Mechanisms for minimizing height-related stomatal conductance declines in tall vines

Jean-Christophe Domec1,2 | Henry Berghoff2 | Danielle A. Way2,3 | Menachem Moshelion4 | Sari Palmroth2 | Katre Kets5 | Cheng-Wei Huang6 | Ram Oren2,7

1 Bordeaux Sciences Agro, INRA UMR 1391 ISPA, Gradignan F-33170, France
2 Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
3 Department of Biology, Western University, London, Ontario, Canada
4 The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
5 Institute of Botany and Ecology, University of Tartu, 51005 Tartu, Estonia
6 Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
7 Department of Forest Sciences, University of Helsinki, Helsinki FI-00014, Finland

Correspondence
J. C. Domec, Bordeaux Sciences Agro, INRA UMR 1391 ISPA, Gradignan F-33170, France.
Email: jc.domec@agro-bordeaux.fr

Funding information
Erkko Visiting Professor Programme of the Jane and Aatos Erkko 375th Anniversary Fund; National Science Foundation, Grant/Award Numbers: NSF-EAR-1344703, NSF-DEB-1557176 and NSF-IOS-1754893

Abstract
The ability to transport water through tall stems hydraulically limits stomatal conductance \((g_s)\), thereby constraining photosynthesis and growth. However, some plants are able to minimize this height-related decrease in \(g_s\), regardless of path length. We hypothesized that kudzu \((Pueraria lobata)\) prevents strong declines in \(g_s\) with height through appreciable structural and hydraulic compensative alterations. We observed only a 12% decline in maximum \(g_s\) along 15-m-long stems and were able to model this empirical trend. Increasing resistance with transport distance was not compensated by increasing sapwood-to-leaf-area ratio. Compensating for increasing leaf area by adjusting the driving force would require water potential reaching \(-1.9\) MPa, far below the wilting point \((-1.2\) MPa). The negative effect of stem length was compensated for by decreasing petiole hydraulic resistance and by increasing stem sapwood area and water storage, with capacitive discharge representing 8–12% of the water flux. In addition, large lateral (petiole, leaves) relative to axial hydraulic resistance helped improve water flow distribution to top leaves. These results indicate that \(g_s\) of distal leaves can be similar to that of basal leaves, provided that resistance is highest in petioles, and sufficient amounts of water storage can be used to subsidize the transpiration stream.

KEYWORDS
capacitance, electrical circuit analogy, hydraulic compensation, hydraulic resistance, lianas, long-distance transport, Pueraria lobata

1 INTRODUCTION

Simple models of water flow from soil to leaves assume that water uptake balances water lost in transpiration. Further simplifications assume average hydraulic conductance between two points, one in the soil and another in the crown, defining the two end points for the water potential difference driving water flow from the soil to leaves (Whitehead, 1998). Models based on these assumptions have been successfully used to describe variation in stomatal conductance \((g_s)\) at scales ranging from tree crowns to forest stands (Ambrose et al., 2010; McDowell, Phillips, Lunch, Bond, & Ryan, 2002; Mencuccini, Grace, & Fioravanti, 1997; Schäfer, Oren, & Tenhunen, 2000).

However, xylem hydraulic conductance varies by organ (Andrade et al., 1998; Domec, Pruyn, Lachenbruch, & Spicer, 2012; Ewers & Zimmermann, 1984), and conductance in each plant organ may respond differently to changes in water potential (Johnson et al., 2016; Tsuda & Tyree, 1997). Moreover, capacitive discharge of stored water within the hydraulic pathway itself is important for buffering transpiration-induced fluctuations in water potential (Huang et al., 2017; Meinzer et al., 2008). Hydraulic conductances of the soil
(Running, 1980) and the xylem pathway (Venturas, Sperry, & Hacke, 2017) both decrease as water potential declines. Thus, coarse attributes (e.g., averages of path length from soil to leaves, root or sapwood area per unit of leaf area, and predawn to daytime leaf water potential gradients) may work reasonably well in capturing the variability of transport capacity to the average leaf among individuals, stands, and ecosystems, but only if these attributes dominate over more nuanced sources of variation. One may therefore ask: what are the limits within which simple hydraulic approximations are useful for describing the variation of \(g \), within plants? To answer this question, it is necessary to account for the relative contribution of each plant organ to the total resistance and capacitance to water flow.

Vines preferentially allocate carbon to leaves to take advantage of their position in the forest canopy (Carter & Teramura, 1988), while simultaneously shading competitors (Sasek & Strain, 1989). Canopies of vine species that are shade- and freeze-intolerant die back each year and thus must regrow quickly each spring to overtop nearby vegetation. In self-supported plants, hydraulic adjustments do not fully compensate for the size-related decline in water transport and thus \(g \), of tall trees (Ryan, Phillips, & Bond, 2006; Schäfer et al., 2000). However, to maintain high photosynthetic rates and provide a local source of carbohydrates for extension growth, vines must maintain high \(g \), for which large quantities of water must be transported to the tops of tall canopies (Clearwater et al., 2004; Johnson, Domec, Woodruff, McCulloh, & Meinzer, 2013). Yet, compared with trees, vines have a much lower sapwood area per unit of leaf area, which in trees has been associated with reduced supply and carbon assimilation per leaf area (Ewers, Oren, Bohrer, & Lai, 2007; Phillips, Bond, McDowell, Ryan, & Schauer, 2003; Whitehead, Edwards, & Jarvis, 1984). Furthermore, compared with trees, the flow path along the stem of vines is much longer relative to the conducting stem cross-sectional area (Filartiga, Vieira, Mantovani, & Rennenberg, 2014; Rosell & Olson, 2014). Despite those restrictions to maximum water flow rates through long and narrow stems, vines can contribute a significant proportion of total evapotranspiration and carbon uptake in ecosystems (Restom & Nepstad, 2001). This implies that vines must have mechanisms compensating for hydraulic limitations, imposed by extended path length and increased leaf size with height (Figure 1). Proposed mechanisms for increasing hydraulic flow in vine species include deeper rooting systems (Chen et al., 2015), increased stem hydraulic conductivity and water storage (Gartner, 1991; Johnson et al., 2013), increased size and number of vessels (Masrahi, 2014; Rosell & Olson, 2014), and segmentation of hydraulic resistance (Tanedo & Tateno, 2011).

Even in the absence of any hydraulic limitation related to path length, vine height might affect turgor and leaf water potentials through gravity (Woodruff, Bond, & Meinzer, 2004). One way to disentangle the effect of gravity on tissue structure and function is to train vines or trees to grow at different angles. This would allow distinguishing between the effect of path length alone (e.g., in horizontally growing stems) from that of the joint path length and gravity.

There are several models that can account for the different and variable resistances along the water transport pathway, based on an Ohm’s law analogy, Darcy’s flow, or porous media formulations (Bohrer et al., 2005; Edwards, Jarvis, Landsberg, & Talbot, 1986; Ewers et al., 2007; Williams et al., 1996). The formal hydraulic model of Whitehead et al. (1984) predicts that a water homeostasis must exist between transport capacity and transpirational loss, such that full hydraulic compensation can prevail if this is advantageous to the plant. Using an Ohm’s law analogy, Taneda and Tateno (2011) modelled that a large lateral relative to axial resistance to flow is responsible for an even flow distribution to leaves along horizontally growing stems of the kudzu vine Pueraria lobata (Wild.). However, the model may not match the behaviour of stems growing vertically on trees because of increased leaf size with height and because tissues developing under more negative water potentials trade-off conductivity for safety. These tissues may develop such that their vulnerability to embolism and loss of hydraulic function is lower but so is their hydraulic conductivity (Schubert, Lovisolo, & Peterlunger, 1999; Sperry, Hacke, Oren, & Comstock, 2002; Tombesi, Nardini, Farinelli, & Palliotti, 2014).

![FIGURE 1](image-url) Conceptual figure showing how hydraulic traits related to the stated hypotheses (H) may change with height within Kudzu. Note that individual node leaf area is expected to increase with height. Length of bars and colour gradients depict the effect of vine orientation on absolute trait values and the change of these values within a given orientation, respectively. Gravitational potential increases vertically 0.01 MPa for every metre, which contributes to reductions in the water potential gradient (\(\Delta \Psi \)) with height.
The aim of this study was to investigate the mechanisms underlying the ability to efficiently distribute water along stems at a great distance from the soil while maintaining high gas exchange rates. To accomplish this, we used kudzu as a model system. Kudzu is a perennial liana native to East Asia that was introduced as a forage crop in the south-eastern USA and has since spread into adjacent forests and grassland (ISSG, 2013; Figure S1). We compared field values of hydraulic resistance and \(g_s \) along the water transport pathway with values modelled using the Ohm’s electrical analogy applied to a hydraulic circuit. We specifically examined hydraulic traits and gas exchange rates of kudzu plants grown in full sun at various angles, thus allowing some degree of separation between the path length and the height water traveled from the soil surface, which affects the driving force and resistance and potentially causes hydraulic adjustments (Magnani, Mencuccini, & Grace, 2000). As depicted in Figure 1, we hypothesized that (1) vines growing vertically, in an ecologically realistic manner, would show greater lateral relative to axial resistance than vines growing horizontally and (2) vines growing at steeper angles would have hydraulic traits that help mitigate potential height-driven declines in \(g_s \) compared with horizontally grown stems, specifically (2a) lower leaf water potentials for a given path length, to drive a greater difference in water potential between leaves and soil; (2b) a larger difference between stem and petiole resistance; and (2c) larger tissue capacitance with height, to shift the diurnal reliance of transpiration from root uptake of soil water (increasingly difficult to access with distance) to more easily accessible water stored near the sites of transpiration.

