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Abstract

Time distributed optimization is an implementation strategy that can significantly reduce the computational burden of
model predictive control by exploiting its robustness to incomplete optimization. When using this strategy, optimization
iterations are distributed over time by maintaining a running solution estimate for the optimal control problem and updating
it at each sampling instant. The resulting controller can be viewed as a dynamic compensator which is placed in closed-
loop with the plant. This paper presents a general systems theoretic analysis framework for time distributed optimization.
The coupled plant-optimizer system is analyzed using input-to-state stability concepts and sufficient conditions for stability
and constraint satisfaction are derived. When applied to time distributed sequential quadratic programming, the framework
significantly extends the existing theoretical analysis for the real-time iteration scheme. Numerical simulations are presented
that demonstrate the effectiveness of the scheme.
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1 Introduction

Model Predictive Control (MPC) [22] is a widely used
control technique that computes the control actions by
solving an Optimal Control Problem (OCP) over a fi-
nite receding horizon. MPC can systematically handle
constraints and nonlinearities but is challenging to im-
plement since it requires the solution of a constrained
and potentially non-convex OCP at each sampling in-
stant. The development of robust and efficient quadratic
and convex programming solvers, see e.g., [11,34,42,43],
has enabled the application of linear-quadratic MPC to
a wide variety of systems. However, the implementation
of MPC for systems with limited onboard computing
power, fast sampling rates, and/or pronounced nonlin-
ear dynamics remains an open problem.

* This research is supported by the Toyota Research Insti-
tuite (TRI) and by the National Science Foundation through
awards CMMI 1904441 and CMMI 1562209. TRI provided
funds to assist the authors with their research but this arti-
cle solely reflects the opinions and conclusions of its authors
and not TRI or any other Toyota entity.
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Liao-McPherson), marco.nicotra@colorado.edu (Marco
M. Nicotra), ilya@umich.edu (Ilya Kolmanovsky).

One approach for reducing the computational cost of
MPC is time distributed optimization (TDQO). TDO dis-
tributes optimizer iterations over time by exploiting the
robustness of MPC to suboptimality [2,35,41]. Rather
than accurately solving the OCP at each sampling in-
stant, TDO maintains a guess of the optimal solution
and improves it at each timestep by performing a finite
number of iterations of an optimization algorithm. TDO
can be interpreted as a dynamic compensator that main-
tains a solution estimate as an internal state, the dynam-
ics of which are defined by the optimizer iterations. As
illustrated in Figure 1, this interpretation differs from
“ideal”, or “optimal” MPC which is an implicitly defined
static feedback law.

There are a variety of TDO variants proposed in the
literature. The stability of input constrained TDO
controllers using linearly convergent optimization algo-
rithms are studied in [18]. Unconstrained suboptimal
NMPC without terminal conditions is considered in [21].
A fixed point scheme for input constrained MPC of
sampled data input affine systems is proposed in [17], a
gradient based dynamic programming approach is con-
sidered in [49], a proximal gradient method for linear
input-constrained MPC is studied in [51], and a con-
tinuous time gradient flow based approach is described

7 November 2019



Xper1 = f (ks W) Tierr = f (g, W)

2z = Tp(Z—1, X))
U = E Z

ug = k(X))

xR
<
xR

Optimal MPC Suboptimal MPC

Fig. 1. A comparison of suboptimal MPC with TDO and
optimal MPC. The k operator represents the optimal MPC
feedback law, the 7; operator represents ¢ iterations of
an optimization algorithm, and Z is a selection matrix
that extracts the control action. One can roughly identify
k() = EToo (20, ) for any zo for which 7 converges.

in [38]. These methods use some combination of shifting
terminal control updates and first order optimization
methods. In [2,41], a generic suboptimal MPC scheme
is considered and sufficient conditions on the warm-
start for robust stability are derived; the optimization
algorithm is not specified and its convergence is not
considered. The robustness of MPC to disturbances
arising from incomplete optimizations were considered
in [20,55] and conditions for complexity certification of
suboptimal state constrained linear MPC are presented
in [46]. However, the treatment of the optimizer itself
as a dynamic system was not pursued.

An alternative to gradient based approaches are second
order methods. In particular, Time Distributed Sequen-
tial Quadratic Programming (TD-SQP) methods are at-
tractive since they can be implemented using existing
Quadratic Programming (QP) solvers. The fundamen-
tal idea behind a TD-SQP based model predictive con-
troller is to apply a finite number of SQP iterations at
each sampling instant and to warmstart the iterations
with the solution estimate from the previous sampling
instant. A widely used variant of TD-SQP is the Real-
Time Iteration (RTI) scheme [6] which uses a Gauss-
Newton Hessian approximation and performs a single
SQP iteration per sampling instant. The RTI scheme
has been successfully applied to a variety of applications
including engines [1,56], kites [25], cranes [52], ground
vehicles [15], race cars [36], distillation columns [9] and
wind turbines [19]. Software for implementing the RTI
scheme is provided by the ACADO toolkit [24]. Despite
its widespread success, formal stability guarantess for
the RTT scheme have only been provided in the absence
of inequality constraints [8].

It should be noted that TDO is distinct from so-called
suboptimal solution tracking, sensitivity, or running
methods, e.g., [10, 16,27, 32, 54, 55| which are tailored
numerical methods for tracking the solutions of pa-
rameterized nonlinear programs/generalized equations.
These methods are typically used to accelerate or re-
place existing nonlinear programming solvers to reduce
computation times rather than considering the dynamic

interactions between the plant and the optimizer. Some
of them, e.g., [55], consider robust stability by treating
suboptimality as a bounded disturbance. This differs
from our approach where we treat suboptimality as the
output of a dynamic system which is coupled with the
closed-loop plant.

This paper begins by presenting a system theoretic
framework for analyzing a broad class of TDO al-
gorithms. Specifically, the framework applies to any
MPC feedback law that is Locally Input-to-State Sta-
ble (LISS) combined with any optimization algorithm
featuring a convergence rate that is at least locally g-
linear. Any MPC formulation with proven LISS proper-
ties can be used, including nominal MPC with terminal
constraints [35], robust MPC ! [35], and MPC formu-
lations with no terminal constraints [22, Chapter 6]. in
this paper, we establish the existence of a joint region
of attraction for the state and solution estimate, i.e.,
we show that if the initial state is sufficiently close to
the origin and if the initial solution estimate is suffi-
ciently accurate, the state will converge to the origin
and the estimate will converge to the optimal solution.
Moreover, we analyze the effect of performing more iter-
ations, establish robustness properties, and show that,
if the initial solution guess is within the convergence
basin of the optimization method, TDO can recover the
robust region of attraction of optimal MPC with a finite
number of iterations.

The proposed theoretical framework is then specialized
to the RTT scheme. Our analysis extends that in [8] as
follows: (i) We explicitly consider inequality constraints
and relax the terminal state constraint to a terminal
set constraint; (ii) We explicitly consider the robustness
properties of the RTI scheme by establishing LISS of
the closed-loop system; (iii) We analyze the effect of the
number of SQP iterations performed at each sampling
instant and establish sufficient conditions for robust con-
straint satisfaction. We also provide a proof which ex-
tends the classical preconditioned fixed-point type anal-
ysis of Newton’s method, see [31, Section 5.4.2], to the
setting of generalized equations and establish conditions
under which discrete time optimal control problems with
polyhedral constraints are strongly regular. The latter
property is important since it is a sufficient condition for
Lipschitz continuity of the optimal value function and
thus for robust stability.

