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The unperturbed medium (bulk) is modeled by a honeycomb
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triangular lattice, invariant under parity, 42, and complex-
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models a transition (via a domain wall) between distinct
periodic, & or ¢ breaking perturbations. The edge operator
permits energy transport along the line-defect. The associated
energy channels are called edge states. They are time-
harmonic solutions of the underlying wave equation, which are
localized near and propagating along the line-defect. They are
of great scientific interest due to their remarkable stability,
and are a key property of topological insulators.

We completely characterize the edge state spectrum within
the bulk spectral gap about Ep. At the center of our
analysis is an expansion of the edge operator resolvent for
energies near Ep. The leading term features the resolvent
of an effective Dirac operator. Edge state eigenvalues are
poles of the resolvent, which bifurcate from the Dirac point.
The corresponding eigenstates have the multiscale structure
identified in [23].
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We extend earlier work on zigzag-type edges [14] to all
rational edges. We elucidate the role in edge state formation
played by the type of symmetry-breaking and the orientation
of the edge. We prove the resolvent expansion by a new
direct and transparent strategy. Our results also provide a
rigorous explanation of the numerical observations in [22,38];
see also the photonic experimental study in [42]. Finally we
discuss implications for the Valley Hall Effect, which concerns
quantum Hall-like energy transport in honeycomb structures.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Propagation of energy along an interface between different bulk media is a ubiquitous
and important phenomenon in physics. In two-dimensional systems, the interface is a
line defect and the basic modes of propagation are called edge states. These are time-
harmonic solutions of the underlying wave equation, localized near and propagating
plane wave-like along the interface. The bulk and defect models we study are closely
related to two-dimensional materials, one-atom-thick monolayers extending in-plane to
the macro-scale. A paradigm is graphene, a two-dimensional honeycomb arrangement
of carbon atoms which is the most conductive known material, both electrically and
thermally [41].

When suitably perturbed, graphene and related materials admit edge states which
are spectacularly robust against strong spatially localized perturbations. Many aspects
of this stability can be understood using notions of topology in terms of the Dirac points
and associated Floquet—Bloch modes, of the bulk honeycomb operator. These are conical
singularities in the band spectrum; see §1.1.

These propagation phenomena arise for general energy-preserving wave equations sat-
isfying certain periodicity and symmetry assumptions. This has inspired investigations of
fabricated media, dubbed artificial graphene, in electronic physics, optics and photonics,
acoustics and mechanics [11,40,43,47]. The great interest in topologically protected edge
states lies in applications of robust energy transport to technological settings.

Motivated by graphene and its artificial analogs, we consider continuum Schrédinger
operators which interpolate across a line defect between two weakly deformed honey-
comb structures. The types of perturbed honeycomb operators or edge operators we
consider were introduced in [22,23] to capture the essential features of theoretical and
experimental work [30,45,49].

We consider two classes of edge operators:

(i) self-adjoint deformations of the bulk operator which break parity-inversion symmetry
(Z) but preserve time-reversal invariance (%);
(ii) self-adjoint deformations of the bulk operator which break ¢ and preserve 2.

In case (i), the model is a real-valued perturbation of a bulk honeycomb Schrédinger

operator. In case (ii), the model is a divergence form elliptic operator, modeling a bi-



A. Drouot, M.I. Weinstein / Advances in Mathematics 368 (2020) 107142 3

(a) (b)

E
20 i : i
20}
——  ————
IED —’//////"—___—__—_——-___—\\\\\\\\\‘ l;D __—_—’—"",//’/ﬂ_\\\*\\\\\§§\-____
of
0
‘ : ‘ o Ky : o Ky
-7 —2m/3 0 2n/3 o« - 0 ™

Fig. 1. Numerical simulations of edge state curves (blue/red) for £-breaking, €-preserving deformations
(H?,,. = H?) and for (a) a zigzag edge; (b) an armchair edge. Here § = 3 and the bulk spectrum is in gray.

edge
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

anisotropic perturbation. Such models are of interest in the field of metamaterials; see,
for example, [30,36,45] in the physics literature, and the mathematical study [38]. Our
methods also apply to honeycomb magnetic Schrédinger operators [13,14].

Our (unperturbed) bulk Hamiltonian H? is periodic with respect to the equilateral
triangular lattice A and satisfies the symmetry properties of a honeycomb potential; see
(1.2). A rational edge is a line defect which is parallel to a fixed v; € A. We construct
an edge Hamiltonian H, gdge, which is a O(d)-perturbation of HY. It is invariant under
translations in Zv; but not invariant in other directions of A; see §3.

Edge states are time-harmonic solutions e ~*£1W(x) of the Schrédinger equation i9;1) =
Hgqget. The spatial profile, W, is localized in directions which are transverse to Rv,
plane-wave like (propagating) parallel to Roy, i.e. ¥(x + v1) = €*I1W¥(x). Here, k| €
[0,27] is referred to as the propagation constant, parallel quasimomentum or parallel
wave number. Thus, (\I/, E) solves an eigenvalue problem:

H., UV = FEV

edge
U(x+10;) = el U(x) (propagation parallel to Roy) (1.1)
U(x) — 0as {X%U?_OOO (localization transverse to Ruy).

We will reformulate (1.1) in a function space L%H, 0 < k) < 27, which incorporates the
boundary conditions of (1.1); see §1.3 and §2.2.

There are two types of rational edge orientations: zigzag-type and armchair-type; see
§4.4. Edge state diagrams are plots of E (k) vs. k). The global character of these diagrams
depends strongly on the type of edge and on the manner in which the symmetries are
broken by the perturbation; see Figs. 1 and 2.

In this paper we advance the spectral analysis of H gdge initiated in [22,23] and con-
tinued in [13,14]. Edge states which bifurcate from Dirac points were first constructed
for zigzag-type edges in [14,23] and in a related 1D model in [21,24]. See also [16,17]
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Fig. 2. Numerical simulations of edge state curves (blue/red) for ¥-breaking, Z-preserving deformations

(Hgdgc = ﬁé) and for (a) a zigzag edge; (b) an armchair edge. The edge state curves traverse the bulk
spectral gap. The spectral flow (signed count of eigenvalues crossing the gap) is 2. It equals the difference
of Chern numbers of low-lying eigenbundles at either side of the edge; see [13,14] and §1.5.

for extensions and refinements of [21,24] in the context of a larger family of dislocation
operators. In [23] a Schur complement / Lyapunov—Schmidt strategy was used. The pa-
per [14] characterized all zigzag-type edge states via a resolvent expansion [17]. This
characterization implies that 4-breaking induced edge states are topologically protected
[13,14].

We summarize the consequences of Theorem 5.1, and Corollaries 5.2-5.3:

¢ We provide a complete and detailed description of the spectrum of H, gdge in a neigh-
borhood of the Dirac energy, Ep, for all rational edges and small §.

e Our proof extends results of [14] to all rational edges, and thus encompasses the more
subtle case of armchair-type edges. Our method of proof unifies the approaches of
[23] and [14]. Motivated by [21,23,24] we use a Lyapunov-Schmidt / Schur reduction
strategy to obtain resolvent expansions.

o We interpret the robustness of edge states, following the analysis of [13,14].

¢ We discuss implications of our results for the Valley Hall Effect, which concerns
quantum Hall-like energy transport in honeycomb structures in the absence of a
magnetic field; see §5.3.

A brief summary of our results is in §1.3. The detailed theorems appear in §5.1.

Finally, we believe that our analysis can be extended to other bulk structures which
have conical (Dirac) points, e.g. deformations of the honeycomb structure which are 2%
preserving and structures with other underlying lattices.

1.1. Honeycomb operators and Dirac points
We begin with a periodic self-adjoint Schrédinger operator:

def

H° £ —A+4+V(x) acting on L? = L*(R?),
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Fig. 3. (a) Equilateral triangular lattice A = Zvy @ Zv»>. The circles make up the honeycomb structure — the
union of two interpenetrating triangular sublattices. (b) Dual lattice A* = 27Zk, @ 2w Zks, with Brillouin
zone % and independent high-symmetry quasimomenta K + A* and K’ + A*.

where V' is real-valued and periodic with respect to the equilateral lattice A = Zvi®Zvs.
The corresponding dual lattice is

AN =277k, ®27Zks where Kk, vy =0mn, m,n=12;

see §1.7. The Brillouin zone 2 C R? is a choice of fundamental cell of R?/A* = T2, the
regular hexagon in Fig. 3.
For k € R?, we let Li denote the space of k-pseudoperiodic functions:

L} S {ue L2 (R?): u(x+v)=e* " u(x), ve A}.

loc

Note that le(Jrq = L} for q € A*, and hence L} is A*-periodic in k. For k € R?
we let HY be equal to HY acting on L. This operator has discrete spectrum denoted
Ei(k) <--- < Ey(k) < ..., listed with multiplicity. The dispersion relations of H° are
the eigenvalue maps k € R?  Ej(k). These are A*-periodic and Lipschitz continuous
functions of k [2,26]. The spectrum of HY acting on L? = L?*(R?) is the union of the
intervals (spectral bands) Ey(2): or2 (H) = y—; Eb(%). The collection of dispersion
relations and corresponding eigenmodes form the band structure of HY.

The function V' € C°(R?) is a honeycomb potential if V is real-valued, A-periodic,

even and 27 /3-rotationally invariant; see [25, Definition 2.1]:

[cg’ V(X)] =0, [‘@a V(X)] =0, [%a V(X)} =0, where
(1.2)

Elx) = fx. 2 € f(x), 2 = f(Rx),
and R denotes the 27/3-rotation in the plane. The single electron model of graphene
corresponds to V' equal to a sum of “atomic potential wells” over the set of honeycomb
vertices; see [25, Section 2.3].

The vertices of the regular hexagon, 4, are the points labeled K, K’ in Fig. 3 and their
rotations about the origin by 27/3. They play a distinguished role in the spectral theory
of H: the commutator [HY, %] vanishes if and only if k is equal to K or K’ modulo
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A*. Thus, in addition to £%-symmetry, Hy and Hy, are %Z-invariant. The vertices K
and K’ and their dual lattice translates, are often called high-symmetry quasimomenta.
Due to this extra rotational symmetry, L decomposes as an orthogonal sum over the
eigenspaces of Z:

Ly =Lk, ® L, ® Lk -

Here, 1,7 and 7 are the three cube roots of unity (7 = 62’”/3) and L%gw is the subspace
of L} consisting of functions for which Zf = wf.

Using the above observations, it was proved in [24,25] that for generic honeycomb
potentials V', the band structure of H° = —A + V has Dirac points at the vertices of
B; see also [1,7,12,28 38]. This means that there exist Fp, vg > 0 and b, > 1 such that
for K, = K, K’, the operator H%* has a double eigenvalue at energy Ep, at which two
dispersion surfaces touch conically:

By 1(k) = Ep +ve [k—K.| - (1 + o(|k — K.])),

By, (k)=Ep—vr k—K,|- (1 + o([k—K.])), vr>0, knearK,.
For spatially localized initial conditions the Schrédinger evolution disperses: e~ ot f
spreads and decays as t increases. When f is spectrally concentrated in energy / quasi-
momentum about a Dirac point, the effective evolution on large, finite time scales follows
a time-dependent Dirac equation [26]. This explains the relativistic behavior of quasi-
particles (wavepackets) in graphene [41]. Dirac points persist under small A-periodic
PE-invariant perturbations, see [25, Section 9]; in this case a tilted Dirac equation
governs the character of its wave-packet evolution.

This paper further explores how perturbations of H? affect the dynamics of wave-
packets which are spectrally concentrated near Ep. If H? is perturbed to H = H® + Q,
where @ is smooth, real-valued and spatially localized, then the essential spectrum of
H is equal to that of H?; this is Weyl’s stability theorem [46]. Since Ep € 0ess(H),
we expect the dispersive character of the dynamics near energy Ep to persist under
such perturbations. In contrast, a class of A— periodic perturbations of H? at spatial
infinity which break &% —invariance destabilizes Dirac points; see [25, Remark 9.2]. Such
perturbations may open a gap in the essential spectrum about Fp and may produce
defect state energies within this gap. In the following sections we leverage this instability
to construct Hamiltonians with edge states with energies near Ep.

1.2. The edge state eigenvalue problem for rational edges

We are interested in Hamiltonians Hgdge that are line-defect perturbations of the
honeycomb Schrédinger operator H°. We briefly describe the construction of H, gdge and
refer to §3 for details.
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We start with the bulk honeycomb operator H° and we perform small (size §) A—
periodic deformations of H® at infinity, on either side of the line Rv;. This yields per-
turbed bulk operators nglk’ . at infinity, which are A— periodic. In particular, nglk’ 4
commutes with translations in Zv1. The operators nglk’ 4 and nglk,7 act on the spaces:

Lh, = A ELicR?) ¢ f(x+01) =™ f(x), / [f(x)) dx <oop,  (1.3)
R2/Zv,

where 0 < k < 27, share a common spectral gap of width O(d) about energy Ep.
We introduce an edge operator H, gdge, which interpolates slowly and transversely to
the edge Rb; (length-scale 6~ 1), between nglk’Jr and nglkﬁ. The interpolation is

implemented via a domain wall function; see §3.4. H®

edge Das only restricted periodicity;

it commutes only with translations in Zv;.
We consider two types of asymptotic bulk operators, denoted nglk’ . = HS and
Hp e+ = HY; see [30,36,38,45]:
(i) € is preserved and & is broken:
5 def

H = —A4V(x)+d- W(x), W is odd and A-periodic. (1.4)

(ii) £ is preserved and € is broken;

HY = A+ V(x)£d-div(A(x)- V),
_ (1.5)
Alx) = ¢ {a(ox) ao(x)} = a(x)oz , even and A-periodic.
The corresponding edge operators are denoted: Hgdge = H? in case (i) and Hgdge = H®in

case (ii). The global character of their edge state curves (k) versus E) are quite different.
This has dynamical and topological consequences, see §1.3-1.5 and §5.2.

