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We study energy propagation along line-defects (edges) in two 
dimensional continuous, energy preserving periodic media. 
The unperturbed medium (bulk) is modeled by a honeycomb 
Schroedinger operator, which is periodic with respect to the 
triangular lattice, invariant under parity, P, and complex-
conjugation, C . A honeycomb operator has Dirac points in its 
band structure: two dispersion surfaces touch conically at an 
energy level, ED [25,27]. Periodic perturbations which break 
P or C open a gap in the essential spectrum about energy 
ED. Such operators model an insulator near energy ED.
Our edge operator is a small perturbation of the bulk and 
models a transition (via a domain wall) between distinct 
periodic, P or C breaking perturbations. The edge operator 
permits energy transport along the line-defect. The associated 
energy channels are called edge states. They are time-
harmonic solutions of the underlying wave equation, which are 
localized near and propagating along the line-defect. They are 
of great scientific interest due to their remarkable stability, 
and are a key property of topological insulators.
We completely characterize the edge state spectrum within 
the bulk spectral gap about ED. At the center of our 
analysis is an expansion of the edge operator resolvent for 
energies near ED. The leading term features the resolvent 
of an effective Dirac operator. Edge state eigenvalues are 
poles of the resolvent, which bifurcate from the Dirac point. 
The corresponding eigenstates have the multiscale structure 
identified in [23].
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We extend earlier work on zigzag-type edges [14] to all 
rational edges. We elucidate the role in edge state formation 
played by the type of symmetry-breaking and the orientation 
of the edge. We prove the resolvent expansion by a new 
direct and transparent strategy. Our results also provide a 
rigorous explanation of the numerical observations in [22,38]; 
see also the photonic experimental study in [42]. Finally we 
discuss implications for the Valley Hall Effect, which concerns 
quantum Hall-like energy transport in honeycomb structures.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Propagation of energy along an interface between different bulk media is a ubiquitous 
and important phenomenon in physics. In two-dimensional systems, the interface is a 
line defect and the basic modes of propagation are called edge states. These are time-
harmonic solutions of the underlying wave equation, localized near and propagating 
plane wave-like along the interface. The bulk and defect models we study are closely 
related to two-dimensional materials, one-atom-thick monolayers extending in-plane to 
the macro-scale. A paradigm is graphene, a two-dimensional honeycomb arrangement 
of carbon atoms which is the most conductive known material, both electrically and 
thermally [41].

When suitably perturbed, graphene and related materials admit edge states which 
are spectacularly robust against strong spatially localized perturbations. Many aspects 
of this stability can be understood using notions of topology in terms of the Dirac points 
and associated Floquet–Bloch modes, of the bulk honeycomb operator. These are conical 
singularities in the band spectrum; see §1.1.

These propagation phenomena arise for general energy-preserving wave equations sat-
isfying certain periodicity and symmetry assumptions. This has inspired investigations of 
fabricated media, dubbed artificial graphene, in electronic physics, optics and photonics, 
acoustics and mechanics [11,40,43,47]. The great interest in topologically protected edge 
states lies in applications of robust energy transport to technological settings.

Motivated by graphene and its artificial analogs, we consider continuum Schrödinger 
operators which interpolate across a line defect between two weakly deformed honey-
comb structures. The types of perturbed honeycomb operators or edge operators we 
consider were introduced in [22,23] to capture the essential features of theoretical and 
experimental work [30,45,49].

We consider two classes of edge operators:
(i) self-adjoint deformations of the bulk operator which break parity-inversion symmetry 
(P) but preserve time-reversal invariance (C );
(ii) self-adjoint deformations of the bulk operator which break C and preserve P.

In case (i), the model is a real-valued perturbation of a bulk honeycomb Schrödinger 
operator. In case (ii), the model is a divergence form elliptic operator, modeling a bi-
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Fig. 1. Numerical simulations of edge state curves (blue/red) for P-breaking, C -preserving deformations 
(Hδ

edge = Hδ) and for (a) a zigzag edge; (b) an armchair edge. Here δ = 3 and the bulk spectrum is in gray. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

anisotropic perturbation. Such models are of interest in the field of metamaterials; see, 
for example, [30,36,45] in the physics literature, and the mathematical study [38]. Our 
methods also apply to honeycomb magnetic Schrödinger operators [13,14].

Our (unperturbed) bulk Hamiltonian H0 is periodic with respect to the equilateral 
triangular lattice Λ and satisfies the symmetry properties of a honeycomb potential; see 
(1.2). A rational edge is a line defect which is parallel to a fixed v1 ∈ Λ. We construct 
an edge Hamiltonian Hδ

edge, which is a O(δ)-perturbation of H0. It is invariant under 
translations in Zv1 but not invariant in other directions of Λ; see §3.

Edge states are time-harmonic solutions e−iEtΨ(x) of the Schrödinger equation i∂tψ =
Hedgeψ. The spatial profile, Ψ, is localized in directions which are transverse to Rv1, 
plane-wave like (propagating) parallel to Rv1, i.e. Ψ(x + v1) = eik‖Ψ(x). Here, k‖ ∈
[0, 2π] is referred to as the propagation constant, parallel quasimomentum or parallel 
wave number. Thus, 

(
Ψ, E

)
solves an eigenvalue problem:

Hδ
edgeΨ = E Ψ

Ψ(x + v1) = eik‖ Ψ(x) (propagation parallel to Rv1) (1.1)

Ψ(x) → 0 as
{

|x| → ∞
x · v1 = 0 (localization transverse to Rv1).

We will reformulate (1.1) in a function space L2
k‖

, 0 ≤ k‖ ≤ 2π, which incorporates the 
boundary conditions of (1.1); see §1.3 and §2.2.

There are two types of rational edge orientations: zigzag-type and armchair-type; see 
§4.4. Edge state diagrams are plots of E(k‖) vs. k‖. The global character of these diagrams 
depends strongly on the type of edge and on the manner in which the symmetries are 
broken by the perturbation; see Figs. 1 and 2.

In this paper we advance the spectral analysis of Hδ
edge initiated in [22,23] and con-

tinued in [13,14]. Edge states which bifurcate from Dirac points were first constructed 
for zigzag-type edges in [14,23] and in a related 1D model in [21,24]. See also [16,17]
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Fig. 2. Numerical simulations of edge state curves (blue/red) for C -breaking, P-preserving deformations 
(Hδ

edge = H̃δ) and for (a) a zigzag edge; (b) an armchair edge. The edge state curves traverse the bulk 
spectral gap. The spectral flow (signed count of eigenvalues crossing the gap) is 2. It equals the difference 
of Chern numbers of low-lying eigenbundles at either side of the edge; see [13,14] and §1.5.

for extensions and refinements of [21,24] in the context of a larger family of dislocation 
operators. In [23] a Schur complement / Lyapunov–Schmidt strategy was used. The pa-
per [14] characterized all zigzag-type edge states via a resolvent expansion [17]. This 
characterization implies that C -breaking induced edge states are topologically protected 
[13,14].

We summarize the consequences of Theorem 5.1, and Corollaries 5.2-5.3:

• We provide a complete and detailed description of the spectrum of Hδ
edge in a neigh-

borhood of the Dirac energy, ED, for all rational edges and small δ.
• Our proof extends results of [14] to all rational edges, and thus encompasses the more 

subtle case of armchair-type edges. Our method of proof unifies the approaches of 
[23] and [14]. Motivated by [21,23,24] we use a Lyapunov-Schmidt / Schur reduction 
strategy to obtain resolvent expansions.

• We interpret the robustness of edge states, following the analysis of [13,14].
• We discuss implications of our results for the Valley Hall Effect, which concerns 

quantum Hall-like energy transport in honeycomb structures in the absence of a 
magnetic field; see §5.3.

A brief summary of our results is in §1.3. The detailed theorems appear in §5.1.
Finally, we believe that our analysis can be extended to other bulk structures which 

have conical (Dirac) points, e.g. deformations of the honeycomb structure which are PC

preserving and structures with other underlying lattices.

1.1. Honeycomb operators and Dirac points

We begin with a periodic self-adjoint Schrödinger operator:

H0 def= −Δ + V (x) acting on L2 = L2(R2),
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Fig. 3. (a) Equilateral triangular lattice Λ = Zv1 ⊕Zv2. The circles make up the honeycomb structure – the 
union of two interpenetrating triangular sublattices. (b) Dual lattice Λ∗ = 2πZk1 ⊕ 2πZk2, with Brillouin 
zone B and independent high-symmetry quasimomenta K + Λ∗ and K′ + Λ∗.

where V is real-valued and periodic with respect to the equilateral lattice Λ = Zv1⊕Zv2. 
The corresponding dual lattice is

Λ∗ = 2πZk1 ⊕ 2πZk2 where km · vn = δmn, m, n = 1, 2;

see §1.7. The Brillouin zone B ⊂ R2 is a choice of fundamental cell of R2/Λ∗ ∼= T 2, the 
regular hexagon in Fig. 3.

For k ∈ R2, we let L2
k denote the space of k-pseudoperiodic functions:

L2
k

def=
{
u ∈ L2

loc(R2) : u(x + v) = eik·v u(x), v ∈ Λ
}
.

Note that L2
k+q = L2

k for q ∈ Λ∗, and hence L2
k is Λ∗-periodic in k. For k ∈ R2, 

we let H0
k be equal to H0 acting on L2

k. This operator has discrete spectrum denoted 
E1(k) ≤ · · · ≤ Eb(k) ≤ . . . , listed with multiplicity. The dispersion relations of H0 are 
the eigenvalue maps k ∈ R2 	→ Eb(k). These are Λ∗-periodic and Lipschitz continuous 
functions of k [2,26]. The spectrum of H0 acting on L2 = L2(R2) is the union of the 
intervals (spectral bands) Eb(B): σL2

(
H0) =

⋃∞
b=1 Eb(B). The collection of dispersion 

relations and corresponding eigenmodes form the band structure of H0.
The function V ∈ C∞(R2) is a honeycomb potential if V is real-valued, Λ-periodic, 

even and 2π/3–rotationally invariant; see [25, Definition 2.1]:

[C , V (x)] = 0, [P, V (x)] = 0, [R, V (x)] = 0, where

C [f ](x) def= f(x), P[f ](x) def= f(−x), R[f ](x) def= f(R∗x) ,
(1.2)

and R denotes the 2π/3–rotation in the plane. The single electron model of graphene 
corresponds to V equal to a sum of “atomic potential wells” over the set of honeycomb 
vertices; see [25, Section 2.3].

The vertices of the regular hexagon, B, are the points labeled K, K′ in Fig. 3 and their 
rotations about the origin by 2π/3. They play a distinguished role in the spectral theory 
of H0: the commutator [H0

k, R] vanishes if and only if k is equal to K or K′ modulo 
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Λ∗. Thus, in addition to PC -symmetry, H0
K and H0

K′ are R-invariant. The vertices K
and K′, and their dual lattice translates, are often called high-symmetry quasimomenta. 
Due to this extra rotational symmetry, L2

K decomposes as an orthogonal sum over the 
eigenspaces of R:

L2
K = L2

K,1 ⊕ L2
K,τ ⊕ L2

K,τ̄ .

Here, 1, τ and τ̄ are the three cube roots of unity (τ = e2πi/3) and L2
K,ω is the subspace 

of L2
K consisting of functions for which Rf = ωf .

Using the above observations, it was proved in [24,25] that for generic honeycomb 
potentials V , the band structure of H0 = −Δ + V has Dirac points at the vertices of 
B; see also [1,7,12,28,38]. This means that there exist ED, vF > 0 and b∗ ≥ 1 such that 
for K� = K, K′, the operator H0

K�
has a double eigenvalue at energy ED, at which two 

dispersion surfaces touch conically:

Eb�+1(k) = ED + vF |k − K�| ·
(
1 + o(|k − K�|)

)
,

Eb�(k) = ED − vF |k − K�| ·
(
1 + o(|k − K�|)

)
, vF > 0, k near K�.

For spatially localized initial conditions the Schrödinger evolution disperses: e−iH0tf

spreads and decays as t increases. When f is spectrally concentrated in energy / quasi-
momentum about a Dirac point, the effective evolution on large, finite time scales follows 
a time-dependent Dirac equation [26]. This explains the relativistic behavior of quasi-
particles (wavepackets) in graphene [41]. Dirac points persist under small Λ-periodic 
PC -invariant perturbations, see [25, Section 9]; in this case a tilted Dirac equation 
governs the character of its wave-packet evolution.

This paper further explores how perturbations of H0 affect the dynamics of wave-
packets which are spectrally concentrated near ED. If H0 is perturbed to H = H0 + Q, 
where Q is smooth, real-valued and spatially localized, then the essential spectrum of 
H is equal to that of H0; this is Weyl’s stability theorem [46]. Since ED ∈ σess(H), 
we expect the dispersive character of the dynamics near energy ED to persist under 
such perturbations. In contrast, a class of Λ− periodic perturbations of H0 at spatial 
infinity which break PC –invariance destabilizes Dirac points; see [25, Remark 9.2]. Such 
perturbations may open a gap in the essential spectrum about ED and may produce 
defect state energies within this gap. In the following sections we leverage this instability 
to construct Hamiltonians with edge states with energies near ED.

1.2. The edge state eigenvalue problem for rational edges

We are interested in Hamiltonians Hδ
edge that are line-defect perturbations of the 

honeycomb Schrödinger operator H0. We briefly describe the construction of Hδ
edge and 

refer to §3 for details.
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We start with the bulk honeycomb operator H0 and we perform small (size δ) Λ−
periodic deformations of H0 at infinity, on either side of the line Rv1. This yields per-
turbed bulk operators Hδ

bulk,± at infinity, which are Λ− periodic. In particular, Hδ
bulk,±

commutes with translations in Zv1. The operators Hδ
bulk,+ and Hδ

bulk,− act on the spaces:

L2
k‖

def=

⎧⎪⎨⎪⎩f ∈ L2
loc(R2) : f(x + v1) = eik‖f(x),

∫
R2/Zv1

|f(x)|2 dx < ∞

⎫⎪⎬⎪⎭ , (1.3)

where 0 ≤ k‖ ≤ 2π, share a common spectral gap of width O(δ) about energy ED.
We introduce an edge operator Hδ

edge, which interpolates slowly and transversely to 
the edge Rv1 (length-scale δ−1), between Hδ

bulk,+ and Hδ
bulk,−. The interpolation is 

implemented via a domain wall function; see §3.4. Hδ
edge has only restricted periodicity; 

it commutes only with translations in Zv1.
We consider two types of asymptotic bulk operators, denoted Hδ

bulk,± = Hδ
± and 

Hδ
bulk,± = H̃δ

±; see [30,36,38,45]:

(i) C is preserved and P is broken:

Hδ
±

def= −Δ + V (x) ± δ ·W (x), W is odd and Λ-periodic. (1.4)

(ii) P is preserved and C is broken;

H̃δ
±

def= −Δ + V (x) ± δ · div
(
A(x) · ∇

)
,

A(x) = i

[
0 −a(x)

a(x) 0

]
= a(x)σ2 , even and Λ-periodic.

(1.5)

The corresponding edge operators are denoted: Hδ
edge = Hδ in case (i) and Hδ

edge = H̃δ in 
case (ii). The global character of their edge state curves (k‖ versus E) are quite different. 
This has dynamical and topological consequences, see §1.3-1.5 and §5.2.

1.3. Summary of main results

Our main results are Theorem 5.1 and Corollaries 5.2 and 5.3. They fully describe the 
k‖-edge states (Ψ, E) of Hδ

edge, i.e. the solutions of

Hδ
edgeΨ = E Ψ, Ψ ∈ L2

k‖
, Hδ

edge = Hδ or H̃δ,

for k‖ near K · v1 or K′ · v1 and energies near ED. Our results cover all rational edges 
(going beyond [14]) for both P– and C –breaking deformations of the bulk honeycomb 
operator, H0. Hence this work gives a complete picture of the role in edge state formation 
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and stability played by a) the manner in which symmetries are broken by the edge 
operator and b) the orientation of the edge, Rv1.