This paper builds upon the results in [33] which ana-
lyzes the stability of MPC implemented using a subop-
timal semismooth predictor-corrector (SSPC) method.
Specifically, we generalize the previous results for sub-
optimal SSPC to a wide class of optimizers which are

1 A nominal MPC controller does not explicitly consider
the presence of disturbances in the OCP formulation, unlike
a robust MPC controller.



at least g-linearly convergent. Moreover, we consider ex-
ternal disturbances in our analysis and analyze several
different variants of the RTI scheme.

The layout of the paper is as follows. We review perti-
nent notation and concepts in Section 2 then describe the
problem setting and the class of optimization algorithms
we consider in Sections 3 and 4. We establish the ISS
properties of the optimization algorithms and of the cou-
pled plant-optimizer system in Sections 5 and 6. Next,
we discuss the strong regularity assumption in Section 7,
we discuss relevant SQP methods in Section 8, and we
illustrate how they fit into our optimization framework
in Section 9. Finally, we present simulation results in
Section 10.

2 Preliminaries

We denote by Z () the non-negative (positive) integers
and by R the non-negative (positive) reals. For a
discrete time system

Tpg1 = g(Tr, u), (1)

given an initial state zg € R™, and an input sequence
u: Zy — R™ we denote its solution by z(k, 2o, u). For
a vector, || - || denotes the usual Euclidean norm, for
u:Zy — R™ we let ||ul| = sup{||ug|| : & € Z;}. We
use lim as shorthand for lim sup. Recall that a function
~v: Ry — Ry is said to be of class K if it is continuous,
strictly increasing and +(0) = 0. If it is also unbounded
then v € K. A function 5 : Ry x Ry — Ry is said
to be of class KL if B(-,s) € K for each fixed s > 0
and B(r,s) — 0 as s — oo for fixed r > 0. If 71,7 :
R — R, we denote their composition by v; o 72. We use
I to denote the identity matrix, and use id : R — R
to denote the identity function. We denote the domain
of a set-valued mapping F' by dom F. If A is a matrix
then A; is its ith row. If Z is an index set, |Z| is its
cardinality and Az denotes the row wise concatenation
of A;, Vi € Z. For two vectors, (a,b) denotes vertical
concatenation. We denote the unit ball centered at = by
B(x), it is understood that B = B(0). If X is a closed
neighbourhood of the origin, we denote its radius by
rad X, i.e., the largest » > 0 such that {x | ||z|| <r} C
X. The normal cone mapping of a closed-convex set C'
is defined as

T(w—v) <0,YweC}, ifveC
NC(U){éyly(w v) <0,Yw € C}, ;lsvee ;

and set addition/subtraction is defined as
A+B={y|ly=a+xb, ac Abec B}.

We make extensive use of the concept of input-to-state
stability [29]. Since MPC is a constrained control tech-

nique, meaning that it is intrinsically not “global”, it is
natural to consider a local variant.

Definition 1 (LISS [28]) A system (1) is said to be
Locally Input-to-State Stable (LISS) if there exists € > 0,
B €KL, and vy € K such that, Vk € Z..,

[|(k; 2o, w)|| < max{B(||zol[, k), v([lul})},  (2)
provided ||zo|| < € and ||u]| < e.
Definition 2 (Asymptotic gain [29]) Consider sys-

tem (1), we say that it has an asymptotic gain if there
ezists some v € K such that

lim ||z(k, zo, u)|| <7 ( lim ||uk|) , (3)
k— 00 k—o0
for all zy € R™=.

3 Problem Setting and Control Strategy
Consider the following discrete time system,

Tpt1 = fa(wr, uk, di), (4)

where 2, € X C R", up, e Y C R™ and d, € D C R™
denote the state, input, and disturbance. Throughout
this paper we assume full state feedback and that the
following holds.

Assumption 1 The function f4 in (4) is twice contin-
wously differentiable in its first two arguments, Lipschitz
continuous in the third, and f4(0,0,0) = 0. Moreover,
the sets X, U and D are compact and contain the origin.

We wish to control (4) using MPC and thus consider an
OCP of the following form,

N-1
min. S(&, 1) = Vi) + Y U&, o), (5a)
s.t. 51'—0—1 :fd<§ia,u'i70)7 _.:Oa"'va]-v (5b)
50 =z, fN € va (5C)

where N € Z,. is the horizon length, Z2 C X x U
are the constraints, Xy C X is the terminal state con-
straint, & = (£,&1,...,&n) is the state sequence, and
w = (po, 1,y ..., in—1) is the control sequence. The
OCP (5) is parameterized by the measured system state
x. We impose the following conditions on (5) to ensure
that it is well posed and can be used to construct a sta-
bilizing control law for (4).

Assumption 2 All functions in (5) are twice continu-
ously differentiable in their arguments and their second
derivatives are Lipschitz continuous.



Assumption 3 The stage cost satisfies 1(0,0) = 0, and
there exists oy € Koo such that ay(||z||) < U(z,u) for all
(xz,u) € Z. The terminal set Xy is a subset of X, contains
the origin in its interior, and is an admissible control
invariant set for (4), i.e., for all x € Xy there exists u
such that fq(z,u,0) € Xf and (z,u) € Z. Vy is a Control
Lyapunov Function for (4) with d = 0, such that,

min{V}(er)—Vf(x)—ﬁ—l(m,u) | (z,u) € Z,2" € Xr} <0,

for all z € Xy, where ™ = fq(z,u,0).
Denote by
I'={z € X | (5) is feasible}, (6)

the set of feasible parameters. Under Assumptions 1 and
2, the set I' is compact and, for all z € I', a minimum of
(5) exists [37]. The ideal/optimal MPC feedback policy

is then
k() = po(w), (7)

where p*(z) is a global minimizer of (5). To address
the effects of incomplete optimization, we consider the
perturbed closed loop system

Tpy1 = [(xp, Aug, di) = fa(xg, k(o) + Aug, di), (8)

where the control signal is corrupted by an additive
disturbance that represents suboptimality, i.e., uy =
k(xy) + Aug. Before stating the stability properties of
(8), recall the following notion.

Definition 3 (RPI set [35]) Given  suitable sets
AU C R™ and D C R"™, a set 2 C R™ is a Ro-
bust Positively Invariant (RPI) set for system (8) if
flx,Au,d) € Q forallz € Q, Au € AU, d € D. In
addition, if Q C {z | (z,k(z)) € X xU}, then Q is called
an admissible RPI set.

The following theorem summarizes the LISS properties
of nominal MPC.

Theorem 1 [385, Theorem 4] Let Assumptions 1 - 3 hold
and suppose that ¢*(z), i.e. the optimal value function
for (5), is uniformly continuous. Then, the closed-loop
system (8) is LISS with respect to (Au, d) on a non-empty
RPI set Q) C T'. Moreover, there exist c1,co > 0 such that
ifrad AU < ¢1 andrad D < cg, then Q is an admissible
RPI set for (8).

