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Abstract. In this paper, we study the dynamics of epidemic processes taking place in temporal
and adaptive networks. Building on the activity-driven network model, we propose an adaptive
model of epidemic processes, where the network topology dynamically changes due to both exogenous
factors independent of the epidemic dynamics, as well as endogenous preventive measures adopted
by individuals in response to the state of the infection. A direct analysis of the epidemic dynamics
using Markov processes involves the eigenvalues of a transition probability matrix whose size grows
exponentially with the number of nodes. To overcome this computational challenge, we derive an
upper-bound on the decay ratio of the number of infected nodes in terms of the eigenvalues of a
2 X 2 matrix. Using this upper bound, we propose an efficient algorithm to tune the parameters
describing the endogenous preventive measures in order to contain epidemics over time. We validate
our theoretical results via numerical simulations.
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1. Introduction. Accurate prediction and cost-effective containment of epi-
demics in human and animal populations are fundamental problems in mathematical
epidemiology [9, 22, 37]. In order to achieve these goals, it is indispensable to develop
effective mathematical models describing the spread of disease in complex contact net-
works [10, 12]. In this direction, we find a broad literature on modeling, analysis, and
containment of epidemic processes in static contact networks. However, these works
neglect an important factor, the temporality of the interactions [19, 48, 49], which
arises either independently of or dependent on epidemic propagations. A framework
for modeling temporal interactions in human and animal populations is temporal net-
works (i.e., time-varying networks), where individuals and interactions are modeled as
nodes and edges, respectively, which can appear and disappear over time [17, 18, 32].
Under this framework, the effect of temporal interactions on epidemic propagations
has been investigated numerically and theoretically [30, 31], resulting in a plethora of
heuristic approaches [26, 40] and analytical methods [27, 34] for containing epidemic
processes on temporal networks.

Adaptive networks refer to the case in which changes in nodes or edges occur in
response to the state of the dynamics taking place on the network [12, 14, 32, 45].
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A common temporality of agent-agent interaction in epidemic dynamics arises from
social distancing behavior [2, 3, 4], which lets the structure of contact networks change
over time as a result of adaptation to the state of the epidemics. Several models of such
adaptive networks have been proposed. For example, Gross, D’Lima, and Blasius pro-
posed a rewiring mechanism where a healthy node actively avoids being adjacent to
infected nodes [13]. Extensions of this model are found in [12, 24, 29, 50, 54]. Guo
et al. proposed an alternative model in which links connecting an infected node and
a healthy node are deactivated [15]. As for the containment of epidemic processes on
adaptive networks, various heuristic [6, 28] and analytical [33, 35] approaches have
been proposed. However, in many studies, the effects of exogenous temporal fac-
tors and endogenous adaptive measures on epidemic processes have been separately
examined, leaving unclear how their combination affects the dynamics of the spread.

In this paper, we study epidemic processes and containment strategies in a tempo-
ral network model where the effect of both exogenous factors and adaptive measures
are simultaneously present. Our model is based on the activity-driven temporal net-
work model [39]. In this model, a node is stochastically activated and connects to
other nodes independently of the dynamics taking place in the network. In order
to analyze the joint effect of exogenous factors and endogenous adaptations, we add
a mechanism of social distancing to the standard activity-driven model. In other
words, we allow an infected node to endogenously adapt to the state of the epidemics
by (1) decreasing its activation probability and (2) refusing interactions with other
activated nodes. On top of this temporal network, we adopt the standard susceptible-
infected-susceptible (SIS) model of epidemic dynamics (see, e.g., [37]) and derive an
analytical upper bound on the decay ratio of the number of infected nodes over time.
Based on this result, we then propose an efficient strategy for tuning the social dis-
tancing rates in order to suppress the number of infected nodes.

Our work is related to [44], in which an infected individual is allowed to decrease
its activation probability. However, in [44], the durations of temporal interactions are
assumed to be sufficiently short compared with the time scale of the epidemic dynam-
ics, leaving out the interesting case where the time scale of the network dynamics and
that of the epidemic process are comparable. In addition, our results hold true for
networks of any size, while the results in [44] require the networks to be sufficiently
large.

This paper is organized as follows. In section 2, we introduce a model of epidemic
processes on temporal and adaptive networks. In section 3, we derive an upper bound
on the decay ratio of the infection size. Based on this bound, in section 4 we formulate
and solve optimization problems for containing the spread of epidemics. The obtained
theoretical results are numerically illustrated in section 5.

2. Problem setting. In this section, we first describe the activity-driven net-
work proposed in [39]. We then introduce an adaptive SIS (A-SIS) model on activity-
driven networks, which allows nodes to react to the state of the nodes (i.e., susceptible
or infected) in their neighborhoods.

2.1. Activity-driven networks. Dynamics in real temporal networks often
arise from time-varying nodal activities, such as messaging in the Twitter microoblog-
ging network, or the addition of publications in citation networks. The activity-driven
network proposed in [39] incorporates time-varying nodal activities often observed in
real-world networks.