To evaluate the relative contribution of each compensating mechanism for maintaining \(g_s \), with distance from the soil, regardless of stem orientation, we employed a model (Taneda & Tateno, 2011) modified to account for the utilization of water stored along the stem and for the loss of stem hydraulic capacity due to cavitation-induced embolism. We hypothesize that, contrary to previously described behaviour of self-supported plants (McDowell et al., 2002; Ryan et al., 2006), appreciable structural and hydraulic compensative alterations are necessary to allow sufficient water delivery to kudzu leaves, thus supporting high gas exchange rates along the entire stem (Figure 1).

1.1 Theory

The hydraulic limitation hypothesis predicts that taller individuals have lower gas exchange rates, reflecting the effect of gravity and path length on liquid water transport (Ryan & Yoder, 1997). The effects of increasing height include an increased flow resistance with path length (\(L_{path} \)) and a decreasing water potential gradient driving the flow from soil to leaf (\(\Delta \Psi \)), as the counter force of hydrostatic pressure increases with the height of the water column (notations and units are listed in Table 1). A simplified representation of leaf conductance to water vapour \(g_s \) based on a Darcy’s law analogy is (McDowell et al., 2002; Whitehead et al., 1984; Whitehead & Hinckley, 1991)

\[
g_s = \frac{k_s \cdot \Delta \Psi \cdot \text{sapwood area} \cdot \Omega (T_{air})}{L_{path} \cdot \text{leaf area} \cdot \text{VPD}},
\]

where \(g_s \) accounts for the combined effects of \(g_s \) and the boundary layer conductance \((g_{bl}) \) on water loss through transpiration, \(k_s \) is the “whole”-xylem specific hydraulic conductivity, VPD is the vapour pressure deficit, and \(\Omega \) is a coefficient that fluctuates with air temperature \((T_{air}) \) based on changes in the psychometric constant, latent heat of vaporization, specific heat of air at constant pressure, and the density of air (Ewers, Oren, Johnsen, & Landsberg, 2001). Hereafter, we refer to Equation (1) as the simplified hydraulic formulation (SHF). Boundary layer conductance is mainly determined by the characteristic dimension of the leaf \((L_{leaf}) \) and wind velocity \((u) \); taken as \(4.2 \text{ m s}^{-1} \) in our simulations, which represented the daily mean value during our measuring period) through forced convection (Huang, Chu, Hsieh, Palmroth, & Katul, 2015; Stokes, Morecroft, & Morison, 2006) and can be estimated as (Forseth & Teramura, 1987; Jones, 1992)

\[
g_{bl} = 304 \sqrt{\frac{u}{L_{leaf}}} \tag{2}
\]

According to SHF, and consistent with hydraulic limitation hypothesis, \(L_{path} \) increases with height, limiting \(g_s \) and thus \(g_s \) of upper leaves (Pennisi, 2005). Not only does increasing height (and \(L_{path} \)) increase resistance to water flow, it also reduces \(\Delta \Psi \) because (Domec et al., 2008; Schäfer et al., 2000; Zimmermann, 1983)

\[
\Delta \Psi = \Psi_{soil} - \Psi_{leaf} - \rho_w G h \Psi_{soil} - \Psi_{leaf} - 0.01h.
\]

where \(\Psi_{soil} \) is the soil water potential, \(\Psi_{leaf} \) is the leaf water potential, \(\rho_w \) is the density of water, \(G \) is the acceleration of gravity, and \(h \) is the midcrown height above the ground, or the height of the leaf of which \(\Psi_{leaf} \) represents the crown or canopy. The SHF can explain variation of \(g_s \) among trees of different heights in a given stand (Ambrose et al., 2010; Schäfer et al., 2000), between undisturbed crowns and those of reduced midcrown height following fire-induced epicormic branching (Nolan, Mitchell, Bradstock, & Lane, 2014), between shorter, young, and taller, old stands (Phillips et al., 2003; Ryan et al., 2000), and among ecosystems (Novick et al., 2009).

Nevertheless, given the simplifications inherent in the SHF, it is not likely to perform well when average hydrological properties are used to describe wide distributions of these properties, especially for properties that are non-linearly related to \(g_s \). In such cases, the behaviour of the system computed based on the average of a property (such as \(k_s \)) will not equal the average of the behaviour computed from the distribution of the property. Furthermore, SHF cannot be readily implemented to produce a distribution of within-plant variation of \(g_s \). Instead, building on Ohm’s Law, the flow of water through a stem with leaves distributed along its length (such as a vine) can be approximated as an electrical circuit with resistors in parallel (Taneda & Tateno, 2007; Van den Honert, 1948).

In order to determine flow through each node (i.e., petiole or leaf), Taneda and Tateno (2011) employ Kirchhoff’s Voltage Law under steady state (i.e., without movement of water between the transpirational path and tissue water sources):
Ek = \sum_{i=k}^{N} (I_{Axial,i} \cdot R_{Axial,i}) + (I_{Lateral,k} \cdot R_{Lateral,k}). \quad (4)

where \(k \) is the node number with \(k = 1 \) as the most distal node and \(k = N \) (i.e., \(N \) is the total number of nodes) as the most basal node; \(E_k \) is the driving force for flow at kth node; \(I_{Axial,k} \) and \(R_{Axial,k} \) are, respectively, the flow and the resistance through the axial portion between kth node and \((k+1)\)th node; and \(I_{Lateral,k} \) and \(R_{Lateral,k} \) are, respectively, the flow and the resistance through the lateral portion defined as the sum of the lateral flow rates distal to that node according to Kirchhoff’s current law:

\[I_{Axial,k} = \sum_{i=k}^{N} I_{Lateral,i}. \quad (5) \]

To run this distributed hydraulic formulation (DHF) model, we solve Equation (4) for lateral flow rate at each node simultaneously (\(I_{Lateral,k} \)). For axial resistance, we use the specific resistance in the

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{net}</td>
<td>Net rate of carbon assimilation</td>
<td>(\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(C_a)</td>
<td>Atmospheric (CO_2) concentration</td>
<td>ppm</td>
</tr>
<tr>
<td>(C_i)</td>
<td>Leaf internal (CO_2) concentration</td>
<td>ppm</td>
</tr>
<tr>
<td>(E_k)</td>
<td>Driving force for flow in Ohm’s Law analogy</td>
<td>MPa</td>
</tr>
<tr>
<td>(g_s)</td>
<td>Stomatal conductance to water vapour</td>
<td>(\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(g_{s,ref})</td>
<td>Reference stomatal conductance, at VPD = 1 kPa</td>
<td>(\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(g_{s,ref}')</td>
<td>Maximum reference stomatal conductance, at VPD = 1 kPa and 2,000 PAR</td>
<td>(\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(g_b)</td>
<td>Boundary layer conductance</td>
<td>(\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(h)</td>
<td>Height above the ground</td>
<td>m</td>
</tr>
<tr>
<td>(I_{Axial,k})</td>
<td>Water flow rate through axial pathway between kth node and ((k+1))th node</td>
<td>(\text{mmol}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(I_{Lateral,k})</td>
<td>Water flow rate through lateral pathway at kth node</td>
<td>(\text{mmol}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(K_{leaf})</td>
<td>Leaf hydraulic conductance</td>
<td>(\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}\cdot\text{MPa}^{-1})</td>
</tr>
<tr>
<td>(k_{s,petiole})</td>
<td>Petiole xylem specific hydraulic conductivity</td>
<td>(\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}\cdot\text{MPa}^{-1})</td>
</tr>
<tr>
<td>(k_{s,stem})</td>
<td>Stem xylem specific hydraulic conductivity</td>
<td>(\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}\cdot\text{MPa}^{-1})</td>
</tr>
<tr>
<td>(L_{internode})</td>
<td>Internode length, distance between adjacent leaves</td>
<td>m</td>
</tr>
<tr>
<td>(L_{leaf})</td>
<td>Mean leaf length</td>
<td>m</td>
</tr>
<tr>
<td>(L_{path})</td>
<td>Path length</td>
<td>m</td>
</tr>
<tr>
<td>(L_{petiole})</td>
<td>Petiole length</td>
<td>m</td>
</tr>
<tr>
<td>(N)</td>
<td>Total number of nodes</td>
<td>integer</td>
</tr>
<tr>
<td>(P_{50})</td>
<td>Xylem pressure to induce 50% loss of (k_{s,stem})</td>
<td>MPa</td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetically active radiation</td>
<td>(\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(R_{Axial,k})</td>
<td>Resistance through axial pathway at node (k)</td>
<td>(\text{MPa}\cdot\text{s}\cdot\text{mmol}^{-1})</td>
</tr>
<tr>
<td>(R_{Lateral,k})</td>
<td>Resistance through lateral pathway at kth node</td>
<td>(\text{MPa}\cdot\text{s}\cdot\text{mmol}^{-1})</td>
</tr>
<tr>
<td>(R_{leaf})</td>
<td>Leaf hydraulic resistance</td>
<td>(\text{MPa}\cdot\text{s}\cdot\text{mmol}^{-1})</td>
</tr>
<tr>
<td>(R_{petiole})</td>
<td>Petiole specific resistance</td>
<td>(\text{MPa}\cdot\text{s}\cdot\text{mmol}^{-1})</td>
</tr>
<tr>
<td>(R_{stem})</td>
<td>Internode (stem) resistance</td>
<td>(\text{MPa}\cdot\text{s}\cdot\text{mmol}^{-1})</td>
</tr>
<tr>
<td>(T_{air})</td>
<td>Air temperature</td>
<td>°C</td>
</tr>
<tr>
<td>(S_{Axial,k})</td>
<td>Storage flow rate in stem between kth node and ((k+1))th node</td>
<td>(\text{mmol}\cdot\text{H}_2\text{O}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(S_{Lateral,k})</td>
<td>Storage flow rate in petiole and leaf at kth node</td>
<td>(\text{mmol}\cdot\text{H}_2\text{O}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(u)</td>
<td>Wind velocity</td>
<td>(\text{m}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>(V_{cmax})</td>
<td>Maximum Rubisco carboxylation rate</td>
<td>(\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1})</td>
</tr>
<tr>
<td>VPD</td>
<td>Vapour pressure deficit</td>
<td>kPa</td>
</tr>
<tr>
<td>(X_{stem})</td>
<td>Stem cross-sectional xylem area</td>
<td>m²</td>
</tr>
<tr>
<td>(X_{petiole})</td>
<td>Petiole cross sectional area</td>
<td>m²</td>
</tr>
<tr>
<td>(\Delta\Psi)</td>
<td>Water potential difference of the soil-to-leaf pathway</td>
<td>MPa</td>
</tr>
<tr>
<td>(\Psi_{leaf}, \Psi_{soil})</td>
<td>Leaf and soil water potentials</td>
<td>MPa</td>
</tr>
</tbody>
</table>
stem between two nodes, R_{stem}, defined as

