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Stability of SIS Spreading Processes in
Networks With Non-Markovian Transmission

and Recovery
Masaki Ogura , Member, IEEE, and Victor M. Preciado , Member, IEEE

Abstract—Although viral spreading processes taking
place in networks are often analyzed using Markovian mod-
els, in which both the transmission and the recovery times
follow exponential distributions, empirical studies show
that, in many real scenarios, the distribution of these times
is not necessarily exponential. To overcome this limita-
tion, we first introduce a generalized susceptible–infected–
susceptible spreading model that allows transmission and
recovery times to follow phase-type distributions. In this
context, we derive a lower bound on the exponential decay
rate toward the infection-free equilibrium of the spreading
model without relying on mean-field approximations. Based
on our results, we illustrate how the particular shape of the
transmission/recovery distribution influences the exponen-
tial rate of convergence toward the equilibrium.

Index Terms—Complex networks, Markov processes,
multiagent systems, stochastic systems.

I. INTRODUCTION

UNDERSTANDING the dynamics of spreading processes
in complex networks is a challenging problem with a

wide range of practical applications in epidemiology and public
health [3], information propagation in social networks [21], or
cyber-security [38]. During the last decade, significant progress
has been made toward understanding the relationship between
the topology of a network and the dynamics of spreading pro-
cesses taking place over the network (see [28] and [35] for
recent surveys). A common approach to investigate this rela-
tionship is by modeling spreading processes using networked
Markov processes, such as the networked susceptible–infected–
susceptible (SIS) model [44]. Based on these Markovian models,
it is then possible to find an explicit relationship between epi-
demic thresholds and network eigenvalues in static topologies
[18], [34], [44], [46]; as well as in multilayer [10], [40]; time-
varying [29], [33]; and adaptive [23], [30] networks. Marko-
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vian models also allow us to design optimal strategies for
containment of spreading processes taking place in static, un-
certain, and temporal networks (see, e.g., [13] and [37]).

A consequence of using Markovian models in the analysis
of spreading processes is that both transmission times (i.e., the
time it takes for an infection to be transmitted from an infected
node to one of its neighbors) and recovery times (i.e., the time
it takes for an infected node to recover) follow exponential
distributions. However, empirical studies show that, in many real
networks, the distribution of transmission and recovery times is
not necessarily exponential. For example, the transmission time
of messages in Twitter, or news in other social media outlets,
follows (approximately) a log-normal distribution [21], [45].
In the context of human contact networks, the transmission of
various infectious diseases [4], [7], [17], [26] or the time it takes
to recover from the influenza virus [42] is often nonexponential.

Since realistic transmission and recovery times often follow
nonexponential distributions, it is of practical importance to
understand the role of these distributions on the dynamics of
the spread. In this direction, the authors in [45] illustrated, via
numerical simulations, that nonexponential transmission times
can have a substantial effect on the dynamics of the spread.
Motivated by this study, several approximative methods for
quantifying the steady-state fraction of infected nodes have
been proposed in the literature. In this direction, the authors
in [5] analyzed spreading processes with general transmission
and recovery times using mean-field approximations. In [16]
and [25], simple but yet analytically solvable spreading models
with nonexponential transmission times were studied. Moment-
closure approximations for analyzing spreading processes with
nonexponential transmission and recovery times were proposed
in [19] and [36]. Under the assumption that recovery times fol-
low an exponential distribution, the analytical framework in [41]
enables us to reduce nonexponentially distributed transmission
times into exponentially distributed counterparts without chang-
ing the steady state of the spread. The authors in [27] used
a mean-field approximation to derive stability conditions for
the infection-free equilibrium of a spreading process with three
compartments and non-Markovian transition dynamics. How-
ever, either their conditions are conservative or they guarantee
only the local stability of the infection-free equilibrium.

In this paper, we propose a tractable but rigorous approach to
analyze the transient of SIS spreading processes over arbitrary
networks with general (nonexponential) transmission and recov-
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ery times. In this direction, we first introduce the generalized
networked susceptible–infected–susceptible (GeNeSIS) model,
which allows for transmission and recovery times following ar-
bitrary phase-type distributions (see, e.g., [2]). Defined as the
exit time of time-homogeneous Markov processes, phase-type
distributions form a dense family in the space of positive-valued
distributions [9]. Therefore, the GeNeSIS model allows us to
theoretically analyze arbitrary transmission and recovery times
within an arbitrary accuracy [2]. We are particularly interested
in quantifying the exponential decay rate of the spread toward
the infection-free equilibrium, in other words to eradicate the
viral spreading process. The key tool used in our derivations is
a vectorial representation of phase-type distributions, which we
use to bound the exponential decay rate toward the infection-free
equilibrium in the stochastic dynamics of the GeNeSIS model.

The rest of this paper is organized as follows. In Section II, we
introduce elements of graph theory and stochastic differential
equations with Poisson jumps. In Section III, we describe a gen-
eralized SIS model over networks with arbitrary transmission
and recovery times. In Section IV, we provide a vectorial rep-
resentation of the GeNeSIS model, which we use in Section V
to analyze the exponential decay rate toward the infection-free
equilibrium. We validate the effectiveness of our results via
numerical simulations in Section VI, where we also illustrate
the effect of nonexponential transmission/recovery times in the
dynamics of the spread.

II. MATHEMATICAL PRELIMINARIES

Let R and N denote the set of real numbers and
positive integers, respectively. For a positive integer n,
define [n] = {1, . . . , n}. For a real function f , let f(t−) de-
note the limit of f from the left at time t. We let In and On

denote the n× n identity and zero matrices. By 1p and 0p , we
denote the p-dimensional vectors, whose entries are all ones
and zeros, respectively. A real matrix A (or a vector as its spe-
cial case) is said to be nonnegative, denoted by A ≥ 0, if A is
nonnegative entrywise. The notationA ≤ 0 is understood in the
obvious manner. For a square matrix A, the maximum real part
of its eigenvalues, called the spectral abscissa of A, is denoted
by η(A). We say that A is Metzler if the off-diagonal entries of
A are all nonnegative. It is easy to see that, if A is Metzler, then
eAt ≥ 0 for every t ≥ 0. The Kronecker product [15] of two
matricesA andB is denoted byA⊗B, and the Kronecker sum
of two square matrices A ∈ Rp×p and B ∈ Rq×q is defined by

A⊕B = A⊗ Iq + Ip ⊗B.

