of variance and squared bias for estimating α1 and β1, the first elements of α and β, respectively,
when β = (0.2, 0.2)′. CCUE is the cumulative coefficient updated estimator, EWOF is the estimator calculated
without the first block, and NCCUE is the no-correction cumulative updated estimator.
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Figure 2: Logarithm of variance and squared bias for estimating α1 and β1, the first elements of α and β respec-
tively when β = (0.1, 0.1, 0.1, 0.1)′. CCUE is the cumulative coefficient updated estimator, EWOF is the estimator
calculated without the first block, and NCCUE is the no-correction cumulative updated estimator.
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Table 4: Estimates and standard errors of CCUE, FULL, NCCUE, ECUR, and EFIR methods for airline on-time
data. CCUE is the cumulative coefficient updated estimator, NCCUE is the no-correction cumulative updated
estimator, EWOF is the estimator calculated without the first block, and EFIR is the estimator from the first block
of data.

CCUE FULL NCCUE EWOF EFIR
Est. SE Est. SE Est. SE Est. SE Est. SE

Intercept -18.0462 0.2540 -16.0039 0.2391 -15.8817 0.2344 -9.8451 4.6360 -15.8835 0.2341
TaxiOut 13.3206 0.0861 12.3059 0.0493 15.1968 0.0435 9.6149 0.7594 15.2042 0.0435

FlightTime -0.0652 0.0087 -0.0771 0.0012 0.1909 0.0011 -0.0383 0.0158 0.1914 0.0011
SecurityDelay 6.1469 0.0833 6.0793 0.0900 6.1191 0.0886 7.2822 1.8793 6.1156 0.0885
ElapsedTime 0.0599 0.0090 0.0737 0.0012 -0.2061 0.0011 0.0256 0.0164 -0.2066 0.0011

block of data and then the data with actual time on September 30, 2005 in the second block is used
to update the estimates in the online-updating framework. We used five different airlines (Alaska,
Hawaiian, America West, and Expressjet) and removed the observations with missing values. In
addition, we exclude observations corresponding to more than 120 minutes of the arrival delay and
less than 0 minutes of Flight Time. Thus, the size of first and second blocks are n1 = 1, 023, 464
and n2 = 2350, respectively. Also, two covariates, Security Delay and Taxi-Out time, are log-
transformed. Table A.3 in Appendix H provides more detailed information on the Airline On-time
Data.

To check autocorrelation and heteroscedasticity for error terms, we use the Durbin-Watson
statistic and residual plots, respectively. The value of the Durbin-Watson statistic is 1.7429 when
the first block with Actual Elapsed Time (true covariate) is used, and 1.7463 when the first block
with CRS Elapsed Time (covariate with measurement error) is used. As a rule of thumb, a value less
than 1 or greater than 3 is cause for concern of autocorrelation [e.g., 7]. Figure A.5 in Appendix H
shows the residual plots using a random sample of 10,000 observations. Since it is hard to determine
clear behavior of residuals from the full data with the large size, we did not use the full data. The
Durbin-Watson statistics and the residual plots support that independence and homogeneity for
errors hold approximately in the actual data.

We considered the same estimators as in the simulation study for comparison, and the results are
in Table 4. For FULL estimates, Actual Elapsed Times of Flight is used for both blocks instead of
CRS Elapsed Times of Flight in the first block. Furthermore, we also calculated the estimates from
the first block data (EFIR) to examine the change in the estimates with and without measurement
error in ElapsedTime. Overall, coefficient estimates from CCUE are similar to those from FULL.
Notably, however, NCCUE and EFIR estimate for covariate ElapsedTime (the covariate measure
with error) have the different sign from FULL estimate (computed from the precise measurements
of ElapsedTime in both blocks 1 and 2), and the estimate from CCUE has the same sign as the
FULL estimate. Also, the coefficient estimates from CCUE are closer to FULL estimates than the
NCCUE and EFIR except for the estimate corresponding to SecurityDelay. Most standard errors
from CCUE are larger than those from the FULL, but all of the standard errors from CCUE are
much smaller than those from the EWOF.
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4. Discussion

The online updating method is useful for data arriving sequentially in a stream. In this paper,
we studied a method to sequentially update estimators under the situation where some covariates
were initially measured with error along the data stream. At the point in which we first observe the
covariates measured without error, we could consider ignoring the previous updated-estimators (as
they are biased) and start the online updating process anew with the precisely measures covariates,
or keep updating the estimates without the adjustment of the bias. However, these naive approaches
could either lose substantial information from the historical data, or continue to be biased. Thus,
we have proposed a method to correct the bias resulting from measurement error; after correction,
the online-updating algorithm can be used as usual. Additionally, we have derived asymptotic
results for the corrected coefficient estimators, which allows for the statistical inference.