In this paper we consider the situation where not enough
computational resources are available to accurately solve
(5) at each sampling instant. Instead we will approxi-
mately track solution trajectories of (5) as the measured
state  in (5c) varies over time. To track the solution
trajectories, we use an appropriate iterative optimiza-
tion algorithm, e.g. SQP, which is warmstarted at time

instance t; with the approximate solution from ¢;_;. In
this way we construct a dynamic system,

2 = Te(2k—1, T1), 9)

where 2 is an estimate of the primal-dual solution of (5)
and 7, represents a fixed number of optimizer iterations
(T¢ is formally defined in (13)). This leads to the inter-
connected system illustrated in Figure 1. The objective
of this paper is to analyze the interconnection between
the plant and the dynamic controller from a systems the-
oretic perspective.

Remark 1 This paper focuses on a common nominal
MPC formulation for the sake of clarity. However, our
analysis is applicable to any MPC formulation for which
it is possible to prove LISS e.g., formulations that em-
ploy exact penalty functions [5] or robust MPC formula-
tions [35]. Moreover, note that in (7) the MPC feedback
law is defined using a global optimum of (5). This re-
quiremnent is not intrinsic to our analysis but rather an
artifact of the specific MPC formulation. Our analysis
is performed relative to a nominal “ideal” MPC feedback
law. If the nominal feedback law is input-to-state stable
our analysis is applicable regardless of whether the nom-
inal feedback law is globally optimal. For example, one
could use the dual-mode MPC formulation in [48] which
does not require global optimality.

4 Optimization Strategy

In this section we describe the class of optimization algo-
rithms considered in this paper. We start in an abstract
setting to clarify which properties are essential to our
analysis. Later in Sections 8 and 9 we will illustrate how
SQP fits into this framework.

Suppose the first order necessary conditions for (5) can
be written as a parameterized Generalized Equation
(GE) of the form

F(z,2) + Nk(z) 30, (10)

where Mg : R® = R” is the normal cone mapping 2
of a closed, convex set K C R", FF : R® x I' = R" is
a function, z € R™ are the optimization variables and
x € I' is the parameter. Its solution mapping is

S(z) ={z | F(z,2) + Nk (z) > 0}, (11)
which can be set valued. Because (10) are necessary con-

ditions for (5) and a minimizer of (5) exists under As-
sumptions 1 and 2 [37] we have that dom S =T

2 See [14] for more background on set-valued and normal
cone mappings.



Many optimization algorithms are designed to “solve”
necessary conditions. We thus associate (10) with an
iterative optimization algorithm of the form

ziv1 = T (24, ,1), (12)

where 7 : R" x I' x Z4 — R™. Multiple iterations of the
algorithm can be represented by the action of the func-
tion T¢(z,z) : R® x I' — R™ which is defined recursively
by the sequence

ﬁ(zax) :T(n—l(zamyé_l)vxae)? (]‘3)
where ¢ € Z, 4 is the iteration number and To(z, z) = z.

Remark 2 The optimality conditions of (5) can be writ-
ten in multiple forms depending on the choice of (10)
and (12). For example, £ can either be treated as a deci-
sion variable or a function of p. As a result, the defini-
tion of z is not unique and is chosen by the designer of
the optimization algorithm. Specifically, the vector z al-
ways includes the control sequence, but may also include
the state sequence and/or the Lagrange multipliers asso-
ciated with equality (dynamic) or inequality constraints.

In this paper we consider algorithms that converge at
least g-linearly for a fixed parameter x. The following
definition formalizes this notion.

Definition 4 (At least g-linear convergence) For
any x € T’ and z* € S(x) an optimization algorithm T
converges to z* if there exists € > 0 such that

Zlim Te(z,x) = 2* (14)

for all z € eB(z*). If there exists n > 0 and q¢ > 1 such
that

| Te(z,2) = 27| < nl[Te-1(z,2) = 277, (15)

for all ¢ > 0 and ne9=' < 1 then T is said to converge at
least g-linearly over I.

Remark 3 The necessary conditions (10) may be satis-
fied at stationary points or local mazima as well as local
minima. We perform a local analysis that allows us to
exclude those points.

Next we consider the regularity properties of (11), we
will use of the following regularity condition for gener-
alized equations.

Definition 5 (Strong Regularity [44]) A set-valued
mapping ¥ : R™ = R" is said to be strongly reqular at
x fory if y € ¥(x) and there exist neighborhoods U of
x and V of y such that the truncated inverse mapping
F~1:V s F-Y(V)NU is single-valued, i.e., a function,
and is Lipschitz continuous on V.

Strong regularity reduces to non-singularity of the Jaco-
bian matrix if ¥ is a continuously differentiable function.
Our main regularity assumption follows. It establishes
that any solution trajectories are Lipschitz continuous.
In Section 7, we discuss conditions for strong regularity
for specific instances of (10).

Assumption 4 Allpoints (z, x) satisfying z € S(x) that
correspond to minimizers are strongly reqular Vax € T'.

The following theorem shows that Assumption 4 ensures
that the notion of tracking a local solution trajectory is
well defined.

Theorem 2 [13] Let the parameter x € T' be a Lipschitz
continuous function of t > 0. Then each solution trajec-
tory z(t) € S(x(t)) is isolated and Lipschitz continuous.

A local optimization algorithm, such as SQP, can be
used to track a specific “isolated branch” of the solution
mapping. The branch is implicitly selected through the
choice of initial guess supplied to the algorithm. Some
MPC formulations require global optima while some do
not, as discussed in Remark 1. In practice, local methods
like SQP are often used regardless due to the prohibitive
computational complexity of global methods.

Remark 4 To summarize, an algorithm/optimality
condition pair fits in our framework if:

e The optimality conditions can be written in the form
(10) and satisfy Assumption 4.

o The algorithm can be written in the form (12).

o The algorithm is at least g-linearly convergent.

5 LISS of time-distributed optimization

Consider the application of TDO to problem (5). In a
real-time setting it is only possible to perform a finite
number of iterations per sampling instant which we de-
note by ¢. In this situation the optimizer can be viewed
as a dynamical system of the form,

2k = To(2K—1,Tx), (16a)
U = Ezk, (16b)

where = is a surjective matrix that selects pg from the
solution estimate, i.e., k(z) = =25(x) where

5(x) € S(2), (17)

is an isolated single valued restriction 3 of S (this is pos-
sible due to Theorem 2).

3 Our analysis is performed relative to the ideal feedback law
k(z) = ZE3(z). Any choice of the restriction 5 that renders
the origin of the closed loop system (8) LISS is admissible.



In this section we establish conditions under which (16)
is LISS. We consider the associated error system,

ert1 = Ge(ew, xp, Axy), (18a)
Auk = Eek, (18b)

where ey, = 2, — §(x1), and Az = x41 — 2. The error
system can be explicitly constructed as follows

gg(ek, Tk, Axk) = ﬁ(ek—ké(mk), $k+A$k)—§($k+Al‘k).