1.8. Summary of main results

Our main results are Theorem 5.1 and Corollaries 5.2 and 5.3. They fully describe the

ky-edge states (¥, E) of HY,

edges I-€- the solutions of

HoqeeV = EV,  VWeli, Hly.=H orH,
for k) near K - vy or K’ - vy and energies near Ep. Our results cover all rational edges
(going beyond [14]) for both &— and €-breaking deformations of the bulk honeycomb
operator, H°. Hence this work gives a complete picture of the role in edge state formation
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and stability played by a) the manner in which symmetries are broken by the edge

operator and b) the orientation of the edge, Ro;.

)

Theorem 5.1 presents an expansion of the £2-resolvent of H®, _ for small § and energies

edge
near Ep; note from (1.3) that £ = L?(R?/Zv;). For simplicity, we specialize here
to an armchair-type edge, Rv, and a %-preserving deformation (Hlfdge = HY), with

by =K-v1 = K’ - v, = 0. This case contains all essential characteristics and technical
hurdles encountered in the general rational edge case.

The leading order term in the resolvent expansion is given in terms of the resolvent
of an effective Dirac operator. Specifically, there exist:

o explicit bounded operators Js : £3 — L*(R,C%), J; : L>(R,C*) — £%;
¢ a d-independent Dirac operator ¢ acting on L?(R,C*);

such that if z ¢ o2 (25) and 0 — 0, then

(H° —Bp—d2)""|  ~ %Jg‘ : (Qﬁ—z)_l-Jé. (1.6)

L3

The equation (1.6) shows that Js approximately intertwines the operators ¢ and H°
after the energy recentering and rescaling: £ = Ep + dz.

Corollary 5.3, a consequence of Theorem 5.1, provides a bijection between the eigen-
values and spectral projections of 25 and those of H? for energies near Ep. The operator
25 has a block-diagonal structure:

p- [P PR (17)

The operators ﬁK and ﬁKl are Dirac operators with spatially varying mass terms. They
act in L?(R;C?), and control, for § small, the bifurcation of edge states from the Dirac
points (K, Ep) and (K', Ep). By results presented in §4, their point spectra are the
same. Hence, the point spectrum of ;75 consists of double eigenvalues; this explains why
armchair-type edge state curves come in pairs; see Fig. 1, the numerical observations in
[22,38] and the photonic results [42].

Remark 1.1. Recall that Hgdge is constructed as an adiabatic interpolation between
asymptotic perturbed bulk operators nglk, 4 via a domain wall function; see §3.4. It
follows that the emergent Dirac operators have mass terms with opposite sign at foo.
Thus, lﬁK and lﬁKl have a simple L?(R;C?)— eigenvalue at zero energy; see Propo-
sition 4.5. The persistence of this zero mode of ¢K* against localized perturbations
guarantees that the spectra of ¢K and lﬁK/ seed at least one bifurcating edge state curve

of Hgdge; see [23]. See [3-5] for topological interpretations.
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Fig. 4. Zigzag-type edge, H®: Spectrum of (a) ;ZﬁK,(u) (red) and (b) lZﬁK(u) (blue) as functions of p; and
(c) Liu-spectrum of H® as a function of k|. Zooming at scale 6~ on (c) near (—2n/3, Ep) (resp. near
(27/3, Ep)) produces (a) (resp. (b)).

1.4. Dynamical perspective

Theorem 5.1 and Corollaries 5.2, 5.3 apply to all rational edges, both &- and -
breaking perturbations; and quasimomenta kj = K, - v; + du with K, = K or K’ and
1 = O(1). They involve 4 x 4 Dirac operatoriﬁ(u) with the block-diagonal structure (1.7)
made up of two 2 x 2 Dirac operators lﬁK(u) and IbK/ (1). Their spectra as functions of u
are represented on the left panels of Fig. 4. We derive the operators JZﬁK (1) and ]ZjK/ (1)
and their spectra in §4.

An analogous discussion to that given above for the case u = 0 shows that the

spectra of ;bK* (1) determine the L%*Anl_‘_(;#-spectrum of H®, near Ep. The numerical

edge
simulations displayed in Figs. 1 and 2 illustrate our main results and their dynamical

implications':

o Fig. 1 displays edge state curves for Hgdge, which is ¥— invariant. The two pan-
els display the (kj, E)-plots of solutions of (1.1) for (a) the zigzag edge and (b)
the armchair edge. By ¥ — invariance, the edge state curves are symmetric about
kj = 0. Thus, about a fixed energy near Ep, there are wave-packets solutions of
the time-dependent Schrédinger equation which travel in either direction along the
edge. Hence, wave-packets designed to propagate unidirectionally along the edge
will scatter off localized imperfections and excite waves propagating in the opposite
direction.

o Fig. 2 displays edge state curves when the deformation breaks ¥ — symmetry. Both
edge state curves traverse the bulk spectral gap downward. Correspondingly, wave-

L We are grateful to Y. Zhu and P. Hu for providing Figs. 1 and 2. The actual simulations contain additional
numerically-induced boundary modes, which are localized at the artificial computational boundary, which
is distant from the line defect. These spurious modes are not displayed in Figs. 1 and 2. The displayed edge
state curves in Figs. 1 and 2 do not change as the size of the computational domain is increased. Figures
which display such modes are presented in [38].
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packet solutions of the time-dependent Schréodinger equation travel unidirectionally
(with negative group velocity). Wave-packets designed to propagate unidirectionally,
when encountering localized imperfections, are not expected to backscatter: there is
no accessible energy channel for propagation in the opposite direction. This argument
does not however rule out some scattering into the bulk.

1.5. A topological perspective

In this section we explain the sense in which (a) the family of edge states of Fig. 1
is not topologically protected, and (b) the family displayed in Fig. 2 is topologically
protected. These conclusions follow from the detailed arguments in [13,14], applied to
the present context.

Consider the family of Fredholm operators

k’H — Hgd k” € R. (1.8)

ge}Liu ’
This family depends periodically on k). For each k|, there is a gap in the essential
spectrum about energy Ep. The spectral flow Sf(Hg,,., Ep) of the family (1.8) is the
signed number of eigenvalues crossing the energy level Ep as k| runs through R/27Z;
see [50] for an introduction. The count is +1 if the eigenvalue traverses Fp downwards
and —1 if it traverses Ep upwards. The spectral flow is an integer-valued topological
invariant: it remains unchanged even against large compact operator perturbations of
H gdge — and more generally against gap-preserving deformations.

For ¢ small, the operator H?

edge’LZ has no point spectrum near Ep unless k| is near
k

I
K -v; or K'-v;. In each of these cases, the spectral characteristics are encoded in the

Dirac operators lﬁK (1) and lﬁKl (). At the level of spectral flow, we have
Sf (H? e, Ep) = Sf (;bK, o) +SE(PX0);

see [14, §1.7 and §7]. Furthermore, we have Sf(le* ,0) € {—1,+41}, where the sign is given
explicitly in terms of parameters in ¢K*. This is a consequence of ODE arguments; see
[14,17] and the discussion in §4. See also [3-5] for an in-depth topological and transport
study of models built from these Dirac operators.

For H?, the spectral flow vanishes because edge state energy curves are symmetric
about 0; see Fig. 1. One can remove such edge states via specifically designed compact
operator perturbations; the family of edge states is not topologically protected.

The global character of the edge state energy curves for HY is quite different; see Fig. 2.
In this case, the spectral flow is equal to +2 or —2; two families of edge states persist
across the bulk spectral gap and are stable against, for example, compact perturbations.
The family of edge states is topologically protected. We refer to [14] for proofs and to
[13] for extensions beyond gap preserving perturbations.
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The existence (or absence) of topologically protected edge states relates to a principle
called the bulk-edge correspondence; see, e.g. [8-10,15,18,19,31,33-35,48]. Since the gap at
energy Ep is open, we may associate to H? two smooth vector bundles with base given by
the torus R%/A*. The fibers are eigenspaces of Hik and of Hf’k (k € R?/A*) associated
with the bulk spectral band below Ep. The Chern number is an integer obtained by
integrating a bundle curvature over the base R?/A*. The bulk-edge correspondence =
anticipates that the difference of Chern numbers associated to H_‘f_ and H? is equal to
St (H gdge, ED). The analogous prediction holds for HS.

For H?, both Chern numbers vanish, by ¢ — invariance. Such structures are called
topologically trivial. For H % the difference of Chern numbers equals 2. See [13], where
the calculation is reduced to a standard two-band model. Therefore, in both types of
deformation, the spectral flow (boundary index) is equal to the difference of Chern
numbers (bulk indices), a quantitative bulk-edge correspondence for Hamiltonians HS
[13]. From a dynamical point of view, H represents a configuration of materials that is
insulating in the bulk but exhibits topologically stable transport along its line defect. It
is a non-trivial example of topological insulator in a continuum PDE setting.

1.6. Organization of the paper

In §2, we review the Floquet-Bloch theory of A- and Zv;-periodic operators on L?(R?).

In §3 we construct our class of edge operators H?® We fix a rational edge direction

edge*
and interpolate, via a domain wall, between slightly deformed bulk operators nglk, 4 of

the form (1.4) or (1.5). There are three key hypotheses:

(H1) The unperturbed bulk honeycomb operator H® = —A + V has Dirac points;

(H2) HY satisfies the spectral no-fold condition (stated physically, H? is semi-metallic
at energy Ep);

(H3) The deformed bulk operators nglk’ 4 and nglk’ 4 satisfy a (generic) non-
degeneracy condition.

In §4.1 a multiscale expansion [22,23,38] is used to construct approximate edge states
as slowly varying linear combinations of Dirac point (energy-degenerate) Floquet—Bloch
modes. The slowly varying mode-amplitudes are governed by a system of Dirac equations,
whose spectral properties are summarized in §4.2. This approximate construction implies
the existence of genuine edge states with energies in the gap about the energy Ep; see
§4.3. Additionally, the analysis suggests a classification of rational edges in two types:
zigzag-type and armchair-type. These depend on whether there is coupling between
spectral components near the quasi-momentum sublattices K + A* and K’ + A*; see
§4.4.

In §5 we present our main results: Theorem 5.1, a resolvent expansion for energies
near Ep, and Corollaries 5.2, 5.3, a precise characterization of the point spectrum of

H5

cdge Tear energy Ep. In §5.2-5.4, using topological arguments presented in [13,14], we
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discuss the global properties of edge state curves which bifurcate from the Dirac point
energy — in the ¥— invariant and % — breaking cases. The mathematical core of this
paper is the proof of the resolvent expansion for general rational edges, Theorem 5.1, via
a new strategy.

1.7. Notation and conventions

e We let A = Zvy & Zv, be the equilateral lattice and A* = 27Zk, & 2nZks be its
dual:

R T R 1 R 7 ) R

where a? = 2/+/3 so that [v; A vy =1 and k; - v; = §;;. A fundamental period cell
and Brillouin zone, %, are depicted in Fig. 3.
o High symmetry quasimomenta:

K= 2?ﬂ(kl — ko), K = —K; (1.9)
see Fig. 3 and §3.1.

o We will use L2-based spaces: L? = L?(R?); quasi-periodic functions w.r.t. A: L =
L (R?/A); quasi-periodic functions w.r.t. Zvy: Li” = L%H (), where ¥ = R?/Zv;.
We define analogously Sobolev spaces H®, Hy, and U{,j.”.

o The Pauli matrices are

o1 = {(1) (1)} , 09 = [8 _0’} , 03 = [(1) _01]. (1.10)

They satisfy O'JQ- =1Id and o0, = —0,,0; for j # m.

o ¢, P and Z denotes respectively the complex conjugation, parity inversion and
27 /3 rotation; see (1.2). We shall refer to ¥—, #— and &% — invariant operators.

o If H is a Hilbert space and A is selfadjoint operator on H, we denote the spectrum
of A by oy (A).

o If H and H’ are Hilbert space and ¢ € H, we write ||H for the norm of #; if
A:H — H' is a bounded operator, the operator norm of A is

def
|Allisr = sup [A|y.
[|ln=1

If H =H', we simply write |Allx = | Alln—n-

o Ifp. € H —resp. A. : H — H is a linear operator — and f : R\ {0} — R, we write
e = Oy (f(a)) —resp. Ac = Oy (f(s)) — when there exists C' > 0 such that
[l < Cf(e) — resp. ||Acllpmn < Cf(e) — for e € (0,1]. If H = H’', we simply
write A = Oy/(f()).
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2. Preliminaries
In this section we review Floquet—Bloch theory for periodic operators. Basic references

are [46, Chapter XIII] and [37]. We discuss decompositions of L? = L?(R?) and Li” =
Liu (R?/Zv1):

[S7] D
L? = / Lig(R*/A) dk and £} = / Li, gy 4es, (R?/A) dt.
ke [_ﬂ'aﬂ-]

These spaces arise in the study of Hamiltonians which are invariant with respect to
translations in A = Zb, @ Zbvs and Zvq, respectively.

