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Abstract—In this paper, we consider the structural stabi-
lizability problem of undirected networks. More specifically,
we are tasked to infer the stabilizability of an undirected
network from its underlying topology, where the undirected
networks are modeled as continuous-time linear time-invariant
(LTI) systems involving symmetric state matrices. Firstly, we
derive a graph-theoretic necessary and sufficient condition
for structural stabilizability of undirected networks. Then, we
propose a method to determine the maximum dimension of the
stabilizable subspace solely based on the network structure.
Based on these results, on one hand, we study the optimal
actuator-disabling attack problem, i.e., removing a limited
number of actuators to minimize the maximum dimension of
the stabilizable subspace. We show this problem is NP-hard.
On the other hand, we study the optimal recovery problem
with respect to the same kind of attacks, i.e., adding a limited
number of new actuators such that the maximum dimension of
the stabilizable subspace is maximized. We prove the optimal
recovery problem is also NP-hard, and we develop a (1− 1/e)
approximation algorithm to this problem.

I. INTRODUCTION

In recent years, the control of networked dynamical
systems has attracted a great amount of research interest
[1–3]. It is of particular interest to study the asymptotic
stabilizability of network control systems, i.e., the ability
ensuring that all the system states can be steered to the
origin by injecting proper controls, such as the undirected
consensus network [1], voltage stabilization of grids [2], and
formation control with undirected communication links [3].

The existing results on stabilizability analysis highly rely
on the assumption that the system parameters can be exactly
acquired, which is often violated in practice – see [4–6] and
the references therein. It has been shown that the topological
structure of a network, which can be obtained accurately,
can be exploited to infer the required conditions to ensure
the controllability of a network system efficiently [7–9].
This motivates us to investigate the interplay between the
network’s structure and the stabilizability of a network.

Assessing the stabilizability from the structural informa-
tion on the system dynamics model has been an active topic
of research [10–12]. However, in [10], the authors assumed
no control input and proposed conditions on the sparsity
pattern of symmetric state matrices such that a specific
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sparsity pattern sustains a Hurwitz stable state matrix. In
addition, the problem considered in [11; 12] is the arbitrary
pole placement through output feedback, which is sufficient
but not necessary for the stabilizability.

Stabilizability is a crucial concept in network security
[13], and there has been a tremendous effort invested in
the control of networks under malicious attacks [13–22].
The problems of adding extra actuators/sensors to ensure
controllability/observability under attacks are addressed in
[14; 15]. The problem of maintaining stabilization under the
uncertain feedback-channel failure is considered in [16; 17].
In [18; 19], the problem of optimal attack/recovery on struc-
tural controllability is investigated. Although the problems
of stabilization under various attacks such as deception
attack [13], replay attacks [20], denial-of-service [21] and
destabilizing attacks [22], have been widely studied, the
crucial problem of optimal attack against stabilizability by
manipulating network topological structure (e.g., removing
or adding actuators) has not been fully investigated. More-
over, to the best of the authors’ knowledge, our paper
considers for the first time the problems of optimal attack
and recovery on the stabilizable subspace of a network, i.e.,
the number of stabilizable states or nodes in a network.

Specifically, in this paper, we consider the structural sta-
bilizability problem, and the contributions of this paper are
four-fold. First, we derive a graph-theoretic necessary and
sufficient condition for structural stabilizability of undirected
networks. Second, we propose computationally efficient
methods to determine the generic dimension of controllable
subspace and the maximum stabilizable subspace of an
undirected network system. Third, we formulate the optimal
actuator-disabling attack problem, where the attacker dis-
ables a limited number of actuators such that the maximum
stabilizable subspace is minimized. We prove this problem
is NP-hard. Finally, we formulate the optimal recovery
problem, where a defender activates a limited number of
new actuators such that the dimension of the stabilizable
subspace is maximized. We prove this problem is NP-hard,
and we propose a (1− 1/e) approximation algorithm.