In this study, we assume that the particular point where covariates are measured precisely is
known. However, if a researcher does not know the particular point at which the covariates start
to be measured precisely and continues to update without correction, the estimates could remain
biased until corrected, with the degree of bias dependent on the sample sizes of data with and
without the true covariates. It would be interesting to further study the case where the researcher
does not know when the covariates start being measured precisely. Also, we focus on deriving
theoretical results for the coefficient estimator, with SSE needed as a by-product. Development
of theory for SSE, as well as non-asymptotic results for the coefficient estimator, are worthy of
future research. Lastly, the online updating method under the linear errors-in-variables regression
was investigated. However, it would be interesting to develop the online updating method for
measurement error in more complicated, non-linear model type settings. This is another area of
further investigation.
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Appendix A. Proof of Theorem 1
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ity to V. Now we prove Theorem 1. For the corrected cumulative coefficient estimator for θ in the
equation (1.5), we have
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K)−1

 K∑
j=1

X̃
′
jyj − ṼKθ + T1

′T1θ −T2
′T2θ


= (Ṽc

K)−1

 K∑
j=1

X̃
′
jX jθ +

K∑
j=1

X̃
′
jεj − ṼKθ + T1

′T1θ −T2
′T2θ


= (Ṽc

K)−1

 K∑
j=1

X̃
′
j

[
0 −Uj

]
θ +

K∑
j=1

X̃
′
jεj + T1

′T1θ −T2
′T2θ


= (Ṽc

K/NK)−1NK
−1

 K∑
j=1

nj∑
i=1

[
zji
wji

]
εi +

K∑
j=1

nj∑
i=1

[
zji
wji

] [
0 −u′ji

]
θ +

NK∑
i=1

t1it1
′
iθ −

nK+1∑
i=1

t2it2
′
iθ

)
= (Ṽc

K/NK)−1(B1 −B2),

1



where

B1 = N−1K

K∑
j=1

nj∑
i=1

[
zjiεi − zjiu

′
jiβ

wjiεi + (ujix
′
ji + xjix

′
ji −E(xx′))β

]
(A.1)

and

B2 = N−1K

nK+1∑
i=1

[
0

(NK/nK+1)(xK+1,ix
′
K+1,i −E(xx′))β

]
. (A.2)

By Central Limit Theorem, B1 = Op(1/
√
NK) and B2 = Op(1/

√
nK+1).

Case 1: nK+1/NK → 0.

√
nK+1(θ̃

c

K − θ) = (Ṽc
K/NK)−1

√
nK+1 (B1 −B2)

= (Ṽc
K/NK)−1n

−1/2
K+1

nK+1∑
i=1

[
0

(E(xx′)− xK+1,ix
′
K+1,i)β

]
+ op(1)

d−→ N(0,V−1F1V
−1),

where F1 =

[
0 0
0 Var(xx′β)

]
. Using the Central Limit Theorem and Slutsky’s Theorem, we derive

the asymptotic distribution in the last step.

Case 2: NK/nK+1 → 0.√
NK(θ̃

c

K − θ) = (Ṽc
K/NK)−1

√
NK (B1 −B2)

= (Ṽc
K/NK)−1N

−1/2
K

K∑
j=1

nj∑
i=1

[
zjiεi − zjiu

′
jiβ

wjiεi + (ujix
′
ji + xjix

′
ji −E(xx′))β

]
+ op(1)

d−→ N(0,V−1F2V
−1),

where F2 = Var

([
zεi − zu′β

wεi + (ux′ + xx′ −E(xx′))β

])
=

[
f11 f12
f21 f22

]
. Central Limit Theorem and

Slutsky’s Theorem are applied to derive the asymptotic distribution in the last step. The elements
in F2 can be simplified as follows.

f11 = Var (zεi − zu′β)

= E(zε2i z
′ − zεiβ

′uz′ − zu′βεiz
′ + zu′ββ′uz′)

= E(zz′)E(ε2i )−E(zβ′uz′)E(εi)−E(zu′βz′)E(εi) + E(zz′)E(u′ββ′u)