Theorem 5.1 presents an expansion of the L2
0-resolvent of Hδ

edge for small δ and energies 
near ED; note from (1.3) that L2

0 = L2(R2/Zv1). For simplicity, we specialize here 
to an armchair-type edge, Rv1, and a C -preserving deformation (Hδ

edge = Hδ), with 
k‖ = K · v1 = K′ · v1 = 0. This case contains all essential characteristics and technical 
hurdles encountered in the general rational edge case.

The leading order term in the resolvent expansion is given in terms of the resolvent 
of an effective Dirac operator. Specifically, there exist:

• explicit bounded operators Jδ : L2
0 → L2(R, C4), J∗

δ : L2(R, C4) → L2
0;

• a δ-independent Dirac operator /D acting on L2(R, C4);

such that if z /∈ σL2(/D) and δ → 0, then

(
Hδ − ED − δz

)−1
∣∣∣
L2

0

∼ 1
δ
J∗
δ ·

(
/D− z

)−1
· Jδ. (1.6)

The equation (1.6) shows that Jδ approximately intertwines the operators /D and Hδ

after the energy recentering and rescaling: E = ED + δz.
Corollary 5.3, a consequence of Theorem 5.1, provides a bijection between the eigen-

values and spectral projections of /D and those of Hδ for energies near ED. The operator 
/D has a block-diagonal structure:

/D =
[
/DK 0
0 /DK′

]
. (1.7)

The operators /DK and /DK′ are Dirac operators with spatially varying mass terms. They 
act in L2(R; C2), and control, for δ small, the bifurcation of edge states from the Dirac 
points (K, ED) and (K′, ED). By results presented in §4, their point spectra are the 
same. Hence, the point spectrum of /D consists of double eigenvalues; this explains why 
armchair-type edge state curves come in pairs; see Fig. 1, the numerical observations in 
[22,38] and the photonic results [42].

Remark 1.1. Recall that Hδ
edge is constructed as an adiabatic interpolation between 

asymptotic perturbed bulk operators Hδ
bulk,± via a domain wall function; see §3.4. It 

follows that the emergent Dirac operators have mass terms with opposite sign at ±∞. 
Thus, /DK and /DK′ have a simple L2(R; C2)− eigenvalue at zero energy; see Propo-
sition 4.5. The persistence of this zero mode of /DK� against localized perturbations 
guarantees that the spectra of /DK and /DK′ seed at least one bifurcating edge state curve 
of Hδ

edge; see [23]. See [3–5] for topological interpretations.
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Fig. 4. Zigzag-type edge, Hδ: Spectrum of (a) /DK
′
(μ) (red) and (b) /DK(μ) (blue) as functions of μ; and 

(c) L2
k‖

-spectrum of Hδ as a function of k‖. Zooming at scale δ−1 on (c) near (−2π/3, ED) (resp. near 
(2π/3, ED)) produces (a) (resp. (b)).

1.4. Dynamical perspective

Theorem 5.1 and Corollaries 5.2, 5.3 apply to all rational edges, both P- and C -
breaking perturbations; and quasimomenta k‖ = K� · v1 + δμ with K� = K or K′ and 
μ = O(1). They involve 4 ×4 Dirac operator /D(μ) with the block-diagonal structure (1.7)
made up of two 2 ×2 Dirac operators /DK(μ) and /DK′(μ). Their spectra as functions of μ
are represented on the left panels of Fig. 4. We derive the operators /DK(μ) and /DK′(μ)
and their spectra in §4.

An analogous discussion to that given above for the case μ = 0 shows that the 
spectra of /DK�(μ) determine the L2

K�·v1+δμ-spectrum of Hδ
edge near ED. The numerical 

simulations displayed in Figs. 1 and 2 illustrate our main results and their dynamical 
implications1:

• Fig. 1 displays edge state curves for Hδ
edge, which is C− invariant. The two pan-

els display the (k‖, E)-plots of solutions of (1.1) for (a) the zigzag edge and (b) 
the armchair edge. By C− invariance, the edge state curves are symmetric about 
k‖ = 0. Thus, about a fixed energy near ED, there are wave-packets solutions of 
the time-dependent Schrödinger equation which travel in either direction along the 
edge. Hence, wave-packets designed to propagate unidirectionally along the edge 
will scatter off localized imperfections and excite waves propagating in the opposite 
direction.

• Fig. 2 displays edge state curves when the deformation breaks C− symmetry. Both 
edge state curves traverse the bulk spectral gap downward. Correspondingly, wave-

1 We are grateful to Y. Zhu and P. Hu for providing Figs. 1 and 2. The actual simulations contain additional 
numerically-induced boundary modes, which are localized at the artificial computational boundary, which 
is distant from the line defect. These spurious modes are not displayed in Figs. 1 and 2. The displayed edge 
state curves in Figs. 1 and 2 do not change as the size of the computational domain is increased. Figures 
which display such modes are presented in [38].
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packet solutions of the time-dependent Schrödinger equation travel unidirectionally 
(with negative group velocity). Wave-packets designed to propagate unidirectionally, 
when encountering localized imperfections, are not expected to backscatter: there is 
no accessible energy channel for propagation in the opposite direction. This argument 
does not however rule out some scattering into the bulk.

1.5. A topological perspective

In this section we explain the sense in which (a) the family of edge states of Fig. 1
is not topologically protected, and (b) the family displayed in Fig. 2 is topologically 
protected. These conclusions follow from the detailed arguments in [13,14], applied to 
the present context.

Consider the family of Fredholm operators

k‖ → Hδ
edge

∣∣
L2

k‖
, k‖ ∈ R. (1.8)

This family depends periodically on k‖. For each k‖, there is a gap in the essential 
spectrum about energy ED. The spectral flow Sf

(
Hδ

edge, ED

)
of the family (1.8) is the 

signed number of eigenvalues crossing the energy level ED as k‖ runs through R/2πZ; 
see [50] for an introduction. The count is +1 if the eigenvalue traverses ED downwards 
and −1 if it traverses ED upwards. The spectral flow is an integer-valued topological 
invariant: it remains unchanged even against large compact operator perturbations of 
Hδ

edge – and more generally against gap-preserving deformations.
For δ small, the operator Hδ

edge
∣∣
L2

k‖
has no point spectrum near ED unless k‖ is near 

K · v1 or K′ · v1. In each of these cases, the spectral characteristics are encoded in the 
Dirac operators /DK(μ) and /DK′(μ). At the level of spectral flow, we have

Sf
(
Hδ

edge, ED

)
= Sf

(
/DK, 0

)
+ Sf

(
/DK′

, 0
)
;

see [14, §1.7 and §7]. Furthermore, we have Sf(/DK� , 0) ∈ {−1, +1}, where the sign is given 
explicitly in terms of parameters in /DK� . This is a consequence of ODE arguments; see 
[14,17] and the discussion in §4. See also [3–5] for an in-depth topological and transport 
study of models built from these Dirac operators.

For Hδ, the spectral flow vanishes because edge state energy curves are symmetric 
about 0; see Fig. 1. One can remove such edge states via specifically designed compact 
operator perturbations; the family of edge states is not topologically protected.

The global character of the edge state energy curves for H̃δ is quite different; see Fig. 2. 
In this case, the spectral flow is equal to +2 or −2; two families of edge states persist 
across the bulk spectral gap and are stable against, for example, compact perturbations. 
The family of edge states is topologically protected. We refer to [14] for proofs and to 
[13] for extensions beyond gap preserving perturbations.
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The existence (or absence) of topologically protected edge states relates to a principle 
called the bulk-edge correspondence; see, e.g. [8–10,15,18,19,31,33–35,48]. Since the gap at 
energy ED is open, we may associate to Hδ two smooth vector bundles with base given by 
the torus R2/Λ∗. The fibers are eigenspaces of Hδ

+,k and of Hδ
−,k (k ∈ R2/Λ∗) associated 

with the bulk spectral band below ED. The Chern number is an integer obtained by 
integrating a bundle curvature over the base R2/Λ∗. The bulk-edge correspondence = 
anticipates that the difference of Chern numbers associated to Hδ

+ and Hδ
− is equal to 

Sf
(
Hδ

edge, ED

)
. The analogous prediction holds for H̃δ.

For Hδ, both Chern numbers vanish, by C− invariance. Such structures are called 
topologically trivial. For H̃δ, the difference of Chern numbers equals ±2. See [13], where 
the calculation is reduced to a standard two-band model. Therefore, in both types of 
deformation, the spectral flow (boundary index) is equal to the difference of Chern 
numbers (bulk indices), a quantitative bulk-edge correspondence for Hamiltonians H̃δ

[13]. From a dynamical point of view, H̃δ represents a configuration of materials that is 
insulating in the bulk but exhibits topologically stable transport along its line defect. It 
is a non-trivial example of topological insulator in a continuum PDE setting.

1.6. Organization of the paper

In §2, we review the Floquet-Bloch theory of Λ- and Zv1-periodic operators on L2(R2). 
In §3 we construct our class of edge operators Hδ

edge. We fix a rational edge direction 
and interpolate, via a domain wall, between slightly deformed bulk operators Hδ

bulk,± of 
the form (1.4) or (1.5). There are three key hypotheses:

(H1) The unperturbed bulk honeycomb operator H0 = −Δ + V has Dirac points;
(H2) H0 satisfies the spectral no-fold condition (stated physically, H0 is semi-metallic

at energy ED);
(H3) The deformed bulk operators Hδ

bulk,+ and Hδ
bulk,+ satisfy a (generic) non-

degeneracy condition.

In §4.1 a multiscale expansion [22,23,38] is used to construct approximate edge states 
as slowly varying linear combinations of Dirac point (energy-degenerate) Floquet–Bloch 
modes. The slowly varying mode-amplitudes are governed by a system of Dirac equations, 
whose spectral properties are summarized in §4.2. This approximate construction implies 
the existence of genuine edge states with energies in the gap about the energy ED; see 
§4.3. Additionally, the analysis suggests a classification of rational edges in two types: 
zigzag-type and armchair-type. These depend on whether there is coupling between 
spectral components near the quasi-momentum sublattices K + Λ∗ and K′ + Λ∗; see 
§4.4.

In §5 we present our main results: Theorem 5.1, a resolvent expansion for energies 
near ED, and Corollaries 5.2, 5.3, a precise characterization of the point spectrum of 
Hδ

edge near energy ED. In §5.2-5.4, using topological arguments presented in [13,14], we 
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discuss the global properties of edge state curves which bifurcate from the Dirac point 
energy – in the C− invariant and C− breaking cases. The mathematical core of this 
paper is the proof of the resolvent expansion for general rational edges, Theorem 5.1, via 
a new strategy.

1.7. Notation and conventions

• We let Λ = Zv1 ⊕ Zv2 be the equilateral lattice and Λ∗ = 2πZk1 ⊕ 2πZk2 be its 
dual:

v1 = a

[√
3/2

1/2

]
, v2 = a

[√
3/2

−1/2

]
and k1 = a

[
1/2√
3/2

]
, k2 = a

[
1/2

−
√

3/2

]
,

where a2 = 2/
√

3 so that |v1 ∧ v2| = 1 and kj · vl = δjl. A fundamental period cell 
and Brillouin zone, B, are depicted in Fig. 3.

• High symmetry quasimomenta:

K = 2π
3 (k1 − k2), K′ = −K; (1.9)

see Fig. 3 and §3.1.
• We will use L2-based spaces: L2 = L2(R2); quasi-periodic functions w.r.t. Λ: L2

k =
L2

k(R2/Λ); quasi-periodic functions w.r.t. Zv1: L2
k‖

= L2
k‖

(Σ), where Σ = R2/Zv1. 
We define analogously Sobolev spaces Hs, Hs

k and Hs
k‖

.
• The Pauli matrices are

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (1.10)

They satisfy σ2
j = Id and σjσm = −σmσj for j �= m.

• C , P and R denotes respectively the complex conjugation, parity inversion and 
2π/3 rotation; see (1.2). We shall refer to C−, P− and PC− invariant operators.

• If H is a Hilbert space and A is selfadjoint operator on H, we denote the spectrum 
of A by σH(A).

• If H and H′ are Hilbert space and ψ ∈ H, we write |ψ|H for the norm of H; if 
A : H → H′ is a bounded operator, the operator norm of A is

‖A‖H→H′
def= sup

|ψ|H=1
|Aψ|H′ .

If H = H′, we simply write ‖A‖H = ‖A‖H→H.
• If ψε ∈ H – resp. Aε : H → H is a linear operator – and f : R \ {0} → R, we write 

ψε = OH
(
f(ε)

)
– resp. Aε = OH→H′

(
f(ε)

)
– when there exists C > 0 such that 

|ψε|H ≤ Cf(ε) – resp. ‖Aε‖H→H′ ≤ Cf(ε) – for ε ∈ (0, 1]. If H = H′, we simply 
write Aε = OH

(
f(ε)

)
.
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2. Preliminaries

In this section we review Floquet–Bloch theory for periodic operators. Basic references 
are [46, Chapter XIII] and [37]. We discuss decompositions of L2 = L2(R2) and L2

k‖
=

L2
k‖

(R2/Zv1):

L2 =
⊕∫

k∈B

L2
k(R2/Λ) dk and L2

k‖
=

⊕∫
[−π,π]

L2
k‖K1+tK2

(R2/Λ) dt.

These spaces arise in the study of Hamiltonians which are invariant with respect to 
translations in Λ = Zv1 ⊕ Zv2 and Zv1, respectively.

2.1. General Floquet–Bloch theory of operators acting in L2

Let Λ be the equilateral lattice Zv1 ⊕ Zv2 ⊂ R2 with fundamental cell Ω. Let Λ∗ =
2πZk1 ⊕ 2πZk2 ⊂ R2 be the lattice dual to Λ, and B be the Brillouin zone of R2/Λ∗; 
see §1.7.

We introduce the space L2
k = L2

k
(
R2/Λ

)
of k-pseudoperiodic functions

L2
k

def=
{
F ∈ L2

loc(R2) : F (x + v) = eik·vF (x), v ∈ Λ
}

equipped with the Hermitian inner product and norm:

〈F,G〉L2
k

def=
∫
Ω

F (x)G(x)dx, |F |2L2
k

def=
∫
Ω

|F (x)|2dx.

Given a complex-valued function f ∈ C∞
0 (R2), we associate the Gelfand–Bloch trans-

form, the function of (k, x) defined by:

f̃(k,x) def= eik·x
∑

k′∈Λ∗

f̂(k − k′)e−ik′·x, f̂(ξ) def=
∫
R2

e−iξ·yf(y)dy.

For each k ∈ B, f̃(k, x) ∈ L2
k, and by the Fourier inversion formula, f has a L2

k-
decomposition:



14 A. Drouot, M.I. Weinstein / Advances in Mathematics 368 (2020) 107142
f(x) = 1
(2π)2

∫
B

f̃(k,x)dk. (2.1)

The factor (2π)2 = |2πk1 ∧ 2πk2| is equal to the area of B. The decomposition (2.1)
extends by density to all f ∈ L2 using the Plancherel-like identity:

|f |2L2 = 1
(2π)2

∫
B

∣∣f̃(·,k)
∣∣2
L2

k

dk. (2.2)

Let T be an operator which is Λ-periodic, i.e. (Tf)(· +v) = T
(
f(· +v)

)
for v ∈ Λ and 

f in the domain of T . Then T maps L2
k to itself and we denote the resulting operator 

by Tk. We can study the action of T on L2 fiberwise. We write:

T = 1
(2π)2

⊕∫
B

Tk dk, meaning Tf(x) = 1
(2π)2

∫
B

(
Tkf̃(k, ·)

)
(x) dk. (2.3)

Thanks to (2.2) and (2.3), we can estimate the operator norm of T from those of Tk:

|Tf |2L2 = 1
(2π)2

∫
B

∣∣Tkf̃(·,k)
∣∣2
L2

k

dk

≤ 1
(2π)2

∫
B

‖Tk‖2
L2

k

· |f̃(·,k)|2L2
k

dk ≤ sup
k∈B

‖Tk‖2
L2

k

· |f |2L2 .