Lemma 1 Consider (16) and its error system (18) and
suppose that T is at least g-linearly convergent. Further,
let Assumption 4 hold. Then, there exists a,0 : 7,4 —
R4, such that the error satisfies

llex+all < a(O)]lex|| + O(O)|| Azk]l, (19)
subject to the restriction
llexll + bl|Azy|| <&, (20)

where € is the convergence radius in Definition 4 and b
is the Lipschitz constant of 5 over I'. Further, a and 6
are monotonically decreasing with ¢, limy_, . a(f) = 0,
limy_, o 6(£) =0, and a(¢) € (0,1).

Proof. If 241 = Te(zg,x) for some fixed x then the
error bound (15) implies that

'l
241 = 5(@)l| < n* O]z —5(@)17,  (21)

for all z;, € eB(5(z)), d where a(f) = Zf;é q'. Now
consider any zp41, 2 € I' and let zpr1 = To(2k, Tp41)-
Then, applying (21) with @ = x;41, we obtain that

£
lzkr1=8(@rs1)l] < n*O|2 — (@)l
4
llerll < ™z = szl
2
< 1 O[[zx = 8(@)] = [8(xx+1) — 5],
¥l
<O (llex]| + bl Azy])7
where we have used that 5is Lipschitz on I" with constant
bby Assumption 4. Recall that ¢ denotes the convergence
radius of 7 in I'. A sufficient condition for the restriction
2 € eB(5(xk41)) is then
llex]] + bl Azk|| <,
= |l[zx = szl + [[[5(zr11) — (2]l <&,

= ||[zx — 8(x1)] — [3(@r41) — 5(21)]|| < ¢,
= |2k — 5(zp41)]| < e.

Continuing and imposing ||ex|| + b||Axg|| < &,

lensall <Ot =2 ([lex]| +bllAzel)).  (22)

If ¢ = 1, then 7*ed ~1 = 5f since a() = Yo g’ = ¢
and e 1 =0 = 1. Otherwise, note that
R St ")
where we used that, for ¢ > 1,
-1 ¢
i g —1
all) = Zq = ) (24)
i=0 ¢—1
Thus,
Il
llewrall < 0O (lexl| + bl|Azy]]),  (25)
< a(O)lex]] + 0(O)[| Az ||, (26)
where ,
n ifg=1,
a(l) = o (27)
(net=t)y =1 if¢>1,

and 6(¢) = b a(f). Since ¢ > 1 and ne?~! < 1 by as-
sumption, a(¢) € (0, 1), the functions a and 6 are mono-
tonically decreasing and a(¢),0(¢) — 0 as { — co. O

The following Theorem establishes the LISS properties
of the error system.

Theorem 3 Consider (16) and its error system (18)
and suppose that T is at least g-linearly convergent. Fur-
ther, let Assumption 4 hold. Then, there existsT : Z4 —
R4+ such that the system is LISS if ||eo]| < 0.5¢ and
||Ax|| < 7(f)e, where 7(£) = 0.5 (o(¢) +b)~! and ¢,b,
and o are defined in Lemma 1. Further, the asymptotic
gain of (18) is of the form

Ye(s) =20(€)s1 +0- s2 (28)
where s1 and sy correspond to the Ax and x inputs, re-

spectively, and o(£) — 0 monotonically as £ — oo.

Proof. Given Lemma 1, if (20) holds for all time in-
stants leading up to k — 1, it follows by direct computa-
tion (see e.g. [29, Example 3.4]) that

k
llexll < a(€)*|leol| +6(¢ Z O || Azyll,  (29a)

< a()*leol| + o (¢ )IlAXH (29D)

where o(¢) = 6(¢)/(1 — a(¢)). To ensure that (20) holds,

we first consider the case k = 0 and note that *

[leol[ + bl[ Azo|| < max{2]|eol|, 20]| Ax|[}, (30)
<max{e,e-b/(c(f) +b)}=¢. (31)

* Recall that a 4 b < max(2a, 2b) for any two scalars.



Next, assuming (20) holds for £ — 1 and recalling that
a(f) < 1, we can apply (29) at iteration k to show that

llexl| + bl[Azr|| < a(0)*|leol| + o ()| Ax]] + bl| Az,
< a(0)*[leol| + (o (0) + b)||Ax]],
< max{2a(£)"[|eo||, 2(o (€) + b) || Ax]|},
< max{e, e} =¢,

thus ensuring that (20) also holds at k due to the restric-

tion ||eo|| < 0.5e and [|Ax]|| < 7(¢)e. Since (29) recur-
sively enforces its restrictions, we obtain

llexl| < max{2a(0)*[eol|, 20 ()| Ax[]},  (32)
which directly establishes LISS with £,(s, k) = 2a(¢)*s
and v¢(||(Ax,x)||) = 20(¢)||Ax]|| + 0 - [|x||- The remain-

ing claims follow from the expression o(¢) = 0(¢)/(1 —
a(?)) since a(f),6(¢) — 0 monotonically as £ — co. O

6 LISS properties of suboptimal MPC

Xpe1 = f(xg, Ay, dy)
Axk = h(xk,Auk)

Au [Ax]

er+1 = Go(ex, X, Axy) |,
dk =g €k

Fig. 2. The coupled plant-optimizer error system.

Theorem 3 establishes sufficient conditions under which
an at least g-linearly convergent optimizer, viewed as
a dynamic system, is LISS. It also establishes that the
asymptotic gain of (18) can be made arbitrarily small
by increasing the number of iterations. Since the closed-
loop system (8) is itself LISS, we can derive sufficient
conditions under which the coupled system, as shown in
Figure 2, is LISS with respect to the disturbance input d.

Theorem 4 Consider the dynamical systems

Ty = f(@p, Aug, dy),
i
! { A.Z‘k = h(xk, Auk, dk), (33&)
er+1 = Ge(ew, Ty, Azy),
Yot
2 { Auk = Eek (33b)

where h(x, Au,d) = f(z,Au,d) — x and f is defined in
(8). Let the optimization algorithm used to construct G,

satisfy (15) and let Assumptions 1 - 4 hold. Then, there
exists 0* > 0 such that if ¢ > 0* the interconnected system
(33) is LISS with respect to the input d.