Let the set of nodes in a network be given by V = {vy,...,v,}. The activity-
driven network model is defined as follows.
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Fic. 1. Schematic of an activity-driven network. We set n = 10 and m = 2. Filled circles
represent active nodes. Open circles represent inactive nodes. The time is denoted by t.

DEFINITION 2.1 (see [39]). For each i = 1,...,n, let a; be a positive constant
less than or equal to 1. We call a; the activity rate of node v;. Let m be a positive
integer less than or equal to n — 1. The activity-driven network is defined as an
independent and identically distributed sequence of undirected graphs created by the
following procedure (see Figure 1 for a schematic illustration):

1. At each time t = 0,1,2,..., each node v; becomes “activated” with probabil-
ity a; independently of other nodes.

2. Each activated node, say, v;, randomly and uniformly chooses m other nodes
independently of other activated nodes. For each chosen node, say, v;, an
edge {v;,v;} is created. These edges are discarded at time t + 1 (i.e., do not
exist at time t +1).

3. Steps 2 and 3 are repeated for each time t > 0, independently of past realiza-
tions.

Remark 2.2. We do not allow multiple edges between a pair of nodes. In other
words, even when a pair of activated nodes choose each other as their neighbors at a
specific time, we assume that one and only one edge is spanned between those nodes.

The activity-driven network model has been increasingly used for modeling the
structure and dynamics of temporal networks. The simplicity of the model allows
us to analytically investigate the role of temporality and heterogeneity in temporal
networks [20, 39, 51]. Several properties of activity-driven networks have been in-
vestigated, including structural properties [39, 47], steady-state properties of random
walks [38, 43|, and spreading dynamics [39, 44, 46]. However, the model does not
assume that nodes react to the state of the epidemics and, therefore, is not relevant
for discussing how social distancing affects the dynamics of the spread. In the next
subsection, we extend the activity-driven network by incorporating social distancing
behaviors of nodes.

2.2. Activity-driven A-SIS model. Building upon the activity-driven net-
work described above, we consider the scenario where nodes change their neighbor-
hoods in response to the state of the epidemics over the network [33]. Specifically,
we propose the activity-driven adaptive-SIS model (activity-driven A-SIS model) as
follows.

DEFINITION 2.3 (activity-driven A-SIS model). For each i, let a;, x;, m; € (0,1]
be constants. We call a;, x;, and mw; the activity rate, adaptation factor, and ac-
ceptance rate of node v;, respectively. Also, let m < n — 1 be a positive integer and
B,8 € (0,1] be constants. The activity-driven A-SIS model is defined by the following
procedures (see Figure 2 for an illustration):

1. At the initial time t = 0, each node is either susceptible or infected.
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Fi1a. 2. Adaptation of nodes in the activity-driven A-SIS model. Filled and empty circles repre-
sent active and inactive nodes, respectively. (a) A susceptible node is activated with probability a;.
(b) An infected node is activated with probability x;a;. (c) An infected node (v;) accepts an edge
spanned from an activated node with probability ;.

2. At each time t = 0,1,2,..., each node v; randomly becomes activated inde-
pendently of other nodes with the following probability:

. Ty ible,
(2.1) Pr(node v; becomes activated) = {a if vi s susceptible

Xia; if v; is infected.

3. Each activated node, say, v;, randomly and uniformly chooses m other nodes
independently of other activated nodes. For each chosen node, say, vj, an
edge {v;, v} is created with the following probability:

L ifuy tibl
(2:2) Pr({vs,v;} is created) = { if vj is susceptible,

m;  if vy is infected.

These edges are discarded at time t + 1 (i.e., do not exist at time t +1). As
in Remark 2.2, we do not allow multiple edges between a pair of nodes.

4. The states of nodes are updated according to the SIS model. In other words,
if a node v; is infected, it transits to the susceptible state with probability 6.
If v; is susceptible, its infected neighbors infect node v; with probability 5
independently of the other infected neighbors.

5. Steps 2—4 are repeated for each time t > 0.

Steps 2 and 3 in Definition 2.3 model the social distancing behavior by infected
nodes. In Step 2, an infected node decreases its activity rate to avoid infecting other
nodes. Step 2 can also be regarded as modeling reduction of social activity by infected
nodes due to sickness. In Step 3, an infected node, say, v;, establishes a connection
with an activated node only with probability 7; to avoid infecting other nodes (when
m; < 1). Once the connectivity of the network is determined, the nodes update their
states. We adopt a synchronous update protocol, i.e., at each time ¢, the states of all
nodes are updated simultaneously in Step 4.

3. Decay ratio. In order to quantify the persistence of epidemic infections in
the activity-driven A-SIS model, in this section, we introduce the concept of decay
ratio of the epidemics. A direct computation of the decay ratio requires computing
the eigenvalues of a matrix whose size grows exponentially with the number of the
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nodes. To overcome this difficulty, we present an upper bound on the decay ratio in
terms of the eigenvalues of a 2 x 2 matrix.