The rest of the paper is organized as follows. In Section II,
we formulate the problems considered in this paper. In
Section III, we recall several crucial preliminaries. We
present the main results in Sections IV and V. In Section VI,
we present examples to illustrate our results. Finally, Sec-
tion VII concludes this paper. Due to the page limitations, all
the proofs can be found in the full version of this paper [23].
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II. PROBLEM FORMULATIONS

We consider networks whose interconnection between
states are captured by a linear time-invariant (LTI) system,
described by

ẋ = Ax + Bu, (1)

where x ∈ Rn and u ∈ Rm are state vector and input
vector, respectively. We refer to matrices A ∈ Rn×n

and B ∈ Rn×m as the state matrix and input matrix,
respectively. Additionally, we consider the state matrix A
to be symmetric, which is motivated by control problems
arising in undirected networked dynamical systems [24–
26]. Hereafter, we use the pair (A,B) to represent the
system (1). To infer the properties of a system modeled by
(1) from its structure, we introduce some necessary concepts
on structured matrices.

Definition 1 (Structured and Symmetrically Structured Ma-
trices). A matrix M̄ ∈ {0, ?}n×m is called a structured
matrix, if [M̄ ]ij , the (i, j)-th entry of M̄ , is either a
fixed zero or an independent free parameter, denoted by ?.
In particular, a matrix M̄ ∈ {0, ?}n×n is symmetrically
structured, if the value of the free parameter associated with
[M̄ ]ji is constrained to be the same as the value of the free
parameter associated with [M̄ ]ij , for all i and j.

We refer to M̃ as a numerical realization of a (symmet-
rically) structured matrix M̄ if M̃ is matrix obtained by
assigning real numbers to ?-parameters in M̄ . Given a pair
(A,B), we let the pair (Ā, B̄) denote the structural pattern
of the system (A,B), where Ā ∈ {0, ?}n×n is a symmetri-
cally structured matrix such that [Ā]ij = ? if [A]ij 6= 0 and
[Ā]ij = 0 otherwise. The structured matrix B̄ ∈ {0, ?}n×m
is defined similarly. Recall that a system is stabilizable if
and only if the uncontrollable eigenvalues are asymptotically
stable [27, Section 2.4]. Hence, to study stabilizability, it is
necessary to first investigate controllability. Next, we recall
the notion of structural controllability.

Definition 2 (Structural Controllability [7]). A structural
pair (Ā, B̄) is structurally controllable if there exists a
numerical realization (Ã, B̃) such that the controllability
matrix Q(Ã, B̃) := [B̃, ÃB̃, · · · , Ãn−1B̃] has full row rank.

Similarly, we define structural stabilizability as follows:

Definition 3 (Structural Stabilizability). A structural pair
(Ā, B̄) is said to be structurally stabilizable if there exists
a stabilizable numerical realization (Ã, B̃).

In the next two subsections, we will be focusing on two
different main threads: (i) analysis, and (ii) design.

A. Analysis of Structural Stabilizability

In this subsection, we first formulate the problem of char-
acterizing structural stabilizability using only the structural
pattern of a pair, as stated below:

Problem 1. Given a continuous-time linear time-invariant
pair (A,B), we denote by (Ā, B̄) the structural pattern of

(A,B), where Ā ∈ {0, ?}n×n is symmetrically structured.
Find a necessary and sufficient condition such that (Ā, B̄)
is structurally stabilizable.

In addition to the above problem, we also consider how
“unstabilizable” a system is, when a system is not stabi-
lizable. To characterize the “unstabilizability”, we propose
using the dimension of the stabilizable subspace of a system,
which can be stated as follows:

Definition 4 (Stabilizable Subspace [28]). Given a pair
(A,B), where A ∈ Rn×n and B ∈ Rn×m, a subspace
S ⊆ Rn is said to be the stabilizable subspace of (A,B) if
for ∀x(0) ∈ S, there exists a control input u(t) ∈ Rm, for
t ≥ 0, such that limt→∞ x(t) = 0.

As a special case, if a pair (A,B) is stabilizable, then
S = Rn. Next, we aim to determine the maximum dimen-
sion of the stabilizable subspace, denoted by m-dim(Ā, B̄),
among all numerical realizations of (Ā, B̄), stated formally
as follows.

Problem 2. Given a structural pair (Ā, B̄), where Ā is
symmetrically structured, find m-dim(Ā, B̄).