2.1. General Floquet-Bloch theory of operators acting in L?

Let A be the equilateral lattice Zv, @ Zvy C R? with fundamental cell Q. Let A* =
21Zk; @ 21wZky C R? be the lattice dual to A, and 2 be the Brillouin zone of R?/A*;
see §1.7.

We introduce the space L = L2 (R2 / A) of k-pseudoperiodic functions

L} ¥ {Fel} (R?: Fx+v)=c*VF(x), veA}

loc

equipped with the Hermitian inner product and norm:

(.6, TG (R < [ FeoPax
Q Q

Given a complex-valued function f € C§°(R?), we associate the Gelfand—Bloch trans-
form, the function of (k,x) defined by:

Flex) 0 eox 37 fae-1)e 5 Fio) = [ ey,

k/eA* R2

For each k € £, f(k,x) € Li, and by the Fourier inversion formula, f has a Li—
decomposition:
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! S /f(k,x)dk. (2.1)

B

The factor (27)? = |27k; A 27ks| is equal to the area of %. The decomposition (2.1)
extends by density to all f € L? using the Plancherel-like identity:

f17: = /|f k|7, dk. (2.2)

Let T be an operator which is A-periodic, i.e. (T'f)(-+v) = T(f(-+v)) for v € A and
f in the domain of 7. Then T maps L to itself and we denote the resulting operator
by Ti. We can study the action of T on L? fiberwise. We write:

5]
! . 1 e
T= (QW)QQZTk dk,  meaning Tf(x)= (QW)QQZ(ka(k, ) (x) dk. (2.3)

Thanks to (2.2) and (2.3), we can estimate the operator norm of T from those of Ty:

|Tf‘L2 /’ kf |L2

! 2 2 2 2
< oy | VBl 17003 < sup Tl 15T

By (2.3) the kernel T'(x,y) of T is expressed in terms of the kernels Tk (x,y) of Tk:

5 /Tk(x, y)dk. (2.5)

B

2.2. Floquet—Bloch theory of operators acting on L%H

Let v1,05 be any vectors in A such that A = Zv, & Zvs and define the cylinder
¥ =R?/Zv,. For k| € [-m, 7] we introduce the space

def

Lku - Lku {feLi (R?): e-hifixf(x) e L2 (D)}

see also (1.3). The Sobolev spaces fHkH are analogously defined.
In analogy with (2.1), functions in £2 ky have a representation in terms of elements of

Li, where k varies over a one dimensional Brillouin zone, the quasimomentum segment:
k‘”ﬁl + tRo, |t| <
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1 ™
f(x) = Gy /f(k“ﬁl + tRy, x)dt. (2.6)

The decomposition (2.6) implies relations analogous to (2.3), (2.4) and (2.5). If T
acting on Lil commutes with Zvi-translations, then 7' acts on L%”RIHRQ for every
t € R. The resulting operator is denoted T3 and we have

52] T
1 1 ~
T = Py / T; dt meaning Tf(x)= Py / (T f (k81 + t8R2,-)) (x)dt. (2.7)
T T
[771'17(-] -
The analog of (2.4) is
2 2 12
ISy, < s 1Tl (238)

and the analog of the representation (2.5) is

s

! 5 /Tt(x,y)dt. (2.9)

T(x,y) = W

—T

The decomposition (2.7) allows us to build up the Li“—spectrum from the collection of
fiber spectra:

os: (T)= | {aLi(Tk): k:k”ﬁ1+tﬁg} . (2.10)

te[—m,m]

3. Honeycomb medium with line defect

Let A = Zvy & Zvs be the equilateral lattice, with area-normalized fundamental cell;
see §1.7. Let v = a;vy+b1ve € A, where a; and by are relatively prime, be the direction
of the edge. There exist as, by such that a1bs — asb; = 1 and we set vy = asvy + bavo;
this implies A = Zv, & Zvs. The dual lattice, A* is given by A* = ZK; & Z Ko, where
K1 = boky —asks and Ky = —b1ky + a1ks. See Fig. 3, showing the zigzag-edge direction
v = V.

We next discuss the honeycomb Schrédinger operator H® and then build up our edge

(line-defect) Hamiltonians H, gdge

in several steps. We adopt the framework of [23].
3.1. Honeycomb Schridinger operators and Dirac points

Let H° = —A +V, where V is a honeycomb lattice potential as defined in §1.1, i.e.
V is C*°(R?), real-valued, A-periodic, and invariant under # (27 /3-rotation) and &2
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(spatial inversion). Recall that the vertices of the Brillouin zone, %, are high-symmetry
quasimomenta generated via 27 /3 rotation of K and K'; see (1.9).

We say that —A + V has a Dirac point at (Ep,kp) if (a) Ep is a LiD-eigenvalue of
—A 4V of multiplicity 2; and (b) there exists b, > 1 such that the dispersion surfaces
k — Ep, (k), Ep,+1(k) touch in isotropic cones: for some vp > 0,

By +1(k) = Ep +vr [k —kp[- (1 + o([k —kpl)),
Ey, (k) =Ep—vr k—kp|- (1 + o(k —kpl)).

*

Theorem 3.1. [2/,25,38] For a generic choice’ of honeycomb potential V, the operator
—A +V has Dirac points at (K, Ep) and (K', Ep).

We elaborate further in order to derive some useful relations. The kernel of Hy — Ep
is spanned by two orthonormalized Bloch eigenmodes ®¥, ®¥ € L2 | which satisfy

AOY =1 B, TP =0F, ZIF =7 O (r =€) (3.1)

Thus, ®; € L , and &1 € Lk .. We set ®K = 20K and oK' = 20K, Since ZHY, =
HY, 2, the pair {®K', K’} is a basis of ker (HY — Ep). Furthermore, by (3.1):

#K =7 0K ¢2oK =0k g0k =7 oK, (3.2)
q){{/ € L%{/,T and <I>§</ € L? + 7- Furthermore, we may take PK+t+a = K- for all q € A*

for K, = K, K'.
Using properties of #Z acting on the vectors @?* (j=1,2, K, =K, K’), we have

(0¥, Vol = (off volt) = (8), a=1,2 (3.3)

and that <<I>{<7 —2@'V<I>§<> is proportional to (1,i)", an eigenvector of the 27 /3 rotation
matrix, R. Using that any scalar multiple of <I>§< and <I>§<l satisfies (3.1), respectively
(3.2), we may replace ‘b{i* by ei‘F‘I){{*. For an appropriate choice of phase, ¢, we may
take the proportionality factor (the Fermi velocity) to be strictly positive. Hence,

(@t -2vef) = e (}) and (o -avaf) =~ (1) -0,
(3.4)
Going forward we make the following hypothesis on the bulk potential V:

(H1) H° is a generic honeycomb operator so that Theorem 3.1 applies with (3.4).

2 Qeneric has the following precise meaning. Assume jﬁv/A e~ atle) Xy (x)dx # 0. Then, for all real ¢,

except possibly for a discrete set which includes € = 0, the operators H®) = —A + €V have Dirac points.



A. Drouot, M.I. Weinstein / Advances in Mathematics 368 (2020) 107142 17

3.2. The spectral no-fold condition; H° models a semi-metal at energy Ep

A second key hypothesis on H’ = —A + V states that if Ep is the energy of a
Dirac point, then the two touching dispersion surfaces at energy Ep do so only at high
symmetry quasimomenta:

(H2) The spectral no-fold condition
Let K, = K or K, = K'. Then, for b= b, and b, + 1,

if (K, +t82) = Ep, then K, +tR e K+ A* or K, +tR € K'+A*. (3.5)

An assumption similar to (H2) was introduced in [23] and is implicit in the physics
literature [30,45]. The formulation in [23] is tailored for zigzag-type rational edges and
the generalization (H2) allows for armchair type edges as well; all arbitrary rational edges
are now covered.

Since the density of electronic states is zero at energy Ep, graphene is often called a
semi-metal. The condition (H2) holds in the (explicitly solvable) tight binding model of
graphene [41] and by [27, Corollary 6.4] the condition (H2) holds in the strong binding
regime. Honeycomb structures that satisfy (H1) but fail to satisfy (H2) can be thought as
metallic at energy Fp. An example where the no-fold condition fails is the case where V
is a small amplitude honeycomb potential and v; = v; +va, the armchair edge direction;
see [23, §8].

In the following section we shall introduce edge perturbations of H°, which destabilize
Dirac points. Thus, for k near Ky, there is a spectral gap about energy Ep. If (H2) fails,
then we expect a wave-packet comprised of Floquet-Bloch modes near K, to resonate
with Floquet-Bloch modes of energies near Fp, but with quasi-momenta away from K.
Such wave-packets are conjectured to slowly radiate their energy into the bulk [23, §1.4].

3.83. Deformed bulk Hamiltonians

Henceforth, we assume that HY = —A +V satisfies hypotheses (H1) and (H2) of §3.1
and 3.2.

In this section we define A-periodic perturbed bulk operators, perturbations of H?:
nglk,i: HS and fNI‘i Far from the line-defect, HS corresponds to Z-breaking and ff‘i
to ¢-breaking deformations of H°.

3.8.1. P-breaking and € -invariant model
Let W € C*(R?) be real-valued, A-periodic and odd. We set

def

H, = HY+6W(x) = -A+V(x) £ 0W(x).

We observe that [¢, H]] = 0 while [22, H]] # 0. Since ZH} = H® 2, the operators
Hi and H? have the same spectrum.
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In addition to (H1) and (H2) we make the following assumption on W:

(H3) Non-degeneracy: W is smooth, real-valued, odd, A-periodic and
9K — <<I>{<*,W(x)<1>¥*> £0, K, = K,K'.

Note that since W (—x) = —W (x), we have 9K = —9¥. Furthermore, 9%+ is invari-
ant under ®; — ew@l, 0 € R.

Conditions (H1), (H2) and (H3) imply that H° has a gap in its £¥ _, - essential

spectrum, centered at Ep for K, € {K,K'}. Indeed H{ and H’ have a common gap in
their essential spectra;

(L%, .o, essential spectrum of HY)NYs = 0, % ' (as, bs), (3.6)
where,
as = Ep — 0 Ygap + O(6?), bs=Ep — 08 Ugap +O(6?), Vgap = |95 (3.7)

This property is implicitly contained in [23, Section 7.1]; see [14, Lemma 4.1 and 4.3],
which imply (3.6) via (2.10).

3.8.2. € -breaking and P —invariant model
Let a € C*° (]RQ) be real-valued, even and A-periodic. We set

HY = -A+V(x)£6-div(A(x)- V), Ax) =i [G(OX) _“(X)] = ia(x)oy.

We have [2, HS.] = 0 while [¢, H®] # 0. Furthermore, since %f[i = H% %, the operators
H?_ have the same spectrum. In analogy with our discussion for H, if H satisfies (H1),
(H2) and the non-degeneracy assumption

(H3) 9% = (oK div(A(x) VoK) #0

then the operators H i and H® have a (common) L%(*,t,l gap in their essential spectra;

(L%{*_Ul essential spectrum of ﬁi) N = 0, s = (65,35) , where

def

G5 =Ep — 0 gap + O(0?), b5 =Ep+06-Jgap+0(8%), Vgup = [I¥|.  (3.8)
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3.4. Edge operators and the edge state eigenvalue problem
A domain-wall function is a real-valued function k € C*°(R), such that:

lim s(s)==+1 and &' €L>™.

s—+oo

We introduce and study Hamiltonians Hgdge

which slowly interpolate transversely to
the rational line-defect Ry, between H{ as Ry - x — +00. This is realized via a scaled
domain wall function. We define the edge Hamiltonian, H?’ with &-breaking and

edge?’
% —invariant bulk as
H’ = —A+V(x)+6- k(682 x)W(x),

and define the edge Hamiltonian, H?

cdger With @—breaking and &—invariant bulk as

HY = —“A4+V(x)+4- div(k(68R2 - x)A(x)V)

Since Ks - v1 = 0, the operators Hgdge commute with translations in Zv;.

Hamiltonians of the type H?® were introduced in [21,23,24]. Those of the type HS
are closely related to photonic settings studied in [30,36,38,45]. In [38] a broader class
of anisotropic honeycomb photonic (unperturbed) media is introduced; the analysis of
the present paper extends to such operators and their perturbations. Both H? and HS
incorporate the essential features of key physical models [30,45]. A magnetic perturbation
(breaking ¢-invariance) of HY was investigated in [13,14].

In the remainder of the paper, we focus on edge states with energy near Ep. These
are the Lﬁ” -eigenvalues of H, gdge:

Hgdgelll = FEVU, Ve J—Ciu, kye|-n,m), Ee¢ 4° (resp. 9° ). (3.9)

4. Multiscale analysis and effective Dirac operators

We review the multi-scale construction of approximate edge states [21-24]. Effective
Dirac operators emerge as determining the transverse localization of these states. Since
edge states eigenvalues are poles of a resolvent they therefore also emerge in the leading
order term in the resolvent expansion of H, gdge near energy Fp; see Theorem 5.1. Before
embarking on this expansion, we make a convenient choice of basis for the eigenspace
associate with the Dirac points (K, Ep) and (K', Ep). Let £ be such that £-v; =1 and
Ky - £ =0, thus

L= R - [ﬁ—ﬂ-ﬁl} il (4.1)
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Proposition 4.1. Let <I>§<*, j=1,2, with K, = K or K’, be given as required in hypothesis
(H1); see Theorem 3.1 and (3.4).