$$R_{stem} = \frac{L_{internode}}{k_s \cdot X_{stem}}$$ \hspace{1cm} (6)

where $L_{internode}$ is internode length, k_s, is the stem hydraulic conductivity on a sapwood area basis, and X_{stem} is the stem cross-sectional area. In the model, the increase in stem embolism with increasing stem pressure was taken into account by relating R_{stem} to vulnerability to embolism from measured vulnerability curves. For lateral resistance, we sum the specific petiole and leaf resistances at each location. Petiole resistance, $R_{petiole}$, is defined as

$$R_{petiole} = \frac{L_{petiole}}{k_p \cdot X_{petiole}}$$ \hspace{1cm} (7)

where $L_{petiole}$ is the petiole length, k_p, is the petiole conductivity, and $X_{petiole}$ is the petiole cross-sectional area. Leaf resistance, R_{leaf}, is defined as

$$R_{leaf} = \frac{1}{k_{leaf} \cdot leaf_area}$$ \hspace{1cm} (8)

where k_{leaf} is the leaf specific conductance. For E_k, we use measured $\Delta \Psi$ at each node. I_{Axial} is defined by Equation (5), leaving $I_{Lateral}$ as the only unknown in the complete set of equations.

Summed for an entire plant, the water supply used in transpiration may be greater than the amount of water taken up at the same time from the soil because of the use of stored water. Plant utilization of water stored in their tissues can contribute a significant fraction of overall water loss, especially in lianas made of soft and elastic tissues (Pratt & Jacobsen, 2017; Scholz, Phillips, Bucci, Meinzer, & Goldstein, 2011). Water storage capacity (capacitance) can be defined as the amount of water withdrawn from a given volume or area of a plant tissue per $\Delta \Psi$. After measuring leaf (C_{leaf}), petiole ($C_{petiole}$), and stem (C_{stem}) capacitances (see Section 2 below), these were converted into a storage flux through the axial (S_{Axial}) and lateral ($S_{Lateral}$) portions at the kth node by multiplying them by leaf or stem water potentials. We assumed that total capacitive discharge occurred over a 3- or 6-hr period, which corresponded to either a fast of slow rate of daily withdrawal from storage (Scholz et al., 2011). The calculated total water flow at the kth node became

$$F_{Lateral,k} = I_{Lateral,k} + S_{Axial,k} + S_{Lateral,k}.$$ \hspace{1cm} (9)

To relate flow to g_k and then g_{Cor}, we apply

$$g_{k} = \frac{F_{Lateral,k} \cdot Q(T_{air})}{leaf_area \cdot VPD}$$ \hspace{1cm} (10)

and

$$g_{Cor} = \frac{g_{k} \cdot g_{BL,k}}{g_{k} - g_{BL,k}}.$$ \hspace{1cm} (11)

2 METHODS

2.1 Setting

The experiment was established in a field located in the Duke Forest (Durham County, USA: 36.01°N, 79.00°W) where the long-term mean annual temperature and precipitation are 15.5°C and 1.145 ± 180 mm (mean ± standard deviation), respectively. The soil is mostly clay to a depth of 1–1.5 m. Kudzu seeds were first grown individually in pots at the Duke University Phytotron in June 2010, and the pots were moved outside in early July 2010. In June 2011, the aboveground biomass was trimmed back to increase the root-to-shoot ratio just prior to planting in the soil at the study site. Plants were planted into the soil at the field site in June 2011 and irrigated to avoid water limitations, averaging three times per week during the growing season of 2011, to ensure vigorous establishment. During the 2012 growing season, plants were watered at least every other day except on rainy days.

To study leaf traits along a height and length gradient, a 15-m tall tower was erected at the centre of the field, with twelve 15-m-long wires attached at four different angles (horizontal 0°, 30°, 60°, and vertical 90°), between the tower and each of 12 anchor points on the ground (Figure S1). One kudzu seedling was planted at the anchor point of each wire (3 replicates × 4 angles = 12 plants). To compare horizontal stems with angled ones within the same plant in addition to between plants, each plant was trained to grow multiple shoots along the ground at 0° and around a wire at one of the four treatment angles. Both heights and path lengths of each measured leaf were determined from the soil surface. Browsing by deer affected early season growth in 2012 and may have contributed to different growth patterns among individuals. Deer were prevented from browsing once this was recognized.

To expand our dataset and compare structural and hydraulic parameters with vines growing in their natural habitat, in September 2016, we also collected six entire kudzu plants that were climbing on trees (Durham County, NC, USA).

2.2 Gas exchange

On September 7–9, 2012, gas exchange was measured on the middle leaflet of 54 leaves (20 at 90°, 9 at 60°, 4 at 30°, and 21 at 0°) using a Li-6400 portable photosynthesis system (Li-Cor, Lincoln, NE, USA). For each leaf, the chamber was set to match prevailing environmental conditions assessed immediately prior to the measurement: atmospheric CO2 concentration (376–413 ppm), relative humidity (26–61%), photosynthetically active radiation (PAR; 300–2,000 μmol·m−2·s−1), and leaf temperature (27–35°C). Water potentials were measured immediately afterwards, as described below. All gas exchange results were expressed on a leaf area basis. Because the g_{k} of individual leaves in field settings is often limited by irradiance on leaf surfaces (Niinemets, 2010) rather than hydraulically controlled, we utilized a data reduction approach to account for the effects of changing PAR.
and vapour pressure deficit (VPD) on measured g_s before assessing hydraulic controls of g_s (Tor-ngern et al., 2015). Specifically, we first calculated the sensitivity of g_s to ln (VPD) (the parameter b of the regression fit $g_s = g_{s-ref} - b \cdot \ln \text{(VPD)}$) that is expected to increase with the reference conductance (g_{s-ref}), that is, g_s at VPD = 1 kPa (Oren et al., 1999). Then, to account for variation of g_s caused by VPD and PAR, we (a) calculated the residual of each value from its respective fit representing a PAR range and (b) added the value to the g_{s-ref} obtained from the same fit, thus normalizing all g_s values to their expected values at a VPD of 1 kPa, that is, to expected g_{s-ref} (here referred to as g_{s-ref}). Following, we related these g_{s-ref} values to the actual PAR in which each original g_s value was measured, obtaining a relationship that allowed us to estimate the average maximum g_{s-ref}.

Taking the residuals of this fit and adding them to the fitted maximum g_{s-ref}, we obtained a maximum g_s normalized to 1-kPa VPD and maximum PAR (g_{s-ref}).

On September 10–13, 2012, photosynthetic capacity was measured on 24 leaves grown at the top ($n = 15$) and the base of the 90° plants ($n = 9$). Net CO$_2$ assimilation rates (A_{ref}) versus intercellular CO$_2$ concentrations were measured at 30°C leaf temperature, 50 ± 10% relative humidity and 1,500 μmol·m$^{-2}$·s$^{-1}$ PAR. The chamber CO$_2$ concentrations were set to ambient and sequentially lowered to 50 ppm. These data were used to estimate the maximum Rubisco carboxylation rate (V_{cmax}), according to Farquhar, von Caemmerer, and Berry (1980).