3.1. Definition. For each time ¢ and node v;, define the random variable

0 if v; is susceptible at time t,
o = {0 T momeptile ot
1 if v; is infected at time ¢.

Define the vector p(t) = [p1(t) --- pn(t)]T of the infection probabilities by
(3.2) p;i(t) = Pr(v; is infected at time t).
Since p;(t) < 1, there exist constants C' > 0 and « € [0, 1] such that

(33) Ip(®)|| < Cy*

for all ¢ > 0, where ||-|| denotes a vector norm. In this paper, we measure the

persistence of infection by the minimum ratio v of decay of infection probabilities
to the origin defined as follows.

DEFINITION 3.1 (see, e.g., [7, 52]). We define the decay ratio of the activity-
driven A-SIS model by
(3.4)
a = inf{~y: there exists C > 0 such that (3.3) holds true for all t > 0 and x(0)}.

The decay ratio is a basic quantity characterizing the asymptotic behavior of the
spreading process. Besides quantifying the impact of contagious spreading processes
over networks [11, 25], the decay ratio has been used for measuring the performance
of strategies aiming to contain epidemic outbreaks [1, 16, 41, 53]. However, the
decay ratio is difficult to compute for large networks for the following reason. The
Markov process {z1(¢), ..., 2, (t) }+>0 has 2" states. Let () denote its 2 x 2™ transition
probability matrix. Since the disease-free state is the unique absorbing state, it follows
that

(3.5) a = max{|A| : A is an eigenvalue of Q, |A| < 1}.

Because the size of the matrix ) grows exponentially fast with respect to the number
of the nodes, a direct computation of the decay ratio is difficult for large networks.

Due to the difficulty in computing the decay ratio, it is common to rely on upper-
bounds of the decay ratio [1, 16, 41, 53]. Upper-bounds quantify the worst-case impact
of epidemic processes, as well as give a performance certificate for strategies aiming
to contain epidemic outbreaks. In the next subsection, we derive an upper-bound on
the decay ratio of the activity-driven A-SIS model.

3.2. An upper bound. We start with the following proposition, which allows
us to upper-bound the infection probabilities using a linear dynamics.

PROPOSITION 3.2. Let
(3.6) i =m/(n—1)
and, for all i, define the constants

(3.7) i = mxia;, P; = Mmia;.
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Then,

(3.8) pi(t+1) <(1- )+ BZ (1= (1 =) (1 = ¢;)lp; (1)

j=1

for all nodes v; and t > 0.

Proof. By the definition of the A-SIS dynamics on the activity-driven network,
the nodal states z1, ..., x, obey the following stochastic difference equation:

(3.9) milt+1) = () — 2 (NS (1) + (1)) |1 - [T (1= a0 (ONSD 1)) |

J#i
where

(3.10) ais(t) = {1 if an edge {v;,v;} exists at time ¢,

0 otherwise,

and {N 60 t)}2y and {N /(;j )(t)}g’io are independent and identically distributed ran-
dom Bernoulli variables satisfying

i 1 with probability 4,
(3.11) Ny =g o T
0 with probability 1 — §
and
by 1 with probability g,
(312) N§P(py = § o I Prob Ol
0 with probability 1 — 3.

On the right-hand side of (3.9), the second and third terms represent recovery and
transmission events, respectively. (A similar equation for the case of static networks
can be found in [7].)

The Weierstrass product inequality shows that

(3.13) I_H(l_au() (N(”) ) Zaz] )z, (t N(”)()

J#i J#i

Therefore, since the expectation of x;(t) equals p;(t), taking the expectation in (3.9)
gives

(3.14) pilt+1) < pi(t) = pi(t) + B Bl — wi(t))aij(t)z;(2)],
J#i

where E[] denotes the expectation of a random variable.
Now, assume 4 # j. By the definition of the variables x; and a;;, it follows that
(3.15)
E[(1 = zi(t))ay(t)x;(t)]
= Pr(v; and v; are adjacent, v; is susceptible, and v; is infected at time t)

= Pr(v; and v; are adjacent at time t | =; ]) Pr(Efﬁj),
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where the event =f ; is defined by

(3.16) B! . = “v; is susceptible and v; is infected at time ¢.”

g
If we further define the event

(3.17) [}, = “v; is activated and chooses v; as its neighbor at time ¢,”
then we obtain

Pr(v; and v; are adjacent at time ¢ | Zj ;)

(3.18) =Pr(Ti,; | Ei;) +Pr(T5; | E5,) — Pr(Ti,; | Ei ;) Pr(T,; | E5)
=1—[1—-Pr(T}; | Ef,)][1—Pr(T%; | Ef))]

The event I' _,; occurs when and only when v; is activated, chooses v; as a potential
neighbor, and actually connects to v; (according to the probability given by (2.2)).

Therefore, (3.7) implies
(3.19) Pr(I}_ ;|2 ;) = .