(2.4)

By (2.3) the kernel T (x, y) of T is expressed in terms of the kernels Tk(x, y) of Tk:

T (x,y) = 1
(2π)2

∫
B

Tk(x,y)dk. (2.5)

2.2. Floquet–Bloch theory of operators acting on L2
k‖

Let v1, v2 be any vectors in Λ such that Λ = Zv1 ⊕ Zv2 and define the cylinder 
Σ = R2/Zv1. For k‖ ∈ [−π, π] we introduce the space

L2
k‖

= L2
k‖

(Σ) def=
{
f ∈ L2

loc(R2) : e−ik‖K1·xf(x) ∈ L2 (Σ)
}

;

see also (1.3). The Sobolev spaces Hs
k‖

are analogously defined.
In analogy with (2.1), functions in L2

k‖
have a representation in terms of elements of 

L2
k, where k varies over a one dimensional Brillouin zone, the quasimomentum segment: 

k‖K1 + tK2, |t| ≤ π:
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f(x) = 1
2π

π∫
−π

f̃(k‖K1 + tK2,x)dt. (2.6)

The decomposition (2.6) implies relations analogous to (2.3), (2.4) and (2.5). If T
acting on L2

k‖
commutes with Zv1-translations, then T acts on L2

k‖K1+tK2
for every 

t ∈ R. The resulting operator is denoted Tt and we have

T = 1
2π

⊕∫
[−π,π]

Tt dt meaning Tf(x) = 1
2π

π∫
−π

(
Ttf̃(k‖K1 + tK2, ·)

)
(x)dt. (2.7)

The analog of (2.4) is

‖Tf‖2
L2

k‖
≤ sup

|t|≤π

‖Tt‖2
L2

k‖K1+tK2
· |f |2L2

k‖
, (2.8)

and the analog of the representation (2.5) is

T (x,y) = 1
(2π)2

π∫
−π

Tt(x,y)dt. (2.9)

The decomposition (2.7) allows us to build up the L2
k‖

-spectrum from the collection of 
fiber spectra:

σL2
k‖

(T ) =
⋃

t∈[−π,π]

{
σL2

k
(Tk) : k = k‖K1 + tK2

}
. (2.10)

3. Honeycomb medium with line defect

Let Λ = Zv1 ⊕Zv2 be the equilateral lattice, with area-normalized fundamental cell; 
see §1.7. Let v1 = a1v1+b1v2 ∈ Λ, where a1 and b1 are relatively prime, be the direction 
of the edge. There exist a2, b2 such that a1b2 − a2b1 = 1 and we set v2 = a2v1 + b2v2; 
this implies Λ = Zv1 ⊕ Zv2. The dual lattice, Λ∗ is given by Λ∗ = ZK1 ⊕ ZK2, where 
K1 = b2k1 − a2k2 and K2 = −b1k1 + a1k2. See Fig. 3, showing the zigzag-edge direction 
v1 = v1.

We next discuss the honeycomb Schrödinger operator H0 and then build up our edge 
(line-defect) Hamiltonians Hδ

edge in several steps. We adopt the framework of [23].

3.1. Honeycomb Schrödinger operators and Dirac points

Let H0 = −Δ + V , where V is a honeycomb lattice potential as defined in §1.1, i.e.
V is C∞(R2), real-valued, Λ-periodic, and invariant under R (2π/3-rotation) and P
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(spatial inversion). Recall that the vertices of the Brillouin zone, B, are high-symmetry 
quasimomenta generated via 2π/3 rotation of K and K′; see (1.9).

We say that −Δ + V has a Dirac point at (ED, kD) if (a) ED is a L2
kD

-eigenvalue of 
−Δ + V of multiplicity 2; and (b) there exists b∗ ≥ 1 such that the dispersion surfaces 
k 	→ Eb∗(k), Eb∗+1(k) touch in isotropic cones: for some vF > 0,

Eb�+1(k) = ED + vF |k − kD| ·
(
1 + o(|k − kD|)

)
,

Eb�(k) = ED − vF |k − kD| ·
(
1 + o(|k − kD|)

)
.

Theorem 3.1. [24,25,38] For a generic choice2 of honeycomb potential V , the operator 
−Δ + V has Dirac points at (K, ED) and (K′, ED).

We elaborate further in order to derive some useful relations. The kernel of H0
K−ED

is spanned by two orthonormalized Bloch eigenmodes ΦK
1 , ΦK

2 ∈ L2
K, which satisfy

RΦK
1 = τ ΦK

1 , C PΦK
1 = ΦK

2 , RΦK
2 = τ ΦK

2 (τ = e2πi/3). (3.1)

Thus, Φ1 ∈ L2
K,τ and Φ1 ∈ L2

K,τ̄ . We set ΦK′
1 = PΦK

1 and ΦK′
2 = PΦK

2 . Since PH0
K =

H0
K′P, the pair {ΦK′

1 , ΦK′
2 } is a basis of ker

(
H0

K′ −ED

)
. Furthermore, by (3.1):

RΦK′

1 = τ ΦK′

1 , C PΦK′

1 = ΦK′

2 , RΦK′

2 = τ ΦK′

2 ; (3.2)

ΦK′
1 ∈ L2

K′,τ and ΦK′
2 ∈ L2

K′,τ̄ . Furthermore, we may take ΦK�+q = ΦK� for all q ∈ Λ∗

for K� = K, K′.
Using properties of R acting on the vectors ΦK�

j (j = 1, 2, K� = K, K′), we have

〈
ΦK�

1 ,∇ΦK�
1

〉
=

〈
ΦK�

2 ,∇ΦK�
2

〉
=

(
0
0

)
, a = 1, 2 (3.3)

and that 
〈
ΦK

1 ,−2i∇ΦK
2
〉

is proportional to (1, i)
, an eigenvector of the 2π/3 rotation 
matrix, R. Using that any scalar multiple of ΦK

j and ΦK′

j satisfies (3.1), respectively 
(3.2), we may replace ΦK�

1 by eiϕΦK�
1 . For an appropriate choice of phase, ϕ, we may 

take the proportionality factor (the Fermi velocity) to be strictly positive. Hence,

〈
ΦK

1 ,−2i∇ΦK
2
〉

= vF

(
1
i

)
and

〈
ΦK′

1 ,−2i∇ΦK′

2

〉
= −vF

(
1
i

)
, vF > 0 .

(3.4)

Going forward we make the following hypothesis on the bulk potential V :

(H1) H0 is a generic honeycomb operator so that Theorem 3.1 applies with (3.4).

2 Generic has the following precise meaning. Assume 
∫
R2/Λ e−i(k1+k2)·xV (x)dx �= 0. Then, for all real ε, 

except possibly for a discrete set which includes ε = 0, the operators H(ε) = −Δ + εV have Dirac points.
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3.2. The spectral no-fold condition; H0 models a semi-metal at energy ED

A second key hypothesis on H0 = −Δ + V states that if ED is the energy of a 
Dirac point, then the two touching dispersion surfaces at energy ED do so only at high 
symmetry quasimomenta:

(H2) The spectral no-fold condition
Let K� = K or K� = K′. Then, for b = b∗ and b∗ + 1,

if Eb(K� + tK2) = ED, then K� + tK2 ∈ K + Λ∗ or K� + tK2 ∈ K′ + Λ∗. (3.5)

An assumption similar to (H2) was introduced in [23] and is implicit in the physics 
literature [30,45]. The formulation in [23] is tailored for zigzag-type rational edges and 
the generalization (H2) allows for armchair type edges as well; all arbitrary rational edges 
are now covered.

Since the density of electronic states is zero at energy ED, graphene is often called a 
semi-metal. The condition (H2) holds in the (explicitly solvable) tight binding model of 
graphene [41] and by [27, Corollary 6.4] the condition (H2) holds in the strong binding 
regime. Honeycomb structures that satisfy (H1) but fail to satisfy (H2) can be thought as 
metallic at energy ED. An example where the no-fold condition fails is the case where V
is a small amplitude honeycomb potential and v1 = v1+v2, the armchair edge direction; 
see [23, §8].

In the following section we shall introduce edge perturbations of H0, which destabilize 
Dirac points. Thus, for k near K�, there is a spectral gap about energy ED. If (H2) fails, 
then we expect a wave-packet comprised of Floquet-Bloch modes near K� to resonate 
with Floquet-Bloch modes of energies near ED, but with quasi-momenta away from K�. 
Such wave-packets are conjectured to slowly radiate their energy into the bulk [23, §1.4].

3.3. Deformed bulk Hamiltonians

Henceforth, we assume that H0 = −Δ +V satisfies hypotheses (H1) and (H2) of §3.1
and 3.2.

In this section we define Λ-periodic perturbed bulk operators, perturbations of H0: 
Hδ

bulk,±: Hδ
± and H̃δ

±. Far from the line-defect, Hδ
± corresponds to P-breaking and H̃δ

±
to C -breaking deformations of H0.

3.3.1. P-breaking and C -invariant model
Let W ∈ C∞(R2) be real-valued, Λ-periodic and odd. We set

Hδ
±

def= H0 ± δW (x) = −Δ + V (x) ± δW (x).

We observe that [C , Hδ
±] = 0 while [P, Hδ

±] �= 0. Since PHδ
+ = Hδ

−P, the operators 
Hδ

+ and Hδ
− have the same spectrum.
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In addition to (H1) and (H2) we make the following assumption on W :

(H3) Non-degeneracy: W is smooth, real-valued, odd, Λ-periodic and

ϑK� =
〈
ΦK�

1 ,W (x)ΦK�
1

〉
�= 0, K� = K,K′.

Note that since W (−x) = −W (x), we have ϑK′ = −ϑK. Furthermore, ϑK� is invari-
ant under Φ1 	→ eiθΦ1, θ ∈ R.

Conditions (H1), (H2) and (H3) imply that Hδ has a gap in its L2
K�·v1

- essential 
spectrum, centered at ED for K� ∈ {K, K′}. Indeed Hδ

+ and Hδ
− have a common gap in 

their essential spectra;

(
L2

K�·v1
essential spectrum of Hδ

±
)
∩ Gδ = ∅, Gδ

def= (aδ, bδ), (3.6)

where,

aδ = ED − δ · ϑgap + O(δ2), bδ = ED − δ · ϑgap + O(δ2), ϑgap =
∣∣ϑK∣∣. (3.7)

This property is implicitly contained in [23, Section 7.1]; see [14, Lemma 4.1 and 4.3], 
which imply (3.6) via (2.10).

3.3.2. C –breaking and P–invariant model
Let a ∈ C∞(

R2) be real-valued, even and Λ-periodic. We set

H̃δ
± = −Δ + V (x) ± δ · div

(
A(x) · ∇

)
, A(x) = i

[
0 −a(x)

a(x) 0

]
= ia(x)σ2.

We have [P, H̃δ
±] = 0 while [C , H̃δ] �= 0. Furthermore, since C H̃δ

+ = H̃δ
−C , the operators 

H̃δ
± have the same spectrum. In analogy with our discussion for Hδ

±, if H0 satisfies (H1), 
(H2) and the non-degeneracy assumption

(H̃3) ϑ̃K def=
〈
ΦK

1 ,div
(
A(x) · ∇ΦK

1
)〉

�= 0

then the operators H̃δ
+ and H̃δ

− have a (common) L2
K�·v1

gap in their essential spectra;

(
L2

K�·v1
essential spectrum of H̃δ

±

)
∩ G̃δ = ∅, G̃δ ≡ (ãδ, b̃δ) , where

ãδ = ED − δ · ϑ̃gap + O(δ2), b̃δ = ED + δ · ϑ̃gap + O(δ2), ϑ̃gap
def= |ϑ̃K∣∣. (3.8)
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3.4. Edge operators and the edge state eigenvalue problem

A domain-wall function is a real-valued function κ ∈ C∞(R), such that:

lim
s→±∞

κ(s) = ±1 and κ′ ∈ L∞.

We introduce and study Hamiltonians Hδ
edge which slowly interpolate transversely to 

the rational line-defect Rv1, between Hδ
± as K2 · x → ±∞. This is realized via a scaled 

domain wall function. We define the edge Hamiltonian, Hδ
edge, with P–breaking and 

C –invariant bulk as

Hδ = −Δ + V (x) + δ · κ(δK2 · x)W (x),

and define the edge Hamiltonian, Hδ
edge, with C –breaking and P–invariant bulk as

H̃δ = −Δ + V (x) + δ · div
(
κ(δK2 · x)A(x)∇

)
Since K2 · v1 = 0, the operators Hδ

edge commute with translations in Zv1.
Hamiltonians of the type Hδ were introduced in [21,23,24]. Those of the type H̃δ

are closely related to photonic settings studied in [30,36,38,45]. In [38] a broader class 
of anisotropic honeycomb photonic (unperturbed) media is introduced; the analysis of 
the present paper extends to such operators and their perturbations. Both Hδ and H̃δ

incorporate the essential features of key physical models [30,45]. A magnetic perturbation 
(breaking C -invariance) of H0 was investigated in [13,14].

In the remainder of the paper, we focus on edge states with energy near ED. These 
are the L2

k‖
-eigenvalues of Hδ

edge:

Hδ
edgeΨ = E Ψ, Ψ ∈ H2

k‖
, k‖ ∈ [−π, π), E ∈ G δ (resp. G̃ δ ). (3.9)

4. Multiscale analysis and effective Dirac operators

We review the multi-scale construction of approximate edge states [21–24]. Effective 
Dirac operators emerge as determining the transverse localization of these states. Since 
edge states eigenvalues are poles of a resolvent they therefore also emerge in the leading 
order term in the resolvent expansion of Hδ

edge near energy ED; see Theorem 5.1. Before 
embarking on this expansion, we make a convenient choice of basis for the eigenspace 
associate with the Dirac points (K, ED) and (K′, ED). Let � be such that � ·v1 = 1 and 
K2 · � = 0, thus

� = K1 −
[

K2 ·K1

]
K2

. (4.1)
|K2| |K2|
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Proposition 4.1. Let ΦK�
j , j = 1, 2, with K� = K or K′, be given as required in hypothesis 

(H1); see Theorem 3.1 and (3.4).
(a) There exists θ ∈ R such that if we redefine ΦK�

1 as eiθΦK�
1 , and ΦK�

2 as PC [eiθΦK�
1 ], 

then we obtain an orthonormal basis for L2
K�

− kernel(H0 − ED), {ΦK�
1 , ΦK�

2 } with 
ΦK�

1 ∈ L2
K�,τ

, ΦK�
2 ∈ L2

K�,τ̄
and such that for all r ∈ R2:

〈
(ΦK�)
,−2ir · ∇ΦK�

〉
= vK�

F
|K2|

(
(K2 · r) σ1 + det[r,K2] σ2

)
. (4.2)

Here, vK
F = vF and vK′

F = −vF.
(b) Furthermore, if � is defined as in (4.1), then

〈
(ΦK�)
,−2i� · ∇ΦK�

〉
= vK�

F
|K2|

σ2, (4.3)

Proposition 4.2. Let W be as in (H3) and A be as in (H̃3) below. For K� = K, K′:〈
(ΦK�)
,WΦK�

〉
= ϑK�σ3, where ϑK = −ϑK′

. (4.4)〈
(ΦK�)
,div

(
A · ∇ΦK�

)〉
= ϑ̃K�σ3, where ϑ̃K = ϑ̃K′

. (4.5)

We remark first on the proof of Proposition 4.2, and then give the proof of Proposi-
tion 4.1.