2.3 Water potential

Along with the gas exchange measurements, Ψ_{leaf} was measured using a pressure chamber (PMS Ins., Albany, OR, USA) every 3 m along both the height and length gradients of one wire of each treatment angle, for four plants each day of the first three-day campaign. To assess maximum (least negative) Ψ_{leaf}, one leaf at each location was sampled at predawn. After the predawn sample was excised, a second adjacent leaf at each location was wrapped in an aluminium foil-covered plastic bag to obtain Ψ_{stem}, corresponding to the leaf water potential in equilibrium with the water potential of the stem (Richter, 1997). Between 8:30 and 11:00 each day, Ψ_{stem} was measured on these nontranspiring covered leaves, and Ψ_{leaf} was assessed on a third, freely transpiring leaf next to the Ψ_{stem} leaf at each location. The third leaf was excised immediately following measurement of its gas exchange rates. Altogether, three leaves at each of 54 locations at ~3 m were cut from the distal end until air bubbles that were seen, and the final length of the segment was then taken as the longest vessel length. Before hydraulic measurements, stem segments that were at least 50% longer than the mean vessel length (0.76 ± 0.27 m) were recut at both ends underwater, stripped of leaves and flushed at 0.2 MPa with filtered (0.22 μm), and vacuum-degassed deionized water for at least 15 min to refill embolized vessels (Melcher et al., 2012). Note that more than 80% of the samples used for stem hydraulics were twice as long as the mean vessel length. At each end of the stem, the xylem was exposed by removing the thin tissue surrounding it and attached to a tubing system suffused with filtered, deionized water. At the proximal end of the stem, 0.005 MPa of pressure was applied, and efflux was measured at the distal end with a 1-ml graduated pipette. Water temperature was measured before and after each measurement to account for changes in the

2.4 Hydraulic conductivity

Liquid-phase resistances to water transport aboveground were estimated from specific hydraulic conductivity of stems, petioles, and leaves along the height and length gradients. Stem samples, roughly 1.8 m long, taken from the base and tip of each of the three vines grown at 0°, 30°, 60°, and 90° angles, were transported to the laboratory, keeping the cut ends submerged in water. Estimates of longest vessel length were made using the compressed-air method of Ewers and Fisher (1989), whereby air is forced into the proximal end of the segment at 75 kPa and the distal end is submerged in water. Stem segments of 5 cm were cut from the distal end until air bubbles that were seen, and the final length of the segment was then taken as the longest vessel length. Before hydraulic measurements, stem segments that were at least 50% longer than the mean vessel length (0.76 ± 0.27 m) were recut at both ends underwater, stripped of leaves and flushed at 0.2 MPa with filtered (0.22 μm), and vacuum-degassed deionized water for at least 15 min to refill embolized vessels (Melcher et al., 2012). Note that more than 80% of the samples used for stem hydraulics were twice as long as the mean vessel length. At each end of the stem, the xylem was exposed by removing the thin tissue surrounding it and attached to a tubing system suffused with filtered, deionized water. At the proximal end of the stem, 0.005 MPa of pressure was applied, and efflux was measured at the distal end with a 1-ml graduated pipette. Water temperature was measured before and after each measurement to account for changes in the
viscosity of water, and the data were normalized to 20°C. Stem-specific conductivity ($k_{s,stem}$) was calculated as the mass flow rate of the perfusion solution divided by the pressure gradient across the segment, normalized by the xylem cross-sectional area and length (Domec et al., 2012).

Additionally, to determine the upper limit of $k_{s,stem}$, the theoretical specific conductivity ($k_{s,theo}$), which represents the open vessel conductivity (Sperry, Hacke, & Wheeler, 2005), was calculated according to the equation for capillaries (Calkin, Gibson, & Nobel, 1986):

$$k_{s,theo} = \frac{mpD_h^4}{128X_{stem}} \quad (12)$$

where n is the number of vessels, p is density of water (kg m$^{-3}$), μ is dynamic viscosity of water (MPa s), and D_h is the hydraulically weighted vessel diameter (m) calculated as

$$D_h = \left[\frac{\sum d_i^4}{n} \right]^{1/4} \quad (13)$$

where d_i is the diameter of the ith vessel summed over the number of vessels, n. Vessel lumen diameter was determined from hand-made sections of each of the three 90° plants used for $k_{s,stem}$ and vulnerability to embolism curves. One sample per vine was taken from the top section (12–14.5 cm), one from the midsection (6–8 m) and one from the base. In addition, one extra sample was taken from the top and bottom of one of the vines, for a total of 11 samples. Sections were mounted and viewed using a MU300-CK digital camera fixed to an Amscope phase contrast trinocular microscope (AMSCOPE, Irvin, CA, USA) connected to a PC using Metavue software (Universal Imaging Corp., Downington, PA, USA). Images were analysed using the freeware software ImageJ (NIH, USA, http://rsb.info.nih.gov/ij/). Anatomical sections were also used to calculate the fraction of parenchyma tissue over the whole cross section.

Stem vulnerability to embolism curves were constructed using the air-injection method (Sperry & Sallendra, 1994). Reliable measurements of hydraulic vulnerability can be obtained with this method, especially when using a small pressure sleeve (Ennajeh, Nouiri, Khemira, & Cochard, 2012). After the maximum conductivity was reached (maximum of 3 days), petioles were cut from each leaf and flushed with filtered, deionized water to remove embolisms prior to measuring $k_{s,petiole}$ using a high-pressure flow metre (HPFM, Dynamax Inc., Houston, TX, USA) as described in Tsuda and Tyree (1997) and Melcher et al. (2012).

Whole-leaf hydraulic conductance (K_{leaf}) was calculated as (Meinzer, 2002)

$$K_{leaf} = \frac{\nu E}{\nu_o \Psi_{stem} - \Psi_{leaf}} \quad (14)$$

where ν and ν_o are respectively the kinematic viscosities of water at the measured leaf temperature and at 20°C and E is the transpiration rate (mol·m$^{-2}•s^{-1}$) measured in the field with the LI-6400 portable photosynthesis system.

2.5 Water storage

Small pieces (approximately 1.5 cm in length) of stem and petiole representing the range of diameters of the samples used for hydraulic measurements were used to construct xylem moisture release curves for estimating capacitance (Meinzer et al., 2008). One stem and one petiole sample were measured from the top and the bottom of the six extra vertical vines sampled in September 2016 ($n = 12$ for stems and petiole). The samples were vacuum infiltrated overnight in water. The saturated samples were then blotted on a paper towel to remove excess water, weighed, and placed in a Wescor C-30 sample chamber fitted with a PST-55-15 thermocouple psychrometer (Wescor Equipment Inc., Logan, UT, USA). These chambers were then submerged in a cooler of water for 3–6 hr to allow the sample to equilibrate with the chamber air. After the equilibration period, the millivolt readings were recorded using an eight-channel water potential datalogger (PsVchro, Wescor Equipment Inc., Logan, UT) connected to a computer. Following the measurement, the samples were removed from the chambers, weighed, and allowed to dry on the laboratory bench for approximately 15 min before repeating the process (except for the saturation step). Samples were then dried for 48 hr before the dry mass was weighed. The millivolt output of the psychrometer was converted to MPa based on calibration curves from salt solutions of known water potentials. Samples were measured repeatedly until water potential values reached approximately −4 MPa for stems. For the petioles, water potentials lower than −2.5 MPa were not possible to reach probably because not enough water vapour could equilibrate in the chamber once the samples had lost a significant amount of water. Moisture release curves were determined by plotting the cumulative mass of water lost versus the xylem water potential, and the capacitances of the stem (C_{stem}) and petiole ($C_{petiole}$) were estimated by plotting a regression to the initial, nearly linear, phase of the plot until Ψ_{20}, which encompassed the physiological operating range of stem water potential (Meinzer et al., 2008). Usually, $C_{petiole}$ and C_{stem} are represented on a volume basis (kg·m$^{-2}•MPa^{-1}$); therefore, the conversion was done by multiplying the capacitance values by tissue volume. In leaves, capacitive water on a leaf area basis was directly calculated from pressure volume curves as described above.
2.6 Plant structure

For each leaf sample, leaf area was measured after petioles were removed using a leaf area metre (LI-3100, Li-Cor, Lincoln, NE). Leaf area measurements are slight overestimates (<3%) because the petioles (<5 cm²) connecting leaflets to the petiole were not removed. Leaves were then dried at 65°C for 48 hr and weighed.

After performing vulnerability curve assessments for each stem sample, sapwood diameter was measured using a calliper and directly converted to Xstem because of the thin phloem tissue and the absence of pith. The distance between each leaf (Lnode) was measured to estimate the distance for water flow between leaves as well as the number of leaves per stem. Stems were tightly coiled around the training wires, resulting in a three-dimensional shape after sampling. Thus, despite stretching, measured Lnode may be slightly underestimated. Petiole diameter was measured with a digital calliper prior to ks_petiole assessment and converted to Xpetiole. Stem and petiole tissue densities (g cm⁻³) were calculated as the ratio of dried weight over fresh volume. Samples were oven-dried at 65°C for 48 hr, and fresh volume was determined by Archimedes’ principle.