= E(zz′)σ2 + E(zz′)E(β′uu′β)

= E(zz′)(σ2I + β′Σuβ) (A.3)

2



and

f12 = E(zε2iw
′ + zεiβ

′(xx′ −E(xx′)) + xu′)− zu′βεiw
′ − zu′ββ′(xx′ −E(xx′) + xu′))

= E(zw′)E(ε2i ) + E(εi)E(zβ′(xx′ −E(xx′) + xu′)− zu′βw′)

−E(zu′ββ′(xx′ −E(xx′) + xu′))

= E(zx′)σ2 −E(z)E(u′)ββ′(xx′ −E(xx′))−E(zx′ββ′uu′)

= E(zx′)σ2 −E(zx′)ββ′E(uu′)

= E(zx′)(σ2I− ββ′Σu)

= f ′21.

Also, we simplify the last element as

f22 = E[wεi(εiw
′ + β′(xx′ −E(xx′) + xu′))

+(ux′ + xx′ −E(xx′))β(εiw
′ + β′(xx′ −E(xx′) + xu′))]

= E(ww′)E(ε2i ) + E((xx′ −E(xx′) + ux′)ββ′(xx′ −E(xx′) + xu))

= (E(xx′) + Σu)σ2 + E[(xx′ −E(xx′))ββ′(xx′ −E(xx′))] + E(ux′ββ′xu′)

= (E(xx′) + Σu)σ2 + Var(xx′β) + E(uu′)E(x′ββ′x)

= (E(xx′) + Σu)σ2 + Var(xx′β) + Σuβ
′E(xx′)β.

Case 3: Nk/nK+1 → h for some constant 0 < h <∞.√
NK(θ̃

c

K − θ) = (Ṽc
K/NK)−1

√
NK (B1 −B2)

= (Ṽc
K/NK)−1

N−1/2K

 K∑
j=1

nj∑
i=1

[
zjiεi − zjiu

′
jiβ

wjiεi + (ujix
′
ji + xjix

′
ji −E(xx′)β

]
−
√
NK/nK+1n

−1/2
K+1

(
nK+1∑
i=1

[
0

(xK+1,ix
′
K+1,i −E(xx′)β

])}
d−→ N(0,V−1F3V

−1),

where F3 = F2 +hF1. Again, the asymptotic distribution is derived in the last step by the Central
Limit Theorem and Slutsky’s Theorem.

Appendix B. Derivation of the asymptotic result in Remark 1

Note that
[
Ip1

0
]

(Ṽc
K/NK)(θ̃

c

K − θ) = Op(1/
√
NK). Also,√

NK

[
Ip1

0
]

(Ṽc
K/NK)(θ̃

c

K − θ) =
√
NK

[
Ip1

0
]

(Ṽc
K/NK)(Ṽc

K/NK)−1 (B1 −B2)

=
√
NK

[
Ip1

0
]

(B1 −B2)

=
1√
NK

nj∑
i=1

[
zjiεi − zjiu

′
jiβ
]

+ op(1)

d−→ N(0, f11),

3



where f11 is the same as (A.3). In the last steps, we can derive the asymptotic distribution using
the Central Limit Theorem and Slutsky’s Theorem.

Appendix C. Derivation of the approximation to SSEK

Assume that u, ε and (z,x) are mutually independent. The second term of the right-hand side
in equation (1.10) is

K∑
j=1

A′jAj =

K∑
j=1

(X̃ j θ̃K −X j θ̂K)′(X̃ j θ̃K −X j θ̂K)

=

K∑
j=1

([
0 Uj

]
θ̃K + X j θ̃K −X j θ̂K

)′
×
([

0 Uj

]
θ̃K + X j θ̃K −X j θ̂K

)
.

Note that

K∑
j=1

([
0 Uj

]
θ̃K

)′ ([
0 Uj

]
θ̃K

)
= b̃′K

K∑
j=1

U′jUjb̃K

= b̃′K

K∑
j=1

(
nj∑
i=1

wjiw
′
ji −

nj∑
i=1

xjix
′
ji

)
b̃K

− b̃′K

K∑
j=1

(
nj∑
i=1

u′jixji +

nj∑
i=1

xjiu
′
ji

)
b̃K

(C.1)

and
K∑
j=1

([
0 Uj

]
θ̃K

)′ (
X j θ̃K −X j θ̂K

)
= b̃′K

K∑
j=1

nj∑
i=1

u′jixji(b̃K − β̂K). (C.2)