Proof of Proposition 4.2. The relation (4.4) follows from W being odd. Relation (4.5) is 
proved in [38, Proposition 5.1 and Section 7.1].

Proof of Proposition 4.1. We begin by proving (4.2) for the case r = K2. Start 
with the basis {ΦK�

1 , ΦK�
2 } of kernel(H0 − ED) for which (3.4) and (3.3) hold. Let 

K2 = (K(1)
2 , K(2)

2 ). First consider K� = K. By (3.3), the diagonal entries of (4.2) van-
ish. Concerning the off-diagonal elements, we note first that 

〈
ΦK

2 ,−2iK2 · ∇ΦK
1
〉

=〈
ΦK

1 ,−2iK2 · ∇ΦK
2
〉
; the matrix is Hermitian. By (3.4), 

〈
ΦK

2 ,−2iK2 · ∇ΦK
1
〉

= vF (K(1)
2 +

iK
(2)
2 ). Define Φ̂1 = ωΦ1 and Φ̂2 = ωΦ2, where |ω| = 1 and is to be determined. We have 〈

Φ̂K
2 ,−2iK2 · ∇Φ̂K

1

〉
= vF ω2 (K(1)

2 + iK
(2)
2 ). Choose ω so that ω2 = (K(1)

2 − iK
(2)
2 )/|K2|. 

Then, 
〈
Φ̂K

2 ,−2iK2 · ∇Φ̂K
1

〉
= vF |K2|. This implies (4.2) for the special case K = K2

and K� = K. The relation for K = K2 and K� = K′ follows by the same argument and 
using the second relation in (3.4).

To prove (4.2) for general r ∈ R2, we first fix K� = K and let ω and Φ̂j be chosen 
as above. Again the diagonal elements vanish and the matrix is Hermitian. Furthermore 〈
Φ̂K

1 ,−2ir · Φ̂K
2

〉
= ω2 〈

ΦK
1 ,−2ir · ΦK

2
〉

and by (3.4) we have 
〈
Φ̂K

1 ,−2ir · Φ̂K
2

〉
=

vF ω2 (r(1) + ir(2)) = vF
|K2| ( K2 · r + i det[K2, r] ). Since the (2,1) entry of the matrix 

is the complex conjugate of this expression, we have proved that the pair {Φ̂K
1 , Φ̂K

2 }
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satisfies (4.2) for the case K� = K. The case K� = K� is proved the same way; we need 
only apply the second relation in (3.4). This completes the proof of (4.2).

Finally, we verify (4.3). Suppose that � · v1 = 1 and K2 · � = 0. Since � · v1 = 1, we 
have � = K1 + ρK2, for some ρ ∈ R (recall K2 · v1 = 0). Furthermore, K2 · � = 0 means 
K2 · (K1 +ρK2) = 0 and hence ρ = −(K1 ·K2)/|K2|2. Therefore, � = K1 − [(K2/|K2|) ·
K1] (K2/|K2|), the projection of K1 on the orthogonal complement of K2. For this choice 
of �, we have det[�, K2, ] = det[K1, K2] = 1. By the choice of K1 and K2 in Section 3. 
Thus we have 

〈
Φ̂K

1 ,−2i� · Φ̂K
2

〉
= vF

|K2| |σ2; the pair {Φ̂K
1 , Φ̂K

2 } satisfies (4.3). Finally, we 

drop the hats and simply write ΦK�
j instead of Φ̂K�

j (j = 1, 2 and K� = K, K′). This 
completes the proof of Proposition 4.1.

4.1. Multiscale analysis

In this section we review the construction of approximate solutions of the eigenvalue 
problem (3.9) with k‖ = K� ·v1 + δμ, for small δ; see [22,23,38] (μ = 0) and [14] (μ �= 0). 
In our discussion, we fix Hδ

edge = Hδ; the procedure is analogous for H̃δ. We seek a 
solution of (3.9) in the form Ψ(x) = eiδμ�·x · ϕ0(x) ∈ L2

K�·v1+δμ. We let � be such that 
� ·v1 = 1 so that ϕ0 has fixed psedo-periodicity; ϕ0 ∈ L2

K�·v1
. Below, we shall settle on �

given by the expression in (4.1) as an optimal choice. The discussion below will motivate 
the choice of � in the statement of Proposition 4.1.

Substitution into eigenvalue problem (3.9) yields(
−(∇ + iδμ�)2 + V (x) + δ · κ(δK2 · x)W (x)

)
ϕ0 = E · ϕ0, ϕ0 ∈ L2

K�·v1
. (4.6)

The form of (4.6) suggests an expansion of its solutions ϕ0(x) = Ψ0(x, δK2 ·x), depending 
on, x, the fast scale of the periodic structure, and on s = δK2 · x, the slow scale of the 
domain wall. The eigenvalue problem (4.6) for Ψ0(x, s) is(

−(∇x + δK2∂s + iδμ�)2 + V (x) + δκ(s)W (x)
)
Ψ0(x, s) = E Ψ0(x, s)

Ψ0(x + v1, s) = eiK�·v1 Ψ0(x, s), Ψ0(x, s) → 0 as |s| → ∞.
(4.7)

We next expand (Ψ0, E) in powers of δ: Ψ0(x, s; μ) = Ψ(0)
0 (x, s; μ) + δ ·Ψ(1)

0 (x, s; μ) + . . .

and E(μ) = ED + δ E1(μ) + . . . , and substitute these expansions into (4.7). Grouping 
terms according to their order in δ yields a hierarchy of equations for (Ψj(x, s, μ), Ej), 
which can be solved recursively. The PDEs in this hierarchy are each solved subject to 
the conditions:

Ψ(j)
0 (x + v1, s) = eiK�·v1 · Ψ(j)

0 (x, s), Ψ(j)
0 (x, s) → 0 as |s| → ∞, j ≥ 0. (4.8)

At order δ0 = 1, we have 
(
H0 −ED

)
Ψ(0)

0 = 0. We solve it with Ψ(0)
0 (x, s) =

ΦK�(x)
 α(s), where α(s) = (α1(s), α2(s))
 is to be determined such that |α(s)| → 0
as |s| → ∞.
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At order δ, we obtain:

(
H0 − ED

)
Ψ(1)

0 (x, s) = 2
2∑

j=1

(
K2∂sαj(s) + iμ�αj(s)

)
· ∇xΦK�

j (x)

− κ(s)W (x) ·
2∑

j=1
ΦK�

j (x)αj(s) + E1 ·
2∑

j=1
Φj(x)αj(s).

(4.9)

Equation (4.9) has a solution satisfying the pseudo-periodicity condition of (4.8) if and 
only if the right hand side is L2

K�
-orthogonal to ΦK�

1 and ΦK�
2 . That is, for m = 1, 2:

2∑
j=1

〈
ΦK�

m ,−2iK2∇ΦK�
j

〉1
i
∂sαj(s) + μ

2∑
j=1

〈
ΦK�

m ,−2i�∇ΦK�
j (x)

〉
αj(s)

+
2∑

j=1

〈
ΦK�

m ,WΦK�
j

〉
κ(s)αj(s) − E1αm(s) = 0.

(4.10)

The system (4.10) can be simplified using Propositions 4.1 and 4.2. The first inner 
product in (4.10) is evaluated using (4.2) using r = K2. To evaluate the second inner 
product in (4.10), we use second part of Propositions 4.1 and note (from (4.2)) that we 
can eliminate the σ1 dependence by choosing � to satisfy, in addition to � · v1 = 1, the 
condition K2 · � = 0; see (4.3). The third inner product in (4.10) is evaluated using (4.4)
in Proposition 4.2. We summarize:

Proposition 4.3 (C invariant, P breaking case). For Hδ
edge = Hδ, the slowly varying 

amplitudes α(s) = (α1(s), α2(s))
 are governed by the eigenvalue problem: /DK�(μ) α =
E1 α, where /DK�(μ) is the effective Dirac operator

/DK�(μ) = vK�

F |K2| σ1
1
i

∂

∂s
+ vK�

F
|K2|

μ σ2 + ϑK� σ3 κ(s) .

Here, vK
F = vF and vK′

F = −vF and ϑK′ = −ϑK.

If we now let (E1, α) be an eigenpair of /DK�(μ), i.e. /DK�(μ)α = E1α, α ∈ L2(R), 
then (4.9) has a solution, Ψ(1)

0 (x, s), with the required pseudoperiodicity. It follows that 
ΦK�(x)
 α(s) + δΨ(1)

0 (x, s) solves (4.7) modulo O(δ2).
When considering H̃δ instead of Hδ, the perturbation of H0 = −Δ +V is the operator 

div(κ(s)A(x) · ∇) instead of κ(s)W (x). The same analysis as for Hδ, now using the 
relation (4.5) of Proposition 4.2, yields:
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Proposition 4.4 (C breaking, P invariant case). For Hδ
edge = H̃δ, the slowly varying 

amplitudes α(s) = (α1(s), α2(s))
 are governed by the eigenvalue problem: /̃DK�(μ) α =
E1 α, where /̃DK�(μ) is the effective Dirac operator

/̃DK�(μ) = vK�

F |K2| σ1
1
i

∂

∂s
+

vK�

F
|K2|

μ σ2 + ϑ̃K� σ3 κ(s) .

Here, vK
F = vF and vK′

F = −vF and ϑ̃K′ = ϑ̃K.

4.2. Spectra of effective Dirac operators

The properties of Pauli matrices (see (1.10)) imply the following relations among the 
Dirac operators and their spectra:

• /DK′(μ) = −/DK(μ) and hence σL2
(
/DK′(μ)

)
= −σL2

(
/DK(μ)

)
.

• At μ = 0, σ2/DK�(0)σ2 = −/DK�(0) and hence σL2(/DK�(0)) is symmetric about zero 
energy.

• σ3/̃DK′(μ)σ3 = /̃DK(μ) and therefore σL2
(
/̃DK(μ)

)
= σL2

(
/̃DK′(μ)

)
.

The following result summarizes the spectral properties of /DK�(μ) and /̃DK�(μ). Recall 
first that θgap = |ϑK| = |ϑK′ | and θ̃gap = |ϑ̃K| = |ϑ̃K′ |; see (3.7) and (3.8).

Proposition 4.5. Let K� = K, K′.

(1) The L2(R) spectrum of /DK�(0) is real and symmetric about zero energy. Its essential 
spectrum in the set R \ (−θgap, θgap). The point spectrum of /DK�(0) contains z0 = 0. 
Moreover, for some N ≥ 0, the point spectrum of /DK�(0) consists of 2N +1 discrete 
simple eigenvalues, symmetric about zero, in the gap (−θgap, θgap):

−θgap < −z−N < · · · < z−1 < z0 = 0 < z1 < · · · < zN < θgap.

(2) For μ ∈ R, /DK�(μ) acting on L2(R) has essential spectrum given by

σess(/DK�(μ)) = R \
(
− θgap(μ), θgap(μ)

)
, where θgap(μ) =

√
θ2
gap + v2

F
|K2|2

μ2.

Let N be as in part (1). There are 2N+1 eigenvalues ϑK�

−N (μ) < · · · < ϑK�

N (μ) in the 
gap 

(
− θgap(μ), θgap(μ)

)
. For j �= 0 these eigenvalues are given by the expressions:

ϑK�
±j (μ) = ±

√
z2
j + v2

F
|K |2 μ2, 1 ≤ j ≤ N, (4.11)
2
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and for j = 0 we have

ϑK�
0 (μ) = −μ

vF

|K2|
sgn

(
ϑK�

)
.

(3) The results of parts (1) and (2) apply to the operator /̃DK�(μ) where we replace 
ϑK�
j (μ) by ϑ̃K�

j (μ), θgap by θ̃gap and θgap(μ) by θ̃gap(μ).

Part (1) of Proposition 4.5 was proved in [17]; Part (2) appears in [6,14,20] and is 
proved using part (1) in [14, Lemma 3.1].

4.3. From approximate edge states to genuine edge states

In this section we use Theorem 5.1 together with the construction of approximate 
edge states to obtain a complete characterization of all point spectrum in the gap about 
energy ED.

Consider the Hamiltonian Hδ and the associated effective Dirac operators /DK�(μ), 
K� = K, K′. (The discussion of this subsection applies as well to H̃δ.) Fix μ ∈ R, a 
positive integer N as in Proposition 4.5 and any integer j with |j| ≤ N . Finally, fix 

K� = K or K′. Let 
(
ϑK�
j (μ), αK�,j(·;μ)

)
denote the simple L2(R)- eigenpair of /DK�(μ)

given by Proposition 4.5:(
/DK�(μ) − ϑK�

j (μ)
)
αK�,j(s;μ) = 0, αK�,j(s;μ) ∈ L2(R,C2).

The multiple scale expansion approach of §4.1 can be continued to arbitrary fixed order 
in δ and yields, for any fixed M ≥ 1 and δ sufficiently small, a construction of an O(δM )
approximate L2

K�·v1+δμ eigenpair 
(
EK�,δ

j,M (μ), ΨK�,δ
j,M (x, s; μ)

)
of (3.9) with(

Hδ
edge − EK�,δ

j,M (μ)
)

ΨK�,δ
j,M (x, δK2 · x;μ) = OHs

K�v1+δμ
(δM ) .

For j = −N, . . . , N , these approximate eigenpairs of (3.9) have expansions in powers of 
δ:

ΨK�,δ
j,M (x, s;μ) = ΦK�(x)
 αK�,j(s;μ) + δ2 ψK�,j

2 (x, s;μ) + · · · + δM ψK�,j
M (x, s;μ)

EK�,δ
j,M (μ) = ED + δ ϑK�

j (μ) + δ2 eK�,j
2 (μ) + . . . + δM eK�,j

M (μ). (4.12)

Since the eigenvalues ϑK�
j (μ) of the effective operator /DK�(μ) are distinct, the approxi-

mate L2
K�·v1+δμ eigenvalues are O(δ)− separated.

Fix an arbitrary μ0 > 0 and let |μ| ≤ μ0. Basic general properties of self-adjoint op-
erators together with precise information about the location of approximate eigenvalues 
of Hδ within the spectral gap about ED enable us to conclude the existence of genuine 
eigenvalues of Hδ in this gap; see [17, §3 and Appendix].
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From the multiple scale procedure above one can conclude for the case of zigzag 
type edges the existence of (2N + 1) L2

2π/3+δμ− eigenvalues and (2N + 1) L2
−2π/3+δμ−

eigenvalues of Hδ which are located within the order O(δ) gap in the essential spectrum, 
(aδ(μ), bδ(μ)), about ED [23]. The resolvent expansion (5.4) of Theorem 5.1 ensures, for δ
sufficiently small, that these eigenvalues are simple and that they are the only eigenvalues 
in this spectral gap, located an arbitrarily small fixed distance from the boundary of the 
gap; see [14] and Corollary 5.2. This is key to the topological arguments of [13,14] and 
to the perspective outlined in §1.5.

The situation is different for the case of armchair-type edges. In this case, we have 
K · v1 = K′ · v1 = 0. Hence, via the multiple scale expansion procedure we produce 2 ×
(2N+1) L2

0+δμ− approximate (and then genuine) eigenpairs of Hδ: (2N+1) are generated 

by σpp(/DK(μ)) and (2N + 1) by σpp(/DK′(μ)). Since the 2N elements of σpp(/DK(μ))
and σpp(/DK′(μ)), corresponding to j �= 0, are equal (see (4.11)), the corresponding 4N
branches of eigenvalues of Hδ acting in L2

0+δμ− are degenerate through order δ. (We 
are as yet unable to detect a splitting at finite order.) Therefore, in Theorem 5.1, we 
give an expansion of the rank-two projector associated with each pair eigenvalues of Hδ

generated by the pairs of approximate eigenvalues {EK,δ
j,M(μ), EK′,δ

j,M (μ)}, 0 < |j| ≤ N ; see 
Corollary 5.3. The topological consequences nonetheless persist.

