
Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

Optimal control and analysis of a modified trojan Y-Chromosome strategy
Matthew A. Beauregarda,*, Rana D. Parshadb, Sarah Boona, Harley Conawaya, Thomas Griffina,
Jingjing Lyuc

a Department of Mathematics and Statistics, Stephen F. Austin State University, Nacogdoches, TX 75962, USA
b Department of Mathematics, Iowa State University, Ames, IA 50011, USA
c Department of Mathematics, DePaul University, Chicago, IL 60604, USA

A R T I C L E I N F O

Keywords:
Trojan-Y Chromosome
Invasive species
Population dynamics
Optimal control
Allee effect

A B S T R A C T

The Trojan Y Chromosome (TYC) strategy is a promising eradication method that attempts to manipulate the
female to male ratio to promote the reduction of the population of an invasive species. The manipulation stems
from an introduction of sex-reversed males, called supermales, into an ecosystem. The offspring of the super-
males is guaranteed to be male. Mathematical models have shown that the population can be driven to extinction
with a continuous supply of supermales. In this paper, a new model of the TYC strategy is introduced and
analyzed that includes two important modeling characteristics, that are neglected in all previous models. First,
the new model includes intraspecies competition for mates. Second, a strong Allee effect is included. Several
conclusions about the strategy via optimal control are established. These results have large scale implications for
the biological control of invasive species.

1. Introduction

The detrimental effects of aquatic invasive species is well-docu-
mented (Arim et al., 2006; Averill and Lou, 2012; Bampfylde and Lewis,
2007; Clark et al., 2001; Lou and Munther, 2012; Myers et al., 2000;
Okubo et al., 1989; Shigesada and Kawasaki, 1997; Van Driesche and
Bellows, 1996). Subsequently, a tremendous amount of effort by habitat
controllers is devoted to designing effective eradication strategies such
as chemical treatment, local harvesting, dewatering, ichthyocides, or a
suitable combination (Schofield and Loftus, 2015). However, these
methods are known to negatively impact ecosystems, which may be
already stressed by the presence of an aquatic invasive species
(Schofield and Loftus, 2015).

The Trojan Y chromosome strategy (TYC) is a new eradication
strategy which circumvents many of the known negative ecological
impacts due to current practice (Gutierrez and Teem, 2006; Schofield
and Loftus, 2015; Teem et al., 2013). TYC strategy involves an in-
troduction of a sex-reversed male. The off-spring of the sex-reversed
male, called a supermale, with a wild-type female is guaranteed to be
male. Therefore, subsequent generations become male-dominant and
this skews the sex ratio towards more males. The goal, is that through
the gradual reduction in the female population, extinction of the po-
pulation may occur (see Fig. 1). The supermale is not a genetically

modified organism (GMO) and the TYC process is reversible, that is, if
the introduction of supermales is stopped then the supermale popula-
tion will die out (Schill et al., 2017). The TYC strategy has seen tre-
mendous experimental and theoretical interest (Cotton and Wedekind,
2007a, 2007b, 2009; Gutierrez et al., 2012; Kennedy et al., 2018;
Parshad, 2011; Parshad and Gutierrez, 2011, 2010; Parshad et al.,
2013; Perrin, 2009; Schill et al., 2016; Teem et al., 2013; Wang et al.,
2016, 2014; Zhao et al., 2012).

The classical population model of the TYC strategy relates the po-
pulations of the wild-type XX females (f), wild-type XY males (m), and
the YY supermale (s) populations over time. A mathematical model was
first proposed by Gutierrez and Teem (2006), Teem et al. (2013):

=f f1
2

L fm , (1)

= +m m1
2

L fm L fs , (2)

=s µ s, (3)

where = + +L 1 f m s
K , K is the carrying capacity, β is the birth rate, δ is

the death rate, and μ is the constant introduction rate. The parameters
and populations are assumed to be nonnegative. Due to the non-
linearities, it is not necessary to assume that β > δ > 0, to obtain a
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persistent invasive population. It was shown in Teem et al. (2013) that
there exists a μ* such that for all μ > μ* > 0 that f, m→ 0 in infinite
time.

In the current manuscript, we seek to include two important and
relevant modeling features. First, the influx of supermales leads to
competition between wild-males and supermales for female mates.
Second, if the female population is below a given threshold then the
population loses fitness and extinction should occur (Drake and Kramer,
2011; Kramer, 2009). This latter phenomena is called the Allee effect.
These two modeling features are introduced in Section 2. A stability
analysis of the equilibrium solutions is also included in Section 2. In
Section 3, we then investigate the influence that intraspecies competi-
tion and the Allee effect have on the optimal introduction rate that
minimizes an objective function based on the total wild population and
introduced super males. A stochastic model is introduced to examine
the influence of noise on the birth and death rates have on the objective
function's value at the optimal introduction rate.