3 RESULTS

3.1 Plant structure

The length of stems along vertical wires was 12.7 ± 1.8 m, exceeding (analysis of variance [ANOVA], P = .005) that of all other treatments (7.5 ± 1.5, 2.4 ± 0.6, 2.7 ± 1.9, and 4.1 ± 1.0 m for the 60°, 30°, and 0° on wire and 0° on ground, respectively). In all plants, the leaf area of individual leaves increased with path length in the 90° angle vines or when all data from the other growing angles were pooled (Figure 2a), as did the cross-sectional area of the petiole (Xpetiole; Figure 2b) and the cross-sectional area of the stem xylem (Xstem; Figure 2c). However, within each of the 60°, 30°, and 0° treatments, stem area and leaf area of individual leaves did not increase with path length (P > .11 for stems and P > .32 for leaves), likely reflecting the reduced stem length of these treatments. Specific leaf area did not change with path length (mean = 247.5 cm² g⁻¹; P = .82). The length between leaves, that is, the internode length Lnode, was conserved along a vine, but between vines grown at different angles, Lnode was greater in vertical (29.7 ± 1.7 cm) than in horizontal stems (25.2 ± 2.1 cm; two-tailed t test, P = .001).

Tissue density varied from 0.21 g cm⁻³ in stem to 0.16 g cm⁻³ in petiole. Assuming a pure cell-wall density of 1.53 g cm⁻³ (Siau, 1984), those values indicated that total cell wall represented 10.7% and 13.6% of the volume in petioles and stems, respectively. On average, parenchyma tissue represented between 61% (petiole) and 38% (stem) of the cross-sectional area. No differences in either tissue density or %parenchyma were detected among the three sampling heights (P > .4 for stem, P = .18 for petiole).

3.2 Separation between path length and height

Vines grown horizontally and at a 30° angle never reached more than 6 meters in length, thus limiting the comparison of vines characteristics as a function of path length versus height between specimens growing at different angles. Nevertheless, within this range, plant structural or functional characteristics were unaffected by the angle.

FIGURE 2 (a) Individual leaf area, (b) petiole xylem area (Xpetiole), and (c) stem cross-sectional xylem area (Xstem) increase with distance from the base of the kudzu stem in the 90° angle vines or when all data from the other growing angles were pooled. The responses of leaf area and Xpetiole is similar in all treatment angles, the response of Xstem is significant in the 60° and 90° treatments, but there is no trend in the 0° and 30° treatments. Filled symbols correspond to supplemental data collected in 2016 on vines growing in natural conditions [Colour figure can be viewed at wileyonlinelibrary.com]
TABLE 2 Results from A_{ref}/C_i analysis (mean ± SE, n = 8) measured at 30°C indicate no statistical difference between the upper leaves and the lower leaves on the vertical Pueraria lobata vines

<table>
<thead>
<tr>
<th>Average leaf height (m)</th>
<th>CO₂ Compensation point (ppm)</th>
<th>V_{cmax} (μmol-CO₂·m⁻²·s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 ± 0.4</td>
<td>69.7 ± 3.6</td>
<td>63.8 ± 9.4</td>
</tr>
<tr>
<td>1.2 ± 0.1</td>
<td>63.7 ± 4.7</td>
<td>75.1 ± 12.1</td>
</tr>
</tbody>
</table>

in which vines were trained to grow. Specifically, when controlling for the lowest common stem length of all treatments (i.e., less than 6 m), we found no angle-induced difference in nontranspiring ($P = .37$) and transpiring ($P = .52$) leaf water potentials, plant organ conductance ($P = .39$ for leaves, $P = .23$ for petioles, and $P = .78$ for stems), and g_s ($P > .19$). Thus, except for demonstrating the effect of height on predawn leaf water potential ($P = .001$) and the effect of both height and distance from soil on g_s, all further analyses were performed on pooled data, evaluating how vines maintain g_s with path length.

3.3 | Gas exchange

We found strong correlations among leaf-level gas exchange parameters (Figure S2). Decreasing g_s was directly related to changes in the ratio of intercellular CO₂ to ambient CO₂ (C_i/C_a) but only over low g_s values (up to ~0.25 mol·m⁻²·s⁻¹), reflecting conditions of moderate-low PAR but high VPD (Figure S2A). Thus, once these low g_s values were exceeded, increases in g_s led to a nearly linear increase in A_{net} (Figure S2B). Estimates of V_{cmax} and the CO₂ compensation point were similar for leaves from the top and base of the 90° plants (t test, $P = .34$; Table 2).

Weather conditions for the periods of gas exchange and water potential measurements ranged from 0.5 to 3.5 kPa for VPD and from 200 to 1,900 μmol·m⁻²·s⁻¹ for PAR (Figure S3A). Stomatal conductance decreased with increasing VPD and decreasing light intensity at a given VPD (Figure S3A; minimum r^2 was .59 for the lowest PAR interval, ranging from 0.70 to 0.71 for higher PAR intervals; maximum $P = .005$). Each of the four PAR intervals was represented by stems of all four treatment angles. The sensitivity of g_s to ln (VPD) increased with $g_{s_{\text{ref}}}$, that is, g_s at VPD = 1 kPa (Figure S3B). However, $g_{s_{\text{ref}}}$ increased significantly with PAR, showing little tendency to saturate at high irradiance (Figure S3C). Thus, although variation in g_s due to changes in soil moisture was eliminated through irrigation, the variation in g_s caused by varying atmospheric demand for water, and light conditions must be considered before attributing the remaining variation in g_s to hydraulics.

To account for variation of g_s caused by VPD and PAR, we normalized all g_s values to their expected $g_{s_{\text{ref}}}$ (here referred to as $g_{s_{\text{ref}}}$) and estimated the average maximum $g_{s_{\text{ref}}}$ by relating these $g_{s_{\text{ref}}}$ values to the actual PAR in which each original g_s value was measured (Figure 3a). Taking the residuals of this fit and adding them to the fitted maximum $g_{s_{\text{ref}}}$ (1.1 mol·m⁻²·s⁻¹ at a PAR of 2,000 μmol·m⁻²·s⁻¹; star in Figure 3a), we obtained $g_{s_{\text{ref}}}$m. This final parameter is controlled by hydraulic architecture only and was related to leaf height and to distance from the soil, showing only a weak relationship with both, with no difference between the linear slopes ($P = .87$) relating $g_{s_{\text{ref}}}$m to either leaf height or distance to stem base (Figure 3b,c).

3.4 | Water potential

Although no pattern emerged in daytime Ψ_{leaf} measurements with regard to either path length or height from the ground, for either the

![Figure 3](image_url)
transpiring ($P = .52$, 0°: $P = .41$), the predawn Ψ decreased significantly with height in the vertical treatment ($P = .001$; Figure 4aA) but not with length in the horizontal treatment ($P = .44$), reflecting the expected effect of hydrostatic pressure. Transpiring Ψ was not significantly correlated to g_s ($P = .40$) or E ($P = .71$), and there was no clear difference in Ψ of either transpiring leaves or nontranspiring leaves (i.e., Ψstem) among the treatment angles ($P = .21$; Figure 4b). Following the approach presented in Figures S3 and 3, we accounted for the variation of Ψ caused by VPD and PAR. There was a decrease ($P < .02$) in Ψ with increasing VPD and increasing light intensity at a given VPD. The resulting Ψ of transpiring leaves at g_s‐ref (Ψ‐ref) decreased with increasing PAR ($P = .03$), but Ψ‐ref of nontranspiring leaves was not significantly affected by irradiance ($P = .16$; Figure 4c). We accounted for those variations by first calculating the residual of the decline in Ψ and Ψstem with VPD for a given PAR range and added the value to the Ψ and Ψstem obtained from the same fit (Figure 4c), thus normalizing all Ψ and Ψstem values to their expected values at a VPD of 1 kPa. In the model, we used a constant Ψ‐ref (~0.97 MPa; transpiring leaf at maximum light; Figure 4c) and only accounted for the negative effect of the hydrostatic pressure on the water potential difference driving flow from soil to leaf.

Pressure–volume curves revealed that the turgor loss point of the vertically grown vines was more negative in leaves near the top of the

FIGURE 4 (a) No pattern in Kudzu leaf water potential (Ψ_{leaf}) emerged with increasing path length or height from the ground, while predawn Ψ_{leaf} decreased significantly with height. The predicted slope for the predawn data falls within the 95% confidence interval of linear regression (slope = 0.009 MPa m$^{-1}$). No significant height effect was detected on the water potential of non‐transpiring covered leaves (corresponding to stem water potential, Ψstem) and transpiring leaves during morning hours. (b) Leaf water potential of neither transpiring nor nontranspiring leaves differed among the stem angle treatments. (c) Leaf water potential of transpiring leaves at g_s‐ref (Ψ‐ref) decreased with increasing photosynthetically active radiation (PAR) but that of nontranspiring covered leaves was not significantly affected. Error bars are SE

TABLE 3 Leaf pressure–volume curve analysis (mean ± SE) showing the water potential at the turgor loss point (Ψ_{TLP}), the osmotic potential at full turgor (Ψ_{FT}), the cell wall modulus of elasticity (ε_{max}), and the leaf capacitance (C_{leaf})

<table>
<thead>
<tr>
<th>Leaf location</th>
<th>n</th>
<th>Ψ_{TLP} (MPa)</th>
<th>Ψ_{FT} (MPa)</th>
<th>ε_{max} (MPa)</th>
<th>C_{leaf} (g·m$^{-2}$·MPa$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top (14 m)</td>
<td>6</td>
<td>-1.28 ± 0.07^a</td>
<td>-1.05 ± 0.10</td>
<td>30.1 ± 7.7</td>
<td>22.9 ± 2.4</td>
</tr>
<tr>
<td>Base (1.4 m)</td>
<td>6</td>
<td>-1.21 ± 0.09^a</td>
<td>-1.01 ± 0.11</td>
<td>23.3 ± 3.1</td>
<td>27.7 ± 5.1</td>
</tr>
<tr>
<td>Ground (0.3 m)</td>
<td>8</td>
<td>-1.03 ± 0.06^b</td>
<td>-0.86 ± 0.05</td>
<td>18.7 ± 2.4</td>
<td>19.8 ± 2.3</td>
</tr>
</tbody>
</table>

Note. No significant differences exist between the top, base, or ground vines for any parameters ($P > .1$) except for Ψ_{TLP}. Different superscripted letters indicate significant differences between leaf locations ($P < .05$).
tower than in lower leaves (ANOVA, P = .047; Table 3). The osmotic potential at full turgor, the cell wall modulus of elasticity, and C\textsubscript{leaf} were similar regardless of height (P > .05). There was no difference in any of the parameters derived from the pressure-volume curves between the base and the tip of the horizontally grown vines (P = .19) and between the base of the vertically and the horizontally grown vines (P = .35).