4.4. Classification of rational edges

Theorem 5.1 and Corollaries 5.2-5.3 show the dependence of spectral properties of 
Hδ

edge on whether the edge is of zigzag or armchair type. The purpose of this section is 
to motivate this classification of rational edges.

Consider solutions of the eigenvalue problem (3.9). Since an eigenfunction Ψ is in L2
k‖

, 
it has a decomposition (2.6):

Ψ(x) = 1
2π

π∫
−π

Ψ̃(k‖K1 + tK2,x)dt. (4.13)

From the discussion of §4.3 an eigenfunction Ψ with energy near ED has an approxima-
tion to arbitrary order in δ of multiscale type. Its dominant spectral contributions come 
from Floquet-Bloch modes with quasi-momenta near high symmetry quasi-momenta. 
Hence, the dominant spectral contributions to the representation (4.13) is from those 
values of t ∈ [−π, π] for which k‖K1 + tK2 = (K� ·v1 +δμ)K1 + tK2 is near the sublattice 
K + Λ∗ or near the sublattice K′ + Λ∗.

Thus, we distinguish two cases where, for |t| ≤ π:

(a) k‖K1 + t ·K2 passes near K + Λ∗ or near K′ + Λ∗, but not near both, or
(b) k‖K1 + t ·K2 passes near both K + Λ∗ and K′ + Λ∗.
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These cases are in fact characterized by a simple arithmetic relation on the relatively 
prime integers, a1, b1, which define the edge direction: v1 = a1v1 + b1v2. To derive 
this relation, assume that (a) or (b) holds. Taking the scalar product of vectors on the 
segment k‖K1 + t ·K2 with v1, we deduce that k‖ is near K ·v1 = 2π(a1− b1)/3 mod 2π
or K′ ·v1 = −2π(a1− b1)/3 modulo 2π. Since a1 and b1 are integers, k‖ is near −2π/3, 0
or +2π/3 modulo 2π. Now (b) holds if and only if K ·v1 ≈ K′ ·v1 modulo 2π and hence 
a1 ≈ b1 mod 3. Again since a1 and b1 are integers, case (b) implies a1 = b1 modulo 3. 
Thus, we classify rational edges according to whether or not a1 and b1 are equivalent 
modulo 3:

Definition 4.6. Let v1 = a1v1 + b1v2 where a1 and b1 are relatively prime.

(a) We say that Rv1 is a zigzag-type edge if a1 �= b1 mod 3. In this case, {K ·v1, K′·v1} =
{−2π/3, 2π/3} mod 2π.

(b) We say that Rv1 is a armchair-type edge if a1 = b1 mod 3. In this case, {K ·v1, K′ ·
v1} = {0} mod 2π.

This terminology is motivated by the most commonly studied cases in the chemistry 
and physics literature: the armchair edge – where v1 = v1 + v2 (a1 = b1 = 1); and the 
zigzag edge – where v1 = v1 (a1 = 1, b1 = 0).

5. Main results: resolvent expansion and edge states

This section contains our main results:

• Theorem 5.1: the resolvent expansion of Hδ
edge acting on L2

k‖
.

• Corollaries 5.2 and 5.3: identifications of all possible edge states, whose energies are 
in the spectral gap about the Dirac point energy, ED.

5.1. Resolvent expansion for Hδ
edge

We first provide some setup for the resolvent expansion. From the L2
K�

- kernel of 
H0 − ED (see §3.1 and Proposition 4.1), we form C4− and C2− valued Floquet-Bloch 
modes:

Φ =
[

ΦK

ΦK′

]
∈ C∞(R2,C4), where ΦK� =

[
ΦK�

1
ΦK�

2

]
∈ C∞(R2,C2).

Zigzag- versus armchair-type edges are defined in Definition 4.6. If v1 is a zigzag-type 
edge then {K · v1, K′ · v1} = {−2π/3, 2π/3} mod 2π; thus L2

K·v1
�= L2

K′·v1
. If v1 is an 

armchair-type edge then {K · v1, K′ · v1} = {0} mod 2π; thus L2
K·v = L2

K′·v = L2
0.
1 1
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Corresponding to the two edge-types, we define the (averaging) operator

T : Dom(T ) → L2(R2,C4), T u(t) =
∫

R/Z

(
Φu

)
(sv1 + tv2)ds where

Dom(T ) def=
{
L2

2π/3 ⊕ L2
−2π/3 if v1 is a zigzag-type edge;

L2
0 if v1 is an armchair-type edge.

(5.1)

Its adjoint, T ∗ : L2(R, C4) → Dom(T ), is the restriction operator given by

T ∗v(x) = Φ(x)
v(K2 · x). (5.2)

T and T ∗ are bounded linear operators.
We also introduce unitary dilations on L2(R):

Uδg(s)
def= δ−1/2g

(
δ−1s

)
and U∗

δ g(s)
def= δ1/2g (δs) . (5.3)

Finally, we form a 4 × 4 Dirac operator using /DK(μ) and /DK′(μ), arising in §4.1:

/D(μ) def=
[
/DK(μ) 0

0 /DK′(μ)

]
: H1(R,C4) → L2(R,C4).

The operator /D(μ), acting in L2(R), has spectrum equal to σL2
(
/DK(μ)

)
∪σL2

(
/DK′(μ)

)
. In 

particular, it has a gap 
(
−θgap(μ), θgap(μ)

)
in its essential spectrum; see Proposition 4.5.

The mathematical core of this paper is the following:

Theorem 5.1 (Resolvent expansion). Let v1 denote a rational edge, i.e. v1 = a1v1+b1v2, 
with a1 and b1 relatively prime integers. Assume (H1) − (H3) of §3.1. Fix ε, μ0 > 0 and 
K� ∈ {K, K′}. There exists δ0 > 0 such that if

0 < δ < δ0, |μ| < μ0, |z| < ϑgap(μ) − ε, dist
(
z, σL2

(
/D(μ)

))
≥ ε

then Hδ − ED − δz : H2
K�·v1+δμ → L2

K�·v1+δμ is invertible. Moreover, the following 
expansions hold according to whether Rv1 is a zigzag-type or armchair-type edge:

• Zigzag case: When v1 is a zigzag-type edge:

(
Hδ − ED − δz

)−1
∣∣∣
L2

2π/3+δμ⊕ L2
−2π/3+δμ

= 1
δ
·
(
UδT e−iμ〈�,x〉

)∗
·
(
/D(μ) − z

)−1
· UδT e−iμ〈�,x〉

+OL2 ⊕L2

(
δ−2/3

)
.

(5.4)
2π/3+δμ −2π/3+δμ
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• Armchair case: When v1 is an armchair-type edge:(
Hδ − ED − δz

)−1
∣∣∣
L2

δμ

= 1
δ
·
(
UδT e−iμ〈�,x〉

)∗
·
(
/D(μ) − z

)−1
· UδT e−iμ〈�,x〉 + OL2

δμ

(
δ−2/3

)
.

(5.5)

The analogous statements hold for H̃δ, with /D(μ) replaced by /̃D(μ) etc.

The expansion for zigzag edges appears in [14, Theorem 1 and 3]. The current work ex-
tends the resolvent expansion to the more subtle case of armchair edges. The current work 
combines of techniques from [23] and [14] to provide a unified treatment of all rational 
edges by a more direct and transparent strategy. Note that the expansion (5.4) combines 
expansions of (Hδ −ED− δz)−1 in the two spaces L2

2π/3+δμ and L2
−2π/3+δμ, respectively 

in terms of the two effective Dirac resolvents 
(
/DK(μ) − z

)
−1 and 

(
/DK′(μ) − z

)
−1. The 

expansion (5.5) is an expansion of (Hδ −ED − δz)−1 in the single space L2
0+δμ in terms 

of the block-diagonal resolvent 
(
/D(μ) − z

)
−1.

We next discuss a key consequence of the resolvent expansion. Edge states energies are 
L2

K�·v1+δμ-eigenvalues of Hδ
edge. The method of [23] shows that each of the 2N +1 point 

eigenvalues of /DK�(μ) generates a point eigenvalue of Hδ
edge in the spectral gap about 

ED, |μ| ≤ μ0 and δ sufficiently small. Leading order expressions for the eigenvectors were 
also constructed. These eigenvalues are poles of the resolvent of Hδ in the spectral gap. 
Using Theorem 5.1 together with the arguments of [14,17], we can, for δ small:

(a) locate these eigenvalues/poles to arbitrary finite order in δ;
(b) show that all corresponding eigenvectors have a multiple scale structure;
(c) expand the edge-state eigenprojectors to arbitrary finite order in δ; and
(d) explain the simulations of edge state curves displayed in Figs. 1 and 2; see also [22]

and aspects of the experimental study [42].

The results are detailed in the following two corollaries to Theorem 5.1. For zigzag-type 
edges, we recover [14, Corollary 4]:

Corollary 5.2. Let v1 be a zigzag-type edge and consider the setting of Theorem 5.1. 
Fix ε arbitrarily small and positive. For δ sufficiently small, the operator Hδ acting in 
L2

K�·v1+δμ has precisely 2N + 1 eigenvalues in the gap(
ED − δ

(
θgap(μ) − ε

)
, ED +

(
θgap(μ) − ε

))
in its essential spectrum. The associated eigenpairs 

(
EK�,δ

j (μ), ΨK�,δ
j (·, ·; μ)

)
, j =

−N, . . . , N can be expanded to arbitrary finite order in δ:
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EK�,δ
j (μ) = EK�,δ

j,M (μ) + O
(
δM+1) ,

ΨK�,δ
j (x;μ) = ΨK�,δ

j,M (x, δK2 · x;μ) + OHs
K�·v1+δμ

(δM+1),

where the expansion of (EK�,δ
j,M (μ), ΨK�,δ

j,M ) is displayed in (4.12). Analogous statements 
hold for H̃δ.

The next result describes the spectrum of Hδ
edge for armchair-type edges.

Corollary 5.3. Fix ε > 0 and let v1 be an armchair-type edge. Then, Hδ has precisely 
4N + 2 eigenvalues in the L2

δμ-essential spectral gap

(
ED − δ

(
θgap(μ) − ε

)
, ED +

(
θgap(μ) − ε

))
.

Moreover:

• The eigenvalues – denoted {EK�,δ
j (μ)

}
for j = −N, . . . , N and K� = K, K′ – are 

of multiplicity at most 2 and may be expanded to arbitrary finite order in δ

EK�,δ
j (μ) = EK�,δ

j,M (μ) + O
(
δM+1) ; see (4.12)

• For each j ∈ [−N, N ], the rank-two eigenprojectors Πδ
j,μ associated with the pair of 

eigenvalues {EK,δ
j (μ), EK′,δ

j (μ)} have expansions, to arbitrary finite order in δ, in 
terms of the projectors:

ΨK�,δ
j,M (μ) ⊗ ΨK�,δ

j,M (μ) + OHs
δμ

(
δM+1) , K� = K,K′; see (4.12).

The analogous statements hold for H̃δ.

In Corollary 5.3, the two-dimensional eigenprojectors for the eigenvalue pairs EK,δ
j (μ), 

EK′,δ
j (μ) is expanded, since we only know, from perturbation theory, that the splitting 

is O(δ3) or higher.

5.2. Global character of edge state curves

Figs. 1 and 2 display edge state curves for zigzag-type and armchair-type edges for 
Hδ (C− invariant, P− breaking) and for H̃δ (C− breaking, P− invariant). In this 
section we use Theorem 5.1, and Corollaries 5.2 and 5.3 to explain these bifurcation 
curves in terms of the properties of effective Dirac operators. Indeed, these corollaries 
imply that all L2

K�+δμ eigenvalues, E, of Hδ
edge in the spectral gap about ED satisfy: 

(E −ED) /δ = ϑ + O(δ), where ϑ is an L2(R)− eigenvalue of /DK�(μ) (respectively 

/̃DK�(μ)), K� = K, K′. That is, a magnification of the L2
K +δμ edge state eigenvalue 
�
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Fig. 5. Armchair-type edge, Hδ: (a) Spectrum of /D(μ) as a function of μ for armchair-type edges with TRS: 
superposition of the left panels of Fig. 4 C -invariant case. (b) L2

k‖
-spectrum of Hδ as a function of k‖, with 

anticipated splitting of edge state curves.

curves of Hδ
edge near (E, k‖) = (ED, K� · v1) gives the eigenvalue curves of effective 

Dirac operators. The spectra of these effective operators are completely described in 
§4.2. Furthermore, that this local picture determines the essential characteristics of edge 
state curves over the full range 0 ≤ k‖ < 2π is implied by the a priori information of 
[14, Lemma 7.2], which implies that for |k‖ − K� · v1| ≥ Cδ (for some C > 0 fixed), no 
edge state can have energy near ED. We now proceed with a discussion of Figs. 1 and 
2; the zigzag subcases was covered in [14].

5.2.1. Zigzag-type edge, Hδ (C− invariant, P− breaking), Fig. 1, left panel
See also the schematic in Fig. 4. The effective Dirac operator /DK(μ) determines the 

L2
2π/3+δμ spectrum of Hδ and /DK′(μ) determines the L2

−2π/3+δμ spectrum of Hδ. The 
simulations show a single edge state curve in the spectral gap varying linearly near 
k‖ = ±2π/3. This local behavior is described by the spectra of effective Dirac operators 
(Proposition 4.5), which have a single edge state curve (N = 0), varying linearly with μ. 
The slopes of the curves near k‖ = 2π/3 and k‖ = −2π/3 are equal and opposite since 
σL2(/DK′) = −σL2(/DK); see §4.2.

5.2.2. Armchair-type edge, Hδ (C− invariant, P− breaking), Fig. 1, right panel
See also the schematic in Fig. 5. For armchair-type edges K · v1 = K′ · v1 = 0, and 

hence L2
K·v1

= L2
K′·v1

= L2
0. Theorem 5.1 implies that the resolvent and character of 

the spectrum in the spectral gap about energy ED is determined by the block-diagonal 
Dirac operator /D(μ). This effective operator has a two-fold degenerate eigenvalue for 
μ = 0 (corresponding to k‖ = 0) — a multiplicity one eigenvalue contributed by each of 
the two blocks /DK(0) and /DK′(0) — each of which departs from zero linearly in μ with 
equal and opposite slope; σL2(/DK′) = −σL2(/DK), Proposition 4.5 and Fig. 5, left panel.

Two scenarios are possible for δ �= 0:

(i) either the two perturbed eigenvalue curves of Hδ cross near k‖ = 0, or
(ii) they split and Hδ acquires a full L2-gap near energy ED.
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Fig. 6. Armchair-type edge, H̃δ: (a) Spectrum of /̃D(μ) as a function of μ for armchair-type edges with 
broken TRS: two superposed copies of Fig. 4(b). (b) L2

k‖
-spectrum of H̃δ as a function of k‖.

While the numerical simulations plotted in Fig. 2(b) favor (ii), our results do not preclude 
either possibility. Analytic calculations show that the splitting is at most O(δ3) and we 
conjecture that it is O(δ∞).

5.2.3. Zigzag-type edge, H̃δ (C− breaking, P− invariant), Fig. 2, left panel
The effective Dirac operator /̃DK(μ) determines the L2

2π/3+δμ spectrum of H̃δ and 

/̃DK′(μ) determines the L2
−2π/3+δμ spectrum of H̃δ. In contrast to the C− invariant, P−

breaking case (§5.2.1), the protected eigenvalue curves of /̃DK(μ) and /̃DK′(μ), which pass 
through zero energy, have the same slope since σL2

(
/̃DK(μ)

)
= σL2

(
/̃DK′(μ)

)
; see §4.2. 