2. Modified TYC model with strong Allee effect

In this paper, we investigate and propose a new model of the TYC
strategy. Namely,

=f L f m s f1
2
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where L, μ, β, and δ are as before. Again, the parameters and popula-
tions are assumed to be nonnegative and that β > δ > 0, that is, the
birth supercedes the death rate.

Intraspecies competition between wild male and supermale popu-
lations for female mates is modeled through the nonnegative saturation
term:
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The saturation terms provide the percentage of the total male popula-
tion that is either wild-type or supermale. Clearly, the range of the
saturations term is [0, 1]. Notice, for a fixed wild-type population, as
s→ ∞ then ρ1 → 0+ and ρ2 → 1−. In this situation, the birth of females
approaches zero while male offspring only occurs from female and
supermale progeny. Likewise, for a fixed supermale population, as m→

∞ then ρ1 → 1− and ρ2 → 0+; subsequently, male progeny only occurs
from wild-type male and female mating. Therefore, ρ1 and ρ2 attempt to
model the difficulty of wild-type female finding suitable mates from
either wild-type or supermale populations.

The term f/α− 1 models a strong Allee effect and represents a loss
of fitness in the female population when below the Allee threshold, α.
This effect models the problem of undercrowding of a species and was
first motivated by observations made by Allee in 1927 (Allee, 1927,
1931; Odum and Allee, 1954). Since then, numerous evidences of this
effect have been established (Kramer, 2009; Stephens and Sutherlan,
1999). Notice, that when f/α− 1 < 0 then <f 0, provided L > 0.
Therefore, the female population will decrease toward extinction.
Subsequently, a goal of the TYC strategy is to push, via the introduction
of supermales, the female population below the Allee threshold.

In the forthcoming analysis, the equations are rescaled. The popu-
lations are scaled by the carrying capacity while the t is scaled by the
deathrate, that is t→ t/δ. The rescaled equations are:
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where L→ 1 − (f+m+ s), = >r 1K
2 , =a 1K , and = µ

K .

2.1. Equilibria and stability analysis

A clear requirement of a valid intervention strategy is that in the
absence of the strategy the invasive population would persist, while if
the intervention strategy was employed then control, ideally extinction,
of the invasive species would be established. Therefore, an effective
TYC strategy is one that provides an introduction rate, γ(t), and initial
supermale population, s(0), such that the wild-population is driven to
extinction, while in the supermale free case the population would
persist.

It is clear that the modified model exhibits the equilibrium solution
(0, 0, γ), which is deemed the extinction state. Once f < a, the in-
troduction rate of supermales, γ, should be set zero, causing s→ 0. As a
result, a clear requirement of a successful TYC strategy is that there
exists some time for which the female population is below the Alee
threshold, that is, f < a.

In the forthcoming equilibrium analysis we are interested in equi-
librium solutions in the situation where γ= 0. Obviously, when γ= 0
then in equilibrium s= 0, therefore the intraspecies terms ρ1(m, 0) = 1
and ρ2(m, 0) = 0. In such case:

= =f f
a

m m f
a

fr L 1 1 0, r L 1 1 0.

We seek to analyze the stability and presence of nontrivial equili-
brium solutions. Noting that in equilibrium f/a− 1 ≠0 then

= =m f
f a

1
rL( / 1)

.

Hence, all equilibrium solutions fall on the line f=m. The non-
trivial equilibrium solutions are roots to the third degree polynomial:

= + +g f f a f a
r

( ) 2 (2 1) a f .3 2
(10)

By Descartes’ rule of signs there always exists a one negative real root,
which is neglected since this is not realistic. In addition, there are either
two or zero positive real roots. If there are zero positive real roots then
the only equilibrium solution is the extinction state and is globally at-
tracting. In such case, the TYC strategy is not necessary. Therefore, we

Fig. 1. The pedigree tree of the TYC model (that demonstrates Trojan Y-
Chromosome eradication strategy). (a) Mating of a wild-type XX female (f) and a
wild-type XY male (m). (b) Mating of a wild-type XX female (f) and a YY su-
permale (s). Red color represents wild types, and white color represents phe-
notypes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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assume there are two real roots, f1 and f2, where 0 < f1 < f2.
The Jacobian of our system of equations is
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Clearly, λ3 = −1 is an eigenvalue, which indicates exponentially decay
in the supermale population. The remaining two eigenvalues are de-
termined by the characteristic equation of the submatrix J33. Namely,
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To investigate the sign of λ2 we recall that fi is a root of Eq. (10). This
fact, is used to determine an expression for λ2 as a function of fi:

= + +f f r
a
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2

Notice, that this function is a concave down quadratic with a
maximum location located at f= 1/(2 + 1/a) > 0. Define f+ as the
positive root of the quadratic function λ2(f). Then λ2 > 0 if fi < f+
and λ2 < 0 if fi > f+. Notice that λ2(1) = 3 − r/a. Since a≪ 1 implies
that r/a≫ 1 then λ2(1) < 0. Subsequently, we have 0 < f+ < 1.