Proof. Under Assumptions 1 - 4, Theorem 1 holds® .
Thus system 3, is LISS, meaning that there exist asymp-
totic gains 1,y € K such that

lim [|zg]| <7 < lim ||Auk||) + 9 < lim ||dk||) ,
k—o0 k—o0 k—o0
(34)

for suitably restricted dy € D and Au, € AU. Let L
denote the Lipschitz constant of h, then

|Azy|| < Llek|| + Ll| Au|| + Ll[dill,  (35)
combining this with (34) we obtain that
T (A < ( i 18] ) -+ i 1)
k—o0 k—o0 k— o0
(36)
where y3 = L(v1+id), and 74 = L(y2+id). Similarly, due

to Theorem 3, there exists ¢ > 0 and positive functions
o and 7 such that

lim [[ex|| < o(f) lim [[Azy]], (37)
k—o0 k—o0

given ||Ax|| < 7(¢)e. Therefore, it follows from (33b)
that

lim [|Aug|| < ||Z]] im ||eg]], (38a)
k—o0 k—o0
< o(0)||Z|| Im || Azl (38h)
k—o0

Combining (38) with (36) we obtain that

lim ||Aug|| < a(O)||Z]|ys ( lim |Auk|) +
k—o0 k—oo
a(OE[| <klim ||de> - (39)
—00
Thus, if the contraction property

IEllo()ys(s) < s (40)

is satisfied for all s € [0,rad AU], (33) is LISS with suit-
able restrictions on the initial state and on the distur-
bance d, as detailed in [50, Theorem 2]. Note that, since

5 Recall that Assumption 4 is sufficient for Lipschitz conti-
nuity of the optimal value function ¢*(x).



Au = Ze, we have rad AU < Ze where ¢ is the conver-
gence radius® of the optimizer defined in Theorem 3.
Since o(¢) — 0 monotonically as ¢ — oo, the existence
of ¢* < oo such that (40) is satisfied follows from the
finiteness of 3, rad A, and ||Z]|. O

Theorem 4 establishes conditions under which the in-
terconnected plant-optimizer system is LISS. However,
this result does not provide any information about the
set of admissible initial conditions and does not consider
constraint satisfaction. By noting that the ideal MPC
feedback law admits a robust positively invariant set, we
can extend our result by deriving sufficient conditions
for constraint satisfaction.

Theorem 5 Suppose that the assumptions of Theo-
rem 4 hold so the interconnected system (33) is LISS.
Let ) denote the admissible RPI set in Theorem 1, let
ve(s) = 20(€)s denote the asymptotic gain of (18), and
let (xg,ex) = (z(k,x0,d), e(k,ep,d)) denote the closed-
loop trajectory of (33) for some initial condition (o, eo)
and disturbance sequence d. Then, if the disturbances
are sufficiently small, there exists £ > £* and § > 0 such
that, if ||eo|| < 6 and z¢ € Q, then xy, € Q for all k > 0.

Proof. Due to Theorem 1, given a sufficiently small dis-
turbance set D, there exists a neighbourhood of the ori-
gin AU such that, if Aux € AU, Vk > 0 and xg € Q,
then x), € Q, Vk > 0. Since Au = EZe for a surjective
matrix Z, there exists p > 0 such that, if ||ex|| < p, then
Aug, € AU. Given the restriction ||Ax|| < 7(¢)e and
lleo]| < 0.5, where 7 and € are defined in Theorem 3,
it follows from (32) that ||ex|] < p can be imposed by
enforcing ||eg|| < 0.5p and 20(¢)||Ax]|| < p. To enforce
20(0)||Ax|| < p, we note that the set €2 is bounded [35,
Theorem 4], thus implying that Az € AQ = Q —Q (see
Section 2 for a definition of set subtraction) is bounded
by

§= sup |lw|| < oo. (41)

wEAQ

Since § is finite and ¢(¢) — 0 monotonically as £ —
00, there exists ¢; such that 20(¢1)s < p. Moreover,
since 5 is finite and 7(¢) — co monotonically as £ — oo
there exists 2 such that § < 7(¢3)e. Thus, letting § =
0.5 max{p, e} and ¢ = max(£*, {1, (2), it follows that the
system is LISS with restrictions on the initial conditions
xg € Q and |leg]| < 0, as well as restrictions on the
external disturbanced € D. O

Theorem 5 establishes that, if enough computational re-
sources are available and the initial solution guess is

5 If the optimizer is globally convergent then e can be chosen
arbitrarily. In that scenario it may be possible to obtain a
stronger result using different analysis tools.

sufficiently accurate, then TDO recovers the robustness
properties of optimal MPC.

Remark 5 The results presented in this section are quite
general: as long as the MPC formulation is LISS, the so-
lution mapping of the OCP is strongly regular, and the
convergence rate of the iterative solver is at least g-linear,
Theorems 4 and 5 prove that it is possible to achieve ro-
bust stability and constraint satisfaction by performing a
limited number of solver iterations per time step. Due to
the generality of the framework, however, the actual val-
ues we obtain for £* and £ are likely to be conservative
and would be ill-suited for, e.g., complexity certification
as in [46], which only considers the linear case. Complex-
ity certification is significantly more challenging in the
nonlinear case due to the nonconvezity of the OCPs and
is left to future work.

7 Conditions for Strong Regularity

The main results in this paper are all predicated upon
Assumption 4, that for each parameter value z € T
the solution mapping of the OCP is strongly regular. In
this section we discuss two common settings and derive
strong regularity conditions for each.

7.1 Closed Convex Constraint Sets

If the constraint sets Z and X in (5) are closed and con-
vex, it is possible to write the optimality conditions with-
out introducing dual variables for the inequality con-
straints. In particular, we can express (5) compactly as

i .t. = 42

min $(w), st g(w,z) =0, (42)

where W =Z x Z... x Xy and w = (§o, fto,---,éN) €
RP. The Lagrangian associated with (42) is

L(w, A, x) = $(w) + AT g(w, ), (43)

where \ € R are dual variables (sometimes “co-states”).
The KKT conditions of (42) are

V.L(z,2) + Nz(z) 20, (44)

where z = (w, ) and Z = W xR!. Note that (44) can be
reduced to (10) by choosing F = V,L and K = Z. Our
framework requires that (44) be necessary for optimal-
ity. To ensure this, we impose the following constraint
qualification [45, Theorem 6.14]

—Vaug(@0,2)"y € Nw(w) = y=0,  (45)

for all (w,\) € S(z). The following lemma proves
that(45) holds automatically in this setting.



Lemma 2 The constraint qualification (45) holds at all
points (z,x) € RPHL x T,

Proof. The constraint qualification is implied by sur-
jectivity of the matrix V,g¢(w,z). Denoting A; =
Ve fa(&i, 1i,0), and B; = V,, fa(&i, 1, 0), the surjectiv-
ity of Vy,g(w,x) becomes the condition that for every
&= (£o,--.,&N) the system
o = &0, Cip1— A — Bivi = &1, 1€ Lo, n—1),

has a solution. This condition clearly holds: pick
an arbitrary sequence (vp,...,vn—1) and determine
(Coy- .-, Cn) recursively. O

Before stating the conditions for strong regularity, we
define the following second order condition (which can
be monitored numerically, see e.g., [39, Section 16.2]).

Definition 6 (SOSC) The Second Order Sufficient
Condition (SOSC) is said to hold at z = (w, ) € S(z) if

yI'V2L(2,2)y >0, Yy s.t Veg(w,Z)y=0. (46)

7.1.1 Convex Control Constraints

If only convex control constraints are present, Theorem 6
provides sufficient conditions for strong regularity.

Theorem 6 [12, Theorem 1.2] Suppose that Z = R"= x
U, where U is closed and convex, and consider any z €
S(Z). If (46) holds, then S is strongly regular at (Z, ).

As a result of Theorem 6, Assumption 4 reduces to the
assumption that (46) holds at all minimizers in T'. In this
scenario, any terminal set constraints would have to be
enforced through penalty functions.