3.5 | Hydraulic parameters

Neither K\textsubscript{leaf}, averaging 24 mmol·m-2·s-1 (Figure 5a), nor k\textsubscript{s_stem}, averaging nearly 2000 mol·m-1·s-1 (Figure 5c), varied significantly with stem height or path length. In contrast, k\textsubscript{s_petiole} increased with increasing distance from the stem base (Figure 5b), yet there was no difference in the response between vines growing at 90° or at 0° angles (P = .39). The theoretical k\textsubscript{s} values calculated based on vessel anatomy were on average 3.8 times larger than the measured k\textsubscript{s} values (paired t test, P < .001) but did not change with height (P = .4).

Stems sampled from the top and base of each vine showed a similar pattern of reduction in conductivity as applied pressure increased. The applied pressure at which 50% of conductivity is lost (P\textsubscript{50}) was not different between the tops and bases of vines on wires or on the ground (ANOVA, P = .92). The average P\textsubscript{50} for all stems was 2.1 ± 0.1 MPa (Figure 6a). The daily loss in stem hydraulic conductivity reflecting the variations in stem pressures between predawn and midday was similar (mean = 7.5%) in the base and tops of vines on wires and on the ground at 0° (ANOVA, P = .13). Stem hydraulic capacitance was 1.7 times greater than petiole capacitance (Figure 6b; z test for slope coefficient, P = .03).

Although significant, decreases of g\textsubscript{s-ref}'m with both height and distance to stem base (from Figure 3b,c) were smaller compared with the theoretical decrease predicted by the DHF (when forced with a VPD of 1 kPa and hydraulic parameters regressed from Figures 5 and 6), indicating an appreciable role of water storage (Figure 7a). The best fit of the model was with the assumption that the entire capacitance of kudzu tissues was linearly depleted over a 3-hr period. Doubling this time weakened the predictions in g\textsubscript{s-ref}'m from the middle to the top of the vine. There was an increase in the capacitive effect of stored water with distance from the base of the vine, with capacitances representing 8% and 12% of the transpirational water flux at the base and at the top of the vine, respectively. The SHF model predicted reductions of g\textsubscript{s} by >95% over the 15-m-long stems, whereas the DHF model nearly matched the slight decrease in g\textsubscript{s} (Figure 7a).

To maintain g\textsubscript{s-ref}'m almost constant with height (calculated using a hypothetical plant with DHF and 3-hr depletion from stored water shown in Figure 7a) and yet support the higher leaf area measured here, water flow was predicted to double from the base to the top of the 90° vine, even when water storage was not taken into account (Figure 7b). Total plant resistance (the inverse of conductance) decreased more than two-fold with path length (Figure 7c), and this trend was mostly driven by the decrease in lateral resistances (petiole and leaf). Those lateral resistances were three orders of magnitude larger than the axial resistance (stem resistance). Mirroring this increase in water delivery combined with the increase in individual leaf size with height, modelled carbon assimilation per leaf (using the relationship from Figure S2) was also estimated to more than double from the base to the top of the vine.

A series of analyses to test the sensitivity of g\textsubscript{s-ref}'m and water flow predictions to variation in the key parameters was performed (Table 4).
and Figures S4). These included specific conductivities, area, and length of each plant organ. Each of these parameters was varied individually, with the actual magnitude of variation applied in each case reflecting the observed variability in the parameter. The sensitivities of g_{s-ref}' and water flows were similar in form, though not always in magnitude (Figures 8 and S4). Water flows and g_{s-ref}' were most sensitive to changes in leaf size. Doubling leaf area at each node increased water flow only by a factor of 1.15 and halved g_{s-ref}', whereas dividing leaf area by 2 reduced water flow by a factor of 0.80, increasing g_{s-ref}' by a factor of 2. Lowering K_{leaf} by 50%, in turn, reduced both g_{s-ref}' and water flow by more than 20%. The effect of modifying xylem conductivities was mixed, with large changes in g_{s-ref}' at the base of the vine for $k_{x-petiole}$, and more at the top for k_{x-stem}. As opposed to the base of the vine, g_{s-ref}' at the top was not sensitive to changes in $k_{x-petiole}$, petiole area or length.

Setting constant input parameters at each node, thus mimicking constant hydraulic and morphological attributes from base to top, had some strong positive and negative effects on modelled water flow and g_{s-ref}' values (Table 4 and Figure 9). Setting individual leaf area in the DHF model as equal to that at the base of the vine increased g_{s-ref}'.
The model with the values measured at the base would have doubled parameters for the increase in leaf area with height and therefore level would have been reduced by almost 50%.

Vines grown at steeper angles did not have hydraulic traits that help difference in water potential between leaves and soil, suggesting that growing vertically did not show greater lateral relative to axial resistance among the vines growing in different orientations. Vines contrary to our first hypothesis (Figure 1), we found no physiological differences among the vines growing in different orientation. Vines were taken as references) at each node on the computed reference stomatal conductance ($g_{s,ref}$) and water flow at the top of the canopy (Table 4).

TABLE 4 Effect of using constant input parameters (values at the base of the vine used in the distributed hydraulic formulation [DHF] model were taken as references) at each node on the computed reference stomatal conductance ($g_{s,ref}$) and water flow at the top of the canopy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input values</th>
<th>$g_{s,ref}$ at top</th>
<th>Flow at top</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original (top DHF)</td>
<td>New (base DHF)</td>
<td>% change</td>
</tr>
<tr>
<td>Leaf water potential (MPa)</td>
<td>-0.83</td>
<td>-0.97</td>
<td>17</td>
</tr>
<tr>
<td>Leaf area (cm2)</td>
<td>385</td>
<td>153</td>
<td>-60</td>
</tr>
<tr>
<td>Petiole area (mm2)</td>
<td>5.4</td>
<td>2.6</td>
<td>-53</td>
</tr>
<tr>
<td>Stem sapwood area (mm2)</td>
<td>40.3</td>
<td>12.5</td>
<td>-69</td>
</tr>
<tr>
<td>K_{leaf} (mmol-m$^{-2}$-s$^{-1}$-MPa$^{-1}$)</td>
<td>23</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>$k_{s,petiole}$ (kg-m$^{-1}$-s$^{-1}$-MPa$^{-1}$)</td>
<td>0.72</td>
<td>1.89</td>
<td>-74</td>
</tr>
<tr>
<td>$k_{s,stem}$ (kg-m$^{-1}$-s$^{-1}$-MPa$^{-1}$)</td>
<td>31.2</td>
<td>31.2</td>
<td>0</td>
</tr>
<tr>
<td>Capacitance (g-m$^{-2}$-MPa$^{-1}$)</td>
<td>157</td>
<td>130</td>
<td>-17</td>
</tr>
<tr>
<td>g_s (mol-m$^{-2}$-s$^{-1}$)</td>
<td>2.2</td>
<td>2.8</td>
<td>27</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>-28</td>
<td>3</td>
</tr>
</tbody>
</table>

Note. The input new values were changed one at the time, except for the "All parameters" row. The capacitance parameter represents the sum of leaf, petiole, and stem capacitances (C_{leaf}, $C_{petiole}$, and C_{stem}) and is given on a leaf area basis. The mean percentage deviation from the standard runs at the top are also shown. For reference, $g_{s,ref}$ at the top of the vine in the original DHF model was 0.92 mol-m$^{-2}$-s$^{-1}$.

by more than 100% but had a negative effect on leaf water flow and carbon assimilation (data not shown in Table 4 but results for photosynthesis paralleled those for water flow; Figure 7b). On the other hand, both stem area and $k_{s,petiole}$ were the strongest compensatory parameters for the increase in leaf area with height and therefore had the largest influence on $g_{s,ref}$ and water flow at the leaf but also at the whole-plant level (Figure 9). Forcing all parameters in the model with the values measured at the base would have doubled $g_{s,ref}$ at the top of the vine (1.91 vs. 0.92 mol-m$^{-2}$-s$^{-1}$); however, water flow and carbon assimilation per leaf and at the whole plant level would have been reduced by almost 50%.