Notice that g(0), g(1) < 0. Now, g(f+) > 0 provided that
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Fig. 2 shows the region where q(r, a) > 0 and q(r, a) < 0. While
the Allee threshold is difficult to know precisely for any biological
system (Drake and Kramer, 2011), it is reasonable to expect values less
than 5% of the carrying capacity (Drake and Kramer, 2011; Odum and
Allee, 1954). In such case, g(f+) > 0 then by the Intermediate Value

Theorem we have f1 < f+ < f2. Subsequently, (f1, f1, 0) and (f2, f2, 0)
are a saddle and a sink, respectively. We call (f2, f2, 0) the sustained
state. An effective TYC strategy will push populations away from the
sustained state and toward the basin of attraction of the extinction
state.

3. Optimal control analysis

3.1. Optimal control analysis

The goal of this section is to investigate the mechanisms in our TYC
system of equations, that, if controlled, could lead to optimal levels of
both densities. We assume that the scaled introduction rate γ is not
known a priori and enter the system as a time-dependent control, such
that 0≤ γ(t) < ∞. Consider the objective function

= +J f m( ) ( ) 1
2

dt
T

0 0
2

subject to the governing Eqs. (7)–(9) and initial conditions. Optimal
strategies are derived for the objective function, where we minimize
both female and male populations while also minimizing the in-
troduction rate γ. Optimal controls are searched for within the set U0,
namely,

= <U t T T{ | measurable, 0 , [0, ], }.0

The goal is to seek an optimal γ*(t) such that,

= +J f m( *) max ( ) 1
2

dt.
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2

(11)

We use the Pontryagin's maximum principle to derive the necessary
conditions on the optimal control (Lenhart and Workman, 2007). The
Hamiltonian for J0 is given by
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We use the Hamiltonian to find a differential equation of the adjoint
λi, i= 1, 2, 3. Namely,
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with the transversality condition given by

= = =T T T( ) ( ) ( ) 0.1 2 3

In consideration of the optimality conditions, the Hamiltonian
function is differentiated with respect to control variable γ resulting in:

=H .3

A compact way of writing the optimal control γ* is

=t* ( ) max(0, ).3

Fig. 2. Plot of q(r, a) indicating regions where q(r, a) is greater than zero and
less than zero.
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3.2. Numerical simulations

In this section, we will numerically simulate the optimal control for
the modified TYC model with strong Allee effect. The following un-
scaled parameters used for simulation are provided from a least squares
approximation of population experiments of guppy fish in Lyu et al.
(2019), namely, β= 0.0057, δ= 0.0648, K= 405, α= 24, and time
interval of (0, 200). In scaled variables:

< <r a t17.8125, .06, 0 12.96.

In Fig. 3, the numerically determined optimal γ(t) is shown in con-
junction with the scaled populations using the optimal control γ(t). This
indicates, that a gradual reduction in the introduction rate of the su-
permales is ideal, with the highest introduction rate at the beginning of
the intervention program.

As a basis of comparison, the optimal μ in unscaled variables for the
classical model was determined in Lyu et al. (2019) (see Fig. 5), which
is shown in Fig. 4 in scaled variables for convenience. In such case, a
larger objective function value at the optimal introduction rate is dis-
covered in the absence of intraspecies competition and a strong Allee

effect. In particular, the objective values, in absolute value, for the
classical and modified models are 501.9203 and 315.1675, respec-
tively. The reduced value of the objective function in the modified
model is clear by inspection of the plots of the integrands of the cor-
responding objective functions given in Fig. 5. Therefore, the inclusion
of intraspecies competition and the Allee effect greatly influence the
overall cost of the TYC strategy and indicate the strategy is less costly
than previously considered in Lyu et al. (2019). In the case, of the TYC
model that includes intraspecies competition for mates and does not
consider the Allee effect obtains an objective value of 381.3074, which
is still considerably lower than the classical model. Likewise, the model
that includes the Allee effect but no intraspecies competition obtains an
objective value of 390.3713. However, this suggests that intraspecies
competition for mates has a greater influence on the choice of γ than
the Allee effect.