(a) There exists § € R such that if we redefine @X* as e ®L* | and K+ as PE [0 0K+,
then we obtain an orthonormal basis for L%(* — kernel(H° — Ep), {@{(*,d);{*} with
¥ ¢ L. - oK € L. 7 and such that for all r € R?:

I

K,
VF

|Ra|

<((I>K*)Ta —2ir - V(I)K*> = ( (ﬁg "I’) o1+ det[’l",ﬁg] 0'2) . (42)

Here, vE = vp and VIF</ = —Vp.
(b) Furthermore, if € is defined as in (4.1), then

K

(KT, —2i0. VoK) = E_ o) (4.3)
|Ra|

Proposition 4.2. Let W be as in (H3) and A be as in (1?3) below. For K, =K, K':

<(‘I’K*)T,W‘1>K*>=19K*03, where 9% = ¥, (4.4)
((@%) 7, div (A-V<1>K*)>=5K*03, where 9% = ¥ (4.5)

We remark first on the proof of Proposition 4.2, and then give the proof of Proposi-
tion 4.1.

Proof of Proposition 4.2. The relation (4.4) follows from W being odd. Relation (4.5) is
proved in [38, Proposition 5.1 and Section 7.1].

Proof of Proposition 4.1. We begin by proving (4.2) for the case r = Rs. Start
with the basis {®F*, &K} of kernel(H? — Ep) for which (3.4) and (3.3) hold. Let
Ry = (ﬁél),ﬁg)). First consider K, = K. By (3.3), the diagonal entries of (4.2) van-
ish. Concerning the off-diagonal elements, we note first that (®¥,—2iR, - VOF) =
(9K —2iR, - VOK); the matrix is Hermitian. By (3.4), (9K, —2if, - VOK) = v (/" +
iﬁ(;)). Define </I;1 = w®; and @2 = w®y, where |w| = 1 and is to be determined. We have
<§>§<, —2iRs - V<f>{<> = Vvp W (ﬁgl) —l—iﬁéz)). Choose w so that @w? = (ﬁgl) - iﬁé2))/\ﬁ2\.

Then, <<T>§<, —2iRs - V<f>{<> = vr |Rz|. This implies (4.2) for the special case & = K,
and K, = K. The relation for & = &, and K, = K’ follows by the same argument and
using the second relation in (3.4).

To prove (4.2) for general r € R?, we first fix K, = K and let w and &)j be chosen
as above. Again the diagonal elements vanish and the matrix is Hermitian. Furthermore
<§>{<, —2ir - §>§<> = w? (®¥,—2ir- ®K) and by (3.4) we have <<f>{<,—2ir : <f>§<> =
vp @2 (r) +ir) = ToT (Ra-7r + i det[Ra,r] ). Since the (2,1) entry of the matrix

is the complex conjugate of this expression, we have proved that the pair {:I\):Il'{,(f)?}
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satisfies (4.2) for the case K, = K. The case K, = K, is proved the same way; we need
only apply the second relation in (3.4). This completes the proof of (4.2).

Finally, we verify (4.3). Suppose that £-v; =1 and K - £ = 0. Since £-b; = 1, we
have £ = &) + pR,, for some p € R (recall Ky - b1 = 0). Furthermore, & - £ = 0 means
Ko (R +pR) = 0 and hence p = —(K; - Ka)/|R2|?. Therefore, £ = K — [(Ka/|R2])-
£4] (Ra/|R2]), the projection of £ on the orthogonal complement of K. For this choice
of £, we have det[£, Ks,] = det[R;, Ka] = 1. By the choice of £, and K5 in Section 3.
Thus we have <§>{<, —2il - &>§(> = ray1lo2; the pair {®K K1 satisfies (4.3). Finally, we
drop the hats and simply write <I>§<* instead of ZI\)f* (j = 1,2 and K, = K,K'). This
completes the proof of Proposition 4.1.

4.1. Multiscale analysis

In this section we review the construction of approximate solutions of the eigenvalue
problem (3.9) with k| = K, -0y +du, for small §; see [22,23,38] (1 = 0) and [14] (u # 0).
In our discussion, we fix Hgdge = H?; the procedure is analogous for H?. We seek a
solution of (3.9) in the form W(x) = e#£> . go(x) € L, 15, We let £ be such that
£-v, = 1 so that ¢( has fixed psedo-periodicity; ¢o € L%Q.nl. Below, we shall settle on £
given by the expression in (4.1) as an optimal choice. The discussion below will motivate
the choice of £ in the statement of Proposition 4.1.

Substitution into eigenvalue problem (3.9) yields
(—(V+ i01)*> + V(x) + - k(6K X)W (x)) po=FE-pg, o€ L%{*_ul. (4.6)

The form of (4.6) suggests an expansion of its solutions ¢g(x) = ¥o(x, IR2-x), depending
on, x, the fast scale of the periodic structure, and on s = §Rs - x, the slow scale of the
domain wall. The eigenvalue problem (4.6) for ¥y(x, s) is

(—(Vx + 6820, +i6pl)* +V(x) + 0r(s)W(x)) Uo(x,s) = E Vy(x, s)

V(x4 vy,5) = B Ty(x, 5), Up(x,8) — 0 as [s| = oc. 1)
We next expand (Ug, E) in powers of 0: Uo(x, s; 1) = \I/(()O) (x,8;1)+6- \I/(()l)(x7 Sip)+...
and E(p) = Ep 4+ 6 E1(u) + ..., and substitute these expansions into (4.7). Grouping
terms according to their order in § yields a hierarchy of equations for (¥,(x, s, u), E}),
which can be solved recursively. The PDEs in this hierarchy are each solved subject to
the conditions:

\I/((Jj)(erUl,s):eiK*'”l~\Il(gj)(x,s), \Il(()j)(x,s) — 0 as |s|] >o00, j>0. (4.8)

At order 6° = 1, we have (H® - Ep) \I/EJO) = 0. We solve it with \I/(()O)(x,s) =
O+ (x)T a(s), where a(s) = (a1(s),az(s))T is to be determined such that |a(s)| — 0
as |s| — oo.
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At order §, we obtain:

2
(H° — Ep) \I/él)(x s) 222 (R205045(s) + ipla;(s)) -Vxéf*(x)
j=1

2 2
x) - Y O (x)ay(s) + By @j(x)ay(s)
j=1

j=1
(4.9)

Equation (4.9) has a solution satisfying the pseudo-periodicity condition of (4.8) if and
only if the right hand side is L%(*—orthogonal to <I>{<* and <I>§<*. That is, for m =1, 2:

3 <q>§*, —2¢ﬁ2vq>§<*> ~00(s 22: <<I>§*, —2i0V K- (x)> a;(s)

Jj=1

+Z<‘I’K* ‘I’K*> k(s)aj(s) — Erom(s) = 0.

Jj=1

(4.10)

The system (4.10) can be simplified using Propositions 4.1 and 4.2. The first inner
product in (4.10) is evaluated using (4.2) using r = K3. To evaluate the second inner
product in (4.10), we use second part of Propositions 4.1 and note (from (4.2)) that we
can eliminate the o1 dependence by choosing £ to satisfy, in addition to £-v; = 1, the
condition KRy - £ = 0; see (4.3). The third inner product in (4.10) is evaluated using (4.4)
in Proposition 4.2. We summarize:

Proposition 4.3 (¢ invariant, & breaking case). For H’, == H?, the slowly varying

edge
amplitudes a(s) = (a1(s), aa(s)) " are governed by the eigenvalue problem: pK*(u) a =

E1 «, where ﬂﬁK* (1) is the effective Dirac operator

K K 18 VK*
$ (p) = vp* |Re o1 98 + |ﬁ|u02 + 9% o3 k(s) .

’ 7
Here, v& = vp and vEK = —vp and 9% = —9¥.

If we now let (Eq,«) be an eigenpair of JbK* ), i.e. JbK* Ja = Eia, a € L3(R),
then (4.9) has a solution, \II( )(x s), with the required pseudoperiodicity. It follows that
K (x)T als) + 5\11( "(x,5) solves (4.7) modulo 0(8?).

When considering H? instead of H® , the perturbation of H? = —A+V is the operator
div(k(s)A(x) - V) instead of H(S)W(X). The same analysis as for H°, now using the
relation (4.5) of Proposition 4.2, yields:
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Proposition 4.4 (¢ breaking, & invariant case). For H, = = fI‘S, the slowly varying

edge
amplitudes a(s) = (a1(s), aa(s)) " are governed by the eigenvalue problem: ﬁK*(p) o =
E; «, where ;DK*(M) is the effective Dirac operator

10 vK*

DX () = Vi |Ra] o 79s T "] 12 + 9% o3 k(s) .

Here, V? = vp and v%‘l = —vp and 9K = 9K,
4.2. Spectra of effective Dirac operators

The properties of Pauli matrices (see (1.10)) imply the following relations among the
Dirac operators and their spectra:

o P¥ () = —P¥(u) and hence o2 (P¥ (1)) = —or2 (P¥ (1))

 Abp=0, U2¢K*(0)02 - _JDK* (0) and hence o2 (le*(O)) is symmetric about zero
energy. - . -

. 031%5“' (n)os = JDK(,u) and therefore o2 (JbK(,u)) = 0q2 (le (1)

The following result summarizes the spectral properties of ﬁK* and ;bK ). Recall
first that Ogap = [9%| = [9%'| and Ggap |9K| = |9K'; see (3.7) and (3.8).

Proposition 4.5. Let K, = K, K'.

(1) The L*(R) spectrum opr* is real and symmetric about zero energy. Its essential
spectrum in the set R\ (—0Ogap, Ggap) The point spectrum ofﬁK* contains zp = 0.
Moreover, for some N > 0, the point spectrum of;bK* consists of 2N +1 discrete
simple eigenvalues, symmetric about zero, in the gap (—Hgap, Ogap):

—Ogap < —2_N < <221 <20=0< 21 <+ < 2Ny < Ogap.

(2) For p € R, ¢K* (1) acting on L2(R) has essential spectrum given by

2
A4
O’ess(pK* (,U/) - R \ ( gap (M)? egap (,LL)), 'l,UheT'@ agap (M) = egap + |ﬁ§|2 /1’2‘

Let N be as in part (1). There are 2N +1 eigenvalues 955 (1) < --- < 9K* (1) in the
gap (— Hgap(u),egap(,u)), For j # 0 these eigenvalues are given by the expressions:

B 2, 1<j<N, (4.11)
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and for j = 0 we have

I (1) = — L;—; sgn (95+) .

(3) The results of parts (1) and (2) apply to the operator ﬁK*(,u) where we replace
19?* (:u) by 19?* (U)7 Hgap by egap and egap(U) by egap(U)'

Part (1) of Proposition 4.5 was proved in [17]; Part (2) appears in [6,14,20] and is
proved using part (1) in [14, Lemma 3.1].

4.8. From approzimate edge states to genuine edge states

In this section we use Theorem 5.1 together with the construction of approximate
edge states to obtain a complete characterization of all point spectrum in the gap about
energy I'p.

Consider the Hamiltonian H® and the associated effective Dirac operators JbK* (1),
K, = K,K’. (The discussion of this subsection applies as well to H ) Fix p € R, a
positive integer N as in Proposition 4.5 and any integer j with |j| < N. Finally, fix
K, =K or K'. Let (19?* (), a3 ( ,u)) denote the simple L?(R)- eigenpair of ﬁK* (1)
given by Proposition 4.5:

(5 () = 55 () )™ (s ) = 0. o™+ (sip) € P(R,C).

The multiple scale expansion approach of §4.1 can be continued to arbitrary fixed order
in § and yields, for any fixed M > 1 and ¢ sufficiently small, a construction of an &'(5™)
approximate L%QMMM eigenpair (E;)(M‘S(u), \IJEMJ(X, s; ,u)) of (3.9) with

(e = ES700) WIS (0,082 - x1) = Oug (6™

For j = —N,..., N, these approximate eigenpairs of (3.9) have expansions in powers of

o:

*75 * *7‘ . *7. . *7. .
U5 (ks ) = X x)T X (sip) + 6% st (x s ) + oo+ 6M P (x, 81 )

E;fﬂy‘*(u) Ep + 6 9% (u) + 0% e (u) + ... + oM e () (4.12)

Since the eigenvalues ﬁ?*(u) of the effective operator ;in* () are distinct, the approxi-
mate Ly, 15, cigenvalues are 0(5)— separated.

Fix an arbitrary o > 0 and let |u| < po. Basic general properties of self-adjoint op-
erators together with precise information about the location of approximate eigenvalues
of H? within the spectral gap about Ep enable us to conclude the existence of genuine
eigenvalues of H? in this gap; see [17, §3 and Appendix].