Given a collection of n matrices A1 , . . . , An having the same
number of columns, the matrix obtained by stacking the matrices
in vertical (A1 on top) is denoted by col(A1 , . . . , An ).

An undirected graph is a pair G = (V, E), where V =
{1, . . . , n} is the set of nodes, and E ⊂ V × V is the set of edges,
consisting of distinct and unordered pairs {i, j} for i, j ∈ V . We
say that a node i is a neighbor of j (or that i and j are adjacent)
if {i, j} ∈ E . The set of neighbors of node i is denoted by Ni .
The adjacency matrix of G is defined as the n× nmatrix whose
(i, j)th entry is 1 if and only if nodes i and j are adjacent, 0
otherwise.

We let P (·) denote the probability of events. The expectation
of a random variable is denoted by E[·]. A Poisson counter [6,
Ch. 4] of rate λ > 0 is denoted by Nλ. In this paper, we ex-
tensively use a specific class of stochastic differential equa-
tions with Poisson jumps, described below. For each i ∈ [m],
let fi : R × R → R be a continuous function, Nλi be a Pois-
son counter, and κi be a continuous-time, real, and stationary
stochastic process defined over the probability space Ω. All the
above stochastic processes are assumed to be independent of
each other. Then, we say that a real and right-continuous func-
tion x is a solution of the stochastic differential equation

dx =
m∑

i=1

fi(x(t),κi(t)) dNλi (1)

if x is constant on any interval, where none of the countersNλ1 ,
. . . , Nλm jumps, and

x(t) = x(t−) + fi(x(t−),κi(t))

when Nλi jumps at time t. This definition can naturally be
extended to the vector case. In the following, we present two
lemmas for this class of stochastic differential equations. The
first lemma states a version of Itô’s formula.

Lemma II.1: Assume that x is a solution of (1). Let g be a
real continuous function. Then, y(t) = g(x(t)) is a solution of
the stochastic differential equation

dy =
m∑

i=1

[g (x(t) + fi (x(t),κi(t))) − g(x(t))] dNλi

i.e., y satisfies

y(t) = y(t−) + g
(
x(t−) + fi(x(t−),κi(t))

) − g(x(t−))

if the Poisson counter Nλi jumps at time t and is constant over
any interval in which none of the countersNλ1 , . . . , Nλm jumps.

Proof: Assume that the counter Nλi jumps at time t. Since
x is the solution of the stochastic differential equation (1),
it follows that y(t) − y(t−) = g (x(t−) + fi(x(t−),κi(t))) −
g(x(t−)), as desired. �

We also state the following lemma concerning the expectation
of the solution to the stochastic differential equation (1).

Lemma II.2: Assume that x is a solution of (1). If the func-
tions f1 , . . . , fm are affine with respect to the second variable,
then

d

dt
E[x(t)] =

m∑

i=1

E
[
fi(x(t), E[κi(t)])

]
λi . (2)

Proof: By the assumption, for each i ∈ [m], we can take real
functions fi,1 and fi,2 such that fi(a, b) = fi,1(a) + bfi,2(a) for
every a, b ∈ R. Let t ≥ 0 and h > 0 be arbitrary. We have the
following three possibilities: 1) no counter jumps on the time
interval [t, t+ h]; 2) exactly one counter jumps in the interval;
or 3) more than one counter jumps in the interval. The first case
happens with probability 1 − (λ1 + · · · + λm )h+ o(h). For the
second case, for each i ∈ [m], one and the only one counterNλi

jumps on the time interval [t, t+ h] with probability λih+ o(h).
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In this case, we have

x(t+ h) = x(t) + fi(x(t),κi(τ))

= x(t) + fi,1(x(t)) + κi(τ)fi,2(x(t))

for some τ ∈ [t, t+ h] and therefore

E[x(t+ h)] = E[x(t)] + E[fi,1(x(t))]

+ E[κi(τ)]E[fi,2(x(t))]

= E[x(t)] + E
[
fi(x(t), E[κi(t)])

]

because κi is a stationary stochastic process. Finally, the third
case occurs with probability o(h). Summarizing, we have shown
that

E[x(t+ h)] − E[x]
h

=
o(h)
h

+
m∑

i=1

E
[
fi(x(t), E[κi(t)])

]
λi

which proves (2) in the limit of h→ 0. �

III. SIS MODEL WITH GENERAL TRANSMISSION AND

RECOVERY TIMES

The aim of this section is to introduce the GeNeSIS model,
which will allow us to analyze the effect of nonexponential
transmission and recovery times in the spreading dynamics.

A. GeNeSIS Model

We start by giving a brief overview of the standard SIS model
(see, e.g., [28] and [35]). Let G = (V, E) be an undirected and
unweighted graph with n nodes. In the SIS model, at a given
(continuous) time t ≥ 0, each node can be in one of two pos-
sible states: susceptible or infected. If a neighbor of node i is
infected, then this neighbor can infect node i with an instanta-
neous rate βi , where βi > 0 is called the transmission rate of
node i. Therefore, while being infected, the neighbor attempts
to infect node i with the interevent times following an exponen-
tial distribution of rate βi . On the other hand, when a node i
is infected, it can randomly transition to the susceptible state
with an instantaneous rate δi > 0, called the recovery rate of
node i. This implies that the time it takes for an infected node i
to recover follows an exponential distribution of rate δi .

Before we introduce the GeNeSIS model, we introduce the
following notations. We describe the state of a node i ∈ V by
a {0, 1}-valued continuous-time stochastic process, denoted by
zi = {zi(t)}t∈R. We say that node i is susceptible (respectively,
infected) at time t if zi(t) = 0 (respectively, zi(t) = 1). We
assume that the function zi is continuous from the right for
all i ∈ [n]. Under this assumption, we say that node i becomes
infected (respectively, becomes susceptible) at time t if zi(t−) =
0 and zi(t) = 1 (respectively, zi(t−) = 1 and zi(t) = 0). It is
assumed that all nodes are susceptible before time t = 0, i.e.,
zi(t) = 0 for t < 0. We now introduce the GeNeSIS model as
follows.