7.1.2  Polyhedral State and Control Constraints

If the state and control constraints are convex polyhedra,
the following theorem applies. The result was previously
asserted without proof in [10, Section 3.2], we provide a
proof for completeness.

Theorem 7 Suppose that W in (42) is polyhedral with
a representation W = {w | Mw < h}. Now consider a
KKT point z = (w,\) € S(Z). If (46) holds, then S is
strongly regular at (Z,T).

Proof. Strong regularity of the nonlinear GE (44) at
(z,z) follows from strong regularity of its partial lin-

earization [44]. This can be written as

R GT
-G 0

w

A

"+ Ne(z) 30, (@47)
g

where f = V,L(2,2), R = V2 L(2,1), G = Vug(z, 1),
r=f—Ro—GTX\ g=Gw,O0 = {w|Gw =g, Mw < h}
and C = © x R!. Equation (47) is an affine GE of the
form,

Az+a+Ne(z) 30, (48)

to which we apply [14, Theorem 2E.6] to establish strong
regularity of the mapping A + N¢. This requires

€&, Az 1€, 2TA2<0=2=0, (49)
where ET =6 - &, & =EN—&, and
E={(w,\) | Gw=0Muw<0iec Aw), fTw=0},

is the critical cone” of C at Zz. Next, note that £ C
ET C ker G x R! thus, by the second order condition,
y' Ry = yTV2 L(z,2)y > 0 for all y € ker G. Thus

2TAz = wTRw > 0,Yw € £F, (50)

which implies that :7A2 < 0 = z =0 forall z €
ET. As a result, (49) is satisfied and (44) is strongly
regular. O

As in the case of convex input constraints, Assumption 4
reduces to the condition that (46) holds at all minimizers
inT.

7.2 Nonlinear Inequality Constraints

If the constraint sets in (5) can be expressed in the form

Z =A{(&m) | c(§p) <0} and Xy = {£ | ¢f(€) < 0}
for suitable twice continuously differentiable functions

¢:R™Hmu — R and ¢f : R™ — R/, then (5) can be
written compactly as the following Nonlinear Program
(NLP),

mliun. d(w), (51a)
st. g(w,x) =0, h(w) <0, (51b)

where w = (&, 1) € RP are the decision variables. The
Lagrangian associated with (51) is

L(w, \,v,z) = ¢p(w) + AT g(w, z) + vTh(w),  (52)

" See [14, Section 2E| for more details on critical cones.
We’ve simplified the expression for £ using [14, Theorem
2E.3] and (44).



where A € R! and v € R™ are dual variables. Its KKT
conditions [26] are

VwL(w, A\, v,2) =0, (53a)
—g(w,z) =0, (53b)
—h(w) + Ny(v) 20, (53c)

where A, is the normal cone mapping of the non-
negative orthant. Comparing (53? with (10) we can

identify 2z = (w, A\, v), K = RP x R" x R, and
Vi L(w, A\, v, )
F(z,z) = —g(w, ) . (54)
—h(w)

To ensure that (53) are necessary for optimality, as re-
quired by our framework, we need to impose a constraint
qualification on (51).

Definition 7 (LICQ) The Linear Independence Con-
straint Qualification (LICQ) is said to hold at (Z, ) if

where A(w) = {i € 1 ... ¢ | hy(w) = 0} is the set of
active constraint indices and | is the number of equality
constraints.

The following Theorem summarizes necessary and suf-
ficient conditions for strong regularity in the context of
nonlinear programming.

Theorem 8 [26, Prop 1.27, 1.28] Consider a parame-
terized nonlinear program of the form (51) and let S(x)
be the solution mapping of its KKT conditions (53). A
point (Z,T) satisfying z € S(T) is strongly regular if it
satisfies the LIC(Q) and the strong second order sufficient
condition (SSOSC)

y'V2L(z,3)y >0, Vy € K (2,2) \ {0},
where

IC+(Z,JJ) = {y ER” | Vau (’lj),.f')y =0,
[Vwh(w)]y =0, i € At (z,2)},

and A" (z,z) = A(w) N {i | v; > 0}. Moreover, if w is a
local minimizer of (51), the LICQ and SSOSC are also
necessary conditions for strong regularity.

Thus, Assumption 4 reduces to the assumption that the
SSOSC and LICQ hold at all minima in T'.

8 Sequential Quadratic Programming

Having defined under what conditions the solution map-
ping of the OCP is strongly regular, we investigate the
convergence properties of two widely used SQP schemes
to show that they can be used for TDO. To this effect,
note that the optimal control problems (42) and (51) can
both be solved using SQP. Specifically, given a solution
estimate z;, the next iterate can be computed by solving
the following Quadratic Program (QP)

1
min, iAwiTBiAwi + Vud(z:) T Aw;, (55a)
st.  Vyg(wi, ) Aw; + g(w;, x) =0, (55Db)
Vwh(w;)Aw; + h(w;) <0, (55¢)

where B; approximates the Hessian of the Lagrangian,
i.e., either V2 L or V2L£. Specifically, if we denote the
Lagrange multipliers associated with the equality and
the inequality constraints by m; and 7); respectively, the
SQP update for (42) is z;11 = (w; + Aw;, 7;), whereas
the the SQP update for (51) is z;4+1 = (w; + Aw;, w3, 1;)-
Note that (55) is fully defined by (42) or (51) except for
B;, which will depend on the specific SQP method.

Remark 6 The convex control constraints setting (Sec-
tion 7.1.1) technically allows for non-polyhedral convex
constraints. In this case (55¢) would need to be replaced
with a convex constraint of the form w; + Aw; € W but
otherwise no changes are necessary.

To provide a unified formulation, we exploit that SQP
can be seen as a Newton-type process for solving GEs of
the form

F(z,2) + Nk(z) 30, (56)
where z € R", z € I', F : R™ x I' = R" is continuously
differentiable and Nk : R® = R" is the normal cone
mapping for a closed, convex set K C R". Newton’s
method applied to (56) is

Hi(zig1 — zi) + F(zi,x) + Nk (zi41) 20, (57)

where the sequence {H;} approximates V,F(z;, z). Re-
ferring to the QP subproblem (55), we note that

B, VIgvVTh
H;=|-Vu,g 0 0 (58)
—Vuwh 0 0

so the the sequence { H;} is fully determined by the Hes-
sian approximation sequence {B;}.

Remark 7 In this paper we only consider “undamped”
Newton methods, which are intrinsically local methods.
More sophisticated implementations may include vari-
ous type of reqularization and/or globalization techniques



such as trust regions or linesearches to enlarge the meth-
ods region of attraction. Nevertheless, undamped Newton
methods are commonly used in practice, especially in the
context of the RTI scheme, and the tools we develop in
this paper are applicable to locally convergent algorithms.
We leave the application of our tools to globalized SQP
methods to future work and refer readers to e.g., [39]
or [26], for more detailed treatments of SQP methods.

8.1 The Josephy-Newton (JN) method

Using the exact Hessian of the Lagrangian results in the
Josephy-Newton method. The following theorem sum-
marizes the convergence properties of the JN method
applied to (56).