Similarly, the event T ,; occurs when and only when v; is activated (with probabil-

ity x;a; if v; is infected at time ¢) and chooses v; as one of its m neighbors. Therefore,
we have

(3.20) Pr(I% 2! ) = ¢;.

j—il =i
Hence, for i # j, the combination of (3.15) and (3.18)—(3.20) yields

B[(1 = zi(t)ay(t)a;(t)] = [1 — (1= ¢) (1 — ¢;)] Pr(E] ;)
< [1T= (1 =i)(d = ¢5)lps(D),
where we have used the trivial inequality Pr(Eaj) < p;(t). Moreover, inequality

(3.21) trivially holds true also when ¢ = j. Inequalities (3.14) and (3.21) prove (3.8),
as desired. O

(3.21)

Using Proposition 3.2, we obtain the following theorem that gives an explicit
upper bound on the decay ratio of the activity-driven A-SIS model. For a vector £ €
R"™, introduce the notation

(322) €=k (ge =2 a6
i=1 i=1

THEOREM 3.3. Define

(3.23) oy =1—=10+ kmnp,
where
(3.24)
L (X)a + (Mo — M(XT)a2 + \/ ((X)a + <T2a — m(xm)a2)” + 4((xm)a2 — <X>a<7T>a).
Then, the decay ratio o satisfies
(3.25) a < ay.
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Proof. Inequality (3.8) implies that there exists a nonnegative variable ¢;(t) such
that

(3.26) pilt+1) =1 =0pi(t) +BY_ (1= (1= )1 = ¢))p;(t) — ()

j=1
for all nodes v; and ¢+ > 0. Let us define the vectors e(t) = [e1(t) --- € (t)]T,
d=1[p1 -+ bn]",and ¢ = [tp1 --- 9,]T. Equation (3.26) is rewritten as
(3.27) p(t+1) = Fp(t) — €(t),
where
(3.28) F=(1-0)I+8[11T —(1-4)1-9)T],

1 denotes the n-dimensional column vector whose entries are all one, and I denotes
the n x n identity matrix. Since F and €(t) are nonnegative entrywise, (3.27) leads
to p(t) = Fp(0) — So_y F*~Le(f) < F'p(0). This inequality shows

(3.29) a < p(F),

where p(-) denotes the spectral radius of a matrix.

Now, we evaluate p(F). Equation (3.28) is rewritten as F = (1—4§)I + S.A, where
A=11" — (1 —9)(1 — ¢)". Since A is nonnegative entrywise and 1 — § > 0, we
obtain

(3.30) p(F) =1—38+ Bp(A).

Furthermore, as we prove in Appendix A, it holds that

(3.31) p(A) = p(nB),
where
N 1 ()
(3:32) b= [—1 T8 1+ (6) + () - <¢w>] :
(3.33) B =230 Wh=2D v (o) =1 g
=1 1=1 =1

Matrix B has the characteristic equation

(3.34) (L =A)(¢¢) = (A= (D)) (A = (¥))

having the roots

2
535 A <¢>+<w>—<¢>w>i¢<<¢>+<z§>—<¢>w>> +4((00) - (O))

The roots are real because

(3:36)  ({@) + () — ($v))” + 4((d) — (@) (¥) = ((¥) — (#))” + (¢)* > 0,

which follows from the trivial inequality 4(pw)) > 2(p){d1)) + 2(1p)(p)). Therefore, by
substituting (3.7) into (3.35), we obtain p(B) = xm. This equation and (3.29)—(3.31)
complete the proof of the theorem. 0
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Fic. 3. Characteristic equation (3.34).

Remark 3.4. One of the main sources of the discrepancy between the actual decay
ratio v and its upper bound «,, is in the upper-bounding approximation (3.13). In
this approximation, the smaller the products a;; (t)xj(t)Né”)(t) are, the tighter the
inequality is. Therefore, we expect that, if 8 or m is smaller, the discrepancy o, —
« would be smaller. Numerical simulations carried out in section 5 confirm this
prediction.

The following corollary suggests that an epidemic will become extinct more quick-
ly when the adaptation factor and acceptance rate are less correlated in a weighted
sense.

COROLLARY 3.5. Let (x, ) and (X', 7') be pairs of adaptation factors and accep-
tance rates of nodes, and denote the corresponding upper-bounds on the decay ratios
by oy and o, respectively. If (X} = (X )a, (Mo = (7' )a, and (x7)e2z < (X'7 )2, then

(3.37) ay < al.

Proof. By the proof of Theorem 3.3, we have oy, = 1—0+p(B)ngS. Figure 3 implies
that p(B) increases with (¢1) when (¢) and () are fixed. This proves the claim of
the corollary because (x7),2 = (¢)/m?, (X)a = (¢)/m, and (7), = (V) /m. d

Corollary 3.5 has an intuitive implication. For the sake of discussion, let us
temporarily assume that all nodes have the same activity rate. To maximize the
correlation between y and 7 while fixing the weighted sum of adaptation factors (i.e.,
(x),) and that of acceptance rates (i.e., (m),), we have to maximize the number of
nodes that do not adopt any preventative behavior (i.e., x; = m; = 1). Therefore,
when (xm),2 is large, only a limited fraction of the nodes implement preventative
mechanisms, which is not effective in reducing the asymptotic decay ratio of the
epidemic process in the entire temporal network.