Upon these problems that concern mainly with the anal-
ysis of structural stabilizability, we can now focus on the
design aspect of these problems in the following subsection.

B. Optimal Actuator-Attack and Recovery Problems

Stabilizability plays a key role in network security [13]. In
this paper, we also consider the network resilient problems.
More specifically, we assume that an attacker aims to min-
imize the maximum dimension of the stabilizable subspace
by removing a certain amount of actuation capabilities (i.e.,
the inputs). We formalize this problem as follows.

Problem 3 (Optimal Actuator-disabling Attack Problem).
Consider a stuctural pair (Ā, B̄), where Ā ∈ {0, ?}n×n
is symmetrically structured, and B̄ ∈ {0, ?}n×m is a
structured matrix. Let the set Ω be Ω = [m], where
[m] := {1, 2, · · · ,m}. Given a budget k ∈ N, find

J ∗ = arg min
J⊆Ω

m–dim(Ā, B̄(Ω \ J ))

s.t. |J | ≤ k,
(2)

where B̄(I) ∈ {0, ?}n×|I| is a matrix formed by the
columns of B̄ indexed by I, for some I ⊆ Ω.

In other words, the Problem 3 concerns about finding an
optimal strategy to attack the stabilizability of a network
using a fixed budget. Meanwhile, it is also of interest to
consider the perspective of a system’s designer (or, defender)
that is concerned with the resilience of the network, i.e., how
to maximize the dimension of the stabilizable subspace by
adding actuation capabilities (i.e., the inputs) to the system:

Problem 4 (Optimal Recovery Problem). Consider a struc-
tural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is symmetrically
structured and B̄ ∈ {0, ?}n×m is structured. Let Ucan,
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where |Ucan| = m′, be the set of candidate inputs that
can be added to the system, and let B̄Ucan

∈ {0, ?}n×m′

be the structured matrix characterizing the interconnection
between new inputs and the states in the system. Given a
budget k ∈ N, find

J ∗ = arg max
J⊆[m′]

m-dim(Ā, [B̄, B̄Ucan(J )])

s.t. |J | ≤ k,
(3)

where B̄Ucan(J ) ∈ {0, ?}n×|J | is a structured matrix
formed by the columns in B̄Ucan

indexed by J , and
[B̄, B̄Ucan

(J )] is the concatenation of B̄ and B̄Ucan
(J ).

By the duality between stabilizability and detectability
[27], all the results obtained on stabilizability in this paper
can be readily used to characterize detectability.

III. PRELIMINARIES

To present solutions to Problems 1 – 4, we introduce some
relevant notions in structural system theory and graph theory.

A. Structural System Theory

Consider a (symmetrically) structured matrix M̄ . Let
nM̄ be the number of its independent ?-parameters and
associate with M̄ a parameter space RnM̄ . Let pM̃ =
(p1, . . . , pnM̄

)> ∈ RnM̄ to encode the values of the inde-
pendent ?-entries of M̄ of a particular numerical realization
M̃ . In what follows, a set V ⊆ Rn is called a variety if
there exist polynomials ϕ1, . . . , ϕk, such that V = {x ∈
Rn : ϕi(x) = 0,∀i ∈ [k]}, and V is proper when V 6= Rn.
We denote by V c = Rn \ V its complement.

The term rank [29] of a (symmetrically) structured matrix
M̄ , denoted as t–rank(M̄), is the largest integer k such that,
for some suitably chosen distinct rows {i`}k`=1 and distinct
columns {j`}k`=1, all of the entries {[M̄ ]i`j`}k`=1 are ?-
entries. Given a structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n
is symmetrically structured, (Ā, B̄) is said to be irreducible,
if there does not exist a permutation matrix P such that

PĀP> =

[
Ā11 0
0 Ā22

]
, P B̄ =

[
B̄1

0

]
, (4)

where Ā11 ∈ {0, ?}p×p, and B̄1 ∈ {0, ?}p×m.