A. Drouot, M.I. Weinstein / Advances in Mathematics 368 (2020) 107142 25

From the multiple scale procedure above one can conclude for the case of zigzag
type edges the existence of (2N + 1) Lgﬂ'/3+5ﬂ_ eigenvalues and (2N + 1) L2—2n/3+5u_
eigenvalues of H® which are located within the order ¢/(§) gap in the essential spectrum,
(as(p),bs(p)), about Ep [23]. The resolvent expansion (5.4) of Theorem 5.1 ensures, for ¢
sufficiently small, that these eigenvalues are simple and that they are the only eigenvalues
in this spectral gap, located an arbitrarily small fixed distance from the boundary of the
gap; see [14] and Corollary 5.2. This is key to the topological arguments of [13,14] and
to the perspective outlined in §1.5.

The situation is different for the case of armchair-type edges. In this case, we have
K v, = K’ -v; = 0. Hence, via the multiple scale expansion procedure we produce 2 x
(2N+1) L3, 5 ,,— approximate (and then genuine) eigenpairs of H %: (2N +1) are generated
by app(pK(u)) and (2N + 1) by app(;bK, (u)). Since the 2N elements of app@bK(u))
and opp (pK' (1)), corresponding to j # 0, are equal (see (4.11)), the corresponding 4N
branches of eigenvalues of H? acting in L% 4ou— are degenerate through order §. (We
are as yet unable to detect a splitting at finite order.) Therefore, in Theorem 5.1, we
give an expansion of the rank-two projector associated with each pair eigenvalues of H?
generated by the pairs of approximate eigenvalues {EjKj\g(ﬂ,), E]I-’(];f(/i)}, 0 < |j] < N; see
Corollary 5.3. The topological consequences nonetheless persist.

4.4. Classification of rational edges

Theorem 5.1 and Corollaries 5.2-5.3 show the dependence of spectral properties of

H6

edge ON Whether the edge is of zigzag or armchair type. The purpose of this section is

to motivate this classification of rational edges.
Consider solutions of the eigenvalue problem (3.9). Since an eigenfunction W is in Lz” ,
it has a decomposition (2.6):

™

U(x) = % / U (k) Ry + tRa, x)dt. (4.13)

-7

From the discussion of §4.3 an eigenfunction ¥ with energy near Fp has an approxima-
tion to arbitrary order in § of multiscale type. Its dominant spectral contributions come
from Floquet-Bloch modes with quasi-momenta near high symmetry quasi-momenta.
Hence, the dominant spectral contributions to the representation (4.13) is from those
values of ¢ € [—, 7] for which k&1 +tR2 = (K, -0+ u)R1 +1R2 is near the sublattice
K + A* or near the sublattice K’ + A*.

Thus, we distinguish two cases where, for |¢t| < m:

(a) kyfRy +t- Ry passes near K + A* or near K’ + A*, but not near both, or
(b) kB +1- Ko passes near both K 4+ A* and K’ + A*.
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These cases are in fact characterized by a simple arithmetic relation on the relatively
prime integers, a1, by, which define the edge direction: v; = a1v; + bivs. To derive
this relation, assume that (a) or (b) holds. Taking the scalar product of vectors on the
segment kR +1t- Ry with vy, we deduce that k| is near K-v; = 27(a; —b1)/3 mod 27
or K'-v; = —27m(a; —b1)/3 modulo 2. Since a; and b; are integers, k) is near —27/3, 0
or +27/3 modulo 2. Now (b) holds if and only if K-v; =~ K-t modulo 27 and hence
a; ~ by mod 3. Again since a1 and b; are integers, case (b) implies a; = b; modulo 3.
Thus, we classify rational edges according to whether or not a; and b; are equivalent
modulo 3:

Definition 4.6. Let v; = a1vy + b1 ve where a; and by are relatively prime.

(a) We say that Ro, is a zigzag-type edge if a1 # by mod 3. In this case, {K-0;,K"-0,} =
{-27/3,27/3} mod 2m.

(b) We say that Ro; is a armchair-type edge if a; = by mod 3. In this case, {K-v1,K’-
v} = {0} mod 27.

This terminology is motivated by the most commonly studied cases in the chemistry
and physics literature: the armchair edge — where v; = vi 4+ vo (a3 = by = 1); and the
zigzag edge — where b1 = vy (a1 = 1,07 = 0).

5. Main results: resolvent expansion and edge states

This section contains our main results:

o Theorem 5.1: the resolvent expansion of H?

: 2
edge acting on Lk”.

o Corollaries 5.2 and 5.3: identifications of all possible edge states, whose energies are
in the spectral gap about the Dirac point energy, Ep.

5.1. Resolvent expansion for Hgdge
We first provide some setup for the resolvent expansion. From the L%Q— kernel of
H° — Ep (see §3.1 and Proposition 4.1), we form C*— and C?— valued Floquet-Bloch

modes:

PK~

K
® = (I)K’ € C*(R?,C*), where &% =| "L
P oK-

} € C(R2,C2).

Zigzag- versus armchair-type edges are defined in Definition 4.6. If v is a zigzag-type
edge then {K-v;, K’ 01} = {—27/3,27/3} mod 2r; thus L., # Lk, If 01 is an
armchair-type edge then {K-v;,K’-v;} = {0} mod 27; thus L, = L§..,, = L3
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Corresponding to the two edge-types, we define the (averaging) operator

T : Dom(T) — L3(R2,CY), Tu(t) = / (Pu) (sv1 + toy)ds  where

R/Z (5.1)
def ng/s ® 527%/3 if vy is a zigzag-type edge;
Dom(T) = { L2 if b1 is an armchair-type edge.

Its adjoint, 7* : L?(R,C*) — Dom(T), is the restriction operator given by
T*u(x) = &(x) "v(Rse - x). (5.2)

T and 7* are bounded linear operators.
We also introduce unitary dilations on L2(R):

Usg(s) L 512 (67's) and Ujg(s) o 612g (6s). (5.3)

Finally, we form a 4 x 4 Dirac operator using ]ZﬁK(u) and lZﬁK/(u), arising in §4.1:

D) & pKO(“) pK(I)(LL) : HY(R,C*) — L*(R,CH).

The operatorﬁ(,u), acting in L?(R), has spectrum equal to o2 (lﬁK (1)) Uo 2 (ﬁbK/ (). In
particular, it has a gap (—Hgap(u), Hgap(ﬂ)) in its essential spectrum; see Proposition 4.5.
The mathematical core of this paper is the following:

Theorem 5.1 (Resolvent expansion). Let vy denote a rational edge, i.e. v1 = a;vy+b1va,
with a1 and by relatively prime integers. Assume (H1) — (H3) of §3.1. Fiz e, o > 0 and
K. € {K,K'}. There exists 69 > 0 such that if

0<d<do, |l <po |2 < Pgap() —e dist(z, o1 (gﬁ(u))) > ¢

then H® — Ep — 6z : j{%(*'vﬁéu — L%Qm—&-éu is tnvertible. Moreover, the following
expanstons hold according to whether Rvy is a zigzag-type or armchair-type edge:

o Zigzag case: When vy is a zigzag-type edge:

(H® — Ep —62) "

2 2
Lonsaton® Llon/sqop

= % : (Ug’Te_i”“’x)) " (;75(#) - Z) - Us T e~ iniex) (5.4)

—-2/3
+OL§7T/3+5H@L2—2M3+5M (5 ) :
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o Armchair case: When v1 is an armchair-type edge:

(HY = Ep —62) "

2
£3,

(5.5)

1 _
CUsTe x4 Ocz, (5*2/3> )

. (U&Teii““’x))* : (ZS(M) - z)

Sl

The analogous statements hold for PNI‘S, with ¢(/J) replaced by ZS(,u) ete.

The expansion for zigzag edges appears in [14, Theorem 1 and 3|. The current work ex-
tends the resolvent expansion to the more subtle case of armchair edges. The current work
combines of techniques from [23] and [14] to provide a unified treatment of all rational
edges by a more direct and transparent strategy. Note that the expansion (5.4) combines
expansions of (H® — Ep —6z)~! in the two spaces L%W/?»Mu and L%2w/3+6;¢’ respectively
in terms of the two effective Dirac resolvents (le(u) - z) ~!and (;bK/ () — z) —1. The
expansion (5.5) is an expansion of (H® — Ep — §z)~! in the single space L(2J+6u in terms
of the block-diagonal resolvent (ﬁ(u) - z) -1

We next discuss a key consequence of the resolvent expansion. Edge states energies are
L%(*‘ulwu—eigenvalues of Hgdge. The method of [23] shows that each of the 2N + 1 point
eigenvalues of ﬁK* (1) generates a point eigenvalue of Hgdge in the spectral gap about
Ep, |p| < po and § sufficiently small. Leading order expressions for the eigenvectors were
also constructed. These eigenvalues are poles of the resolvent of H? in the spectral gap.
Using Theorem 5.1 together with the arguments of [14,17], we can, for ¢ small:

(a) locate these eigenvalues/poles to arbitrary finite order in d;

(b) show that all corresponding eigenvectors have a multiple scale structure;

(¢) expand the edge-state eigenprojectors to arbitrary finite order in §; and

(d) explain the simulations of edge state curves displayed in Figs. 1 and 2; see also [22]

and aspects of the experimental study [42].

The results are detailed in the following two corollaries to Theorem 5.1. For zigzag-type
edges, we recover [14, Corollary 4]:

Corollary 5.2. Let vy be a zigzag-type edge and consider the setting of Theorem 5.1.
Fiz e arbitrarily small and positive. For § sufficiently small, the operator H® acting in
L%(*_UIJFM has precisely 2N + 1 eigenvalues in the gap

(ED — 6(Ogap (1) — €), Ep + (Ogap(p) — 6))

in its essential spectrum. The associated eigenpairs (E;(*’g(p), \IIE{*’é(-7 -;,u)), j =
—N,...,N can be expanded to arbitrary finite order in §:
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Ef(u) = B (W + 0 (8™,
W6 ) = WG (082 x5p) + Osg

M
Ky -vp+du (5 +1)’

where the expansion of (Efﬁé(u),\llfg/f) is displayed in (4.12). Analogous statements
hold for H®.

The next result describes the spectrum of H®,  for armchair-type edges.

edge

Corollary 5.3. Fiz ¢ > 0 and let v, be an armchair-type edge. Then, H® has precisely
4N + 2 eigenvalues in the L?M-essential spectral gap

(ED - 5(9gap(ﬂ) - 6)’ED + (egap(ﬂ) - 6))
Moreover:

e The eigenvalues — denoted {EJK*’J(,[L)} forj=—=N,....N and K, =K, K' - are
of multiplicity at most 2 and may be expanded to arbitrary finite order in &

ES(u) = ESP () + 0 (6% see (4.12)

o For each j € [—N, N], the rank-two eigenprojectors Hg’# associated with the pair of

eigenvalues {EJK"S(M),EJKI’(;(;L)} have expansions, to arbitrary finite order in §, in
terms of the projectors:

VS () @ U5 () + 0scs, (0M71), K, =K K} see (4.12).
The analogous statements hold for HY.

In Corollary 5.3, the two-dimensional eigenprojectors for the eigenvalue pairs EJK’(S(/U,),

EJI-<I75 (1) is expanded, since we only know, from perturbation theory, that the splitting
is 0(63) or higher.

5.2. Global character of edge state curves

Figs. 1 and 2 display edge state curves for zigzag-type and armchair-type edges for
H® (%— invariant, 2 — breaking) and for H (€— breaking, #— invariant). In this
section we use Theorem 5.1, and Corollaries 5.2 and 5.3 to explain these bifurcation
curves in terms of the properties of effective Dirac operators. Indeed, these corollaries
imply that all L%(*JF(SH eigenvalues, F, of Hgdge in the spectral gap about Ep satisfy:
(E—Ep)/§

¥+ 0(65), where ¥ is an L?(R)— eigenvalue of ]ZﬁK* (1) (respectively
DX (), K

K,K’. That is, a magnification of the L%{* 1o, €dge state eigenvalue
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0 H 0 k“

Fig. 5. Armchair-type edge, H®: (a) Spectrum ofﬁs(,u) as a function of u for armchair-type edges with TRS:
superposition of the left panels of Fig. 4 €-invariant case. (b) Liu -spectrum of H? as a function of k), with
anticipated splitting of edge state curves.

curves of HYy,. near (E,kj) = (Ep,K. - ) gives the eigenvalue curves of effective

edge
Dirac operatois. The spectra of these effective operators are completely described in
§4.2. Furthermore, that this local picture determines the essential characteristics of edge
state curves over the full range 0 < k| < 27 is implied by the a priori information of
[14, Lemma 7.2], which implies that for |k — K, - 01| > Cd (for some C > 0 fixed), no
edge state can have energy near EFp. We now proceed with a discussion of Figs. 1 and

2; the zigzag subcases was covered in [14].

5.2.1. Zigzag-type edge, H® (€ — invariant, P — breaking), Fig. 1, left panel

See also the schematic in Fig. 4. The effective Dirac operator ¢K determines the
L%/SMN spectrum of H® and ¢K ) determines the £2 % o /3460 spectrum of H®. The
simulations show a single edge state curve in the spectral gap varying linearly near
ky = £2mn /3. This local behavior is described by the spectra of effective Dirac operators
(Proposition 4.5), which have a single edge state curve (N = 0), varying linearly with p.
The slopes of the curves near k| = 27/3 and k| = —27/3 are equal and opposite since

orz( pKl = —or2( ﬁK), see §4.2.