As another corollary of Theorem 3.3, we also present an upper bound on the
decay ratio when nodes do not adapt to the states of the nodes.

COROLLARY 3.6. Assume x; = m =1 for alli. Let

2(a) — m(a?) + \/4{a?) — 4m{a)(a2) + m?2(a2)?
5 .

(3.38) Ko =

Then, the decay ratio of the activity-driven SIS model is at most 1 — § + komng.
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Remark 3.7. If m is sufficiently small compared with n and, furthermore, n is
sufficiently large (as implicitly assumed in [39]), the upper-bound in Corollary 3.6
reduces to 1 — § + ({a) + v/(a?))mf, which coincides with the result in [39].

4. Cost-optimal adaptations. In this section, we study the problem of eradi-
cating an epidemic outbreak by distributing resources to nodes in the activity-driven
network. Medications and vaccines are not necessarily available for emerging infec-
tious diseases, such as the Ebola virus disease [8] and the Middle East respiratory
syndrome [21]. In this situation, it is practically important to make sure that pre-
ventative behaviors are taken by members of the society to contain the spread of
infectious diseases. Therefore, we consider the situation in which there is a budget
that can be invested on strengthening the preventative behaviors of each node, instead
of medications or vaccines. We show that the optimal budget allocation is found using
geometric programs, which can be efficiently solved in polynomial time.

4.1. Problem statement. We consider an optimal resource allocation problem
in which we can tune the adaptation factors and acceptance rates of nodes. Assume
that, to set the adaptation factor of node v; to x;, we need to pay a cost f;(x;).
Similarly we need to pay a cost g;(m;) to set the acceptance rate of node v; to m;. The
total cost for tuning the parameters to the values x1, ..., Xn, 71, --., Tn €quals

(4.1) C:Z(fi(Xi)-i-gi(Wi))-

i=1
Throughout this section, we assume the following box constraints:
(4.2) O<xi<xi<Xi» O0<m<m <7

In this paper, we consider the following two types of optimal resource allocation
problems.

~ Problem 4.1 (cost-constrained optimal resource allocation). Given a total budget
C, find the adaptation rates and acceptance rates that minimize o, while satisfying
the budget constraint

(4.3) C<C.

Problem 4.2 (performance-constrained optimal resource allocation).  Given a
largest tolerable decay ratio &, find the adaptation rates and acceptance rates that
minimize the total cost C' while satisfying the performance constraint

(4.4) ay < a.

Remark 4.3. Although it would be desirable to formulate Problems 4.1 and 4.2 in
terms of the true decay ratio, the true decay ratio is not computationally tractable for
the reason described in subsection 3.1. Therefore, we use the upper-bound ay,, which
is tight in the regime of low [ or small m, as we shall verify in numerical simulations
carried out in section 5.

4.2. Cost-constrained optimal resource allocation. In this subsection, we
show that Problem 4.1 can be transformed to a geometric program [5], which can be
efficiently solved. Before stating our main results, we give a brief review of geometric
programs. Let x1, ..., x, denote positive variables and define z = (z1,...,z,). We
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say that a real function ¢(z) is a monomial if there exist ¢ > 0 and ay, ..., a, € R such
that q(z) = ca{* ---2’". Also, we say that a function r(z) is a posynomial if it is a
sum of monomials of x. (We point readers to [5] for more details.) Given a collection
of posynomials 7o(z), ..., r(x) and monomials ¢;(z), ..., g(z), the optimization
problem

minimize ro(z)
(4.5) subject to r;(z) <

is called a geometric program. A constraint of the form r(z) < 1 with r(x) being
a posynomial is called a posynomial constraint. Although geometric programs are
not convex, they can be efficiently converted into equivalent convex optimization
problems [5].

We assume that the cost functions f; and g; decrease with the adaptation fac-
tor x; and acceptance rate m;, respectively. This assumption implies a natural sit-
uation in which it is more costly to suppress x; and 7; to a larger extent. We also
expect diminishing returns with increasing investments [42]. For a fixed e > 0, let
Afi(xi) = filxi —€) — fi(xs) denote the cost for improving the adaptation factor
from y; to x; — €. Then, diminishing returns imply that A f; decreases with y;, which
implies the convexity of f;. Therefore, we place the following assumption on the cost
functions.

Assumption 4.4. For all i € {1,...,n}, decompose f; and g¢; into the differences
of their positive and negative parts as follows:

(4.6) fi=fr—f
4.7 gi =g; —9{7

where f;" = max(f,0), f; = max(—f,0), g = max(g,0), and g; = max(—g,0).
Then, f;” and g;r are posynomials, and f;” and g; are constants.