This accounts for the behavior in Fig. 2, left panel.

5.2.4. Armchair-type edge, H̃δ (C− breaking, P− invariant), Fig. 2, right panel
See also the schematic in Fig. 6. In contrast to the C− invariant, P− breaking case 

(§5.2.2), the protected eigenvalue curves of /̃DK(μ) and /̃DK′(μ) through zero energy are 
identical. As in §5.2.2, for δ �= 0 the splitting is at high order as reflected in the right 
panel of Fig. 2; see also Fig. 6.

5.3. A remark on the Valley Hall effect

Using our results, one can construct fully localized edge wave-packets spectrally con-
centrated near K or K′. In condensed matter physics, K and K′ are referred to as valley
degrees of freedom. The line-defect orientation has physical implications for energy prop-
agation along the edge. For C− (time-reversal) invariant systems and a zigzag-type edge, 
wave-packets concentrated near K or K′ travel in opposite directions since the valley 
indices sgn

(
ϑK)

and sgn
(
ϑK′) have opposite sign; see Proposition 4.4. Therefore, in a 

non-magnetic honeycomb system, there is quantum Hall-like energy transport whose di-
rection is controlled by exciting the appropriate high-symmetry sublattice. This is closely 
related to the Valley Hall Effect [39,44]. This effect is not present for armchair-type edges.
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5.4. Topological considerations

We provide a topological perspective of the bifurcation curves using arguments from 
[14]. The spectral flow of Hδ

edge counts the signed number of L2
k‖

-eigenvalues of Hδ
edge

intersecting ED as k‖ runs through [0, 2π]; see §1.5.
The operator Hδ breaks P but not C . The C -invariance implies that edge state 

curves are symmetric about k‖ = 0. It follows that the spectral flow is equal to 0. This is 
seen in the simulation results displayed in Fig. 1. By adding suitably designed (compact) 
perturbations, one can deform Hδ to an operator with no edge states; the edge modes 
in C− invariant systems are not topologically protected.3

The operator H̃δ breaks C , but not P. The spectral flow is here equal to ±2: see 
the explanations of §5.2, the rigorous discussion in [13] and the numerical simulations 
displayed in Fig. 2. The edge states curves cannot be continuously removed through 
compact operator perturbations: edge states of H̃δ are topologically protected.

In the context of our operators, Hδ
edge, see [13] for relations between spectral flow and 

the topology of the bulk operator band spectrum (bulk-edge correspondence), as well as 
extensions beyond gap-preserving perturbations.

6. The resolvent expansion

In this section we prove Theorem 5.1. Symmetry properties of the Hamiltonian Hδ
edge

(whether P- or C - breaking) play a role in the global character of edge state curves 
(§5.2-5.4). However symmetry does not play a role in technical details of the resolvent 
expansion for energies near ED.

Our method of proof unifies the approaches of [23,24] and [14] to obtain the different 
resolvent expansions for zigzag-type and armchair-type edge orientations. For ease of 
presentation, we focus on the particular case of armchair-type edge states of the C−
invariant Hamiltonian Hδ

edge = Hδ. This case presents new hurdles due to the coupling 
of spectral components of the two high-symmetry quasi-momentum sublattices K + Λ∗

and K′ + Λ∗.
For armchair-type edges (Rv1 with K ·v1 = K′ ·v1 = 0), the multiscale analysis of §4

indicates that the point spectrum of Hδ
edge acting in L2

δμ, with energies uniformly within 
spectral gap about ED, is determined by the block-diagonal effective Dirac operator, 
/D(μ) : H1(R; C4) → L2(R; C4); one block determining the K sublattice contribution 
and the other block determining the K′ sublattice contribution.

The operator, /D(μ), has degenerate (multiplicity two) point spectrum associated 
with /DK(μ) and /DK′(μ); see §4.2. Furthermore, the spectral components of the two 
high-symmetry (K and K′) quasi-momentum lattices are coupled by the line-defect per-
turbation. Our analysis will show that this coupling is non-resonant. Therefore, the 

3 We believe such non-protected states can be continuously deformed away through a family of spatially 
localized perturbations of Hδ

edge; this however is not immediately implied by general topological arguments.
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resolvent of Hδ
edge acting in L2

δμ is, to dominant order as δ ↓ 0, given in terms of the 

resolvent of /D(μ) acting in L2(R; C4). We carry out the expansion in L2
0 = L2(R2/Zv1). 

This approach also gives the result for k‖ = δμ stated in Theorem 5.1.
We will proceed along three steps:

1. The multiscale construction of §4 [23,24] suggests that edge states bifurcate from the 
Dirac point (ED, K�); the approximate edge mode is spectrally concentrated near 
the energy / quasimomentum pair (ED, K�). Thus in §6.1 we introduce orthogonal 
projectors Πnear and Πfar = Id− Πnear that localize in energy and quasi-momentum 
near and far from the Dirac points. Thus,

L2
0 = Hnear ⊕Hfar, Hnear = Range(Πnear), Hfar = Range(Πfar). (6.1)

2. In §6.2, we express Hδ on L2
0 in terms of its action on the orthogonal summands 

Hnear and Hfar in (6.1):

(
Hδ − ED − δz

)∣∣
L2

0
=

[
Hδ

near − ED − δz 0
0 H0

far −ED − δz

]
+ OL2

0
(δ), (6.2)

where Hδ
near = Πnear Hδ Πnear and Hδ

far = Πfar Hδ Πfar. By the spectral no-fold 
condition (H2) (see (3.5)) the operator H0

far has spectrum which is bounded away 
from ED. Hence, the invertibility of (6.2) is controlled by that of Hδ

near − ED − δz

on Hnear.
3. The core of the proof of Theorem 5.1 is in §6.3-6.4. There, Hδ

near is related to the 
Dirac operators /DK� , first for Hδ

near itself (Proposition 6.4), then at the level of 
the resolvent (Proposition 6.5). A Schur complement / Lyapunov-Schmidt reduction 
strategy applied to (6.2) yields L2

0-invertibility of Hδ − ED − δz and an expansion 
of the resolvent provided z is bounded away from σL2(/DK) ∪ σL2(/DK′).

6.1. Projector near Dirac points

Since we have assumed that Rv1 is an armchair-type edge, K + tR intersects both 
K and the sublattice K′ + Λ∗. By Λ∗ periodicity of the Floquet-Bloch modes we may 
restrict attention to the segment (1D Brillouin zone) t ∈ [−π, π] 	→ K + tK2; see (2.6). 
By the no-fold condition (H2) (see (3.5)), along this quasi-momentum segment Hk is 
“gapped ” away from k = K and k = K′.

In this section, we construct an operator Πnear that projects simultaneously near 
energy ED and quasimomenta K and K′ along K + tK2, |t| ≤ π. We first construct 
operators ΠK�

near that projects near K� ∈ {K, K′} along K + tK2, |t| ≤ π.
We recall that H0

k is the operator H0 = −Δ + V acting on L2
k. This operator is 

unitarily equivalent to H0(k) = e−ik·x ·H0 ·eik·x acting on L2
0 = L2(R2/Λ). Since H0(k)

varies smoothly with k and ED is an eigenvalue of H0
K�

of multiplicity precisely two, 
there exist ε, η > 0 such that
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|k − K�| ≤ η ⇒ H0
K�

has no eigenvalues but ED in [ED − ε, ED + ε] ; (6.3)

see, for example, [32, Section 8]. We take δ2/3 ≤ η. For fixed k, satisfying |k −K�| ≤ η, 
we may define the orthogonal projector

Π0
k = 1

2πi

∫
|ζ−ED|=ε

(
ζ −H0

k
)−1

dζ : L2
k → L2

k . (6.4)

Note by (6.3) that

Π0
K�

= ΦK�
1 ⊗ ΦK�

1 + ΦK�
2 ⊗ ΦK�

2 and Π0
K�

(x,y) = ΦK�(x)
ΦK�(y). (6.5)

We introduce ΠK�
near (see [23]), a direct integral of operators Π0

k of quasi-momenta near 
K�:

ΠK�
near

def= 1
2π

⊕∫
[−π,π]

χ
(
δ−2/3t

)
· Π0

K�+tK2
dt : L2

0 → L2
0. (6.6)

Here, χ is the characteristic function of the interval [−1, 1]. Note that we are suppressing 
the dependence of ΠK�

near on δ. The operator ΠK�
near projects to components with quasi-

momenta in K + tK2, |t| ≤ π, and at most δ2/3 distant from K�.
For armchair-type edges, the segment K + tK2, |t| ≤ π, intersects both K + Λ and 

K′+Λ∗. By the no-fold condition (3.5), along this quasimomentum segment the operator 
H0

k is “gapped” only for quasimomenta bounded away from K and K′. Thus we introduce 
a projector which excludes spectral components which are near either K +Λ∗ or K′ +Λ∗

Πnear
def= ΠK

near + ΠK′

near.

Components in the range of ΠK
near and range of ΠK′

near are coupled by the defect pertur-
bation. We show however that such coupling is non-resonant and prove that its effect is 
negligible; see Proposition 6.8.

We next provide an expansion of ΠK�
near.

Proposition 6.1. As δ → 0,

ΠK�
near = ΠK�,(0)

near + OL2
0
(δ2/3), where:

ΠK�,(0)
near

def= 1
2π

⊕∫
[−π,π]

χ(δ−2/3t) eitK2·x Π0
K�

e−itK2·x dt,
(6.7)

where Π0
K : L2

K → L2
K is the projector to CΦK�

1 ⊕CΦK�
2 ; see (6.5).
� � �
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Proof. 1. By (6.4), the projector

N(k) def= e−i(k−K�)·x · Π0
k · ei(k−K�)·x : L2

K�
→ L2

K�
, (6.8)

associated to the operator H0(k−K�) = e−i(k−K�)·x ·H0 · e−i(k−K�)·x, varies smoothly 
with k [32, Section 8]. Hence, N(k) has a Taylor expansion:

N(k) = N(K�) + OL2
K�

(k − K�) = Π0
K�

+ OL2
K�

(k − K�). (6.9)

The leading order term Π0
K�

is the projection to CΦK�
1 ⊕CΦK�

2 displayed in (6.5).
2. Using (6.8) and (6.9), with k = K� + tK2, in (6.6) we get

ΠK�
near = 1

2π

⊕∫
[−π,π]

χ(δ−2/3t)Π0
K�+tK2

dt

= 1
2π

⊕∫
[−π,π]

χ(δ−2/3t) · eitK2·xN(K� + tK2)e−itK2·x · dt

= 1
2π

⊕∫
[−π,π]

χ(δ−2/3t) · eitK2·xΠ0
K�

e−itK2·x · dt + 1
2π

⊕∫
[−π,π]

χ(δ−2/3t) · OL2
K�+tK2

(t)dt.

The first term in this expansion is precisely ΠK�,(0)
near , displayed in (6.7). The second term 

is OL2
0
(δ2/3) because χ(δ−2/3t) is supported in |t| ≤ δ2/3 and of (2.8). This completes 

the proof of Proposition 6.1. �
Next, we give an explicit expression for ΠK�,(0)

near , the leading term in (6.7).

Proposition 6.2. We have:

ΠK�,(0)
near = T ∗

K�
χ(δ−2/3Ds)TK�

: L2(Σ,C2) → L2(Σ,C2).

Here, TK�
: L2(Σ, C2) → L2(R) and its adjoint T ∗

K�
: L2(R) → L2(Σ, C2) (Σ = R2/Rv1) 

are given by

TK�
u(t) =

∫
R/Z

(
ΦK�u

)
(sv1 + tv2)ds, T ∗

K�
v(x) = ΦK�(x)
v(K2 · x). (6.10)

Proof. 1. We use (2.9) to express the kernel of ΠK�,(0)
near :

ΠK�,(0)
near (x,y) = 1

2π

∫
χ(δ−2/3t) eitK2·x Π0

K�
(x,y) e−itK2·y dt.
[−π,π]



36 A. Drouot, M.I. Weinstein / Advances in Mathematics 368 (2020) 107142
Since Π0
K�

(x, y) = ΦK�(x)
 ΦK�(y) (see (6.5)), the kernel of ΠK�,(0)
near as an operator 

acting on L2(Σ), Σ = R2/Zv1, is given by:

ΠK�,(0)
near (x,y) = ΦK�(x)


2π

∫
[−π,π]

χ(δ−2/3ω) eiωK2·(x−y)dω ΦK�(y). (6.11)

2. On the other hand,

(
T ∗
K�

χ(δ−2/3D)TK�

)
u(x) = ΦK�(x)


2π

∫
R

χ(δ−2/3ω)
∫
R

eiω(K2·x−t′2) (TK�
u) (t′2)dt′2dω.

(6.12)
Writing out the dt′2 integral we have:

∫
R

eiω(K2·x−t′2) (TK�
u) (t′2)dt′2 =

∫
R

dt′2

1∫
0

dt′1e
iω(K2·x−t′2)

(
ΦK�u

)
(t′1v1 + t′2v2).

Set y = t′1v1 + t′2v2. Hence dt′1dt
′
2 = |v1 ∧ v2| dy = dy and t′2 = K2 · y. Therefore,∫

R

eiω(K2·x−t′2) (TK�
u) (t′2)dt′2 =

∫
Σ

eiωK2·(x−y) · ΦK�(y)u(y)dy. (6.13)

Substitution of (6.13) into (6.12) yields:

(
T ∗
K�

χ(δ−2/3D) TK�

)
u(x) = ΦK�(x)


2π

∫
Rω

χ(δ−2/3ω)
∫
Σ

eiωK2·(x−y) ΦK�(y)u(y)dy .

Hence, for δ small:

(
T ∗
K�

χ(δ−2/3D) TK�

)
(x,y) = ΦK�(x)


2π

∫
R

χ(δ−2/3ω)eiωK2·(x−y) · ΦK�(y)dω

= ΦK�(x)


2π

∫
[−π,π]

χ(δ−2/3ω) eiωK2·(x−y) · ΦK�(y)dω

(6.14)

Comparing (6.14) with (6.11) completes the proof of Proposition 6.2. �
6.2. Decomposition into near and far components

Using the projections Πnear and Πfar = Id − Πnear, the space L2
0 splits into near and 

far quasi-momentum components:
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L2
0 = Hnear ⊕Hfar, Hnear

def= Πnear
(
L2

0
)
, Hfar

def= Πfar
(
L2

0
)
.

We show here that the invertibility of Hδ −ED − δz on L2
0 reduces to that of

Πnear
(
Hδ −ED − δz

)
Πnear : Hnear → Hnear.

We view Hδ − ED − δz as a matrix operator acting the direct summands Hnear and 
Hfar of L2

0:

Hδ =
[
Hδ

near − ED − δz ΠnearH
δΠfar

ΠfarH
δΠnear Hδ

far − ED − δz

]
, where

Hδ
near

def= ΠnearH
δΠnear, Hδ

far
def= ΠfarH

δΠfar.

(6.15)

We next simplify the off-diagonal components of (6.15). Note that Πnear is a direct inte-
gral of spectral projections associated to H0

k and therefore commutes with H0. Moreover, 
ΠnearΠfar = 0 and

Hδ = H0 + δκδW, κδ(x) = κ(δK2 · x).

We deduce that ΠnearH
δΠfar = δ · Πnear · κδW · Πfar and similarly, Πfar

(
Hδ − ED −

δz) Πnear = δ · Πfar · κδW · Πnear. Therefore (6.15) becomes

Hδ =
[

Hδ
near − ED − δz δ · Πnear · κδW · Πfar

δ · Πfar · κδW · Πnear Hδ
far − ED − δz

]
.

We construct the resolvent (Hδ
near − ED − δz)−1 using the Schur complement:

Lemma 6.3. Let M =
[
A B
C D

]
be such that D and E 

def= A − BD−1C are invertible. 