Since

K∑
j=1

nj∑
i=1

u′jixji/NK converges to E(u′x) = E(u′)E(x) = 0 by the weak law of large numbers,

K∑
j=1

nj∑
i=1

u′jixji in equation (C.1) and (C.2) is of order op(NK). Then, we have

K∑
j=1

A′jAj =

K∑
j=1

(θ̃K − θ̂K)′X ′jX j(θ̃K − θ̂K)

+b̂′K

K∑
j=1

(
nj∑
i=1

wjiw
′
ji −

nj∑
i=1

xjix
′
ji

)
b̂K + op(NK).
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Also, the last term of the right-hand side in equation (1.10) is

2

K∑
j=1

(yj −X j θ̂K)′Aj = 2

K∑
j=1

(yj −X j θ̂K)′
([

0 Uj

]
θ̃K + X j θ̃K −X j θ̂j

)

= 2

K∑
j=1

(yj −X j θ̂k)′Ujb̃K .

SinceN−1K

K∑
j=1

(yji−X j θ̂k)′Ujb̃K = N−1K

K∑
j=1

nK+1∑
i=1

(
yji −

[
zji xji

]
θ̂k

)
u′jib̃K converges to E(yjiu

′b̃K)−

E
(
u′
[
z x

]
θ̂kbK

)
= E(yji)E(u′)E(b̃K) − E(u′)E

([
z x

]
θ̂kbK

)
= 0 by the weak law of large

numbers, 2
∑K

j=1(yj −X j θ̂K)′Aj is of order op(NK).

Appendix D. Proof of Theorem 2

Note that

Ṽc + X ′K+1XK+1 =


K+1∑
j=1

nj∑
i=1

zjiz
′
ji

K+1∑
j=1

nj∑
i=1

zjix
′
ji +

K∑
j=1

nj∑
i=1

zjiu
′
ji

K+1∑
j=1

nj∑
i=1

xjiz
′
ji +

K∑
j=1

nj∑
i=1

ujiz
′
ji (NK+1/nK+1)

nK+1∑
i=1

xK+1,ix
′
K+1,i

 .

Since

K∑
j=1

nj∑
i=1

zjiu
′
ji = op(NK), N−1K+1

K+1∑
j=1

nj∑
i=1

zjix
′
ji +

K∑
j=1

nj∑
i=1

zjiu
′
ji

 andN−1K+1

K+1∑
j=1

nj∑
i=1

xjiz
′
ji+

K∑
j=1

nj∑
i=1

ujiz
′
ji

 converge in probability to E(zx′) and E(xz′), respectively, by the weak law of large

numbers as NK , nK+1 →∞. Also,

K+1∑
j=1

nj∑
i=1

zjiz
′
ji/NK+1 and

nK+1∑
i=1

xK+1,ix
′
K+1,i/nK+1 converge in

probability to E(zz′) and E(xx′), respectively. Thus, (Ṽc
K + X ′K+1XK+1)/NK+1 converges in

probability to V.
Denote ∆ = (Ṽc

K+X ′K+1XK+1)/NK+1. For the cumulative coefficient estimator in the equation

5



(1.12), we have

θ̂
c

K+1 − θ

= ∆−1N−1K+1(ṼK θ̃K + X ′K+1XK+1ϑ̂nK+1,K+1 − (Ṽc
K + X ′K+1XK+1)θ)

= ∆−1N−1K+1

(
K∑
j=1

X̃
′
jyj − ṼKθ + T1

′T1θ −T2
′T2θ + X ′K+1yK+1 −X ′K+1XK+1θ

)

= ∆−1N−1K+1

(
K∑
j=1

X̃
′
jX jθ +

K∑
j=1

X̃
′
jεj − ṼKθ + T1

′T1θ −T2
′T2θ + X ′K+1εK+1

)

= ∆−1N−1K+1

(
K∑
j=1

X̃
′
j

[
0 −Uj

]
θ +

K∑
j=1

X̃
′
jεj + T1

′T1θ −T2
′T2θ + X ′K+1εK+1

)
= ∆−1 ((NK/NK+1)(B1 −B2) + (nK+1/NK+1)B3) ,

where B1 and B2 are the same as (A.1) and (A.2), respectively, and B3 = n−1K+1

nK+1∑
i=1

[
zK+1,iεi
xK+1,iεi

]
.