Definition III.1: We say that the family z = {zi}i∈[n ] of
stochastic processes is a GeNeSIS model if there exist a subset
V0 ⊂ [n], as well as random variables

0 = τ ji0 (t) < τji1 (t) < · · ·

and ρi(t) > 0 satisfying the following conditions for all i ∈ [n],
j ∈ Ni , and t ≥ 0.

a) Node i becomes infected at time t = 0 if and only if
i ∈ V0 , i.e., V0 is the initially infected subset.

b) Assume that node i becomes infected at time t. Then,
node i remains infected during the time interval [t, t+
ρi(t)) and becomes susceptible at time t+ ρi(t), i.e., the
random variable ρi(t) is the recovery time of node i;

c) If node i becomes infected at time t, then, until its
recovery, the node attempts to infect node j ∈ Ni at
times {t+ τ jik (t)}k∈N , i.e., if node j is susceptible at
time t+ τ jik (t) for any k ∈ N, then node j becomes in-
fected.

Remark III.2: We call the random increments {τ jik (t) −
τ jik−1(t)}j∈Ni , t≥0, k∈N the transmission times of node i, since

the difference τ jik (t) − τ jik−1(t) represents the time between in-
fection attempts from an infected node i toward a neighboring
node j. Note that, when all the recovery and transmission times
follow exponential distributions, the GeNeSIS model recovers
the standard networked SIS model described at the beginning
of this subsection.

Notice that the origin (i.e., zi = 0 for all i ∈ V) is an absorbing
state of the GeNeSIS dynamics. In what follows, we will refer
to the origin as the infection-free equilibrium. The aim of this
paper is to quantify the transient dynamics of the generalized
SIS model according to the following definition.

Definition III.3: The exponential decay rate of the GeNeSIS
model is defined by

λ = − sup
V0 ⊂[n ]

lim sup
t→∞

log
∑n

i=1 E[zi(t)]
t

.

Since the sum
∑n

i=1 E[zi(t)] equals the expected number of
infected nodes at time t, the decay rate λ quantifies how fast
the infectious spreading process dies out in the network (in av-
erage). Besides quantifying the impact of contagious spreading
processes over networks [12], [20], [45], the exponential decay
rate has been used as a standard tool for measuring the perfor-
mance of strategies aiming to contain epidemic outbreaks [1],
[13], [37], [46]. We further remark that, although exponential
distributions are not necessarily appropriate for modeling real-
istic transmission and recovery times as discussed in Section I,
the exponential decay rate is still a valid quantity for measuring
the spreading capability of epidemic processes.

B. Phase-Type Transmission and Recovery Times

In this paper, we consider the GeNeSIS model with transmis-
sion and recovery times following phase-type distributions [2].
In what follows, we briefly describe this class of probability dis-
tributions. Consider a time-homogeneous Markov process x in
continuous time with p+ 1 (p ∈ N) states (also called phases)
such that the states 1, . . . , p are transient and the remaining
state p+ 1 is absorbing. The infinitesimal generator of the pro-
cess is then necessarily of the form

[
T b

0 0

]
, b = −T1p (3)
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where T ∈ Rp×p is an invertible Metzler matrix with nonposi-
tive row sums. Let

[
φ

0

]
∈ Rp+1 (φ ∈ Rp)

denote the initial distribution of the Markov process x, i.e.,

P (x(0) = m) =

{
φm , m ∈ [p]
0, m = p+ 1.

Then, the time to absorption into the state p+ 1 is a random
variable following a phase-type distribution, which we denote
by the pair (φ, T ). In the rest of this paper, we make the following
assumption on the distribution of (random) transmission and
recovery times in the GeNeSIS model.

Assumption III.4: Transmission and recovery times of all
nodes follow phase-type distributions (φ, T ) and (ψ,R), respec-
tively.

The class of phase-type distributions include various distri-
butions of theoretical and practical interests. For example, if
we choose the parameters p = 1, T = −β, and φ = 1, then the
phase-type distribution (φ, T ) equals an exponential distribution
with mean 1/β. A phase-type distribution can also represent var-
ious classes of distributions including the Erlang, Coxian, and
hyperexponential distributions [8]. Furthermore, it is known
that the set of phase-type distributions is dense in the set of
positive-valued distributions [9]. Therefore, it is possible to ap-
proximate an arbitrary distribution by a phase-type distribution
within any given accuracy. Moreover, there are efficient numer-
ical algorithms for finding the parameters of an approximating
phase-type distribution [2]. Hence, under Assumption III.4, the
GeNeSIS model allows us to efficiently approximate realistic
spreading processes having non-Markovian transmission and
recovery distributions.

IV. VECTORIAL REPRESENTATIONS

The aim of this section is to introduce a vectorial represen-
tation of the GeNeSIS model under Assumption III.4. We start
our exposition by providing a vectorial representation of an
arbitrary phase-type distribution (see Section IV-A) and then
present a vectorial representation of the GeNeSIS model (see
Section IV-B) that shall be used in Section V for analyzing the
decay rate of the spreading model.

A. Vectorial Representation of Phase-Type Distributions

In what follows, we use the following notation: For m,m′ ∈
[p], letEmm ′ denote the p× pmatrix whose entries are all zeros,
except for its (m,m′)th entry being 1. Also, let em denote the
mth vector of the canonical basis in Rp (i.e., all the entries
of em are zeros, except for the mth entry being 1). Finally,
given a probability distribution φ on [p], we say that an Rp -
valued random variable x follows the distribution φ, denoted by
x ∼ φ, if

P (x = em ) = φm

for every m ∈ [p].

By identifying the state space of the underlying Markov pro-
cess by the set of vectors {e1 , . . . , ep , 0} ⊂ Rp , the following
proposition allows us to represent the phase-type distribution as
the exit time (see [32, p. 117]) of a vectorial stochastic differen-
tial equation.