B. Graph Theory

Given a digraph D = (V, E), a path P in D is an
ordered sequence of distinct vertices P = (v1, . . . , vk) with
{v1, . . . , vk} ⊆ V and (vi, vi+1) ∈ E for all i = 1, . . . , k−1.
A cycle is either a path (v1, . . . , vk) with the additional edge
(vk, v1) (denoted as C = (v1, . . . , vk, v1)), or a vertex with
an edge to itself (i.e., self-loop, denoted as C = (v1, v1)).
Given a set S ⊆ V , we denote the in-neighbour set of S by
N (S) = {vi ∈ V : (vi, vj) ∈ E , vj ∈ S}.

Given a directed graph D = (V, E) and two sets
S1,S2 ⊆ V , we define the associated bipartite graph of D by
B(S1,S2, ES1,S2), whose vertex set is S1 ∪S2 and edge set
is ES1,S2

= {(s1, s2) ∈ E : s1 ∈ S1, s2 ∈ S2}. A matching
M is a set of edges in ES1,S2

that do not share vertices,
i.e., given edges e = (s1, s2) and e′ = (s′1, s

′
2), e, e′ ∈ M

only if s1 6= s′1 and s2 6= s′2. A matching is said to be
maximum if it is a matching with the maximum number of
edges among all possible matchings. Given a matching M,
two vertices s1 and s2 are matched if e = (s1, s2) ∈ M.
The vertex v is said to be right-unmatched with respect to
a matching M associated with B(S1,S2, ES1,S2) if v ∈ S2

and v does not belong to an edge in the matching M.
Given a structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is

symmetrically structured and B̄ ∈ {0, ?}n×m is structured,
we associate (Ā, B̄) with a directed graph D(Ā, B̄) =
(X ∪ U , EX ,X ∪ EU,X ), where the vertex sets X = {xi}ni=1

and U = {uj}mj=1 are the set of state vertices and
input vertices, respectively; and the edge set EX ,X =
{(xj , xi) : [Ā]ij = ?} and EU,X = {(uj , xi) : [B̄]ij = ?}
are the set of edges between state vertices and the set of
edges between input vertices and state vertices, respectively.
In particular, a state vertex xi ∈ X is said to be (input-
)reachable if there exists a path from the input vertex
uj ∈ U to it. We also associate (Ā, B̄) with a bipartite
graph B(Ā, B̄) = (X ∪ U ,X , EX ,X ∪EU,X ), which we refer
to as the system bipartite graph.

IV. ANALYSIS OF STRUCTURAL STABILIZABILITY

In what follows, we provide solutions to Problems 1
and 2. Specifically, in Section IV-A, we obtain Theorem 1
that characterizes the solutions to Problem 1, whereas in
Section IV-B, Theorem 2 solves Problem 2 by characterizing
the maximum dimension of the stabilizable subspace.

A. Graph-Theoretic Conditions on Structural Stabilizability

Since stabilizability concerns the stability of the uncon-
trollable part of (A,B), it is necessary to first characterize
the controllable and uncontrollable parts from the structural
information contained in the pair (Ā, B̄). We recall a lemma
from [30] that characterizes controllable modes for the
numerical realizations of a structural pair.

Lemma 1 ([30]). Given a structural pair (Ā, B̄), where Ā ∈
{0, ?}n×n is symmetrically structured, and t–rank(Ā) = k,
if (Ā, B̄) is irreducible, then there exists a proper variety
V ⊂ RnĀ+nB̄ , such that for any numerical realization
(Ã, B̃) with [pÃ,pB̃ ] ∈ V c, Ã has k nonzero, simple and
controllable modes.

Lemma 1 shows that the irreducibility of (Ā, B̄) guar-
antees that all the non-zero modes of (Ã, B̃) are control-
lable generically. Subsequently, we can claim that given
an irreducible pair (Ā, B̄), if for any numerical realization
(Ã, B̃) there exists an uncontrollable eigenvalue, then that
uncontrollable eigenvalue is 0. This implies that (Ã, B̃) is
not stabilizable. Therefore, if a pair (Ā, B̄) is irreducible but
not structurally controllable, then (Ā, B̄) is not structurally
stabilizable. Hence, we have the following lemma.