By Central Limit Theorem, B3 is of order Op(1/
√
nK+1). Like the cases 1, 2, and 3 in Theorem 1,

we use the Central Limit Theorem and Slutsky’s Theorem in the last steps of each case to derive
the asymptotic normal distribution. Note that B1 = Op(1/

√
NK), and B2 = Op(1/

√
nK+1).

Case 1: nK+1/NK → 0. Since
√
nK+1NK/NK+1 → 0 as nK+1/NK → 0,

(√
nK+1NK/NK+1

)
B1 =

op(1) and
(√
nK+1nK+1/NK+1

)
B3 = op(1). Note that NK/NK+1 → 1 as nK+1/NK → 0.

√
nK+1(θ̂

c

K+1 − θ) = ∆−1
[(√

nK+1NK/NK+1

)
(B1 −B2) +

(√
nK+1nK+1/NK+1

)
B3

]
= ∆−1 (NK/NK+1)

√
nK+1B2 + op(1)

d−→ N(0,V−1F1V
−1).

Case 2: NK/nK+1 → 0. Since
√
NK/NK+1 → 0 as NK/nK+1 → 0,

(
NK/

√
NK+1

)
B1 = op(1)

and
(
NK/

√
NK+1

)
B3 = op(1). Note that

√
nK+1/NK+1 → 1 as NK/nK+1 → 0.√

NK+1(θ̂
c

K+1 − θ) = ∆−1
((
NK/

√
NK+1

)
(B1 −B2) +

(
nK+1/

√
NK+1

)
B3

)
= ∆−1

(
nK+1/

√
NK+1

)
B3 + op(1)

d−→ N(0,V−1σ2).
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Case 3: NK/nK+1 → h for some constant 0 < h <∞.√
NK+1(θ̂

c

K+1 − θ) = ∆−1
[(
NK/

√
NK+1

)
(B1 −B2) +

(
nK+1/

√
NK+1

)
B3

]
= ∆−1

√ NK

NK+1

1√
NK

K∑
j=1

nj∑
i=1

[
zjiεi − zjiu

′
jiβ

wjiεi + (ujix
′
ji + xjix

′
ji −E(xx′))β

]

+

√
nK+1

NK+1

1
√
nK+1

nK+1∑
i=1

[
zK+1,iεi

NK

nK+1
(xjix

′
ji −E(xx′))β + xK+1,iεi

])
d−→ N(0,V−1F4V

−1),

where

F4 =
h

h+ 1
Var

([
zεi − zu′β

wεi + (ux′ + xx′ −E(xx′))β

])
+

1

h+ 1

(
Var

([
0

h(xx′ −E(xx′))β

])
+ Var

([
zεi
xεi

]))
=

h

h+ 1
F2 +

1

h+ 1
(h2F1 + Vσ2).
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Appendix E. Table A.1 and A.2 for empirical and average standard error

Table A.1: Empirical standard error (Emp SE) and average standard error (Avg SE) for α1 and β1 when β =
(0.2, 0.2)′

(n1, n2) = (9.99 ∗ 105, 103) (9 ∗ 105, 105) (105, 9 ∗ 105) (103, 9.99 ∗ 105)
σzx = 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

µ = 0
σ2 = 1, σ2

u = 1 Emp SE(α1) 0.0020 0.0111 0.0011 0.0018 0.0010 0.0013 0.0010 0.0012
Avg SE(α1) 0.0020 0.0109 0.0011 0.0018 0.0010 0.0013 0.0010 0.0013
Emp SE(β1) 0.0121 0.0196 0.0018 0.0028 0.0011 0.0013 0.0010 0.0013
Avg SE(β1) 0.0118 0.0197 0.0018 0.0028 0.0011 0.0014 0.0010 0.0013

σ2 = 1, σ2
u = 2 Emp SE(α1) 0.0020 0.0109 0.0011 0.0020 0.0011 0.0014 0.0010 0.0013

Avg SE(α1) 0.0020 0.0111 0.0011 0.0020 0.0010 0.0013 0.0010 0.0013
Emp SE(β1) 0.0116 0.0202 0.0021 0.0032 0.0011 0.0015 0.0011 0.0013
Avg SE(β1) 0.0119 0.0201 0.0021 0.0032 0.0011 0.0015 0.0010 0.0013

σ2 = 3, σ2
u = 2 Emp SE(α1) 0.0024 0.0112 0.0018 0.0029 0.0018 0.0022 0.0017 0.0021