Proposition IV.1: Let (φ, T ) be a phase-type distribution
having p+ 1 phases (i.e., T ∈ Rp×p ) and define the vector b ∈
Rp as in (3). Consider the Rp -valued stochastic differential
equation

dx =
p∑

m=1

p∑

m ′=1

(Em ′m−Emm )x dNTmm ′ −
p∑

m=1

EmmxdNbm

(4)
with random initial condition x(0) ∼ φ. Then, the random vari-
able

ρ = min{t > 0 : x(t) = 0}
= min{t > 0 : ∃m ∈ [p] such that x(t−) = em ,

and Nbm jumps at time t}
(5)

follows (φ, T ).
Proof: A detailed investigation of the differential equa-

tion (4) shows that the solution x of (4) is a Markov process
with state space {e1 , . . . , ep , 0} ⊂ Rp and infinitesimal gener-
ator given by (3). This fact specifically shows that the second
equality in (5) is true. Furthermore, since x(0) follows the prob-
ability distribution φ, the time to absorption of the stochastic
process x into the absorbing state 0 follows the phase-type dis-
tribution (φ, T ). This completes the proof of the proposition.

The stochastic differential equation (4) shall be used for de-
scribing phase-type recovery events in the proof of our first
main result (see Theorem V.2). On the right-hand side of the
stochastic differential equation (4), the first term represents the
transitions between nonabsorbing states, while the second term
represents the transitions into the absorbing state.

In order to derive stochastic differential equations for trans-
mission events, we appropriately modify the second term in the
stochastic differential equation (4) and derive a vectorial rep-
resentation for renewal sequences (see, e.g., [6, Ch. 9]) whose
interrenewal times follow a phase-type distribution.

Proposition IV.2: Let (φ, T ) be a phase-type distribution.
Let eφ = {eφ(t)}t≥0 be independent and identically distributed
random variables such that eφ(t) follows the distributionφ for all
t ≥ 0. Consider the Rp -valued stochastic differential equation

dx =
p∑

m=1

p∑

m ′=1

(Em ′m − Emm )x dNTmm ′

+
p∑

m=1

(eφ(t)em − Emm )x dNbm (6)

with a random initial state x(0) following the distribution φ.
Define τ0 = 0 and let 0 < τ1 < τ2 < · · · be the (random) times
at which x(t−) = em and the counter Nbm jumps for some
m ∈ [p]. Then, the increments {τk − τk−1}k∈N are independent
and identically distributed random variables following (φ, T ).
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Proof: Since the stochastic differential equation given in
the proposition is equivalent to the one in Proposition IV.1 on
the time interval [0, τ1), the random variable τ1 has the same
probability distribution as the random variable ρ defined in (5)
and, therefore, follows the phase-type distribution (φ, T ) by
Proposition IV.1. Furthermore, by the definition of τ1 , there ex-
ists an m ∈ [p] such that x(τ1) = (eφ(τ1)em − Emm )x(τ−1 ) +
x(τ−1 ) = eφ(τ1), which follows φ. Therefore, by the same argu-
ment as above, we see that the random increment τ2 − τ1 also
follows (φ, T ). An induction completes the proof. �

Using Propositions IV.1 and IV.2 as the machinery for de-
scribing phase-type recovery and transmission events, in the
next subsection, we present a set of vectorial stochastic differ-
ential equations for describing the whole GeNeSIS spreading
model.

B. Vectorial Representation of the Generalized SIS
Model

In this section, we use Propositions IV.1 and IV.2 to pro-
vide a vectorial representation of the GeNeSIS model under
Assumption III.4. Let A = [aij ]i,j be the adjacency matrix of
the graph G. Define the vectors b and d by (3) and

d = −R1q ∈ Rq

respectively. For �, �′ ∈ [q], let F�� ′ denote the q × q matrix
whose entries are all zeros, except for its (�, �′)th entry being
1. Also, let f� denote the �th vector in the canonical basis of
Rq . Finally, for i, j ∈ [n] and γ > 0, we let Nij

γ and Ni
γ denote

independent Poisson counters with rate γ. The next theorem is
the first main result of this paper.

Theorem IV.3: For each i ∈ [n] and j ∈ Ni , let ejiφ =
{ejiφ (t)}t≥0 and fiψ = {fiψ (t)}t≥0 be independent and identi-
cally distributed random variables such that

ejiφ (t) ∼ φ, f iψ (t) ∼ ψ

for all t ≥ 0. Let xji and yi be, respectively, the Rp - and Rq -
valued stochastic processes satisfying the following stochastic
differential equations:

dxji =
p∑

m=1

p∑

m ′=1

(Em ′m − Emm )xji dNji
Tmm ′

+
p∑

m=1

(ejiφ e

m − Emm )xji dNji

bm
− xji

q∑

�=1

yi� dN
i
d�

+ ejiφ (1 − 1
q y

i)
n∑

k=1

aik

p∑

m=1

xikm dNik
bm
, (7)

dyi =
q∑

�=1

q∑

� ′=1

(F� ′� − F��)yi dNi
R� � ′ − yi

q∑

�=1

yi� dN
i
d�

+ fiψ (1 − 1
q y

i)
n∑

k=1

aik

p∑

m=1

xikm dNik
bm
, (8)

where for an initially infected subset V0 ⊂ [n], the initial con-
ditions satisfy

{
xji(0) ∼ φ, yi(0) ∼ ψ, if i ∈ V0

xji(0) = 0p , yi(0) = 0q , otherwise.
(9)

Then, the GeNeSIS model in Definition III.1 with transmission
and recovery times following, respectively, phase-type distri-
butions (φ, T ) and (ψ,R) can be equivalently described as the
family of stochastic processes z = {zi}ni=1 , where

zi(t) = 1
q y

i(t) (10)

for all t ≥ 0 and i ∈ [n].
The representations of the GeNeSIS model as the set of

stochastic differential equations (7) and (8) allow us to ana-
lyze the model via symbolic computations, as will be illustrated
in Section V. Before proceeding to the proof of Theorem IV.3,
we provide an intuitive explanation of the theorem. As shown
in Corollary IV.5, the variable xji is related to spread of the
infection from an infected node i to a susceptible node j, while
yi controls the recovery process of node i. Specifically, on the
right-hand side of the differential equation (7), the first two terms
have the same structure as in (6) and correspond to renewal se-
quences of transmissions. The third and fourth terms represent
the recovery and infection of node i, respectively. Similarly,
on the right-hand side of the differential equation (8), the first
two terms correspond to the phase-type recovery and have al-
most the same structure as in (4), while the remaining last term
is related to the infection of the node i.