Assumption 4.4 allows us to use any cost functions that are convex on the log-
log scale because any function convex on the log-log scale can be approximated by
a posynomial with an arbitrary accuracy [5, section 8]. We now state our first main
result in this section, which allows us to efficiently solve Problem 4.1 via geometric
programming.

THEOREM 4.5. Let x} and w} be the solutions of the following optimization prob-
lem:

(4.8a) _minimize  1/A

Ay Xis Tiy G, >0
(4.8b) subject to  (4.2),
(4.8¢) mAA(xm)az(n < 1,
(4.8d) CrH A+ mix)a <1,
(4.8¢) nt A+ mim, < 1,

(4.8f) > 0a) + g () Zf +9;)

i=1
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Then, the adaptation factor x; = x; and the acceptance rate m; = w; solve Prob-
lem 4.1. Moreover, under Assumption 4.4, the optimization problem (4.8) is a geo-
metric program.

To prove this theorem, we show an alternative characterization of the decay ratio
in terms of inequalities.

LEMMA 4.6. Let A > 0. The upper bound o, satisfies
(4.9) o <1—64 An8
if and only if

(4.10) (1 =2)(e9) < (A= ()X = (¥)),
(4.11) () <A,
(4.12) (V) < A

Proof. By the proof of Theorem 3.3, inequality (4.9) holds true if and only if
A > p(B). Figure 3 indicates that A > p(B) is equivalent to conditions (4.10)—
(4.12). O

We can now prove Theorem 4.5.

Proof of Theorem 4.5. By Lemma 4.6, the solutions of Problem 4.1 are given by
those of the following optimization problem:

(4.13a) minimize 1—§+ Ang
A, Xi, ™ >0
(4.13b) subject to (4.2), (4.3), and (4.10)—(4.12).

Define the auxiliary variables ¢ = 1/(A — (¢)) and n = 1/(A — (¥))). Then, condi-
tions (4.10)—(4.12) hold true if and only if (1 — A\){¢))¢n < 1, ¢ > 0, and n > 0.
Therefore, the optimization problem (4.13) is equivalent to the following optimization
problem:

(4.14a) minimize A

A, Xiy i, C,n>0
(4.14b) subject to (4.2) and (4.3),
(4.14c) I =X{gv)n <1,
(4.14d) (Th=A+ (o) =0,
(4.14e) Nt = A+ (@) =0,

where we minimize A instead of 1 — § + AnB. We claim that the optimal value of the
objective function is equal to the one in the following optimization problem:

(4.15a) minimize A

Ay Xis iy G, >0
(4.15b) subject to (4.2) and (4.3),
(4.15¢) (1= A)g)in <1,
(4.15d) =X+ {(9) <0,
(4.15¢) nt— A+ () <0.

Let A} and A} be the optimal values of the objective functions in problems (4.14)
and (4.15), respectively. We have A} > A5 because the constraints in problem (4.14)
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are more strict than those in (4.15). Let us show A} < A%. Assume that the op-
timal value Aj in problem (4.15) is attained by the parameters (A, x;,m;,(,n) =
(N, X7, mr, ¢*, ™). Since the left-hand sides of constraints (4.15d) and (4.15¢) decease
with ¢ and 7, there exist nonnegative constants A¢ and An such that ¢ = (*— A( and
n = n* — An satisfy the equality constraints (4.14d) and (4.14e). Moreover, since the
left-hand side of the constraint (4.15¢) increases with ¢ and 7, the new set of parame-
ters (A, xi, mi, C,n) = (A%, x5, wF, ¢ — A, n* — An) still satisfies (4.15¢). Furthermore,
these changes of parameters do not affect the feasibility of the box constraints (4.2)
and the budget constraint (4.3) because the constraints are independent of the values
of ¢ and 7. Therefore, we have shown the existence of parameters achieving A = A3
but still satisfying the constraints in the optimization problem (4.14). This shows
AT < )3, as desired.

Now, by rewriting the optimization problem (4.15) in terms of the variables A=
1 — X and substituting (3.7) in (4.15), we obtain the optimization problem (4.8).
Notice that minimizing A is equivalent to maximizing 1 — A, which is equivalent to
minimizing 1/

Let us finally show that (4.8) is a geometric program. The objective function,
1/X, is a posynomial in A. The constraints (4.2) and (4.8c)(4.8¢) are posynomial
constraints. Finally, Assumption 4.4 guarantees that constraint (4.8f) is a posynomial
constraint as well. This completes the proof of the theorem. 0

4.3. Performance-constrained optimal resource allocation. In the same
way as in the previous section, we can efficiently solve Problem 4.2 via geometric
programming:

THEOREM 4.7. Let x} and w} be the solution of the following optimization prob-

lem:
(4.16a) _minimize Y (£ (i) + g5 (7))
A, X, Tiy §,m>0 i=1
(4.16b) subject to  (4.2) and (4.8¢)—(4.8e),
1-6—a-
(4.16¢) Pntl-d-as

sn

Then, the adaptation factor x; = x; and the acceptance rate m; = 7} solve Prob-
lem 4.2. Moreover, under Assumption 4.4, the optimization problem is a geometric
program.