Avg SE(α1) 0.0025 0.0115 0.0018 0.0029 0.0018 0.0023 0.0018 0.0022
Emp SE(β1) 0.0119 0.0202 0.0031 0.0048 0.0019 0.0026 0.0017 0.0021
Avg SE(β1) 0.0123 0.0208 0.0032 0.0048 0.0019 0.0025 0.0018 0.0022

µ = 1
σ2 = 1, σ2

u = 1 Emp SE(α1) 0.0038 0.0221 0.0011 0.0025 0.0011 0.0013 0.0010 0.0012
Avg SE(α1) 0.0038 0.0211 0.0011 0.0025 0.0010 0.0013 0.0010 0.0013
Emp SE(β1) 0.0228 0.0370 0.0027 0.0041 0.0012 0.0014 0.0010 0.0012
Avg SE(β1) 0.0235 0.0359 0.0027 0.0040 0.0011 0.0015 0.0010 0.0013

σ2 = 1, σ2
u = 2 Emp SE(α1) 0.0037 0.0230 0.0011 0.0025 0.0010 0.0013 0.0010 0.0013

Avg SE(α1) 0.0038 0.0215 0.0012 0.0026 0.0010 0.0014 0.0010 0.0013
Emp SE(β1) 0.0229 0.0394 0.0029 0.0043 0.0012 0.0015 0.0010 0.0013
Avg SE(β1) 0.0234 0.0366 0.0029 0.0044 0.0012 0.0016 0.0010 0.0013

σ2 = 3, σ2
u = 2 Emp SE(α1) 0.0042 0.0236 0.0019 0.0033 0.0018 0.0023 0.0017 0.0022

Avg SE(α1) 0.0042 0.0220 0.0019 0.0034 0.0018 0.0023 0.0018 0.0022
Emp SE(β1) 0.0239 0.0391 0.0037 0.0056 0.0020 0.0026 0.0018 0.0022
Avg SE(β1) 0.0241 0.0373 0.0038 0.0057 0.0020 0.0026 0.0018 0.0022
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Table A.2: Empirical standard error (Emp SE) and average standard error (Avg SE) for α1 and β1 when β =
(0.1, 0.1, 0.1, 0.1)′

(n1, n2) = (9.99 ∗ 105, 103) (9 ∗ 105, 105) (105, 9 ∗ 105) (103, 9.99 ∗ 105)
σzx = 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

µ = 0
σ2 = 1, σ2

u = 1 Emp SE(α1) 0.0020 0.0135 0.0011 0.0020 0.0011 0.0013 0.0010 0.0013
Avg SE(α1) 0.0021 0.0133 0.0011 0.0019 0.0010 0.0013 0.0010 0.0013
Emp SE(β1) 0.0083 0.0165 0.0017 0.0026 0.0011 0.0014 0.0010 0.0014
Avg SE(β1) 0.0086 0.0162 0.0016 0.0026 0.0011 0.0014 0.0010 0.0013

σ2 = 1, σ2
u = 2 Emp SE(α1) 0.0021 0.0132 0.0011 0.0021 0.0011 0.0014 0.0011 0.0013

Avg SE(α1) 0.0021 0.0132 0.0011 0.0021 0.0010 0.0014 0.0010 0.0013
Emp SE(β1) 0.0084 0.0160 0.0019 0.0031 0.0011 0.0015 0.0010 0.0013
Avg SE(β1) 0.0086 0.0163 0.0019 0.0031 0.0011 0.0015 0.0010 0.0013

σ2 = 3, σ2
u = 2 Emp SE(α1) 0.0025 0.0136 0.0019 0.0032 0.0017 0.0024 0.0018 0.0023

Avg SE(α1) 0.0026 0.0141 0.0019 0.0033 0.0018 0.0024 0.0018 0.0023
Emp SE(β1) 0.0091 0.0168 0.0034 0.0057 0.0020 0.0029 0.0018 0.0023
Avg SE(β1) 0.0097 0.0179 0.0035 0.0057 0.0020 0.0028 0.0018 0.0023

µ = 1
σ2 = 1, σ2

u = 1 Emp SE(α1) 0.0051 0.0303 0.0011 0.0031 0.0010 0.0013 0.0010 0.0013
Avg SE(α1) 0.0050 0.0285 0.0012 0.0030 0.0010 0.0014 0.0010 0.0013
Emp SE(β1) 0.0186 0.0297 0.0023 0.0036 0.0011 0.0014 0.0010 0.0014
Avg SE(β1) 0.0191 0.0297 0.0023 0.0035 0.0011 0.0015 0.0010 0.0013