Lemma 2. Given an irreducible structural pair (Ā, B̄),
where Ā ∈ {0, ?}n×n is symmetrically structured, then
(Ā, B̄) is structurally stabilizable if and only if (Ā, B̄) is
structurally controllable.
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In addition to Lemma 2, we should also consider the case
when (Ā, B̄) is reducible. By the definition of reducibility,
(Ā, B̄) can be permuted to the form of (4). To ensure that
(Ā, B̄) is structurally stabilizable, there must exist a numeri-
cal realization Ã22 whose eigenvalues are all negative. Thus,
the existence of a negative definite numerical realization Ã22

determines whether (Ā, B̄) is stabilizable.

Lemma 3. Given a reducible structural pair (Ā, B̄), where
Ā ∈ {0, ?}n×n is in the form of (4). Then there exists a
numerical realization Ã22 which is negative definite if and
only if the diagonal entries of Ā22 are all ?-entries.

Combining Lemmas 2 and 3, we have an algebraic
condition for structurally stabilizability. In what follows, we
present a graph-theoretic interpretation of these conditions.

Theorem 1. Consider a structural pair (Ā, B̄), where Ā is
symmetrically structured. Let D(Ā, B̄) = (X ∪ U , EX ,X ∪
EU,X ) be the digraph associated with (Ā, B̄), and Xr ⊆ X
and Xu ⊆ X be the subset of state vertices which are input-
reachable and input-unreachable, respectively. The (Ā, B̄)
is structurally stabilizable if and only if the following two
conditions hold simultaneously in D(Ā, B̄):

1) the vertex xi has a self-loop, ∀xi ∈ Xu;
2) |N (S)| ≥ |S|, ∀S ⊆ Xr.

Essentially, to ensure structural stabilizability, two condi-
tions should hold simultaneously: (i) every unreachable state
vertex should have a self-loop, and (ii) the reachable part of
the system should be structurally controllable [30]. Next, we
utilize Theorem 1 to characterize the maximum dimension
of the stabilizable subspace.

B. Maximum Dimension of the Stabilizable Subspace
Similar to the previous subsection, we will first consider

the case when (Ā, B̄) is irreducible, then extend the solution
approach to the general case.

By Lemma 2, when (Ā, B̄) is irreducible, the (Ā, B̄)
is structurally controllable if and only if it is structurally
stabilizable. This motivates us to consider the relationship
between controllable subspace and stabilizable subspace.
Moreover, it is shown in [31] that the maximum dimension
of controllable subspace is equal to the generic dimension of
controllable subspace of a structural pair without symmetric
parameter constraints. We may suspect that equality also
holds when symmetric parameter dependency is considered.
Motivated by this intuition, we first study the generic di-
mension of the controllable subspace, and then extend the
derived results to obtain a solution of Problem 2.

Given a structured pair (Ā, B̄), where Ā is symmetrically
structured, if there exists a proper variety V ⊂ RnĀ+nB̄ ,
such that rank(Q(Ã, B̃)) = k when [pÃ,pB̃ ] ∈ V c, then we
say the generic dimension [31] of controllable subspace of
(Ā, B̄), denoted as dc, is k. For almost all numerical realiza-
tions (Ã, B̃) with [pÃ,pB̃ ] ∈ RnĀ+nB̄ (except for a proper
variety, e.g., [pÃ,pB̃ ] ∈ V ), the dimension of controllable
subspace is dc. We characterize the generic dimension of
controllable subspace of (Ā, B̄) in the following lemma.

Lemma 4. Given an irreducible structural pair (Ā, B̄),
where Ā ∈ {0, ?}n×n is symmetrically structured and
B̄ ∈ {0, ?}n×m is structured, the generic dimension of
controllable subspace equals to the term rank of [Ā, B̄], i.e.,
the concatenation of matrices Ā and B̄.

When (Ā, B̄) is reducible, we can permute (Ā, B̄) to
obtain the form in (4). By Definition 4 and Theorem 1, the
maximum dimension of the stabilizable subspace should be
the sum of the generic dimension of controllable subspace
and the maximum number of negative eigenvalues over all
the numerical realizations of the uncontrollable part. This
can be formalized in the following result.