Proof. Constraint (4.16¢) is equivalent to the performance constraint (4.4). The
rest of the proof is almost the same as the proof of Theorem 4.5 and is omitted. 0O

5. Numerical simulations. In this section, we illustrate the theoretical results
obtained in previous sections by numerical simulations.

5.1. Accuracy of the upper bound. We first illustrate the accuracy of the
upper bound (3.23) on the decay rate. We use an activity-driven network with n =
1000 nodes and study the following two cases:

Case 1. Activity rates following a uniform distribution over [0.001, 0.004].

Case 2. Activity rates following a probability distribution F'(a) that is propor-

tional to a=2® in the interval [0.001, 1] and equal to zero elsewhere [39)].
We assume that both the adaptation factors y; and acceptance rates m; follow a
uniform distribution over [0,1]. For various values of 8, d, and m, we compute the
decay ratio a based on numerical simulations of the model and its upper bound «a,,. To
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Fic. 4. Comparison between the numerically obtained decay ratios o and their upper bounds
oy in Case 1 when 8 =0.7. (a) m = 10, (b) m = 50, and (c) m = 200.
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02 04 06 08 02 04 06 08 02 04 06 08 0
B B g

Fia. 5. Discrepancy between the true decay ratios and their upper bounds in Case 1. (a) m = 10,
(b) m = 50, and (c) m = 200.

compute the decay ratio a, we use Monte Carlo simulations. For each triple (3, d,m),
we run 1000 simulations of the activity-driven A-SIS model with all nodes being
infected at time ¢ = 0. In each numerical simulation, we compute the probability
vector p(t) for each ¢ = 0, 1, 2, ... until the norm ||p(¢)|| falls below 0.1. We then
estimate the decay ratio by o = max; ¢t~ log||p(t)]|.

In Figure 4, we let 5 = 0.7 and compare the decay ratios and their upper bounds
in Case 1 for various values of 4 and m. We confirm that a, bounds the numerically
obtained decay ratios. The discrepancy a,, — « increases with m. To further examine
how the discrepancy depends on the parameters, we present the discrepancy for vari-
ous values of 3, §, and m in Figure 5. Besides the aforementioned dependence of the
discrepancy on m, we also see that the discrepancy tends to be large when g is large.
We observe the same trend in the case of the power-law distribution of the activity
rate (Case 2; shown in Figures 6 and 7).

5.2. Optimal resource distribution. We numerically illustrate our framework
to solve the optimal resource allocation problems developed in section 4. We assume
Xi = 1 and ; = 1 in the box constraints (4.2). We use the following cost functions
(similar to the ones in [41]):

-p —q
X; —1 m o —1
e gi(m)=(01—-m) =
)X;p 1 gi(mi) = ( l)ﬂ_;q 1

(5.1) filxi) =1 —xi

These cost functions satisfy Assumption 4.4. Parameters p,q > 0 tune the shape of
the cost functions as illustrated in Figure 8. Because the cost functions are normalized
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Fic. 6. Comparison between the numerically obtained decay ratios o and their upper bounds
oy in Case 2 when 8 =0.7. (a) m = 10, (b) m = 50, and (c) m = 200.
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F1G. 7. Discrepancy between the true decay ratios and their upper bounds in Case 2. (a) m = 10,
(b) m = 50, and (c) m = 200.
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0.3

fi(Xi)

0.2

0.1

F1a. 8. Cost function f;(x:) for p=0.01, 1, 10, and 100 when X, = 0.5.

as fi(xi) = 1—xi» filxi) = fi(1) =0, gi(m) = 1 — m;, and g;(7;) = gi(1) = 0, the
maximum adaptation (x;, 7)) = (x4, ™) (1 <4 < n) in the network is achieved with
the budget

n

(52) Cmax =2n — Z()_(z + 7_Ti)~

i=1
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Fi1Gc. 9. Optimal investments on adaptation factors (red circles) and acceptance rates (blue
diamonds) in Case 1. Left column: m = 10, middle column: m = 50, right column: m = 200. Top
row: 7, = 0.2, middle row: w, = 0.7, bottom row: m, = 0.9.

Let x; = 0.8. We let the value of m; be either 0.2, 0.7, or 0.9 and use p = ¢ = 0.01 for
the cost functions (5.1). We use the fixed budget C' = Ciax/4. For each pair (m, 1),
we determinate the adaptation factors and acceptance rates for the cost-constrained
optimal resource allocation problem (Problem 4.1) by solving the geometric program
shown in Theorem 4.5.

The optimal investments on the adaptation factors and acceptance rates (i.e.,
fi(xi) and g;(m;)) are shown in Figure 9 for Case 1. We see that the smaller the
lower limit of the acceptance rate m;, the more we should invest on decreasing the
acceptance rates. Also, the optimal solution disproportionately invests on the nodes
having high activity rates. On the other hand, the optimal investments are almost
independent on the value of m. We can observe similar trends from Case 2 shown in
Figure 10.