Theorem 9 [26, Theorem 3.2] Let z* € S(x) for some
fized x and suppose that Assumption 2 holds and (z*, )
is strongly regular. Let the sequence {z;} be generated by
repeatedly solving

VZF(ZZ‘,I>(ZZ'+1 — Zi) + F(ZZ',.’E) +./\/'K(Zi+1) > 0. (59)

Then, there exists 7 = 7j(x) > 0 and € = &) > 0
satisfying € < 1, such that, if zo € €B(z*), then {z;} is
unique and converges to z* q-quadratically, i.e.,

l2i1 = 2| < 77llzi — 272 (60)

In general, we cannot expect V2 L to be positive semidef-
inite even in the vicinity of a solution. This may make
solving the QP subproblems difficult and is a well known
issue in the SQP literature. A detailed discussion is out-
side the scope of this paper, we refer interested readers
to e.g., [4,26,39]. We will however briefly discuss two
possible solutions. The first is to use an Augmented La-
grangian Hessian, i.e., touse B = V2 L+p(V,,9)(Vwg)T
for some p > 0. If the second order sufficient conditions
hold, then B will be convex if p is sufficiently large [26,
Section 4.2]. This will shift the multipliers associated
with g, see [26, Section 4.2] for details on how to recover
the original multipliers. This method may not always
be numerically efficient because it can negatively impact
the sparsity of B. The second is to use a reduced Hes-
sian approach, see e.g., [39,47], which maintains a basis
for the null space of the active constraints and solves the
QPs on this reduced space. The Hessian projected onto
the reduced space (the “reduced Hessian”) is guaranteed
to be positive definite in the vicinity of a solution if a
second order condition holds.

8.2 The Gauss-Newton (GN) method

The Gauss-Newton method is applicable when the ob-
jective function has the form ¢(w) = ||r(w)||3 for some
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residual function r. The Hessian of the Lagrangian is
then approximated by

B(w) = Vur(w)Ver(w)? ~ V2 L(z, z). (61)
For example if ¢(w) = 27 Qz+u’ Ru the GN Hessian ap-
proximation is B = blkdiag(Q, R). The GN method has
the advantage that the Hessian approximation is guaran-
teed to be positive semidefinite, so the QP subproblems
can be solved reliably. Because of this, the GN method
is widely used in practice, see e.g., [1,7,19, 20, 24, 52].
The GN approximation error satisfies

V2 L(z,z)— B(w) =

O([lr(w)ll) + O(Z Il V5, 9:(w, 2)[]),  (62)

so the approximation error depends on the size of the
residuals and on the second derivative g which is related
to the nonlinearity of the dynamics. We show in Theo-
rem 10 that it is important to approximate V2 L(z*, z)
where z* € S(z). The following theorem establishes suf-
ficient conditions for g-linear convergence of the GN
method by extending the classical fixed-point type anal-
ysis of Newton’s method, see [31, Section 5.4.2]. The
nearest analysis we found in the literature is [10, Theo-
rem 3.5] which considers a path tracking problem rather
than a fixed one.

Theorem 10 Fiz some parameter x € T, let z* € S(x)
and suppose that Assumptions 2 and 4 hold. Consider a
sequence {z;} generated by repeatedly solving (57). Fur-
ther, define e; = z; — z* and suppose that there exist
0 = 6(x) > 0 such that ||H; — VF(z*,z)|| < § for all
1 > 0. If the mapping

is strongly regular for all i > 0, i.e., J;l s a Lipschitz
continuous function with Lipschitz constant M > 0, and
O0M < 1, then there exists € = €(x) > 0, and L > 0 such
that if zg € eBB(2*), then {z;} is unique, converges to z*
g-linearly, and

lleisall < M8+ Liles|))lles]| < 7llesl],  (64)

where §j = 7j(x) = M (6 + Lé).

Proof. A solution, z* € S(x), exists for every x € T
thanks to Assumption 4; from this point forward we will
suppress the dependencies on = in the subsequent ex-
pressions. The GN method can be written as

Zitl = Ji_l o Gz(zz) = n(zl)a (65)



where G;(z) = H;z — F(z); note that z* =
any choice of {H;}. First consider

T;(z*) for

Gi(z) — Gi(z") = Hi(z; — 2%) — F(z;) + F(2%)

=[VE@E) (2 = 2%) = F(z) + F(z7)+
[(Hi = VF(z%))(zi — 27)].

Since VF is Lipschitz (Assumption 2) the fundamental
theorem of calculus implies that there exist L,e; > 0
such that

IVF(z")(zi — 2°) = F(z) + F(")|| < L[z — 2*[|%,
for all z; € €1B(z*), so, taking norms, we obtain that
1Gi(2:) = Gi(2")|] < Lllz; — 2"||* + 6|2 — 2]1.

By assumption the mapping J{l is Lipschitz continuous
so AT = ||T;(z) — T;(2*)|| satisfies

ATy = (107 H(Gi(z)) = I Gz, (66a)
< M[Gi(z) — Gi(")]], (66b)
< M6+ Lile])lle:l], (66¢)

for all z; € €;B(2*). Now consider the update equation

lzit1 — 27| = [|Ti(zi) — 27| = [|Ti(z:) — Ti(2") ]l
where we have used that z* = T;(z*). Since J; is strongly
regular, 7T; is a function and {z;} is unique. Using (66)
we have

lleisa]l < M3+ Liles|)leill, Vei € eB. (67
Since M6 < 1 by assumption, it is possible to pick € €
(0, €1) such that 7 = M (d+Lé) < 1. Then {z; } converges
g-linearly to z* if 2y € eB(z*), i.e.,

lleira]| < nlle:]| Vei € €B. O (68)

Theorem 10 requires that H; be a sufficiently good ap-
proximation of V,F(z*) and that the GN subproblems
be strongly regular. A sufficient condition for strong
regularity is that the QP (55) satisfies the LICQ and
SSOSC (Theorem 8). In practice, strong regularity can
be achieved by a judicious choice of H;. For example,
if the Hessian approximation is convex then it is possi-
ble to guarantee strong regularity of the subproblems by
adding a regularization term, i.e., H < H + I for some
small § > 0. Then the mapping H + 61 + N is strongly
monotone, which implies strong regularity [14, Theorem
2F.6].
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Remark 8 Theorem 10 just requires the Hessian ap-
prozimation be sufficiently good. One can conceive of
useful approximation schemes other than the GN ap-
prozimation, e.g., B; = V2 ¢(w;) when ¢ is convex or
B; = V2 L(z,z) for some fized Z sufficiently close to z*.

9 Time-distributed SQP

In this section we demonstrate that the methods de-
scribed in Sections 7 and 8 satisfy the condition of Re-
mark 4 and can therefore be used within the framework
presented in Section 4.

Strong Regularity Assumption: As detailed in Sec-
tion 7.1, in the presence of convex constraint sets As-
sumption 4 can be reduced to the following:

Assumption 5 The second order sufficient condition
(46) holds at all minimizers in T.

As detailed in Section 7.2, in the nonlinear inequalities
setting, Assumption 4 can instead be ensured under the
following:

Assumption 6 The linear independence constraint
qualification (see Definition 7) and strong second order
sufficient condition (see Theorem 8) hold at all minimiz-
ersin .