Theorem 2. Consider a structural pair (Ā, B̄), where Ā ∈
{0, ?}n×n is symmetrically structured. Then,

1) if (Ā, B̄) is irreducible, then the maximum dimension
of stabilizable subspace of (Ā, B̄) equals to the generic
dimension of controllable subspace of (Ā, B̄);

2) if (Ā, B̄) is reducible, then we permute the matrix
Ā into the form (4). The m-dim(Ā, B̄) equals to
t–rank([Ā11, B̄1]) + k, where k is the total number of
?-entries in the diagonal of Ā22.

Remark 1. In the form (4), the index of columns of
Ā11 are corresponding to input-reachable state vertices in
D(Ā, B̄), and the index of columns of Ā22 are corresponding
to the input-unreachable state vertices in D(Ā, B̄). The
input-reachable/unreachable vertices can be identified by
running a depth-first search [32]. Besides, the term-rank of
([Ā11, B̄1]) can be obtained by finding a maximum bipartite
matching in B(Ā, B̄) [30]. Thus, the maximum stabilizable
subspace can be determined in polynomial time O(n3).

V. OPTIMAL ACTUATOR-ATTACK AND RECOVERY
PROBLEMS

In this section, we show that both Problem 3 and
Problem 4 are NP-hard in Theorem 3 and Theorem 5,
respectively. Then, we introduced a greedy algorithm to
solve Problem 4 – see Algorithm 1. Besides, we show that
Algorithm 1 achieves a (1− 1/e) approximation guarantee
to an optimal solution of Problem 4 – see Theorem 6.

A. Computational Complexity of Problem 3

Suppose that there is no self-loop in D(Ā, B̄) and the
Condition-2) in Theorem 1 is satisfied. Then, we will show
that Problem 3 is equivalent to minimizing the number of
input-reachable states by removing a limited number of
inputs. This leads to the following result.

Theorem 3. The Optimal Actuator-disabling Attack Prob-
lem (Problem 3) is NP-hard.

Although the problem is NP-hard, that does not imply that
all instances of the problem are equally difficult. As a conse-
quence, we now propose to characterize the approximability
of Problem 3. We first consider a subclass of instances of
Problem 3, which satisfy the following assumption.
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Assumption 1. The symmetrically structured matrix Ā ∈
{0, ?}n×n is such that for any S ⊆ X , where X is the set
of state vertices in the state digraph D(Ā), |N (S)| ≥ |S|.
In addition, there exists no vertex with self-loop in D(Ā).

Assumption 1 ensures that the Condition-2) in Theorem 1
is always satisfied. In addition, Assumption 1 implies that
the diagonal entries of Ā satisfy [Ā]ii = 0, for ∀i ∈ [n].
In what follows, we leverage Min-k-Union problem [33] to
characterize the approximability of Problem 3.

Theorem 4. Under Assumption 1, denote by m1 the total
number of sets (i.e., {Si}m1

i=1) in an instance of Min-k-Union
problem, and m2 the total number of candidate inputs in
an instance of Problem 3. Additionally, let ρ : Z → R.
Then, there exists a ρ(m1)-approximation algorithm for
Min-k-Union problem if and only if there exists a ρ(m2)-
approximation algorithm for Problem 3.

As a result of Theorem 4, Problem 3 is at least as hard
as the Min-k-Union problem.

B. Solution to Problem 4

To investigate the computation complexity of solving
Problem 4, we take a similar strategy to that used in
the previous section. We show that under Assumption 1,
Problem 4 is equivalent to adding a limited number of
actuators to maximize the total number of input-reachable
state vertices. Subsequently, we have the following theorem.

Theorem 5. The Optimal Recovery Problem is NP-hard.

A natural approximation solution to optimal design prob-
lems is through greedy algorithms [34]. Although greedy
algorithms may not provide an optimal solution, under
specific objective functions of the problem, a suboptimal
solution with provable approximation guarantees can be
provided. Specifically, a particular class of problem with
such properties is called submodularity function problems,
defined as follows.

Definition 5 (Submodular function [34]). Let Ω be a
nonempty finite set. A set function f : 2Ω → R, where 2Ω

denotes the power set of Ω, is a submodular function if for
every J1,J2 ⊆ Ω with J1 ⊆ J2 and every i ∈ Ω \ J2, we
have f(J2 ∪ {i})− f(J2) ≤ f(J1 ∪ {i})− f(J1).