In order to prove Theorem IV.3, we first state the following
lemma.

Lemma IV.4: The following statements are true for all i ∈
[n], j ∈ Ni , and t ≥ 0.

1) 1
p x

ji(t) = 1
q y

i(t).
2) xji(t) ∈ {0p , e1 , . . . , ep}.
3) yi(t) ∈ {0q , f1 , . . . , fq}.
Proof: To prove the first statement, fix i ∈ [n] and j ∈ Ni ,

and let

ε = 1
p x

ji − 1
q y

i .

From (7) and (8), we obtain that

dε = ε

q∑

�=1

yi� dN
i
d�
.

This equation implies that ε is constant over [0,∞) because
ε(0) = 0. Therefore, we have ε(t) = ε(0) = 0 for every t ≥ 0,
completing the proof of the first statement.

Let us prove the second and third statements. Notice that xji

and yi are piecewise constant since they are the solutions of
the stochastic differential equations (7) and (8). Moreover, their
values can change only when one of the Poisson counters in the
stochastic differential equations jumps. Finally, if we let

U = {0p , e1 , . . . , ep}
V = {0q , f1 , . . . , fq}
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then (9) shows xji(0) ∈ U and yi(0) ∈ V . Therefore, it is suf-
ficient to show that the jump of any Poisson counter leaves the
sets U and V invariant.

Let t > 0 be arbitrary and assume that xji(t−) ∈ U
and yi(t−) ∈ V . The stochastic differential equations (7) and (8)
have the following five different types of Poisson counters:
Nik
bm

, Ni
d�

, Nji
Tm m

, Ni
R� �

, and Nji
bm

. Careful investigations of
the stochastic differential equations (7) and (8) show that any of
these counters leave the sets U and V invariant as follows. For
example, when Nik

bm
jumps at time t, we have that

xji(t)

=xji(t−) + ejiφ (t)(1 − 1
q y

i(t−))aikxikm (t−)

=

{
xji(t−), if 1

q y
i(t−) = 1, aik = 0, or xikm (t−) = 0

ejiφ (t), otherwise.
(11)

Also, we have

yi(t) = yi(t−) + fiψ (t)(1 − 1
q y

i(t−))aikxikm (t−)

=

{
yi(t−), if 1

q y
i(t−) = 1, aik = 0, or xikm (t−) = 0

fiψ (t), otherwise.
(12)

Therefore, this jump leaves U and V invariant. Similarly, when
Ni
d�

jumps at time t, we obtain

xji(t) = xji(t−) − xji(t−)yi�(t
−)

=

{
0, if yi�(t

−) = 1

xji(t−), otherwise.

(13)

Hence, xji(t) ∈ U . We also have yi(t) ∈ V because

yi(t) = yi(t−) − yi(t−)yi�(t
−)

=

{
0, if yi�(t

−) = 1
yi(t−), otherwise.

(14)

The cases of other counters can be analyzed in a similar manner,
and therefore, the proofs are omitted. �

The next corollary of Lemma IV.4 clarifies the roles of the
variables xji and yi and the various Poisson counters in the
stochastic differential equations (7) and (8).

Corollary IV.5: The following statements are true for every
i ∈ [n], j ∈ Ni , and t ≥ 0.

1) Node i attempts to infect node j at time t, if and only if,
xjim (t−) = 1 and Nji

bm
jumps at time t for some m ∈ [p].

2) Node i becomes susceptible at time t, if and only if,
yi�(t

−) = 1 and Ni
d�

jumps at time t for some � ∈ [q].
Proof: From the proof of Lemma IV.4, the value of zi =

1
p x

ji = 1
q y

i can change from 0 to 1 when and only when a
counter Nik

bm
jumps. Therefore, from (11) and (12), we see that

node i becomes infected at time t ≥ 0 if and only if zi(t−) = 0,
node i is adjacent to node k, xikm (t−) = 1, and Nik

bm
jumps at

time t for some m ∈ [p]. Therefore, node k attempts to infect
node i at time t if and only if xikm (t−) = 1 and Nik

bm
jumps at

time t for some m ∈ [p], as desired.

Similarly, we see that the value of zi can change from 1 to
0 when and only when a counter Ni

d�
jumps. Therefore, (13)

and (14) imply that node i becomes susceptible at time t if and
only if yi�(t

−) = 1 and the counterNi
d�

jumps at time t for some
� ∈ [q], showing the second assertion of the corollary. �

Now, we are ready to prove Theorem IV.3.
Proof of Theorem IV.3: We prove that the family of stochas-

tic processes z = {zi}ni=1 , defined by (7)–(10), satisfies items
a)–c) in Definition III.1, as well as Assumption III.4. Item a) is
true by the given initial conditions. Let us prove item b). Assume
that node i becomes infected at time t ≥ 0; hence, we have that
either t = 0 or t > 0. In this proof, we only consider the case
t = 0, as the other case can be proved in a similar way. Let ρ be
the earliest time at which yi(ρ) = 0q . Then, on the time inter-
val [0,ρ), the stochastic differential equation (8) is equivalent
to

dyi =
q∑

�=1

q∑

� ′=1

(F� ′� − F��)yi dNi
R� �

−
q∑

�=1

F��y
i dNi

d�

since yiyi� = F��y
i . Moreover, the vector yi(0) follows the dis-

tributionψ. Therefore, by Proposition IV.1, we see that ρ follows
the phase-type distribution (ψ,R), proving item b) in Defini-
tion III.1 under Assumption III.4 for t = 0. A similar discus-
sion using Proposition IV.2 shows that the family of stochastic
processes z satisfies item c) in Definition III.1 under Assump-
tion III.4. This completes the proof of the theorem. �

Before presenting our analysis of the decay rate in the next
section, we state another corollary of Lemma IV.4.