In Fig. 6 we examine the influence of increasing the value of the
dimensionless variable r. As r increases we see that optimal control is
maintains the same overall shape. In particular, the initial introduction
remains the same, however, the initial drop in the introduction rate is
less severe in the case of higher reproductive rates.

Fig. 3. Female (top-red), male (top-green) and
supermale (top-blue) densities and optimal
control of γ(t) (bottom) in change with time t.
for the modified Eqs. (7)–(9) that include in-
traspecies competition and a strong Allee ef-
fect. (For interpretation of the references to
color in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 4. Female (top-red), male (top-green) and supermale (top-blue) densities and optimal control of γ(t) (bottom) in change with time t for the classical TYC model.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.3. Stochastic model & sensitivity analysis

There are numerous environmental influences that may cause per-
turbations to the birth and death rates of the invasive species. Here, we
assume that β and δ fluctuate around average values (Gray et al., 2011;
Zhang and Men, 2018). Therefore, the birth and death rates may be
treated as random variables such that + W and + W
(Zhang and Men, 2018), namely,
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+

+
+

L f m
m s

f

f m
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f

df 1 fm dt

1 fmdW dW
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+

+
+

+
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f m s m

m s
f m s m
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Lf 1 ( 2 )dW dW

2 2

2 2
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= µ s sds ( )dt dW (14)

where Wβ and Wδ are independent Brownian motions with intensities σβ
and σδ, respectively.

Here, we examine the influence of noise on the objective value in
simulations with the optimal control given Fig. 5. The noise on the

birth, dβ, and death, dδ, rates are taken from a normal distribution. An
Euler–Maruyama method is employed to determine a numerical solu-
tion to the stochastic model. In each simulation we determine the ob-
jective function value (Eq. (11)) and compare the percent difference
between the objective function value determined in the case of no
noise. The results for increasing percent noise are shown in Fig. 7. A
linear regression through the bounds of 95% confidence intervals at
each noise level is shown as a reference. Notice, that for large amount of
noise in the death and birth rates that the objective function is no more
than 8% away from the no noise situation. The slopes of the upper and
lower 95% confidence intervals are relatively small and, subsequently,
means that the value of objective function is changed only slightly for
perturbations in the birth and death rates. This provides experimental
evidence that the determined optimal introduction rate is fairly robust
to noise or perturbations to the death and birth rates.

4. Conclusions and future work

The mathematical analysis and improvement of models of the TYC
eradication strategy are essential to understanding the efficacy of the
strategy as a control. This is especially important in light of recent field
studies of reproductivity and survivability of introduced Trojan super-
male populations of brook trout (Salvelinus fontinalis), in the Big Lost
River basin in south-central Idaho (Kennedy et al., 2018).

Fig. 5. A plot of the integrands of the objective functions, + +f m 12 2
, for the classical (red), model with intraspecies competition but no Allee effect (green), model

with Allee effect but no intraspecies competition (magenta), and the modified model including both effects (blue). We notice that the area under the curve for the
modified model that includes both effects is less than that of each of the other situations, in particular the classical case. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. A plot of the optimal controls for increasing r on the interval [15, 21].
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In this paper, a modification to the classical model of the TYC
strategy is proposed that includes intraspecies competition between
males and supermales for female mates and a strong Allee effect in the
female population. It is shown that the dynamical system may exhibit
an extinction and recovery equilibrium solutions for realistic parameter
values of the carrying capacity and birth and death rates. In such case,
the equilibrium solutions are shown to be asymptotically stable and
hence the goal of an effective TYC strategy is to push the wild-type
populations toward the basin of attraction of the extinction state.

An optimal introduction rate of supermales is determined through
optimal control theory and was chosen to minimize an objective func-
tion that measures the total amount of wild population and introduced
supermales. The optimal introduction rate for the classical model was
given in Lyu et al. (2019). Here, we compare the influence of including
the intraspecies competition for mates and the Allee effect on the op-
timal introduction rate. It is determined that the optimal introduction
rate yields a significantly smaller objective function value as compared
to the classical model. This suggests that it is important to include in-
traspecies competition and the Allee effect to appropriately determine
the overall cost of the TYC eradication strategy. In addition, this in-
dicates that the overall cost of the strategy is smaller than previously
predicted (Lyu et al., 2019). Lastly, a stochastic model is proposed to
investigate the influence of noise in the birth and death rates on the
objective function's value. These results show the sensitivity in the
objective function's value in light of perturbations to the birth and
death rates. Numerical results indicate that the optimal introduction
rate is indeed robust to noise in the birth and death rate. Hence, the
optimal introduction rate is not greatly influenced by noise or pertur-
bations in death and birth rates.
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