σ2 = 1, σ2
u = 2 Emp SE(α1) 0.0053 0.0312 0.0012 0.0031 0.0010 0.0014 0.0010 0.0013

Avg SE(α1) 0.0050 0.0285 0.0012 0.0031 0.0010 0.0014 0.0010 0.0013
Emp SE(β1) 0.0200 0.0311 0.0025 0.0040 0.0012 0.0016 0.0010 0.0012
Avg SE(β1) 0.0192 0.0300 0.0026 0.0040 0.0012 0.0016 0.0010 0.0013

σ2 = 3, σ2
u = 2 Emp SE(α1) 0.0053 0.0357 0.0020 0.0039 0.0019 0.0025 0.0018 0.0023

Avg SE(α1) 0.0053 0.0300 0.0019 0.0040 0.0018 0.0024 0.0018 0.0023
Emp SE(β1) 0.0198 0.0338 0.0039 0.0060 0.0020 0.0029 0.0017 0.0023
Avg SE(β1) 0.0199 0.0315 0.0039 0.0062 0.0020 0.0029 0.0018 0.0023
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Appendix F. Figure A.1 and Figure A.2 for logarithm of variance and squared bias
for estimating α1 and β1
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Figure A.1: Logarithm of variance and squared bias for estimating α1 and β1, the first elements of α and β,
respectively, when β = (0.2, 0.2)′. CCUE is the cumulative coefficient updated estimator, EWOF is the estimator
calculated without the first block, and NCCUE is the no-correction cumulative updated estimator.
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Figure A.2: Logarithm of variance and squared bias for estimating α1 and β1, the first elements of α and β
respectively when β = (0.1, 0.1, 0.1, 0.1)′. CCUE is the cumulative coefficient updated estimator, EWOF is the
estimator calculated without the first block, and NCCUE is the no-correction cumulative updated estimator.
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Appendix G. Figure A.3 and Figure A.4 for boxplots of bias for estimating α1, β1,
and σ2
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(b) σ2 = 1, σ2
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Figure A.3: Boxplots of bias for estimating α1 and β1, the first elements of α and β, respectively, when β = (0.2, 0.2)′,
µ = 0, σzx = 0.1, and 4 datasets with true covariates arrive in stream. Note that yellow asterisk in the boxplot
indicates mean. CCUE is the cumulative coefficient updated estimator, EWOF is the estimator updated without the
first block, and NCCUE is the no-correction cumulative updated estimator.
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Figure A.4: Boxplots of bias for estimating σ2 when β = (0.2, 0.2)′, µ = 0, σzx = 0.1, σ2
u = 1 (left plot), 2 (middle

and right plots), and 4 datasets with true covariates arrive in streams. Note that yellow asterisk in the boxplot
indicates mean. CCUE is the cumulative coefficient updated estimator, EWOF is the estimator calculated without
the first block, and NCCUE is the no-correction cumulative updated estimator.
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Appendix H. Figure A.5 for heteroscedasticity and Table A.3 for the detailed infor-
mation in Airline on-time data
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Figure A.5: Residual plots with 10,000 random sample in the Airline on-time data. ’Actual elapsed time’ variable is
used in the first block for the left plot, and ’CRS elapsed time’ variable is used in the first block for the right plot.

Table A.3: First five observations in Airline on-time data

Arrival Delay1 Taxi-Out Time2 Flight Time3 Security Delay4 CRS Elapsed Time5 Actual Elapsed Time6

obs 1 10 36 85 0 108 124
obs 2 -14 12 52 0 80 68
obs 3 50 13 88 0 65 110
obs 4 2 24 90 0 114 119
obs 5 21 29 46 0 74 78

1 Difference in minutes between scheduled and actual arrival time
2 Elapsed time in minutes between departure from the origin airport gate and wheels off
3 The total time in minutes for an aircraft is in the air from wheels-off at the origin airport to wheels-down at the destination

airport
4 Delayed time in minutes caused by evacuation of a terminal or concourse, re-boarding of aircraft because of security breach,

inoperative screening equipment and/or long lines
5 Computer Reservation System time in minutes computed from gate departure time to gate arrival time
6 Actual time in minutes computed from gate departure time to gate arrival time
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