Corollary IV.6: The family of stochastic processes

ξ = {xji, yi}i∈[n ],j∈Ni
(15)

where xji and yi are the solutions of the stochastic differential
equations (7) and (8), is a Markov process. Moreover, the states
of ξ are all transient except for the absorbing state α at which
xji = 0 and yi = 0 for all i ∈ [n] and j ∈ Ni . Furthermore, the
size of the state space of ξ equals

Nξ =
n∏

i=1

(1 + p|Ni |q)

where |Ni | denotes the size of the neighbor set Ni .
Proof: A careful investigation of the proof of Lemma IV.4

shows the first and second claims. The third claim is an imme-
diate consequence from the constraint 1

p x
ji(t) = 1

q y
i(t) that

was proved in Lemma IV.4. �

V. DECAY RATE ANALYSIS

In this section, we use our previous results to bound the
exponential decay rate of the GeNeSIS model under Assump-
tion III.4. We begin by presenting a characterization of the de-
cay rate in terms of the eigenvalues of a matrix, whose size
grows exponentially with respect to the model parameters. To
overcome the difficulty of computing the eigenvalues of a very
large matrix, we then present an alternative bound on the decay
rate based on the representation of the GeNeSIS model as the
stochastic differential equations (7) and (8).
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Throughout this section, we consider the GeNeSIS model
with transmission and recovery times following, respectively,
phase-type distributions (φ, T ) and (ψ,R) (i.e., satisfying As-
sumption III.4). The following proposition illustrates the com-
putational difficulty in computing the exponential decay rate of
the GeNeSIS model.

Proposition V.1: Let Q ∈ RNξ ×Nξ be the transition rate
matrix of the Markov process ξ (see (15) for the definition of ξ),
and let r < 0 be the maximum real part of the nonzero eigen-
values of Q. Then, the exponential decay rate of the GeNeSIS
model is given by

λ = −r.
Proof: Since ξ(t) �= α if and only if at least one node is

infected at time t, we have the inequality

E[zi(t)] ≤ P (ξ(t) �= α) ≤
n∑

i=1

E[zi(t)]

for all i ∈ [n] and t ≥ 0. Therefore, the exponential decay rate
of the GeNeSIS model is determined by that of the func-
tion P (ξ(t) �= α) of t. By Corollary IV.6, a basic argument
on Markov processes (see [44] for the case of exponential trans-
mission and recover times) shows that: 1) if λ < −r, there ex-
ists a constant C > 0 such that P (ξ(t) �= α) ≤ Ce−λt for all
t and any initial state ξ(0); and 2) if λ > −r, there exists an
initial state of ξ such that the function P (ξ(t) �= α) cannot be
bounded from above by the exponential function Ce−λt for any
value of C. These observations immediately prove the claim of
the proposition. �

Proposition V.1 yields the exact value of the decay rate, since
the proposition uses the transition rate matrix of the whole
Markov process ξ that exactly describes the GeNeSIS model.
However, Proposition V.1 is not easily applicable in practice
because the dimension Nξ of the matrix Q grows exponentially
as

Nξ ≥
n∏

i=1

(p|Ni |q) = p2mqn (16)

where m denotes the number of the edges in the network. The
following theorem overcomes this computational difficulty by
providing a lower bound on the growth rate in terms of the
eigenvalues of a matrix whose size grows linearly with respect
to the parameters in the GeNeSIS model.

Theorem V.2: Define the (npq) × (npq) matrix

A = (φb) ⊗A⊗ (ψ1
q ) + Inp ⊗R + (T + φb) ⊗ Inq

(17)
where A is the adjacency matrix of the graph G and the vector b
is defined in (3). Then, we have

λ ≥ −η(A)

where η(A) is the spectral abscissa of A.
Before providing a proof of Theorem V.2, we below present a

series of corollaries of the theorem. The proofs of the corollaries
are straightforward and, therefore, omitted. The first corollary
gives a bound on the decay rate of the GeNeSIS model with
exponential transmission times and phase-type recovery times.

Corollary V.3: Assume that the transmission times follow an
exponential distribution with mean 1/β. Define the (nq) × (nq)
matrix

Aβ = βA⊗ (ψ1
q ) + In ⊗R.

Then, the decay rate satisfies λ ≥ −η(Aβ ).
The next corollary deals with the dual case with phase-type

transmission times and exponential recovery times.
Corollary V.4: Assume that the recovery times follow an

exponential distribution with mean 1/δ. Define the (np) × (np)
matrix

Aδ = (φb) ⊗A+ (T + φb) ⊗ In − δInp .

Then, the decay rate satisfies λ ≥ −η(Aδ ).
As the special case of Theorem V.2, as well as Corollaries V.3

and V.4, we can prove the following bound on the decay rate of
the standard SIS model.

Corollary V.5 (see[12] and [37]): Assume that the transmis-
sion and recovery times follow exponential distributions with
means 1/β and 1/δ, respectively. Define the n× n matrix

Aβ ,δ = βA− δIn .

Then, the decay rate satisfies λ ≥ −η(Aβ ,δ ).
The above corollaries suggest an intuitive understanding of

the terms in the matrixA defined in (17). Comparing the expres-
sions of the matrices Aδ and Aβ ,δ , we see that the role of the ex-
ponential transmission rate β is played by the p× p matrix φb

in the case of phase-type transmission times. On the other hand,
the second term of the matrix Aδ , namely, (T + φb) ⊗ In ,
can be understood as a correction term that arises independently
of the topology of the network. Similarly, comparing the matri-
ces Aβ and Aβ ,δ , we see that the second term In ⊗R of the
matrix Aβ represents the effect of phase-type recoveries. On the
other hand, we can understand the matrix ψ1

q as a correction
term resulting from using phase-type recovery times.

We now give the proof of Theorem V.2.
Proof of Theorem V.2: Combining (7) and (8), we obtain

the following Rp+q -valued stochastic differential equation:

d

[
xji

yi

]
=

p∑

m=1

p∑

m ′=1

[
(Em ′m − Emm )xji

0nq

]
dNji

Tmm ′

+
p∑

m=1

[
(ejiφ e


m − Emm )xji

0nq

]
dNji

bm

+
q∑

�=1

q∑

� ′=1

[
0np

(F� ′� − F��)yi

]
dNi

R� � ′

+
q∑

�=1

[−xjiyi�
−yiyi�

]
dNi

d�

+
n∑

k=1

p∑

m=1

aik

[
ejiφ (1 − 1

q y
i)xikm

fiψ (1 − 1
q y

i)xikm

]
dNik

bm
.