5.2.2. Armchair-type edge, H® (€ — invariant, — breaking), Fig. 1, right panel

See also the schematic in Fig. 5. For armchair-type edges K-v; = K’ - v; = 0, and
hence L3 .,, = L3 oy = £2. Theorem 5.1 implies that the resolvent and character of
the spectrum in the spectral gap about energy Ep is determined by the block-diagonal
Dirac operator ¢(u) This effective operator has a two-fold degenerate eigenvalue for
p = 0 (corresponding to k| = 0) — a multiplicity one eigenvalue contributed by each of
the two blocks ﬂﬁK(O) and ﬂﬁK/ (0) — each of which departs from zero linearly in p with
equal and opposite slope; or,2 (ﬁKl) = —0q2 (ﬁK), Proposition 4.5 and Fig. 5, left panel.

Two scenarios are possible for § # 0:

(i) either the two perturbed eigenvalue curves of H° cross near kj = 0, or
(i) they split and H® acquires a full L?-gap near energy Ep.
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© \/ v

H|

k|l

0 H 0 k”

Fig. 6. Armchair-type edge, H®: (a) Spectrum of 15(;1) as a function of p for armchair-type edges with
broken TRS: two superposed copies of Fig. 4(b). (b) Liu-spectrum of H® as a function of k.

While the numerical simulations plotted in Fig. 2(b) favor (ii), our results do not preclude
either possibility. Analytic calculations show that the splitting is at most €(6%) and we
conjecture that it is O(d°°).

5.2.3. Zigzag-type edge, H (¢ — breaking, — invariant), Fig. 2, left panel
The effective Dirac operator pK(u) determines the L2 J3+sp SPectrum of H® and

ﬁKl (1) determines the £ spectrum of H?. In contrast to the ¥— invariant, &2 —

2727r/3+5l»’« g _
breaking case (§5.2.1), the protected eigenvalue curves of ﬁK (1) and le' (1), which pass

through zero energy, have the same slope since oy (ﬁK (,u)) = 0p2 (ﬁﬁK/(,u)); see §4.2.
This accounts for the behavior in Fig. 2, left panel.

5.2.4. Armchair-type edge, H’ (€ — breaking, &— invariant), Fig. 2, right panel

See also the schematic in Fig. 6. In contrast to the Cﬁ: invariant, #?— breaking case
(§5.2.2), the protected eigenvalue curves of lﬁK(u) and lﬁK/ (1) through zero energy are
identical. As in §5.2.2, for 6 # 0 the splitting is at high order as reflected in the right
panel of Fig. 2; see also Fig. 6.

5.8. A remark on the Valley Hall effect

Using our results, one can construct fully localized edge wave-packets spectrally con-
centrated near K or K’. In condensed matter physics, K and K’ are referred to as valley
degrees of freedom. The line-defect orientation has physical implications for energy prop-
agation along the edge. For ¥ — (time-reversal) invariant systems and a zigzag-type edge,
wave-packets concentrated near K or K’ travel in opposite directions since the valley
indices sgn(ﬁK) and sgn(t?K/) have opposite sign; see Proposition 4.4. Therefore, in a
non-magnetic honeycomb system, there is quantum Hall-like energy transport whose di-
rection is controlled by exciting the appropriate high-symmetry sublattice. This is closely
related to the Valley Hall Effect [39,44]. This effect is not present for armchair-type edges.
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5.4. Topological considerations

We provide a topological perspective of the bifurcation curves using arguments from
[14]. The spectral flow of H, gdge counts the signed number of Liu-eigenvalues of Hgdge
intersecting Ep as kj runs through [0, 27]; see §1.5.

The operator H? breaks & but not ¥. The %-invariance implies that edge state
curves are symmetric about k| = 0. It follows that the spectral flow is equal to 0. This is
seen in the simulation results displayed in Fig. 1. By adding suitably designed (compact)
perturbations, one can deform H° to an operator with no edge states; the edge modes
in ¥ — invariant systems are not topologically protected.®

The operator H? breaks %, but not . The spectral flow is here equal to +2: see
the explanations of §5.2, the rigorous discussion in [13] and the numerical simulations
displayed in Fig. 2. The edge states curves cannot be continuously removed through
compact operator perturbations: edge states of HY are topologically protected.

In the context of our operators, H, gdge, see [13] for relations between spectral flow and
the topology of the bulk operator band spectrum (bulk-edge correspondence), as well as
extensions beyond gap-preserving perturbations.

6. The resolvent expansion

In this section we prove Theorem 5.1. Symmetry properties of the Hamiltonian H gdge
(whether &- or ¥- breaking) play a role in the global character of edge state curves
(§5.2-5.4). However symmetry does not play a role in technical details of the resolvent
expansion for energies near Ep.

Our method of proof unifies the approaches of [23,24] and [14] to obtain the different
resolvent expansions for zigzag-type and armchair-type edge orientations. For ease of
presentation, we focus on the particular case of armchair-type edge states of the ¥ —
invariant Hamiltonian H, gdge
of spectral components of the two high-symmetry quasi-momentum sublattices K + A*
and K’ + A*.

For armchair-type edges (Rv; with K-v; = K’-v; = 0), the multiscale analysis of §4

= H?°. This case presents new hurdles due to the coupling

indicates that the point spectrum of H, gdge

acting in £3,, with energies uniformly within
spectral gap about Fp, is determined by the block-diagonal effective Dirac operator,
D(u) : H'(R;C*) — L2(R;C*); one block determining the K sublattice contribution
and the other block determining the K’ sublattice contribution.

The operator, Qﬁ(u), has degenerate (multiplicity two) point spectrum associated
with lﬁK(u) and ﬁKl (1); see §4.2. Furthermore, the spectral components of the two
high-symmetry (K and K’) quasi-momentum lattices are coupled by the line-defect per-

turbation. Our analysis will show that this coupling is non-resonant. Therefore, the

3 We believe such non-protected states can be continuously deformed away through a family of spatially

localized perturbations of Hgdge; this however is not immediately implied by general topological arguments.
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resolvent of Hgdge acting in Lgu is, to dominant order as § | 0, given in terms of the

resolvent offiﬁ(,u) acting in L?(R; C*). We carry out the expansion in £3 = L*(R%/Zv;).
This approach also gives the result for k = du stated in Theorem 5.1.
We will proceed along three steps:

1. The multiscale construction of §4 [23,24] suggests that edge states bifurcate from the
Dirac point (Ep,K,); the approximate edge mode is spectrally concentrated near
the energy / quasimomentum pair (Ep,K,). Thus in §6.1 we introduce orthogonal
projectors Il ear and Ilg,, = Id — I1,ca, that localize in energy and quasi-momentum
near and far from the Dirac points. Thus,

L(Q) = Hnear 53 Hfau Hnear = Range(nnear>7 Hfar = Range(nfar)- (61)

2. In §6.2, we express H? on £2 in terms of its action on the orthogonal summands
Hpear and He,, in (6.1):

} o ngar*ED — 0z 0

£ 0 H) —Ep—6z

far

+0.(0),  (6.2)

where H? = M,ear H® Hyear and Hf‘sar = Mg, H® T, By the spectral no-fold

near
condition (H2) (see (3.5)) the operator Hf has spectrum which is bounded away
from Ep. Hence, the invertibility of (6.2) is controlled by that of H?.. — Ep — 6z
on Hnear-
3. The core of the proof of Theorem 5.1 is in §6.3-6.4. There, H?,,, is related to the

Dirac operators pK*, first for HY,, itself (Proposition 6.4), then at the level of

near

ear

the resolvent (Proposition 6.5). A Schur complement / Lyapunov-Schmidt reduction
strategy applied to (6.2) yields £3-invertibility of H% — Ep — 6z and an expansion
of the resolvent provided z is bounded away from o (ﬁK) Uope (lZﬁK,)

6.1. Projector near Dirac points

Since we have assumed that Rv; is an armchair-type edge, K + tR intersects both
K and the sublattice K’ + A*. By A* periodicity of the Floquet-Bloch modes we may
restrict attention to the segment (1D Brillouin zone) ¢t € [—m, 7] — K + tRs; see (2.6).
By the no-fold condition (H2) (see (3.5)), along this quasi-momentum segment Hy is
“gapped ” away from k = K and k = K'.

In this section, we construct an operator Il,e,, that projects simultaneously near
energy Ep and quasimomenta K and K’ along K + tRs, [t| < 7. We first construct
operators ITIX: that projects near K, € {K, K’} along K + t8, [t| < .

We recall that Hﬁ is the operator H* = —A + V acting on Lﬁ. This operator is
unitarily equivalent to HO(k) = e~%*. H0. ¢k acting on L3 = L?(R?/A). Since H°(k)
varies smoothly with k and Ep is an eigenvalue of H%* of multiplicity precisely two,
there exist e, > 0 such that
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k — K. <n = Hg_ hasno eigenvalues but Ep in [Ep —¢, Ep +¢] ; (6.3)

see, for example, [32, Section 8]. We take §2/3 < 5. For fixed k, satisfying |k — K,| <,
we may define the orthogonal projector

1 —1
Hﬂ:z_m' / (C—Hy) d¢: Ly — L, . (6.4)
[(—Ep|=¢
Note by (6.3) that
Y =0 @ o + o @ ¢F and I (x,y) = oK (x) 0¥ (y). (6.5)

We introduce ITEx . (see [23]), a direct integral of operators IIY of quasi-momenta near
K.:

(&)
o 1 B
e, = 5 / x(5 2/3t> g, 4w, dE: L5 — L5, (6.6)

[_71'777]

Here, x is the characteristic function of the interval [—1,1]. Note that we are suppressing
the dependence of TIX; on 6. The operator IIX: projects to components with quasi-
momenta in K + tRs, |t| < 7, and at most §2/3 distant from K,.

For armchair-type edges, the segment K + tRs, |t| < 7, intersects both K + A and
K’ + A*. By the no-fold condition (3.5), along this quasimomentum segment the operator
HY is “gapped” only for quasimomenta bounded away from K and K’. Thus we introduce
a projector which excludes spectral components which are near either K+ A* or K’ + A*

def

Hnear = HK +HK/

near near-*

K’
near

K

Components in the range of II7,,

and range of 11 are coupled by the defect pertur-
bation. We show however that such coupling is non-resonant and prove that its effect is
negligible; see Proposition 6.8.

We next provide an expansion of ITK; .

Proposition 6.1. As § — 0,

HK* — HK*v(O) + OL%((52/3)7 where:

@
M0 = / X(670) et oI et dt, o7
s
[7777‘”]

where I : L% — L% is the projector to COI™* @& COL; see (6.5).
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Proof. 1. By (6.4), the projector
N(k) = emileoKaox qqp . gilkoKx 12 1%, (6.8)

associated to the operator H(k — K, ) = e #(k-Ks)x. 0. o=i(k=K)x yaries smoothly
with k [32, Section 8]. Hence, N (k) has a Taylor expansion:

N(k)=N(K,)+ 0z (k-K,)= My, + Opg (k—K,). (6.9)

The leading order term IT% is the projection to C®¥+ & COX+ displayed in (6.5).
2. Using (6.8) and (6.9), with k = K, +tRs, in (6.6) we get

D
s, = % / X(572/3t)H(I)(*+tﬁ2 dt
[~m.7)
D
= % / X(0723) - XN (K, + tRy)e "2 - dt

1

o (t)dt.

e &
) , 1
/ x(672/3¢) . e”ﬁz'xﬂ%*e_”ﬁ?'x - dt + o / x(672/3t) - 02

T Ki+tfg

[—m,7] [—m, 7]

The first term in this expansion is precisely Hnear( ) , displayed in (6.7). The second term

is 053(62/3) because x(62/3t) is supported in [t| < §2/3 and of (2.8). This completes
the proof of Proposition 6.1. O

Next, we give an explicit expression for Hn&,lr ), the leading term in (6.7).
Proposition 6.2. We have:
M = T x(672° D) Tk, : L*(%,C?%) — L*(3,C?).