Then, M is invertible and

M−1 =
[

E−1 −E−1BD−1

−D−1CE−1 D−1 + D−1CE−1BD−1

]
.

We shall apply Lemma 6.3 with

A = Hδ
near − ED − δz, B = δ · Πnear · κδW · Πfar

C = δ · Πfar · κδW · Πnear, D = Hδ
far − ED − δz .

We first study the invertibility of D = Hδ
far −ED − δz on Hfar. We note that

Hδ
far −ED − δz = H0

far − ED + δ · Πfar(κδW − z)Πfar = H0
far − ED + OHfar(δ).

Because of (H1) and (H3), we have for some c1 > 0
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dist
(
σHfar

(
H0) , ED

)
≥ c1δ

2/3.

Therefore the operator H0 − ED : Hfar → Hfar is invertible, and its inverse is 
OHfar(δ−2/3). A Neumann series argument implies that D is invertible on Hfar with 
D−1 = OHfar(δ−2/3).

We turn to the invertibility of E = A −BD−1C : Hnear → Hnear. We have

E =
(
Hδ

near − ED − δz
)
− δ2 · ΠnearκδW ·

(
Hδ

far − ED − δz
)−1 · κδWΠnear. (6.16)

Since D−1 = OHfar(δ−2/3), the correction term in (6.16) is of size OHnear(δ2−2/3) =
OHnear(δ4/3) and therefore

E = Hδ
near − ED − δz + OHnear(δ4/3). (6.17)

To study the invertibility of E, we analyze the invertibility of the leading order term 
in (6.17). In §6.3 and §6.4 we will prove the two following propositions, expansions of 
Hδ

near − ED − δz and its inverse:

Proposition 6.4. For z varying in compact subsets of C, as operators on L2
0,

Hδ
near −ED − δz (6.18)

= δ · (UδT )∗ · χ(δ1/3Ds)
[
/DK − z 0

0 /DK′ − z

]
χ(δ1/3Ds) · UδT + OL2

0

(
δ4/3

)
.

Proposition 6.5. Fix ε > 0. There exists δ0 > 0 such that for

δ ∈ (0, δ0), |z| ≤ ϑD − ε, dist(σL2(/DK), z) ≥ ε,

the operator Hδ
near − ED − δz : Hnear → Hnear is invertible; and as operators on Hnear,

(
Hδ

near −ED − δz
)−1 = 1

δ
· (UδT )∗ ·

[
/DK − z 0

0 /DK′ − z

]−1

· UδT + OHnear

(
δ−2/3

)
.

(6.19)

Proof of Theorem 5.1 assuming Propositions 6.4 and 6.5. 1. Because of Proposition 6.5, 
in the range specified by Theorem 5.1, Hδ

near − ED − δz is invertible on Hnear with 
norm OHnear(δ−1). A Neumann series argument then shows that E – given in (6.17) – is 
invertible on Hnear with E−1 = OHnear(δ−1). This implies

E−1 =
(
Hδ

near −ED − δz + OHnear(δ4/3)
)−1

=
(
Hδ − E − δz

)−1 + O (δ−2/3).
(6.20)
near D Hnear
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2. Because of E−1 = OHnear(δ−1), B = OHfar→Hnear(δ), C = OHnear→Hfar(δ) and D−1 =
OHfar(δ−2/3), Lemma 6.3 yields

(
Hδ −ED − δz

)−1 =
[
E−1 0
0 0

]
+ OL2

0
(δ−2/3), (6.21)

where the leading order term in (6.21) is OL2
0
(δ−1). We then substitute (6.20) into (6.21). 

The leading order term is given by that of (6.19). This completes the proof of (5.5), the 
resolvent expansion Hδ acting in L2

0 (armchair-type edges). As noted at the start of the 
proof, the arguments apply Hδ acting in L2

δμ for all |μ| < μ0, with δ sufficiently small. 
This completes the proof of Theorem 5.1 assuming Propositions 6.4 and 6.5. �

In the following two sections we turn to the proofs of Propositions 6.4 and 6.5.

6.3. Proof of Proposition 6.4

Since

Hδ
near = H0

near + δ · Πnear · κδW · Πnear, κδ(x) = κ(δK2 · x),

to prove Proposition 6.4, we must expand terms arising from H0
near, which are domi-

nated by the conical-crossings of Dirac points, and those arising from ΠnearκδWΠnear, 
which arise from the domain wall. We treat these terms separately in the following two 
subsections.

6.3.1. Expansion of H0
near − ED − δz; contributions from the conical crossing

Proposition 6.6. As δ → 0, uniformly for z in compact subsets of C,

H0
near − ED − δz = ΠK�

near
(
H0 −ED − δz

)
ΠK�

near

= T ∗
K�

χ(δ−2/3Ds) ·
(
vK�

F σ1Ds − δz
)
· χ(δ−2/3Ds)TK�

+ OL2
0
(δ4/3),

where Ds = −i∂s and the operators TK�
and T ∗

K�
are defined in (6.10).

Proof of Proposition 6.6. 1. Since ΠK�
near is given by (6.6),

ΠK�
near

(
H0 − ED − δz

)
ΠK�

near (6.22)

= 1
2π

⊕∫
[−π,π]

χ
(
δ−2/3τ

)
· Π0

K�+τK2

(
H0

K�+τK2
−ED − δz

)
Π0

K�+τK2
· χ

(
δ−2/3τ

)
dτ.

Below we estimate the integrand of the direct integral in (6.22).
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2. Recall from (6.8) that Π0
k = ei(k−K�)·xN(k)e−i(k−K�)·x, where N(k) : L2

K�
→ L2

K�

varies smoothly for k near K�. For such k,

Π0
k
(
H0

k − ED

)
Π0

k = ei(k−K�)·xM(k)e−i(k−K�)·x,

where M(k) = N(k)
(
−(∇ + i(k − K�))2 + V − ED

)
N(k)

is a smoothly varying family of operators acting on L2
K�

.
We next use the expansion of N(k) in (6.9) to expand M(k) about k = K� up to 

quadratic corrections in k − K�. The leading order term vanishes because M(K�) = 0. 
We obtain

M(k) = ΠK�
·
(
− 2i(k − K�)∇

)
· ΠK�

+ΠK�

(
H0

K�
−ED

)
· OL2

K�
(k − K�) + OL2

K�
(k − K�) ·

(
H0

K�
−ED

)
ΠK�

+OL2
K�

(k − K�)2.

The second and third terms vanish because ΠK�

(
H0

K�
−ED

)
=

(
H0

K�
−ED

)
ΠK�

= 0. 
We conclude that

M(k) = ΠK�
·
(
− 2i(k − K�) · ∇

)
· ΠK�

+ OL2
K�

(
|k − K�|2

)
. (6.23)

3. We expand the integrand of (6.22) using (6.23) and (6.9):

Π0
K�+τK2

(
H0

K�+τK2
−ED − δz

)
Π0

K�+τK2

= eiτK2·x(M(K� + τK2) − δz ·N(K� + τK2)
)
e−iτK2·x

= eiτK2·xΠ0
K�

(
− 2iτK2 · ∇ − δz

)
Π0

K�
e−iτK2·x + OL2

K�+τK2
(τ2 + zδτ)

Substitution of this expansion into the direct integral (6.22), we obtain

H0
near −ED − δz = Πnear

(
H0 −ED − δz

)
Πnear

= 1
2π

⊕∫
[−π,π]

χ
(
δ−2/3τ

)
· eiτK2·xΠ0

K�
(−2iτK2 · ∇ − δz) Π0

K�
e−iτK2·x · χ

(
δ−2/3τ

)
dτ

+
⊕∫

[−π,π]

χ
(
δ−2/3τ

)
· OL2

K�+τK2
(τ2 + zδτ)χ

(
δ−2/3τ

)
dτ (6.24)

Since χ 
(
δ−2/3τ

)
= 0 for |τ | ≥ δ2/3, the remainder term in (6.24) is a direct integral of 

operators that are on OL2
K�+τK2

(δ4/3). Therefore it is OL2
0
(δ4/3).

Next we focus on the leading order term in the expansion (6.24). The operator ΠK�
·(

−2iK2 ·∇
)
·ΠK�

acts on CΦK�
1 ⊕CΦK�

2 . By Proposition 4.1, with respect to this basis, 
ΠK�

· (−2iK2∇) · ΠK�
has the matrix representation:
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〈
ΦK� ,−2iK2 · ∇(ΦK�)


〉
= vK�

F σ1 ,

where vK�

F = vF for K� = K and vK�

F = −vF for K� = K′. Thus ΠK�
·
(
−2iK2∇

)
·ΠK�

, 
as an operator acting on L2

K�
, has the kernel

(x,y) ∈ R2/Λ ×R2/Λ 	→ ΦK�(x)
 · vK�

F σ1 · ΦK�(y).

We deduce that the leading order term in (6.24) has kernel

ΦK�(x)


2π

⊕∫
[−π,π]

χ2
(
δ−2/3τ

) (
vK�

F σ1τ − δz
)
eiτK2(x−y)dτ · ΦK�(y) (6.25)

where (x, y) ∈
(
R2/Zv1

)2. As in the proof of Proposition 6.2, we see that (6.25) is the 
kernel of the operator

T ∗
K�

χ(δ−2/3Ds) ·
(
vK�

F σ1Ds − δz
)
· χ(δ−2/3Ds)TK�

.

This completes the proof of Proposition 6.6. �
Because H0 − ED − δz commutes with ΠK�

near, and ΠK
nearΠK′

near = ΠK′
nearΠK

near = 0 as 
long as δ is sufficiently small, we deduce that

ΠK
near

(
H0 − ED − δz

)
ΠK′

near = ΠK′

near
(
H0 −ED − δz

)
ΠK

near = 0.

We sum the expansions over K� ∈ {K, K′}, recalling that Πnear = ΠK
near + ΠK′

near and 
T = TK ⊕ TK′ . Together with Proposition 6.6, we conclude that as δ → 0, uniformly for 
z in compact subsets of C: H0

near − ED − δz equals

H0
near − ED − δz (6.26)

= T ∗χ(δ−2/3Ds) ·
[
vK�

F σ1Ds − δz 0
0 vK�

F σ1Ds − δz

]
· χ(δ−2/3Ds)T + OL2

0
(δ4/3).

We note from (5.3) the following identities:

Ds = δ · U∗
δ Ds Uδ; χ(δ−2/3Ds) U∗

δ = U∗
δ χ(δ1/3Ds);

Uδ χ(δ−2/3Ds) = χ(δ1/3Ds) Uδ.
(6.27)

Therefore, we obtain from (6.26) that H0
near − ED − δz
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= δ · T ∗χ(δ−2/3Ds) U∗
δ ·

[
vK�

F σ1Ds − z 0
0 vK�

F σ1Ds − z

]
· U∗

δ χ(δ−2/3Ds) T

+ OL2
0
(δ4/3)

= δ · (UδT )∗ χ(δ1/3Ds) ·
[
vK�

F σ1Ds − z 0
0 vK�

F σ1Ds − z

]
· χ(δ1/3Ds) (UδT )

+ OL2
0
(δ4/3).

(6.28)

Thus, we have proved (6.18) for H0
near = Hδ

near − δΠnear · κδW · Πnear.

6.3.2. Contribution of the domain wall; proof of Proposition 6.4
We must expand the expression δΠnear · κδW · Πnear, where κδ(x) = κ(δK2 · x), for 

δ small.

Proposition 6.7. As δ → 0, uniformly for z in compact subsets of C,

ΠK�
near · κδW · ΠK�

near = T ∗
K�

· χ(δ−2/3Ds) · ϑK�σ3κ(δ·) · χ(δ−2/3Ds) · TK�
+ OL2

0

(
δ2/3

)
.

Proof. 1. First, Proposition 6.1 and κ ∈ L∞ imply that

ΠK�
near · κδW · ΠK�

near = ΠK�,(0)
near · κδW · ΠK�,(0)

near + OL2
0

(
δ2/3

)
. (6.29)

Furthermore, by Proposition 6.2, the leading term in (6.32) is

ΠK�,(0)
near · κδW · ΠK�,(0)

near = T ∗
K�

χ(δ−2/3Ds) · TK�
κδWT ∗

K�
· χ(δ−2/3Ds)TK�

. (6.30)

Using the definitions of TK�
and its adjoint in (6.10), we find that the inner expression 

in (6.30), TK�
κδWT ∗

K�
, is a multiplication operator:

(
TK�

κδW T ∗
K�

)
u(t) = κ(δt) F (t) u(t), where

F (s) def=
∫

R/Z

ΦK�(tv1 + sv2) W (tv1 + sv2)ΦK�(tv1 + sv2)
 dt.

We deduce the following expression for the dominant term in (6.29):

ΠK�,(0)
near · κδW ΠK�,(0)

near = T ∗
K�

χ(δ−2/3Ds) · κδF · χ(δ−2/3Ds)TK�
.

2. F is smooth and one-periodic with an absolutely convergent Fourier series:

F (s) =
∑

F̂m · eims, F̂m =
1∫
e−ims′ F (s′)ds′. (6.31)
m∈2πZ 0



A. Drouot, M.I. Weinstein / Advances in Mathematics 368 (2020) 107142 43
We deduce that

ΠK�,(0)
near · κδW · ΠK�,(0)

near =
∑

m∈2πZ

T ∗
K�

F̂m · χ(δ−2/3Ds) · κ(δ·)eim· · χ(δ−2/3Ds)TK�

=
∑

m∈2πZ

T ∗
K�

F̂m · χ(δ−2/3Ds)κ(δ·)χ
(
δ−2/3(Ds −m)

)
· eim·TK�

.

(6.32)
This sum may be expressed as the m = 0 term plus a sum over m �= 0 terms. We next 
bound this sum from above and show that it is negligible for δ small.

3. Fix m �= 0 and consider the operator χ
(
δ−2/3Ds

)
·κ(δ·) ·χ

(
δ−2/3(Ds−m)

)
, appearing 

in (6.32). The function ξ 	→ χ
(
δ−2/3(ξ − m)

)
is the indicator function of the interval 

[m − δ2/3, m + δ2/3]. For all δ ≤ δ0 (δ0 sufficiently small), none of these sets intersects 
the interval [−1, 1]. Thus we may rewrite χ

(
δ−2/3(ξ −m)

)
as:

χ
(
δ−2/3(ξ −m)

)
= ξ ·

χ
(
δ−2/3(ξ −m)

)
ξ

def= ξ · ψδ,m(ξ), where |ψδ,m(ξ)| ≤ 1.

Hence, χ
(
δ−2/3(Ds−m)

)
= Ds ψδ,m(Ds). Substitution of this expression and commuting 

Ds through κ gives:

χ
(
δ−2/3Ds

)
· κ(δ·) · χ

(
δ−2/3(Ds −m)

)
= χ

(
δ−2/3Ds

)
· κ(δ·)Ds · ψδ,m(Ds)

= χ
(
δ−2/3Ds

)
Ds · κ(δ·) · ψδ,m(Ds) − χ

(
δ−2/3Ds

)
· [Ds, κ(δ, ·)] · ψδ,m(Ds).

The first term involves the multiplier χ(δ−2/3Ds)Ds, which is OL2(δ2/3) and ψδ,m(Ds), 
which is bounded on L2 with norm ≤ 1. Therefore this term is OL2(δ2/3), uniformly in 
m �= 0. The second term involves the commutator [Ds, κ(δ, ·)], which is OL2(δ) because 
κ′ ∈ L∞. Hence the second term satisfies the operator bound OL2(δ), uniformly in m �= 0. 
We conclude

χ
(
δ−2/3Ds

)
· κ(δ·) · χ

(
δ−2/3(Ds −m)

)
= OL2(δ2/3).