Then, we apply Itô’s formula in Lemma II.1 using the function

g

([
xji

yi

])
= wji = xji ⊗ yi
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to obtain the following Rpq -valued stochastic differential equa-
tion (after tedious, but simple, algebraic manipulations):

dwji =
p∑

m=1

p∑

m ′=1

(
(Em ′m − Emm ) ⊗ Iq

)
wji dNji

Tmm ′

+
p∑

m=1

(
(ejiφ e


m − Emm ) ⊗ Iq

)
wji dNji

bm

+
q∑

�=1

q∑

� ′=1

(
Ip ⊗ (F� ′� − F��)

)
wji dNi

R� � ′

+
q∑

�=1

(−yi�wji) dNi
d�

+
n∑

k=1

p∑

m=1

aik (e
ji
φ ⊗ fiψ )(1 − 1

pqw
ji)(em ⊗ 1

q )wik dNik
bm
.

(18)

For brevity, we omit the details of this derivation. Define

ωji(t) = E[wji(t)]

for t ≥ 0. Then, using Lemma II.2, from (18), we can derive the
Rpq -valued differential equation

dωji
dt

=
[
(T +B) ⊗ Iq + (φb −B) ⊗ Iq

+
(
Ip ⊗ (R +D)

)]
ωji − (Ip ⊗D)ωji

+ (φ⊗ ψ)(em ⊗ 1
q )

p∑

m=1

bm

n∑

k=1

(aikωik ) − εji

(19)

where B and D are the n× n diagonal matrices having the
diagonals b1 , . . . , bn and d1 , . . . , dn , respectively, and the Rpq -
valued function εji is defined by

εji(t) =
n∑

k=1

p∑

m=1

bmaik (φ⊗ ψ)E[1
pqw

ji(t)(em ⊗ 1
q )wik (t)]

(20)
for every t ≥ 0.

Now, for every i ∈ [n], we take an arbitrary ji ∈ Ni . We then
define the function ωi by ωi = ωji i , as well as the Rnpq -valued
function

ω = col(ω1 , . . . , ωn ).

Notice that, from (18), for each i ∈ [n], all the stochastic pro-
cesses in the set {wji}j∈Ni

follow the same stochastic dif-
ferential equation and, therefore, present the same probabil-
ity distribution. This implies that ωi = ωji for every j ∈ Ni .
Therefore, we can rewrite the last summation appearing in (19)
as

∑n
k=1 aikωik =

∑n
k=1 aikωk = (Ai ⊗ Ipq )ω, where Ai de-

notes the ith row of the adjacency matrix A. Then, from (11), it

follows that

dωi
dt

=
(
T ⊗ Iq + Ip ⊗R + (φb) ⊗ Iq

)
ωi

+
(
Ai ⊗ (φb) ⊗ (ψ1

q )
)
ω − εji i .

Defining

ε = col(εj1 1 , . . . , εjn n )

we obtain the differential equation

dω

dt
= A′ω − ε

for the matrix A′ = In ⊗ (T ⊗ Iq + Ip ⊗R + (φb) ⊗
Iq ) +A⊗ (φb) ⊗ (ψ1

q ).
Since A′ is Metzler, we have that eA

′t ≥ 0 for every t ≥ 0.
Also, since both xji(t) and yi(t) are nonnegative for all i ∈
[n], j ∈ Ni , and t ≥ 0, we have that ε(t) ≥ 0 for every t ≥ 0.
Therefore, it follows that

ω(t) = eA
′tω(0) −

∫ t

0
eA

′(t−τ )ε(τ) dτ ≤ eA
′tω(0).

This inequality implies that ω(t) converges to zero as t→ ∞
with a decay rate at least −η(A′) since ω(t) ≥ 0 for all t ≥ 0.
On the other hand, for each i ∈ [n] and j ∈ Ni , we have

1
pqw

ji(t) = (1
p x

ji(t))(1
q y

i(t)) = 1
q y

i(t) = zi(t)

from Lemma IV.4. Therefore, we have E[zi(t)] = 1
pqωji(t),

which shows the exponentially fast convergence of E[zi(t)]
toward zero with a decay rate at least −η(A′). Furthermore,
using the fact that two Kronecker products F ⊗G and G⊗ F
are similar for square matrices F and G, we can show that the
matrices A′ and A are similar. This completes the proof of the
theorem. �

Remark V.6: Unlike the necessary and sufficient condition
in Proposition V.1, the condition in Theorem V.2 is only suffi-
cient. This conservatism arises from ignoring the higher order
term εji in (20). The inclusion of these higher order terms into
the analysis (see, e.g., [31] and [39]) would allow us to reduce
the conservatism, at the cost of increasing the dimension of the
matrix A .

VI. NUMERICAL SIMULATIONS

In this section, we illustrate the effectiveness of our re-
sults with numerical simulations in a real social network hav-
ing n = 247 nodes and 940 edges. We focus on log-normal
transmission and recovery times, which are observed in em-
pirical studies, including information spread on online social
networks [11], [43] and human epidemiology [22], [26]. In our
simulations, we illustrate the effect of using exponential distri-
butions to model transmission and recovery times that, in reality,
follow log-normal distributions. In particular, we analyze how
using standard Markovian models with exponential rates induce
errors in the computation of the decay rate. Furthermore, we
are also interested in how the variances of log-normal distribu-
tions, which cannot be incorporated into the standard Markovian
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Fig. 1. Approximations by phase-type distributions. Solid: Probability density functions of the log-normal distributions for μ in the range [0.5 : 0.1 :
1.5]. Dashed: Probability density functions of phase-type distributions. The darker the colors of the plots, the smaller the values of μ. (a) Log-normal
distributions (solid lines) with mean μ and variance μ2 , and their phase-type approximations (dashed lines). (b) Log-normal distributions (solid lines)
with mean μ and variance 2μ2 , and their phase-type approximations (dashed lines). (c) Log-normal distributions (solid lines) with mean μ and
variance 4μ2 , and their phase-type approximations (dashed lines).