Here, Tk, : L*(%,C?) — L*(R) and its adjoint T : L*(R) — L*(Z,C?) (£ = R?/Ro,)
are given by

Tc.ult) = / (#u) (s01 +10)ds, Tt o(x) = 9 () To(S - x). (6.10)

R/Z
Proof. 1. We use (2.9) to express the kernel of ().
1 —2/ i X —q .
M0 (x,y) = o / X(672/3) et X MY (x,y) e 82V gt

[77‘-771']
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Since I (x,y) = ®¥+(x)" ®K+(y) (see (6.5)), the kernel of ) as an operator
acting on L?*(X), ¥ = R?/Zvy, is given by:

HK*,(O)(X y) = PK- (X)T (572/300) ciwRa (x=y) g, @T(y)
near ’ om X : (611)
[771'777]
2. On the other hand,
(I)K* T . ,
(T (672D Y uto) = T [(a750) [ eextd (T ) ()t
™

R R
(6.12)

Writing out the dt}, integral we have:

1
[ et () ()it = [ at [[atetx ) (F0) (1o + tyva),
0

2 R

Set y = )by + t4v,. Hence dt|dt, = |0y Aby| dy = dy and t}, = R - y. Therefore,
/ e (R x2) (Tig ) (th)dth = / R Y) QR (y)u(y)dy. (6.13)
® b

Substitution of (6.13) into (6.12) yields:

. —2/3 oK (x) T —2/3 iwhs-(x—y) TR
(7. x(672D) Tie, ) ulx) = = [ x(07w) [ e K- (y)u(y)dy -
R., 5
Hence, for ¢ small:
q)K* T . )
(T x(67°D) Tac.) (y) = T2 [(52upeieste o) By
Y
R
K. ()T ‘
= 2§rX) / X(072w) 8 y) . oK. (y)dw

—,m)

(6.14)
Comparing (6.14) with (6.11) completes the proof of Proposition 6.2. O
6.2. Decomposition into near and far components

Using the projections Ilea; and Ilg,, = Id — Iy eqr, the space L% splits into near and
far quasi-momentum components:
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def

L(z) = Hnear 3 Hfarv Hnear d:ef Hnear (Lg) 3 Hfar = Hfar (L(Q)) .
We show here that the invertibility of H S _FEp—4dzon L% reduces to that of
Hnear (I_I(S - ED - 62) Hnear : Hnear — 7'[near~

We view H® — Ep — 0z as a matrix operator acting the direct summands Hypear and
Hear of Lg:

H6 _ ngar - ED — 0z anarHCSHfar

HfarH(SHnear Hgar —Ep—dz]’ where (6.15)

%) def %) 5 def 5
H, - anarH anara Hfar = HfarH Hfar~

near

We next simplify the off-diagonal components of (6.15). Note that I, is a direct inte-
gral of spectral projections associated to ng and therefore commutes with H°. Moreover,
Hneaerar =0 and

H® = H° + 6ksW, ks(x) = k(682 - x).

We deduce that Mear Hgy = 6 - Mpear - kW - gy and similarly, ITg,, (H S _FEp —
02) Myear = 0 - Uiay - KgW - Mpear. Therefore (6.15) becomes

H(S _ ngar - ED -0z d- Hnear ' H(;W . Hfar
B d- Hfar . KZ(;W . Hnear Hf(sar - ED — 0z

We construct the resolvent (H?,, — Ep — 6z)~! using the Schur complement:

A B def 1 . .
Lemma 6.3. Let M = C D be such that D and € = A — BD7C are invertible.
Then, M is invertible and

Mt — ¢! —e¢-1BD1
~|-D-'ce! D '4DlCce'BD |

We shall apply Lemma 6.3 with

A=H’,  —Ep—906z, B=20 T kW -

C =0 My - kW -Tyear, D=H), —Ep—6z.
We first study the invertibility of D = H — Ep — 0z on Hg,r. We note that
H), —Ep—0z=HY, — Ep + 06T (ksW — 2)ay = HY, — Ep + O, (0).

Because of (H1) and (H3), we have for some ¢; >0
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dist (03, (H°), Ep) > c16%/3.

Therefore the operator H® — Ep : Hpw — Hear is invertible, and its inverse is
On,., (072/3). A Neumann series argument implies that D is invertible on Hg,, with
D™t = Oy, (57%/3).

We turn to the invertibility of € = A — BD7'C': Hpear — Huear- We have

€ = (Hl,,, — Ep — 62) — 6% - yearkisW - (Hoyy — Ep — 62) ks WTlyenr.  (6.16)

near

Since D1 = O, (52/%), the correction term in (6.16) is of size O, (62~/%) =
Ox,... (6*/3) and therefore

E=H’,  —Ep—0dz+ 0y, (6%3). (6.17)

To study the invertibility of &, we analyze the invertibility of the leading order term
in (6.17). In §6.3 and §6.4 we will prove the two following propositions, expansions of
H® — Ep — 6z and its inverse:

near

Proposition 6.4. For z varying in compact subsets of C, as operators on LZ,
HS,.. — Ep—dz (6.18)

K _
=6 (UsT)* - x(6¥°Dy) p 0 & ]pK,O X(6/3Dy) - UsT + O3 (54/3) .
—z
Proposition 6.5. Fiz ¢ > 0. There exists g > 0 such that for

§€(0,80), |2| <9p—e, dist(o2(PX),2) > e,

the operator ngar — Ep — 0z : Hpear — Huear 15 tnvertible; and as operators on Hyear,

-1

(ngar : (U5T)* ’ pK o lﬁK’O_ z : U6T+ O'anar <(5—2/3> .

—ED —(SZ)_l =

(S

0
(6.19)

Proof of Theorem 5.1 assuming Propositions 6.4 and 6.5. 1. Because of Proposition 6.5,
in the range specified by Theorem 5.1, H® — Ep — 6z is invertible on Hyear with

near
norm Oy, .. (67"). A Neumann series argument then shows that & — given in (6.17) — is

invertible on Hpear with €1 = Oy (671). This implies

near

-1 _ 5 . 4/3 -1
¢! = (Hias = Ep — 02+ Op,,,, (67 620)
= (H?,,, — Ep —02) " + Oy

near

(672/%).

near
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2. Because of €1 = 9y (671), B = Opar s Huens (0), C = O s, (8) and D1 —
O, (672/3), Lemma 6.3 yields

-1_|e b 0 _
(H° —Ep —6z) = [ 0 0} + 02 (6723, (6.21)

where the leading order term in (6.21) is Oz (671). We then substitute (6.20) into (6.21).
The leading order term is given by that of (6.19). This completes the proof of (5.5), the
resolvent expansion H? acting in £2 (armchair-type edges). As noted at the start of the
proof, the arguments apply H® acting in L?H for all |u| < po, with ¢ sufficiently small.
This completes the proof of Theorem 5.1 assuming Propositions 6.4 and 6.5. O

In the following two sections we turn to the proofs of Propositions 6.4 and 6.5.
6.3. Proof of Proposition 6./

Since

HY  =HO +6 Hyear - kW - Inears ks(x) = k(K2 - x),

near near

to prove Proposition 6.4, we must expand terms arising from H? which are domi-

near’
nated by the conical-crossings of Dirac points, and those arising from I ea 55 W1lhear,
which arise from the domain wall. We treat these terms separately in the following two

subsections.

6.5.1. Expansion of H?

near — D — 0z; contributions from the conical crossing

Proposition 6.6. As 6 — 0, uniformly for z in compact subsets of C,

HY,. — Ep —dz = I}

near near

=T X(6723Dy) - (vir o1 Dy — §2) - x(6 73 Dy) Tk, + 053(54/3),

(H° — Ep — 0z) I},

near

where Dy = —ids and the operators Tk, and Ty are defined in (6.10).

Proof of Proposition 6.6. 1. Since ITX: is given by (6.6),

near

;. (H° — Ep — 62) T} (6.22)

near near

52
1 . _
= / X (57237) T gy (il iy — B — 02) Ui, - x (8727 dr.

[771'777]

Below we estimate the integrand of the direct integral in (6.22).
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2. Recall from (6.8) that IIy, = e!k=K)x N (k)e~!(k=K)x where N(k) : L — Lk
varies smoothly for k near K. For such k,

1 (H — Ep) I, = 100 (0K
where M (k) = N(k) (—(V +i(k — K,))>+V — Ep) N(k)

is a smoothly varying family of operators acting on L%*.

We next use the expansion of N (k) in (6.9) to expand M (k) about k = K, up to
quadratic corrections in k — K,. The leading order term vanishes because M (K,) = 0.
We obtain

M(k) =k, - (- 2i(k — K,)V) - Ik,
+lk, (Hg, — Ep) -0z (k—K.)+0p (k—K,)- (Hg, — Ep) Ik,
+OL%( (k — K*)2.

The second and third terms vanish because Ik, (Hy — Ep) = (Hk, — Ep) Ik, = 0.
We conclude that

M(k) =Tk, - (—2i(k—K,)-V) - Tk, + 0.2 (k-K,[?). (6.23)
3. We expand the integrand of (6.22) using (6.23) and (6.9):

Hg(*+‘rﬁ2 (HIO(*JrTﬁz —Ep - 62) H%*Jr‘rﬁz
= TR (M(K, +78;) — 02 N(K, + 78))e 7%
=Y (= 2irRy -V — 02) I e TR 4+ Ope

Ky +780

(72 + 207)
Substitution of this expansion into the direct integral (6.22), we obtain

HO —Ep — 0z = Mear (HO —FEp — 52:) IMear

near

5]
_i —-2/3 iTRo- X770 9 . 0 —iTRa X —2/3
T or / X<5 7’) e Mg, (—2i7Ry -V —02) Il e X(5 7_) dr
[—7,7]
57
! / X (872007)  Ong L, (7% 20 (97207 ) dr (6.24)

[771'777]

Since x (672/37) = 0 for |7| > §%/3, the remainder term in (6.24) is a direct integral of
operators that are on Opz (64/3). Therefore it is 052 (6%/3).

Next we focus on the leading order term in the expansion (6.24). The operator Ik, -
(— 2iRs - V) Ik, acts on (C<I>¥* ® (Ctbg*. By Proposition 4.1, with respect to this basis,
Ik, - (—2iR2V) - Ik, has the matrix representation:
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(P, —2iRy - V(OK)T) = viroy

where vii* = vp for K, = K and vii* = —vp for K, = K’. Thus Ik, - (- 2iR,V) - Ik, ,
as an operator acting on Lj , has the kernel

(x,5) € RZ/A x R?/A s &K+ (x)T - vE 0y - DK (y).

We deduce that the leading order term in (6.24) has kernel

@K* (X)T

2 / W2 (67207 ) (viS ou7 = 02) RV ar . TR (y) (6.25)

[777)7‘-]

where (x,y) € (Rg/an)g. As in the proof of Proposition 6.2, we see that (6.25) is the
kernel of the operator

T, x(67*/2Dy) - (vis o1 Dy = 6z) - X(6*/°D;) Tk...
This completes the proof of Proposition 6.6. O

Because H? — Ep — 8z commutes with IT¥: = and ITK oK —1¥ 1K =0 as

near’ near near near near

long as ¢ is sufficiently small, we deduce that

K
Hnear

(H° - Ep — 62) 1K, = 11K

near near

(H° — Ep —6z) 11K, = 0.

near

We sum the expansions over K, € {K,K'}, recalling that Iea, = IIK, + ITK  and

T = Tk @ Tk . Together with Proposition 6.6, we conclude that as § — 0, uniformly for

2 in compact subsets of C: H). . — Ep — §z equals

H... —Ep—dz (6.26)

K
*. [ o— *o1Dg — 6 0 _
= T*x(5 2/3Ds)' Vi 0'10 z VK*JlD s x5 2/3D3)T+OL3(54/3)-
F s

We note from (5.3) the following identities:

Dy =6-U; Dy Us;  x(07%*Dy) Us = U; x(5*/°Dy);

6.27
Us x(672/3D,) = x(6'/3D,) Us. (6.27)

Therefore, we obtain from (6.26) that HY

near

—ED—6Z
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K, _
=05 T"x(067*D,) U; - [VF iD= ‘

CTT* —-2/3
0 V]I:T‘<*O-1DS _ Z:| Us X((s Ds) T

+ 0e(0") (6.28)

K
_ 5. * 1/3 . VF*UlDS_Z 0
S OTY D) [P e O

} (D) (U5T)
+ 053(54/3).

Thus, we have proved (6.18) for HY., = H’.. — 0llpear - kW - Hpear-

near near

6.3.2. Contribution of the domain wall; proof of Proposition 6./
We must expand the expression 6Il,ear - k5W + Ilear, Where k5(x) = k(dR2 - x), for
6 small.

Proposition 6.7. As § — 0, uniformly for z in compact subsets of C,
G, - ks W T, = T, - x (6 22Dy) - 0% o3k(6-) - x(62/° D) - Tk, + Oz (52/3) :
Proof. 1. First, Proposition 6.1 and x € L imply that

near near near

T, - kW - TG, = TGO W TGO 4 0 (52/3) . (6.29)
Furthermore, by Proposition 6.2, the leading term in (6.32) is
IO - kW - TGO = T x(6723D,) - T, ksWTE, - x(0%*Dy) Tk, (6.30)

Using the definitions of Tk, and its adjoint in (6.10), we find that the inner expression
in (6.30), Tk, ksWTg,, is a multiplication operator:

(Tk, &sW Tg,) u(t) = K(6t) F(t) u(t), where

F(S) = / DK (tUl + 302) W(tU1 + SUQ)(I)K* (tbl + SUQ)T dt.
R/Z

We deduce the following expression for the dominant term in (6.29):

IO ks W T = T x(67%/3Dy) - ks F - x(672/* D) Tk -

near near
2. F' is smooth and one-periodic with an absolutely convergent Fourier series:

1

F(s) = Z F,-€™, F,= /e‘ims/ F(s')ds'. (6.31)
me2nZ 0
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We deduce that

HnKe*ar( VR W er;ro) = Z Tk. Fm X(572/3D8) ) “(5')€im. 'X(572/3D8)TK*
me2nZ
> T Fw XD )X (572 (D —m)) ™ T,
me2nZ
(6.32)

This sum may be expressed as the m = 0 term plus a sum over m # 0 terms. We next
bound this sum from above and show that it is negligible for § small.