Summing over m �= 0 and using that 
∑

m |Fm| is finite, because F is smooth,∥∥∥∥∥ ∑
m∈2πZ/\{0}

T ∗
K�

F̂m · χ(δ−2/3Ds)κ(δ·)χ
(
δ−2/3(Ds −m)

)
· eim·TK�

∥∥∥∥∥
L2

0

≤ Cδ2/3
∑

m∈2πZ/\{0}

∣∣F̂m

∣∣ = O(δ2/3).

4. It follows that the dominant contribution is from the m = 0 term:

ΠK�
near · κδW · ΠK�

near = T ∗
K�

· χ(δ−2/3Ds) · F̂0 κ(δ·) · χ
(
δ−2/3Ds

)
· TK�

+ OL2
0
(δ2/3).
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Finally, we observe from (6.31) that

F̂0 =
∫

R2/Λ

ΦK�(x) ·W (x)ΦK�(x)
dx = ϑK�σ3,

where we substituted x = sv1 + tv2 and used the definition of ϑK� . The proof of Propo-
sition 6.7 is complete. �

Proposition 6.7 extracts the dominant term arising from K-to-K and K′-to-K′ quasi-
momentum coupling due to the domain wall perturbation κδW . Likewise, we must study 
K-to-K′ coupling via κδW . The next proposition shows that this interaction is negligible. 
This has the important consequence that the effective Dirac operator is block-diagonal.

Proposition 6.8. As δ → 0, uniformly for z in compact subsets of C,

ΠK
near · κδW · ΠK′

near = OL2
0

(
δ2/3

)
, ΠK′

near · κδW · ΠK
near = OL2

0

(
δ2/3

)
.

Proof. The proof follows a similar strategy to that of Proposition 6.7. We estimate 
ΠK

near · κδW · ΠK′
near; the adjoint bound gives the estimate for ΠK′

near · κδW · ΠK
near.

1. In analogy with Step 1 in the proof of Proposition 6.7,

ΠK
near · κδW · ΠK′

near = ΠK,(0)
near · κδW · ΠK′,(0)

near + OL2
0

(
δ2/3

)
= T ∗

Kχ(δ−2/3Ds) · κ(δ·)G · χ(δ−2/3Ds)TK′ + OL2
0

(
δ2/3

)
,

(6.33)

where the function G is given by

G(s) =
∫

R/Z

ΦK(tv1 + sv2)W (tv1 + sv2)ΦK′
(tv1 + sv2)
dt.

2. In contrast with F (t) in (6.31), the function G(t) is not one-periodic; we have 
instead G(t + 1) = ei(K−K′)·v2 ·G(t). Therefore, we can write

G(s) =
∑
m∈S

Ĝm · eims, S = (K − K′) · v2 + 2πZ, and Ĝm =
1∫

0

e−ims′ ·G(s′)ds′.

Because G is smooth, this series converges absolutely. The analog of (6.32) is

ΠK,(0)
near · κδW · ΠK′,(0)

near =
∑
m∈S

T ∗
KĜm · χ(δ−2/3Ds)κ(δ·)χ

(
δ−2/3(Ds −m)

)
· eim·TK′ .

We claim that dist(0, S) = 2π/3. Indeed, (K − K′) · v2 is either −2π/3, 0 or 2π/3
modulo 2π. If it is equal to 0, then we would have
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(K − K′) · v2 = 0 mod 2π, (K − K′) · v1 = 0 mod 2π

(the second equality holds because Rv1 is an armchair edge). It would follow that K −
K′ ∈ 2πZK1 ⊕ 2πZK2 = Λ∗, which is not possible because K �= K′ mod Λ∗.

3. Since 0 /∈ S, arguments analogous to those in Step 3 of Proposition 6.7 yield:∥∥∥ΠK,(0)
near · κδW · ΠK′,(0)

near

∥∥∥
L2

0

≤ Cδ2/3
∑
m∈S

∣∣Ĝm

∣∣ = O(δ2/3).

We conclude that ΠK,(0)
near ·κδW ·ΠK′,(0)

near = OL2
0
(δ2/3). Together with (6.33), this completes 

the proof of Proposition 6.8. We remark that the arguments in Steps 2. and 3. above, 
are an alternative to the Poisson summation arguments employed in [23,24]. �

Recall that Πnear = ΠK
near + ΠK′

near. We sum the expansions of Propositions 6.7 and 
bounds of Proposition 6.8 over K� ∈ {K, K′}, and then multiply by δ, to deduce:

Πnear · δκδW · Πnear (6.34)

= T ∗ · χ(δ−2/3Ds) · δκδ

[
ϑKσ3 0

0 ϑK′
σ3

]
· χ(δ−2/3Ds) · T + OL2

0

(
δ4/3

)
= δ · T ∗ · χ(δ−2/3Ds)U∗

δ · κ
[
ϑKσ3 0

0 ϑK′
σ3

]
· Uδχ(δ−2/3Ds) · T + OL2

0

(
δ4/3

)
= δ · (UδT )∗ · χ(δ1/3Ds) · κ

[
ϑKσ3 0

0 ϑK′
σ3

]
· χ(δ1/3Ds) · UδT + OL2

0

(
δ4/3

)
Here, we used that T = TK ⊕ TK′ : L2

0 → L2(R, C4) (see (5.1)) and the scaling relations 
(6.27). The expression (6.34) exhibits the domain-wall contribution in the RHS of (6.18).

Summing (6.28) and (6.34) yields (6.18):

Hδ
near −ED − δz = H0

near − ED − δz + Πnear · δκδW · Πnear

= δ · (UδT )∗ · χ(δ1/3Ds) ·
[
/DK − z 0

0 /DK′ − z

]
· χ(δ1/3Ds) · UδT + OL2

0

(
δ4/3

)
.

(6.35)

This completes the proof of Proposition 6.4.

6.4. Resolvent expansion

In this section, we use the expansion (6.35) for Hδ
near − ED − δz to obtain Proposi-

tion 6.5, the corresponding expansion for the resolvent. We recall that at the end of §6.2
we showed how to deduce Theorem 5.1 from Proposition 6.5.

Proof of Proposition 6.5. By Proposition 6.4:

1 (
Hδ

near − ED − δz
)

= Lδ(z) + OL2(δ1/3),

δ 0
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where

Lδ(z) def= (UδT )∗ · χ(δ1/3Ds)
(
/D− z

)
χ(δ1/3Ds) (UδT ) and /D =

[
/DK 0
0 /DK′

]
.

Therefore,

(
Hδ

near − ED − δz
) 1

δ
(UδT )∗

(
/D− z

)−1
(UδT ) = Aδ(z) + OL2

0
(δ1/3), (6.36)

where Aδ(z) is the operator product:

Aδ(z) def= Lδ(z) ·
(

(UδT )∗
(
/D− z

)−1
(UδT )

)
(6.37)

= (UδT )∗ · χ(δ1/3Ds)
(
/D− z

)
χ(δ1/3Ds) · (UδT ) (UδT )∗ ·

(
/D− z

)−1
· (UδT ).

In Steps 1-3 below, we prove that Aδ(z) = Πnear + OL2
0
(δ−1/3). In Step 4-5, we 

conclude that Hδ
near − ED − δz is invertible for δ sufficiently small and z /∈ σL2(/D) =

σL2(/DK) ∪ σL2(/DK′), and we finally prove the expansion (6.19).
1. We focus on the operator UδT T ∗U∗

δ appearing in (6.37). Using (5.1) and (5.2) we 
see that T T ∗ − Id is a multiplication operator:

(T T ∗ − Id)u(s) = f(s) · u(s), f(s) def=
∫

R/Z

ΦK�(tv1 + sv2) ΦK�(tv1 + sv2)
dt− 1.

Hence, UδT T ∗U∗
δ − Id is the operator: multiplication by f(δ−1·).

The function f is one-periodic with null average. Therefore, we may write DsF = f , 
where F is one-periodic. Moreover, for all functions u, g ∈ H1,

〈(Uδf)u, g〉L2 = 〈f, U∗
δ (gu)〉L2 = 〈F,DsU

∗
δ (gu)〉L2 .

Using the product rule for derivatives, we deduce that

|〈(Uδf)u, g〉L2 | ≤ Cδ|F |L∞ |g|H1 |u|H1 .

By duality, the multiplication operator by u 	→ (Uδf)u is bounded from H1 to H−1, 
with norm at most Cδ|F |L∞ . Therefore, we have shown

UδT T ∗U∗
δ − Id = OH1→H−1(δ). (6.38)

2. We shall make use of the following bounds on the operators χ(δ1/3Ds) and Id −
χ(δ1/3Ds) between Sobolev spaces:
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∥∥χ(δ1/3Ds)
∥∥
H−2→L2 ≤ sup

|ξ|≤δ−1/3

(
1 + |ξ|2

)−1 = O
(
δ−2/3

)
; (6.39)

∥∥χ(δ1/3Ds) − Id
∥∥
H1→L2 ≤ sup

|ξ|≥δ−1/3
(1 + |ξ|2)−1/2 = O

(
δ1/3

)
. (6.40)

The operator χ(δ1/3Ds) commutes with Ds. Thus it is bounded from H−1 to itself 
and satisfies the bound 

∥∥χ(δ1/3Ds)
∥∥
H−1 = 1. By (6.39), it is also bounded from H−2

to L2 with bound O(δ−2/3). Hence, χ(δ1/3Ds) 
(
/D− z

)
χ(δ1/3Ds) = OH−1→L2(δ−2/3). 

Combined with (6.38), we get

χ(δ1/3Ds)
(
/D− z

)
χ(δ1/3Ds) · (UδT T ∗U∗

δ − Id) = OH1→L2(δ−2/3 · δ) = OH1→L2(δ1/3).

Since z is at fixed distance from the spectrum of /D and κ, κ′ ∈ L∞, the operator (
/D− z

)−1
maps L2 to H1 with bounded norm. We deduce that

χ(δ1/3Ds)
(
/D− z

)
χ(δ1/3Ds) · (UδT T ∗U∗

δ − Id) ·
(
/D− z

)−1
= OL2(δ1/3). (6.41)

3. We write (UδT ) (UδT )∗ = Id + (UδT T ∗U∗
δ − Id) in (6.37) and apply (6.41):

Aδ(z) = (UδT )∗ · χ(δ1/3Ds)
(
/D− z

)
χ(δ1/3Ds)

(
/D− z

)−1
· UδT + OL2

0
(δ1/3).

Furthermore, inserting χ = 1 + (χ − 1) and using the definition of Uδ we have

Aδ(z) = (UδT )∗ · χ(δ1/3Ds)
(
/D− z

) (
/D− z

)−1
· UδT

+ (UδT )∗ · χ(δ1/3Ds)
(
/D− z

)
(χ(δ1/3Ds) − 1)

(
/D− z

)−1
(UδT ) + OL2

0
(δ1/3)

def= T ∗ χ(δ−2/3Ds) T + Bδ(z) + OL2
0
(δ1/3). (6.42)

For the first term on the right hand side of (6.42) we have by Proposition 6.7:

T ∗ χ(δ−2/3Ds) T = Π(0)
near = Πnear + O(δ2/3) .

We bound the operator Bδ(z) : L2 → L2 as follows. The operator Bδ(z) is a conjugation 
by UδT of the operator

χ(δ1/3Ds)
(
/D− z

)
(χ(δ1/3Ds) − 1)

(
/D− z

)−1

= χ(δ1/3Ds) (χ(δ1/3Ds) − 1)
(
/D− z

) (
/D− z

)−1

+ χ(δ1/3Ds) [
(
/D− z

)
, (χ(δ1/3Ds) − 1)]

(
/D− z

)−1
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= O

(
‖ χ(δ1/3Ds) κ

(
1 − χ(δ1/3Ds)

)
‖H1→L2 ‖

(
/D− z

)−1
‖L2→H1

)
= OL2(δ1/3)

(6.43)

To obtain the second to last equality in (6.43), we have used that χ (1 − χ) = 0 and 
that the operator /D is equal to matrix-valued function of Ds plus multiplication operator 
equal to: κ times a constant matrix. The bound in (6.43) then follows from (6.40) and 
the assumption κ ∈ L∞. It follows then, that Bδ(z) = OL2

0
(δ1/3). Furthermore, Aδ(z) =

Πnear + OL2
0
(δ1/3) and by (6.36)

(
Hδ

near − ED − δz
)
·
(

1
δ
(UδT )∗ ·

(
/D− z

)−1
· UδT

)
= Πnear + OL2

0
(δ1/3).

4. Using the hypothesis that dist
(
z, σL2

(
/D
))

≥ ε, a Neumann series argument im-
plies that Hδ

near − ED − δz is invertible on Hnear with

(
Hδ

near − ED − δz
)−1 = 1

δ
· Πnear(UδT )∗ ·

(
/D− z

)−1
· (UδT ) Πnear + OL2

0
(δ−2/3).

(6.44)

5. To conclude the proof of Proposition 6.5, we must replace Πnear in (6.44) by the 
identity operator. Proposition 6.1 and the identity χ(δ−2/3Ds) = U∗

δ χ(δ1/3Ds)Uδ imply

Πnear = Π(0)
near + OL2

0
(δ2/3) = (UδT )∗χ(δ1/3Ds)UδT + OL2

0
(δ2/3).

Using (6.38) and χ(δ1/3Ds) = OL2→H1(δ−1/3), we deduce that

(UδT )Πnear = (UδT ) (UδT )∗ · χ(δ1/3Ds)UδT + OL2
0
(δ2/3)

= χ(δ1/3Ds) (UδT ) + OL2
0→H1

0
(δ2/3).

(6.45)

The dual bound to (6.45) is

Πnear(UδT )∗ = (UδT )∗χ(δ1/3Ds) + OH1
0→L2

0
(δ2/3). (6.46)

Acting on (6.45) with Πnear(UδT )∗
(
/D− z

)−1
and using (6.46), we deduce that

Πnear(UδT )∗ ·
(
/D− z

)−1
· (UδT )Πnear

= (UδT )∗ · χ(δ1/3Ds)
(
/D− z

)−1
χ(δ1/3Ds) · (UδT ) + OL2

0
(δ2/3).

(6.47)

We eliminated Πnear from (6.44) at the expense of introducing χ(δ1/3Ds). We now 
replace the operator χ(δ1/3Ds) by the identity – with an error OL2(δ2/3). Observe that
0
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χ(δ1/3Ds)
(
/D− z

)−1
χ(δ1/3Ds) −

(
/D− z

)−1

=
(
χ(δ1/3Ds) − 1

)(
/D− z

)−1
χ(δ1/3Ds) +

(
/D− z

)−1 (
χ(δ1/3Ds) − 1

)
.

(6.48)

We bound the first term in (6.48) by studying the operator prefactor 
(
χ(δ1/3Ds) − 1

) (
/D−

z
)−1

in L2; the factor χ(δ1/3Ds) is clearly bounded on L2. Since 
(
/D− z

)−1
is bounded 

from L2 to H1 and χ(δ1/3Ds) −Id = OH1→L2(δ1/3) (see (6.40)), the product is OL2(δ1/3)
and so the first term in (6.48) is OL2(δ1/3). The second term in (6.48) is the adjoint of 
the operator prefactor just studied. It is therefore OL2

0
(δ1/3). We conclude that

χ(δ1/3Ds)
(
/D− z

)−1
χ(δ1/3Ds) =

(
/D− z

)−1
+ OL2

0
(δ1/3) (6.49)

Substituting (6.49) into (6.47) yields

Πnear(UδT )∗ ·
(
/D− z

)−1
· (UδT )Πnear = (UδT )∗ ·

(
/D− z

)−1
· (UδT ) + OL2

0
(δ1/3).

Substituting back into (6.44) we get

(
Hδ

near −ED − δz
)−1 = 1

δ
· (UδT )∗ ·

(
/D− z

)−1
(UδT ) + OL2

0
(δ−2/3).

The proof of Proposition 6.5 is now complete. �
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