Algorithm Definition: Both SQP methods described
in Section 8 are instances of the following iterative pro-
cess

Hi(zi41 — 2i) + F(2i, %) + N (zi41) 2 0, (69)
for specific choices of z, F', and K. Thus, in both cases
the optimization mapping (12) can be written as

T(z,2,i) = (H; + Ng) *(H;z — F(z,)). (70)

Convergence Rate: If the exact Hessian is used then
Theorem 9 applies and the method is at least g-linearly
convergent with ¢ = 2. If the GN Hessian approximation
is used then Theorem 10 applies under some additional
assumptions regarding the accuracy of the Hessian ap-
proximation, and the method is at least g-linearly con-
vergent with ¢ = 1. In both cases the definition of g-
linear convergence requires that there be a uniform con-
vergence constant 7 and convergence radius € over I'.
Under the assumption that the functions 77(z) and é(z)
in Theorems 9 and 10 are upper and lower semicontinu-
ous, respectively, these can be defined as ¢ = inf,cr €(x)
and n = sup,p (). Thus, SQP fits into the framework
in Section 4 and can be used for time distributed opti-
mization.



10 A Numerical Example

Figure 3 illustrates a bicycle model of a sedan. We only
consider the lateral portion of the dynamics; the longi-
tudinal velocity s is assumed constant. The states and
control inputs are,

z=[y ¥ v w i & uz[éf o], (71)
where y is the lateral position, v is the lateral component

of velocity, 1 is the yaw angle, w is the yaw rate, ¢ is the
front steering angle, and J,. is the rear steering angle.

Fig. 3. A diagram of the bicycle model

The equations of motion are

¥ = ssin(v) + v cos(v),

Y =w,
P F(ay)cos(df) + F (o) cos(6r) + Fw’
m
_ F(ay)cos(0p)ly — F(ay) cos(d, )Ly
B IZZ ’
5f :6.f? 57“ :5Ta
where

F(a) = 1 9.81 msin (C arctan(B «)),

14
af = 6¢ — arctan (M) ,

v
«, = 0, — arctan

and F,, = 1/2pC4Ald|d.

The tire forces are described by a Pacejka model.This
model is a modified version of the one presented in [53]
and roughly represents a 2017 BMW 740i. The vehicle
is disturbed by normally distributed wind gusts d with
a mean velocity of 15 m/s and standard deviation of
5 m/s. We obtain a discrete time model using a forward
Euler integration scheme with a sampling period of ¢, =
0.04s leading to a discrete time model of the form zj 1 =
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fa(xk, ug, di). The model parameters are summarized in
Table 18.

Table 1
Bicycle Model Parameters

Name Symbol Value
Mass m 2041 kg
Yaw Inertia I.. 4964 k:gm2
Front, Rear CG distance Ly, by 1.56,1.64 m
Coefficient of friction s 0.8
Tire parameters B,C 12,1.285
Lateral Area A 7.8 m?
Air Density p 1.225 kg/m?
Lateral Drag Coefficient Cq 1.5
Longitudinal Velocity s 30 m/s

The control objective is to perform a lane change ma-
neuver. This can be achieved by stabilizing the origin
which is chosen to coincide with the center of the target
lane. The vehicle begins in the neighboring lane at the

initial condition 2o = [-3.7 0 0 0 0 0]". The OCP is

29
min. llgolly, + > l6lE+ lllh, (728
’ i=0
s.t. €i+1 = fd(gia,uiao)7 i = Oa"'7297 (72b)
50 = l'(t), Af£30 S bfa (726)
Tip ng < Lub, i = 1a"'7307 (72d)
up < py < Uyp, ©=0,...,29, (72e)

where fg is the discrete time model of the sedan. The ve-
hicle is subject to state constraints which keep the vehi-
cle on the road and restrict its yaw and steering angles.
The state constraints on y,,v and w are softened us-
ing Lq exact penalty functions which are implemented
using slack variables in order to satisfy our smoothness
assumptions. The upper and lower bounds are

Tup = [0.4 7° 100 100 35° 4°],
ap = —[4.7 7° 100 100 35° 4°],
Uy = [1.2 0.6], wup = —[1.2 0.6],

and the weighting matrices are Q) = Igx¢, and R = Iaxo.
The terminal weight is obtained by solving the discrete
time algebraic Riccati equation using the linearization
about the origin. The matrices encoding the terminal set,
Ay and by, are computed using the MPT3 toolbox [23].
The natural residual

m(z,2) = ||z = lklz = F(z,2)]l], (73)

8 ST units are used and all angles are in radians unless oth-
erwise noted.



is an error bound [40], i.e., it upper and lower bounds
l|z — z*(x)||, where z*(z) € S(z), and is commonly used
as an easily computable surrogate for the error. We use
it throughout this section to measure ||z — z*(x)||.

Figure 4 compares the RTT scheme [§], i.e., a TD-SQP
scheme using the GN Hessian approximation with £ = 1,
with an LQR controller and the optimal MPC feedback
law 9 . The RTT feedback law successfully stabilizes the
origin of the plant-optimizer system and outperforms
the LQR controller. The state error and the optimiza-
tion residual both converge to a ball about the origin,
demonstrating the expected robustness due to the LISS
properties of the combined system (Theorem 4). The
closed-loop trajectories generated by the RTT controller
are nearly indistinguishable from those from the optimal
feedback law but are an order of magnitude cheaper to
compute. The RTT scheme took 0.067s on average and
0.75s in the worst case vs. 0.65s and 3.2s for the opti-
mal feedback law. Closed-loop responses using the RTI
controller for 15 different initial position and yaw an-
gle combinations, with all other states are initialized to
zero, are shown in Figure 5.

Figure 6 compares the GN and JN methods with ¢ =1
and ¢ = 2. In the bottom plot of Figure 6 note that if
¢ = 2 iterations are performed, the yaw angle constraint
is satisfied exactly, even in the presence of disturbances,
as predicted by Theorem 5. Also, note that the residuals
of the computational subsystem converge faster, for a
given number of iterations, if the JN method is used
instead of the GN method. This is as expected since the
convergence rate of the SQP algorithm is faster when
the exact Hessian is used.

11 Conclusions

In this paper we presented a general framework for the
stability analysis of model predictive controllers imple-
mented using time-distributed optimization. When spe-
cialized to Sequential Quadratic Programming, our re-
sult extends the existing stability analysis of the RTI
scheme by explicitly considering inequality constraints,
analyzing the effect of performing additional SQP it-
erations, considering a wider class of Hessian approx-
imations, and proving local input-to-state stability of
the closed-loop system. Future work includes analyzing
the effect of the sampling rate, applying our framework
to globalized SQP methods, and developing numerical
methods for estimating the the asymptotic gain func-
tions used in the analysis.

9 All simulations were carried out in MATLAB 2017b on a
2015 Macbook Pro with 16GB of RAM and a 2.8GHz i7 pro-
cessor. We solved quadratic programs using quadprog. The
optimal MPC feedback law was computed using fmincon
with default settings. CASADI [3] was used to compute an-
alytic derivatives which were supplied to the optimization
routines.
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