3. Fix m # 0 and consider the operator x (63D, )-x(5-)-x (672/3(Ds—m)), appearing
n (6.32). The function £ — x(67%/3(¢ — m)) is the indicator function of the interval
[m — 6%/3,m + 62/3]. For all § < & (Jo sufficiently small), none of these sets intersects
the interval [—1,1]. Thus we may rewrite y (672/3(¢ —m)) as:

X(572/3(§ - m)) def

X(572/3(§ - m)) = f 5 = 5 1/}5777(5)’ where |w6,m(§)| <1l

Hence, X(5_2/3(Ds —m)) = Dy s5.m(Ds). Substitution of this expression and commuting
D through k gives:

X(5_2/3D5) - k(0-) -)((5‘2/3(DS —m)) = X(6_2/3DS) k(0-)Ds - 15,m(Ds)

= X(5_2/3DS)DS : /{,(5) ' wé,m(Ds) - X(5_2/3D ) [Dsa ’i( )} ¢5 m( s)
The first term involves the multiplier x(6=2/2D;) D, which is O2(6%/%) and s, (Ds),
which is bounded on L? with norm < 1. Therefore this term is O72(6%/3), uniformly in
m # 0. The second term involves the commutator [Dy, (9, -)], which is O2() because

k' € L. Hence the second term satisfies the operator bound Op2(4), uniformly in m # 0.
We conclude

X(6723D,) - w(8-) - x (672/3(Ds — m)) = 012(6%3).

Summing over m # 0 and using that ) |F,,| is finite, because F' is smooth,

S T XD (57 (D, m) - ¢ T,

me2nZ/\{0}

£3

<ce?3 N B =0(%?).
me2rZ/\{0}

4. It follows that the dominant contribution is from the m = 0 term:

I wsW T =T - x (0723 Dy) - Fy k(6 x(072Dy) - Tk, + oﬁg(52/3).
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Finally, we observe from (6.31) that

Fo= [ TG0 W@k () dx = 05,
R2/A

where we substituted x = sb; + tby and used the definition of ¥¥+. The proof of Propo-
sition 6.7 is complete. O

Proposition 6.7 extracts the dominant term arising from K-to-K and K’-to-K’ quasi-
momentum coupling due to the domain wall perturbation x;W. Likewise, we must study
K-to-K’ coupling via ksW. The next proposition shows that this interaction is negligible.
This has the important consequence that the effective Dirac operator is block-diagonal.

Proposition 6.8. As § — 0, uniformly for z in compact subsets of C,
Hllliar : H(;W ' HnKe/ar = o[,g (52/3) 9 HnKe/ar N I€5W . HnKear = Oﬁg (52/3) .

Proof. The proof follows a similar strategy to that of Proposition 6.7. We estimate
X, - kW - TK : the adjoint bound gives the estimate for K . ksW - 1IK

near near’ near near-’

1. In analogy with Step 1 in the proof of Proposition 6.7,

MK, - kW TS, = TGO kW - TIELO) 4 0 (52/3)

near near near near

(6.33)
= TEx(025D,) - 5(6)G - X(6/* D) Tacr + O3 (917,

where the function G is given by

G(s) = / DK (tv) + sv2)W (tog + SUQ)CI)KI (tvy + SDQ)Tdt.

2. In contrast with F(t) in (6.31), the function G(¢) is not one-periodic; we have
instead G(t 4 1) = e -K)v2 . G(¢). Therefore, we can write

1
G(S) = Z ém : €ims, S = (K — K/) -0y + 277, and ém _ /e—ims' . G(Sl)dsl.
mesS 4

Because G is smooth, this series converges absolutely. The analog of (6.32) is
D) s W - IO = 3 TG - (023D )k(8)x (6723 (Ds —m)) - ™ Ticr.
meS

We claim that dist(0,S) = 27/3. Indeed, (K — K’) - vy is either —27/3,0 or 27/3
modulo 27. If it is equal to 0, then we would have
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(K-K')-v3=0 mod2r, (K—-K')-v;=0 mod 27

(the second equality holds because R, is an armchair edge). It would follow that K —
K' € 2nZ R, ® 2nZRy = A*, which is not possible because K # K’ mod A*.
3. Since 0 ¢ S, arguments analogous to those in Step 3 of Proposition 6.7 yield:
KO W - KO >H <323 N |G| = 0(5%/3).
[ - ws 1y SO S (G| = 0GP)

near near
mesS

We conclude that Hnear kW - Hnegﬁo) O (52/ 3). Together with (6.33), this completes
the proof of Proposition 6.8. We remark that the arguments in Steps 2. and 3. above,
are an alternative to the Poisson summation arguments employed in [23,24]. O

Recall that Ile., = X, + HnKear We sum the expansions of Propositions 6.7 and

bounds of Proposition 6.8 over K, € {K,K'}, and then multiply by 4, to deduce:
Hnear . 555W . Hnear (634)

K
_ 7—* . X( 2/3D ) 6%5 |:'l9 00'3 :| X 2/3Ds) . 7—_|_ OLS (54/3)
K
= 5T x(6723D)US - & [19 0"3 0 ] Usx(62/3Dy) - T + 03 (54/3)

=5 (UsT)* - x(6Y3D,) - s ] X(8Y3D,) - UsT + 03 (54/3)

0 19K'
Here, we used that 7 = Tk & Tk : £& — L*(R,C*) (see (5.1)) and the scaling relations
(6.27). The expression (6.34) exhibits the domain-wall contribution in the RHS of (6.18).

Summing (6.28) and (6.34) yields (6.18):
H(s ED - 52 =

near

ED — 0z + Hnear : 5/{/6W : Hnear

near -

0
e

This completes the proof of Proposition 6.4.

(6.35)

K _
=5 (UsT)" - x(6"3Dy) [P 0 X(03Dy) - UsT + O3 (54/3).

6.4. Resolvent expansion

In this section, we use the expansion (6.35) for H?.,, — Ep — dz to obtain Proposi-
tion 6.5, the corresponding expansion for the resolvent. We recall that at the end of §6.2
we showed how to deduce Theorem 5.1 from Proposition 6.5.

Proof of Proposition 6.5. By Proposition 6.4:
(Hy

near

—Ep—6z) = Ls(2) + oL3(51/3)7

SR
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where

L(z) & (UST)*" - x(6/°Dy) (15 —Z) X(6'2D,) (UsT) and P = V)OK lb?(} :

Therefore,

(HYeor — Ep — 02)

near

Ty (B—2) " (WT) = Asz) + 0038"°),  (6:36)

Sl

where A°(z) is the operator product:

A(z) € L9(2)- <(U5T)* <¢_z)_1 (U(;T)) (6.37)

—1

= (UsT)* - x(6Y°Dy) (:;’S — z) x(6Y3Dy) - (UsT) (UsT)* - (ng -z ) (UsT).

In Steps 1-3 below, we prove that A°(z) = Ilnear + Oﬁg(é_l/g). In Step 4-5, we
conclude that H?,, — Ep — dz is invertible for § sufficiently small and z ¢ o2 (25) =
or2(PX) U o2 (PX'), and we finally prove the expansion (6.19).

1. We focus on the operator UsT T *U; appearing in (6.37). Using (5.1) and (5.2) we
see that 77* — Id is a multiplication operator:

(TT* — 1d)u(s) = f(s)-u(s), f(s) & / DK (toy + svy) O (tby + svy) T dt — 1.
R/Z
Hence, UsTT*U; —1d is the operator: multiplication by f(§71-).

The function f is one-periodic with null average. Therefore, we may write DsF = f,
where F is one-periodic. Moreover, for all functions u, g € H',

(Usf)u, g) 2 = (f, Us (gu)) 2 = (F, DU (gu)) 1o -
Using the product rule for derivatives, we deduce that
((Usf)u, g) 2| < CO|F|Loe |gl o ul -

By duality, the multiplication operator by u — (Usf)u is bounded from H' to H™1,
with norm at most C§|F|pe. Therefore, we have shown

UsTT*U; —1d = Oy g1 (6). (6.38)

2. We shall make use of the following bounds on the operators x(6*/2D,) and Id —
x (63 D,) between Sobolev spaces:
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G Dy e < sip (LI =0 (5720) (6.39)
|g]<6—1/3

IX(2D) = 1d[ ;e < sup (1+[€P) 72 =0 (5177). (6.40)
|&]>6-1/3

The operator x(6'/3D,) commutes with D,. Thus it is bounded from H~' to itself
and satisfies the bound ||X(61/3D5)||H_1 = 1. By (6.39), it is also bounded from H~2

to L? with bound O(572/3). Hence, x(6'/3D,) (ZS = z) X(0Y3D,) = Op-1,12(672/3).
Combined with (6.38), we get

x(6Y3Dy) (25 - z) (83D - (UsTT*U; —1d) = Opr 5 12(67 /% 8) = O, 12(8Y/3).

Since z is at fixed distance from the spectrum of f)b and k,k’ € L°, the operator

-1
(ZS - z) maps L? to H' with bounded norm. We deduce that

-1

X(O2D,) (B = 2) X(6°D.) - (U TT'U; =1a)- (P—2) = 052(6"%).  (6.41)

3. We write (UsT) (UsT)* =1d+ (UsTT*Us —1d) in (6.37) and apply (6.41):

A(z) = (UST)" x(0"°D.) (B~ =) x(6D.) (B~ =) UsT +045(57%)

Furthermore, inserting x = 1+ (x — 1) and using the definition of Us we have

A(2) = (UsT)* - x(6Y/3Dy) (;75 - z) (:;75 - z)_l UsT
FUST) - X0Y2D,) (B - =) ((@2D0) 1) (B—2) (WsT) +045(5%)
ST X(673D,) T + Bs(z) + 0.2(33). (6.42)
For the first term on the right hand side of (6.42) we have by Proposition 6.7:

T* X(67*D,) T = 1)

near

- anar + 0(52/3) .

We bound the operator Bs(z) : L? — L? as follows. The operator Bs(z) is a conjugation
by Us7T of the operator

(62D, (P~ 2) (0D 1) (P - 2)71
= X(6"*D,) (x(6"*Dy) 1) (P-=) (P Z)_l
) (- D) (-

—1



48 A. Drouot, M.I. Weinstein / Advances in Mathematics 368 (2020) 107142

— 0 ( | (63D, x (1 fx((;l/st)) oz || (15 - z)_l [P ) — 0:(53)
(6.43)

To obtain the second to last equality in (6.43), we have used that x (1 — x) = 0 and
that the operator 25 is equal to matrix-valued function of D4 plus multiplication operator
equal to:  times a constant matrix. The bound in (6.43) then follows from (6.40) and
the assumption x € L. It follows then, that Bs(z) = 053(61/3). Furthermore, A%(z) =
Mnear + O¢2(6'/3) and by (6.36)

-1
(Hrfear B ED - 62) : (%(U&T)* ' <¢ - Z) : U§T> = Hnear + Oﬁg(él/g)

4. Using the hypothesis that dist (z, o2 (25)) > ¢, a Neumann series argument im-
plies that H?

0ar — Ep — 0z is invertible on Hyear with

—1
: (UéT) Hnear + OL8(672/3)'
(6.44)

-1 1 "
(ngar —Ep—6z) = 5 Mpear (UsT)* - (25 - z)
5. To conclude the proof of Proposition 6.5, we must replace Il,ea, in (6.44) by the
identity operator. Proposition 6.1 and the identity x(6=2/3Dy) = Usx(6'/3D)Us imply

Hnear = H(O)

near

+ 053(52/3) - (UéT)*X(él/SDS)UgT-i- OL3(52/3)~
Using (6.38) and x(6Y/3D,) = Op2_, ;1 (671/3), we deduce that

(UsT) Mcar = (UsT) (UsT)* - x (62D UsT + 052 (6%/%)

(6.45)
= X(0'3Dy) (UsT) + O g2_5¢,(6*%).
The dual bound to (6.45) is
Mocar (UsT)* = (UsT)*X (62 D) + 0901, 2 (6%/%). (6.46)
—1
Acting on (6.45) with I,ear (UsT)* (Zis - z) and using (6.46), we deduce that
—1
Hnear(UéT)* : (¢ - Z) : (U6T> Hnear
(6.47)

—1

= (UT) - X(8°D,) (B=2)  x(6"°Dy) - (UsT) + 053(6%%).

We eliminated IT,e,, from (6.44) at the expense of introducing x(6'/3Dy). We now
replace the operator x(6%/3D,) by the identity — with an error OL3(62/3). Observe that
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V8D (B =) (@D~ (B-2)

B » (6.48)
= (\@D) 1) (B-=2) x@ D+ (B-2)  (x@D)-1).

We bound the first term in (6.48) by studying the operator prefactor (X(61/3D5) -1) (T).’S—

-1
z) in L?; the factor x(6'/3D,) is clearly bounded on L?. Since <¢ - z) is bounded
from L? to H' and x(6*/3D,) —1d = Og1_,12(6'/3) (see (6.40)), the product is O 72 (6/3)
and so the first term in (6.48) is O72(6'/3). The second term in (6.48) is the adjoint of
the operator prefactor just studied. It is therefore O 53(51/ 3). We conclude that

(64°D,) (¢ - z)q \(5Y3D,) = (ﬁé B Z)fl N 053(51/3) (6.49)

Substituting (6.49) into (6.47) yields

-1 -1

Myear (UsT)™ - (;7_'5 - z) (UsT) Myear = (UsT)* - <¢ - z) (UsT) + OL3(51/3)-

Substituting back into (6.44) we get

(Hi = Ep —02) " = 2 -(UsT)" - (B—2)  (UsT) +05(677).

near

| =

The proof of Proposition 6.5 is now complete. O
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