4 | DISCUSSION

Contrary to our first hypothesis (Figure 1), we found no physiological differences among the vines growing in different orientation. Vines growing vertically did not show greater lateral relative to axial resistance than vines growing horizontally and did not show a greater difference in water potential between leaves and soil, suggesting that vines grown at steeper angles did not have hydraulic traits that help compensate for height-driven declines in g_s, compared with horizontally grown stems. This could simply reflect an inadequate challenge of the hypotheses, because horizontally grown vines produced shorter stems (mostly <7 m). Alternatively, it may reflect the strict control kudzu imposes on water potential (Figure 4), not allowing tissues to develop very negative water potentials. This allowed us to combine the data regardless of stem orientation and evaluate how vines maintain high stomatal conductance with path length, representing vines climbing vertically on trees, stretching horizontally as mats over vegetation, and transitions among these end-member orientations (Figure 9).

Despite observations of steep declines in gas exchange rates with height in trees (Delzon, Sartore, Burlett, Dewar, & Loustau, 2004; Fang et al., 2013; Magnani et al., 2000; McDowell et al., 2002; Renninger, Phillips, & Hodel, 2009; Schäfer et al., 2000), studies in woody vines (Chen et al., 2015; Masrahi, 2014; Taneda & Tateno, 2011; Zhu & Cao, 2009) show that g_s remains high along the stem. Our results agree with these latter observations. Once the effects of temporal variation in irradiance and atmospheric VPD during measurements were removed (Figure S3), we found only a slight (12%) reduction in the maximum reference stomatal conductance ($g_{s,ref}$) between the most basal and most distal leaves from the soil (Figure 3b). We found a similar decrease in $g_{s,ref}$ with path length, regardless of height from the soil, indicating that physiological and structural changes with path length compensated for predicted height-related declines in maximum g_s. The path length-related reduction in $g_{s,ref}$ is averted by three primary compensating mechanisms related to changes in stem and petiole sapwood areas, petiole hydraulic conductivity ($k_{s,petiole}$), and water supply from storage (Table 4).

Our measured g_s values under common field conditions (mean $g_s = 0.45$ mol-m$^{-2}$-s$^{-1}$; Figure 3) were similar to previous field observations of kudzu (Forseth & Teramura, 1987; Taneda & Tateno, 2011) and Vitis (Williams, Baeza, & Vaughn, 2012), but higher than others reported for other vine species (Johnson et al., 2013; Lovisolo & Schubert, 1998; van der Sande, Poorter, Schnitzer, & Markesteijn, 2013). Maintaining high g_s and transpiration rates along the stem is an effective way of cooling large leaves (Forseth & Teramura, 1987), supporting higher rates of net photosynthesis. Partial loss of leaf turgor was visible throughout the experiment by midday, suggesting that water delivery could not keep up with such high transpiration rates. Partial, diurnally reversible leaf wilting in kudzu may facilitate avoidance of high leaf temperatures because wilted leaves intercept less radiative energy.
Our $g_{s-ref}'m$ estimates represent g_s limited by plant hydraulics only and are thus the focus of the remaining discussion. We hypothesized that structural alterations would fully compensate for the limitation imposed on $g_{s-ref}'m$ of kudzu as stem length increased (Figure 1) and that these alterations would be more pronounced in stems grown at steeper angles (and thus reaching greater heights from the soil). However, there was still a slight reduction in $g_{s-ref}'m$ in vertical stems, driven in part by the declining water potential gradient (Figure 4c).

4.1 Hydraulic compensation

Our $g_{s-ref}'m$ estimates represent g_s limited by plant hydraulics only and are thus the focus of the remaining discussion. We hypothesized that structural alterations would fully compensate for the limitation imposed on $g_{s-ref}'m$ of kudzu as stem length increased (Figure 1) and that these alterations would be more pronounced in stems grown at steeper angles (and thus reaching greater heights from the soil). However, there was still a slight reduction in $g_{s-ref}'m$ in vertical stems, driven in part by the declining water potential gradient (Figure 4c).
as observed in trees (Domec et al., 2008; Ryan et al., 2006) and other vines (Lovisolo & Schubert, 1998), and by the increase of individual leaf area with height (Figure 2a). In this experiment, daytime reference leaf water potential ($\Psi_{\text{leaf-ref}}$), representing Ψ_{leaf} at high light and a reference VPD = 1 kPa (Figure 4c), was roughly two-thirds of the minimum Ψ_{leaf} reported in kudzu (Ponder & Al-Hamdani, 2011; Taneda & Tateno, 2011) and in other vines (Johnson et al., 2013; Schultz & Matthews, 1988; Tombesi et al., 2014; Williams et al., 2012), likely because the plants were well-watered and because actual Ψ_{leaf} can be lower at VPD > 1 kPa. Although the gravitational effect on the vertically lengthening (but not horizontally oriented) water column was seen in the predawn pattern of Ψ_{leaf} (~0.01 MPa m⁻²; Figure 4a), it was not apparent in daytime values of Ψ_{leaf}. There was an effect of stem growth angle on Ψ_{leaf} (Figure 4b), but regardless of stem length or angle, transpiring leaves exposed to higher radiation had lower $\Psi_{\text{leaf-ref}}$ (Figure 4c), suggesting that in kudzu, $\Psi_{\text{leaf-ref}}$ is not controlled by leaf distance from the soil. Thus, for transpiring leaves, the gradient of water potential declined along the vine stem, not compensating for the increasing path length. Previous observations suggest that the largest kudzu leaves are located near the middle of the stem (Sasek & Strain, 1989), but we found that the size of individual leaves increased linearly from the base to the most distal nodes (Figure 2a). Nevertheless, despite a decreasing driving force for water flow and increasing individual leaf size, or node leaf area, up the vine, $g_{s,\text{ref}}$m decreased only slightly with leaf height.

Even though no direct compensation was observed, that is, no reduction in Ψ_{leaf} as height increased, kudzu could have potentially compensated in this way given that water potential at turgor loss point, Ψ_{TLP}, of the highest leaves was 24% more negative than Ψ_{TLP} of leaves near the ground (Table 3). Indeed, the average Ψ_{leaf} of transpiring leaves was only ~32% of the average Ψ_{TLP} (~1.2 MPa) observed in this study and 20% of Ψ_{TLP} of other vines (Johnson et al., 2013; Zhu & Cao, 2009), suggesting that Ψ_{leaf} could decline further without risking leaf function.

Taneda and Tateno (2011) report a lamina resistance three times greater than ours (2.0 MPa·s⁻¹·mmol⁻¹), stem resistance 3.6 times greater than ours (0.0025 MPa·s⁻¹·mmol⁻¹), and petiole resistances 2.1 times lower than ours (2.2 MPa·s⁻¹·mmol⁻¹) for kudzu. Moreover, the theoretical k_s values we calculated from stem vessel lumen diameters indicated that maximum $k_{s,\text{stem}}$ could not be more than four times larger than the ones we measured. In addition, because those theoretical k_s values were more than twice greater than $k_{s,\text{stem}}$, it also indicated that in kudzu, conductivity is more wall limited than lumen limited (Hacke, Sperry, Wheeler, & Castro, 2006).

We combined regressions of hydraulic conductivity to predict hydraulic resistance in each tissue at each node. Although Schubert et al. (1999) report that conductance is more than double in stems grown vertically compared with stems angled downwards, we did not observe any treatment angle (or position) effect on stem hydraulic conductivity ($k_{s,\text{petiole}}$) (Figure 5c). However, in our study, $k_{s,\text{petiole}}$ increased with distance from the base (Figure 5b), in contrast to the lack of a pattern observed between $k_{s,\text{petiole}}$ and position in previous studies of vines (Taneda & Tateno, 2011; Tombesi et al., 2014; Zufferey, Cochard, Ameglio, Spring, & Viret, 2011). Our measured conductivity values also explained why changing $k_{s,\text{stem}}$ was predicted to have a stronger effect on $g_{s,\text{ref}}$m at the top than at the base of the vine, whereas the opposite was true for $k_{s,\text{petiole}}$ (Figure 8). Lateral resistances dominated the overall plant water transport capacity in vines grown at all angles (Figure 7c), with the proportion of tissue-specific resistance to total plant resistance being 36% for leaves, 39% for petioles, and 3% for the stem, suggesting the remaining 22% of hydraulic resistance was located below ground. These greater lateral resistances to flow through the petiole and leaf likely allowed the upper leaves to be supplied with water equally as well as the lower leaves.

We hypothesized that structural changes with height would hydraulically compensate for path length limitations on g_s (Figure 1), hence providing distal leaves with sufficient water to support a nearly uniform transpiration rate (per unit leaf area) along the stem. Combining the hydraulic information summarized above into the SHF failed to explain the nearly complete hydraulic compensation observed in vertically-grown vines, as this model predicted reductions of $g_{s,\text{ref}}$m of >95% over the 15-m-long stems (Figure 7a). However, the DHF model supported the hypothesis that structural and functional changes along the stem would produce only a slight decline in $g_{s,\text{ref}}$m. Even though kudzu capacitance represented only 8% and 12% of the water flux at the base and at the top of the stem, respectively, these contributions of plant water storage must be considered for the model to agree with the observations (Figure 7a).