Although the optimal investments on the adaptation factors and acceptance rates
show a rather similar pattern, this similarity does not contradict the suggestion from
Corollary 3.5 for the following reason: For the exponents p = ¢ = 0.01, Figure 8
shows that the improvements in the adaptation factors and acceptance rates, i.e.,
Ax; =1—x; and Am; = 1 —m;, approximately satisfy Ay; ~ f(x;) and Am; =~ g(m;).
Hence, we can approximate the weighted correlation (x7),2 as

(5.3) (Xmhaz & (F(X)9())a> = (F(X))az = (9(7))az + (1)a2.
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Fic. 10. Optimal investments on adaptation factors (red circles) and acceptance rates (blue
diamonds) in Case 2. Left column: m = 10, middle column: m = 50, right column: m = 200. Top
row: m, = 0.2, middle row: w, = 0.7, bottom row: 7, = 0.9.

This relationship shows that, to achieve a smaller correlation (x7),2, we should either
make the weighted investment-correlation (f(x)g(7)),2 smaller or make the weighted
investments (f(x))s2 or (g(m)),2 larger. Therefore, simply minimizing the investment-
correlation (f(x)g(m)),2 does not necessarily yield the best strategy.

In both Cases 1 and 2, when m is large, high-activity nodes receive large invest-
ments in not only the adaptation factor but also the acceptance rate. This result
contradicts the intuition that the investments on acceptance rate become ineffective
once a high-activity node becomes infected and turn into a major spreader of the infec-
tion. We, therefore, conjecture that the optimal investment primarily tries to prevent
the high-activity nodes from becoming infected by investing in their acceptance rate.

6. Conclusion. In this paper, we have studied epidemic processes taking place
in temporal and adaptive networks. Based on the activity-driven network model, we
have proposed the activity-driven A-SIS model, where infected individuals adaptively
decrease their activity and reduce connectivity with other nodes to prevent the spread
of the infection. In order to avoid the computational complexity arising from the
model, we have first derived a linear dynamics able to upper-bound the infection
probabilities of the nodes. We have then derived an upper-bound on the decay ratio
of the expected number of infected nodes in the network in terms of the eigenvalues of
a 2x 2 matrix. Then, we have shown that a small correlation between the two different
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adaptation mechanisms is desirable for suppressing epidemic infection. Furthermore,
we have proposed an efficient algorithm to optimally tune the adaptation rates in
order to suppress the number of infected nodes in networks. We have illustrated our
results by numerical simulations.

A possible direction for future research is to perform a more precise analysis by
either improving the current upper bound or by deriving a lower bound on the decay
ratio. One approach for improving the upper-bound is to tighten the inequality (3.13)
by considering higher-order terms that are discarded by the Weierstrass product in-
equality. This change may allow us to obtain a tighter upper-bound on the decay ratio
as done in [36] for the continuous-time SIS dynamics taking place in static networks.
On the other hand, obtaining a lower bound is not necessarily a straightforward prob-
lem. For example, a converse of the Weierstrass product inequality [23] gives the
following lower-bound on the expression on the left-hand side of (3.13):

y Z -ai‘(t)l"(t)N(ij)(t)
61  1=-J](1-au0a0N () > —SE P
E( ) Lo X 0is (D2, (NG ()

Uunlike the upper-bound in (3.13), this lower-bound is not linear in the variables z;.
Therefore, obtaining a lower-bound on the decay ratio from (6.1) is not a trivial
problem.

Another important problem is to directly minimize the number of infected nodes.
By iteratively using (3.27), one can show that the number of infected nodes at time ¢,
namely, 17p(t) = py(t)+- - -+ pn(t), is upper-bounded by 1T p(t) < 1T Ftp(0). There-
fore, we can implicitly minimize the number of infected nodes by minimizing the
upper-bounding product 1T F'p(0). However, since the matrix power F* contains
rather complex products of the vectors ¥ and ¢, a further investigation will be re-
quired to determine whether geometric programming can be used to minimize the
upper-bounding product.

Appendix A. Proof of (3.31). The image of A is spanned by 1 and 1 — .
All but two eigenvalues of A are zero. Therefore, an eigenvector of A corresponding
to the spectral radius of A is a linear combination of vectors 1 and 1 — ¢. Assume
that v = 511+ s2(1 — ) is such an eigenvector of A with eigenvalue A. By comparing
the coefficients of the vectors 1 and 1 — % in the eigenvalue equation Av = Av, we
obtain

(A1) s1n + So (n — i:m) = \sq,
=1
(AQ) —81 <n—z¢l> — 89 <n—z¢i —Z(f)l—l—Z’l/)Z@) = \So.
=1 =1 =1 i=1

We rewrite (A.1) and (A.2) as

wfi]=2f)

where we have used the notation in (3.32) and (3.33). Therefore, A is an eigenvalue
of the matrix nBB, as desired.
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