Fig. 2. Lower bound −η(A) on the exponential decay rate of the generalized SIS model. Horizontal axes: μ. Vertical axes: μ divided by the spectral
radius of the graph. The white region corresponds to unstable epidemics; the darker the region, the faster the epidemics converges toward the
infection-free equilibrium. (a) Exponential recovery times with mean μ. (b) Log-normal recovery times with mean μ and variance μ2 . (c) Log-normal
recovery times with mean μ and variance 2μ2 . (d) Log-normal recovery times with mean μ and variance 4μ2 .

model, affect the decay rates. For this purpose, we use the fol-
lowing four distributions to model transmission and recovery
times in the GeNeSIS model: (i) the exponential distribution
with mean μ (and, hence, variance μ2); (ii) the log-normal dis-
tribution with mean μ and variance μ2 ; (iii) the log-normal dis-
tribution with mean μ and variance 2μ2 ; and (iv) the log-normal
distribution with mean μ and variance 4μ2 .

In order to analyze the decay rate of the GeNeSIS model
whose transmission and recovery times follow one of these four
distributions, we first approximate the three log-normal distri-
butions in (ii)–(iv) using phase-type distributions (as described
in Section III) having p = 10 phases. Fig. 1 shows the proba-
bility density functions of the (exact) log-normal distributions,
as well as the fitted phase-type distributions, when the value of

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 01,2020 at 15:10:07 UTC from IEEE Xplore.  Restrictions apply. 



358 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 1, MARCH 2020

the parameter μ is in the range [0.5 : 0.1 : 1.5]. We notice that,
since the inequality (16) shows that the size of the exact state
transition matrix satisfies Nξ > 102127 , it is not practical to use
Proposition V.1 to compute the exact decay rate.

Using the proposed phase-type distributions, we apply Theo-
rem V.2 to analyze the decay rate of the GeNeSIS model when
the transmission/recovery times follow one of the four distri-
butions described above. We compute the decay rate −η(A)
for each one of the possible 16 combinations of transmis-
sion/recovery distributions when μ is in the range [0.5 : 0.05 :
1.5]. In the subfigures of Fig. 2, we include contour plots of
the decay rates for these 16 cases. In the figure, the values of
the decay rates are indicated by different colors. The darker the
color, the faster the epidemics converges to the infection-free
equilibrium.

We remark that, even though the four distributions used in our
simulations have the same mean, the resulting GeNeSIS models
exhibit different decay rates. We can furthermore observe that
the variances of the distributions used to model transmission
and recovery times can dramatically affect the decay rate of
the GeNeSIS model, as was previously indicated by numeri-
cal simulations [45] and mean-field approximations [5]. For a
fixed recovery distribution (i.e., for a fixed column in the ta-
ble in Fig. 2), the colored region (indicated by black solid lines)
shrinks as we increase the variance of the log-normal distribution
modeling the transmission times (see rows 2–4 in Fig. 2). From
this observation, we see that the heavier the tail of the trans-
mission distribution, the slower the extinction of the spreading
process, as was numerically confirmed in [45]. We also observe
that for a fixed transmission distribution (i.e., for a fixed row in
the table), the colored region remains almost unaltered as we
increase the variance of the distribution modeling the recovery
time, confirming the validity of the mean-field analysis in [5]
for the case of exponential transmission times. We can further-
more observe that the exponential decay rate −η(A) increases
more abruptly inside the region as we decrease this variance
as indicated by steeper gradients. The above observations illus-
trate the effectiveness of the proposed framework for analyzing
the decay rate of epidemics in networks with non-Poissonian
transmission and/or recovery distributions.

VII. CONCLUSION

In this paper, we have analyzed the dynamics of an SIS model
of spreading over arbitrary networks with phase-type transmis-
sion and recovery times. Since phase-type distributions form
a dense family in the space of positive-valued distributions,
our results allow us to theoretically analyze arbitrary trans-
mission and recovery times within an arbitrary accuracy. In
this context, we have derived conditions for this generalized
spreading model to converge toward the infection-free equi-
librium (i.e., to eradicate the spread) with a given exponential
decay rate. We have specifically provided a transient analysis
of the stochastic spreading dynamics over arbitrary networks
without relying on mean-field approximations. Our results il-
lustrate that the particular shape of the transmission/recovery
distribution heavily influences the exponential decay rate of

the convergence toward the infection-free equilibrium. Through
numerical simulations, we have specifically observed that our
results allow us to theoretically confirm some observations
previously obtained by numerical simulations and mean-field
approximations.

A possible direction for future research is considering time-
varying (temporal) networks [14], [24], in which transmission
and recovery events follow non-Poissonian distributions. An-
other interesting research direction is developing an optimal re-
source allocation strategy for non-Markovian epidemic spread-
ing processes. Although we can find in the literature various
research efforts [1], [13], [37], [46] for designing containment
methodologies for networked epidemic spreading processes,
many of them are based on decay rates that are derived un-
der the Markovian assumption on transmission and recovery
events. In this direction, it is of practical interest to investi-
gate how the non-Markovianity of spreading dynamics alters
the optimal allocation strategies that have been investigated in
the literature.
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[12] A. Ganesh, L. Massoulié, and D. Towsley, “The effect of network topology
on the spread of epidemics,” in Proc. 24th Annu. Joint Conf. IEEE Comput.
Commun. Soc., 2005, pp. 1455–1466.

[13] S. Han, V. M. Preciado, C. Nowzari, and G. J. Pappas, “Data-driven
network resource allocation for controlling spreading processes,” IEEE
Trans. Netw. Sci. Eng., vol. 2, no. 4, pp. 127–138, Oct.–Dec. 2015.

[14] P. Holme, “Modern temporal network theory: A colloquium,” Eur. Phys.
J. B, vol. 88, no. 9, p. 234, 2015.

[15] R. Horn and C. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge
Univ. Press, 1990.

[16] H.-H. Jo, J. I. Perotti, K. Kaski, and J. Kertész, “Analytically solvable
model of spreading dynamics with non-Poissonian processes,” Phys. Rev.
X, vol. 4, no. 1, 2014, Art. no. 011041.

[17] M. J. Keeling and B. T. Grenfell, “Understanding the persistence of
measles: Reconciling theory, simulation and observation,” Proc. Roy. Soc.
B: Biol. Sci., vol. 269, no. 1489, pp. 335–343, 2002.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 01,2020 at 15:10:07 UTC from IEEE Xplore.  Restrictions apply. 



OGURA AND PRECIADO: STABILITY OF SIS SPREADING PROCESSES IN NETWORKS 359
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