The relative contribution of stored water (mainly in stems) to total daily transpirational losses varies widely among species and ecosystems, ranging from 10% to 40% (see review by Scholz et al., 2011). We assumed that the release of water storage to the transpirational stream was completed in either 3 or 6 hr. A 3-hr water discharge is consistent with the peak period of water use (between 08:00 and 11:00) from internal reservoirs in several fast-growing species (Bucci, Scholz, Goldstein, Meinzer, & Sternberg, 2003; Johnson et al., 2013) and in kudzu with the partial reversible leaf wilting that facilitates avoidance of high leaf temperatures (Lindgren, Castro, Coiner, Nurse, & Darbyshire, 2013). Water storage in plants can occur by three mechanisms: capillary storage, water release via embolism of xylem conduits, and shrinkage of parenchyma cells (Tyree & Yang, 1990). Capillary storage represents water that is available at high xylem water potential (~0 to ~0.25 MPa) and is inversely proportional to vessel size. Thus, release of capillary stored water may not represent a significant amount of water in large vessel-bearing vines or in tall individuals where xylem water potential is never close to zero. Furthermore, water release via embolism of vessels was probably small, as the percent loss of conductivity never exceeded 8% (Figure 6a), and in stems was likely represented by the points after the Ψ_{TLP} (Figure 6b). Thus, the capacitive discharge was apparently derived from parenchyma tissues that we found to represent a large portion of tissue volumes (>40%). Water released from elastic storage components may predominate in lianas and stem-succulent species, because xylem parenchyma occupies the majority of the total sapwood volume (Scholz et al., 2011).
4.2 | Possible explanations for uniform water delivery

Although plants have previously been shown to compensate for hydraulic limitations by increasing sapwood to leaf area ratio (Domec et al., 2012; Schäfer et al., 2000), increasing individual leaf area with distance to stem base (Figure 2a) led to a decreasing sapwood to leaf area ratio, suggesting that this is not a mechanism kudzu uses to compensate for hydraulic limitation (Figure 9). For this vine to attain the maximum transpiration rate along the entire stem while maintaining a constant leaf water potential set to the average value ($\Psi_{\text{leaf}} = -0.97$ MPa), it had to reduce its total resistance to the most distant leaves (Figure 7b). However, reducing the resistance in the stem will not have the same impact as reducing the resistance through the leaves or petioles (Figure S4).

The relative water delivery rate at the base versus the tip of a stem is determined by the ratio of the axial to lateral resistance, meaning that a large lateral resistance relative to the axial resistance is required to equalize flow to leaves distributed along long stems (Taneda & Tateno, 2011). This implies that increasing lateral resistance or decreasing stem resistance was necessary to recover the observed uniform flow rate. Kudzu internode resistance was 500–1,000 times smaller than petiole resistance (Figure 7c), which indeed optimized water delivery along the main stem while at the same time inducing high Ψ_{stem} and, thus, preventing xylem embolism. This adjustment was accomplished through increasing stem areas with height rather than increasing $k_{\text{s_stem}}$. Yet, because $k_{\text{s_stem}}$ was more limited by the resistance in the cell wall membrane than in the lumen, an increase in $k_{\text{s_stem}}$ with height would have also decreased the resistance to embolism (Hacke et al., 2006). Thus, producing more conductive tissues rather than increasing the tissue permeability did not compromise resistance to embolism. However, increasing stem biomass per unit length, associated with increasing cross-sectional area, requires greater carbon assimilation at heights, thus constraining further increases in leaf area.

Finally, without any changes in resistances with height, more negative Ψ_{leaf} could not have compensated for the increase of leaf area at higher positions. To reach maximum flow using constant resistances throughout the stems, leaves at 15-m height would have to drop their Ψ_{leaf} to < -1.9 MPa, nearly 0.7 MPa below Ψ_{TLP} at any position (Table 3). Alternatively, kudzu could use positive root pressure to increase $\Delta \Psi$, but observations of root pressure in vines are well below 0.7 MPa (Clearwater, Blattmann, Luo, & Lowe, 2007), far from the 1.9 MPa required.

5 | CONCLUSIONS

Fast-growing vines such as kudzu must supply all leaves with sufficient water to maintain high photosynthetic rates and fast growth rates far from the roots. We found no physiological difference in vine stems growing at different orientations but were able to identify the main structural (increasing petiole and stem sapwood area) and functional (decreasing petiole hydraulic resistance) mechanisms supporting a nearly uniform supply of water per unit leaf area along the stem. In addition, large lateral relative to axial hydraulic resistance helped even water flow distribution with height. However, the decreases of stomatal conductance with distance to the stem base were smaller compared with the theoretical values predicted by the DHF model, indicating an appreciable role of water storage in supplying water for transpiration to leaves near the top of the vine. Combining the only slightly decreasing stomatal conductance along the stem with increasing leaf size and path-length-invariable maximum carboxylation rate provides for increasing leaf-scale photosynthesis with distance from the vine base and a local source of carbohydrates to support the high growth rates observed at the top of kudzu stems.

ACKNOWLEDGEMENTS

Ram Oren would like to acknowledge support from the Erkko Visiting Professor Programme of the Jane and Aatos Erkko 375th Anniversary Fund.

ORCID

Jean-Christophe Domec https://orcid.org/0000-0003-0478-2559
Danielle A. Way https://orcid.org/0000-0003-4801-5319
Sari Palmroth https://orcid.org/0000-0002-1290-4280
Ram Oren https://orcid.org/0000-0002-5654-1733

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1. perennial climbing Kudzu (Pueraria lobata) growing on trees and completely covering existing vegetation (Durham County, NC, USA). The right image shows the erected 15-m tall tower and the wires attached at four different angles from the horizontal (0°, 30°, 60°, and 90°) (Photo credit Stella Z. Domec).

Figure S2. A. Ratio of intercellular CO₂ to ambient CO₂ (C/CA), and B. net rate of carbon assimilation (A₀) increase as stomatal conductance (gₛ) increases in kudzu growing at different angles and under a wide range of photosynthetically active radiation (PAR).

Figure S3. Although variation in stomatal conductance (gₛ) due to changes in soil moisture was eliminated through irrigation, the variation in gₛ caused by varying atmospheric demand for water and light conditions must be considered before attributing the remaining variation in gₛ to hydraulics. A. Observed kudzu gₛ decreases as vapor pressure deficit (VPD) increases. At low VPD, leaves exposed to high levels of photosynthetically active radiation (PAR) show higher gₛ than leaves exposed to low PAR. Regressions are log-linear best fits for each light class. B. Sensitivity of gₛ to changes in VPD increases with increasing reference gₛ (gₛ-ref at VPD = 1 kPa). Dashed line shows theoretical sensitivity to VPD, with a slope of 0.59 (Oren et al., 1999). C. Average gₛ-ref increases with PAR showing little tendency to saturate at high irradiance.

Figure S4. Analysis of the sensitivity of water flow at the base and the top of the kudzu vine to changes in the values of three key parameters. Axes show the percentage change in the parameters and predicted flows. For baseline water flow values and input parameters see Figure 7B and Table 4, respectively.

Mechanisms for minimizing height-related stomatal conductance declines in tall vines

Running Title: Full structural & hydraulic compensation in kudzu

Jean-Christophe Domec1,2,8, Henry Berghoff2,9, Danielle Way2,3,10, Menachem Moshelion4,11, Sari Palmroth2,12, Katre Kets5,13, Cheng-Wei Huang6,14, Ram Oren2,7,14

1 Bordeaux Sciences Agro, INRA UMR 1391 ISPA, F-33170 Gradignan, France
2 Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
3 Department of Biology, Western University, London, ON, Canada
4 The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
5 Institute of Botany and Ecology, University of Tartu, Lai 40, 51005 Tartu, Estonia
6 Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
7 Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland

Supplementary information

Figure S1: perennial climbing Kudzu (*Pueraria lobata*) growing on trees and completely covering existing vegetation (Durham County, NC, USA). The right image shows the erected 15-m tall tower and the wires attached at four different angles from the horizontal (0°, 30°, 60°, and 90°) (Photo credit Stella Z. Domec).
Figure S2: A. Ratio of intercellular CO₂ to ambient CO₂ (C_i/C_a), and B. net rate of carbon assimilation (A_{net}) increase as stomatal conductance (g_s) increases in kudzu growing at different angles and under a wide range of photosynthetically active radiation (PAR).
Figure S3: Although variation in stomatal conductance (g_s) due to changes in soil moisture was eliminated through irrigation, the variation in g_s caused by varying atmospheric demand for water and light conditions must be considered before attributing the remaining variation in g_s to hydraulics. **A.** Observed kudzu g_s decreases as vapor pressure deficit (VPD) increases. At low VPD, leaves exposed to high levels of photosynthetically active radiation (PAR) show higher g_s than leaves exposed to low PAR. Regressions are log-linear best fits for each light class. **B.** Sensitivity of g_s to changes in VPD increases with increasing reference g_s (g_{s-ref} at VPD = 1 kPa). Dashed line shows theoretical sensitivity to VPD, with a slope of 0.59 (Oren et al., 1999). **C.** Average g_{s-ref} increases with PAR showing little tendency to saturate at high irradiance.
Figure S4. Analysis of the sensitivity of water flow at the base and the top of the kudzu vine to changes in the values of three key parameters. Axes show the percentage change in the parameters and predicted flows. For baseline water flow values and input parameters see Figure 7B and Table 4, respectively.