The greedy algorithm [34] achieves a (1 − 1/e)-factor
approximation to the optimal solution provided that the
objective function is submodular. Hereafter, we show that the
objective function in Problem 4 is submodular; hence, the
greedy algorithm provides (1− 1/e)-factor approximation.

Theorem 6. Algorithm 1 returns a (1−1/e)-approximation
of the optimal solution to Problem 4.

Remark 2. In [33], the authors argue that insofar there
is no constant factor approximation to the Min-k-Union
problem. Thus, together with Theorem 4, we cannot use the
greedy algorithm to approximate Problem 3 with guarantee.

Algorithm 1 (1−1/e) approximation solution to Problem 4

Input: The pair (Ā, B̄), B̄Ucan ∈ {0, ?}n×m′
, and the budget k;

Output: Suboptimal solution J ;
1: Initialize J ← ∅, L ← [m′];. L is the set of indexes of new

actuators in Ucan, the set of new actuators that can be added
to the system.

2: for iteration i ∈ [k] do
3: for each j ∈ L do
4: dj ← m-dim(Ā, [B̄, B̄can(J ∪ {j})]);
5: end for
6: I ← {i : di = max{dj}|L|j=1};
7: Pick a j ∈ I;
8: J ← J ∪ {j};
9: L ← L \ {j};

10: end for
11: return J

𝑥4𝑢1

𝑥1𝑥2

𝑥3

𝑥5 𝑥6

𝑥7

𝑥9 𝑥10

𝑥8

𝑥11

Figure 1: In this figure, we depict the structure of D(Ā, B̄). The red vertex
labeled by u1 and black vertices labeled by x1, . . . , x11 are the input vertex
and state vertices, respectively. The black arrows represent the edges from
input vertex to state vertices, as well as edges between state vertices.

VI. ILLUSTRATIVE EXAMPLES

In this section, we present examples to illustrate our
results on structural stabilizability and Algorithm 1.

A. Maximum Dimension of the Stabilizable Subspace

We consider a structural pair (Ā, B̄), where Ā ∈
{0, ?}11×11 is symmetrically structured and B̄ ∈ {0, ?}11×1

is structured. We depict the digraph representation of the
structural pair (Ā, B̄), denoted by D(Ā, B̄), in Figure 1.
Since x3 and x7 are unreachable vertices and they do
not have self-loops, the pair (Ā, B̄) is not structurally
stabilizable due to Theorem 1. Furthermore, the total number
of right-matched (with respect to any maximum matching
in the associated bipartite graph B(Ā, B̄)) reachable vertices
is 3, and the total number of unreachable vertices with self-
loop is 2. Therefore, by invoking Theorem 2, we conclude
that the maximum stabilizable subspace is 3 + 2 = 5.

B. Optimal Recovery Problem

Now, we present an example to illustrate the use of
Algorithm 1. Consider again the structural pair (Ā, B̄)
specified in the last subsection. The (Ā, B̄) is not structurally
stabilizable. We let Ucan = {ui}7i=2 be the set of candidate
actuators that can be added into the system and associate
it with the structured matrix B̄Ucan ∈ {0, ?}11×6, of which
nonzero entries are captured by the red edges of the digraph
D(Ā, [B̄, B̄Ucan

]) depicted in Figure 2.
We have obtained in the last subsection that m-dim(Ā, B̄)

is 5. Suppose we have a budget k = 3, then Prob-
lem 4 consists in adding 3 actuators from Ucan into
the system such that the maximum stabilizable subspace
is maximized. In the first iteration of Algorithm 1,
u4 is selected because m-dim(Ā, [B̄, B̄Ucan({4})]) −
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Figure 2: In this figure, we depict the digraph D(Ā, [B̄, B̄Ucan ]). We
use red and black vertices to represent input vertices and state vertices,
respectively. The black and red arrows represent are the edges in EX ,X ∪
E{u1},X and edges in EUcan,X , respectively.

m-dim(Ā, B̄) = 4 ≥ m-dim(Ā, [B̄, B̄Ucan
({i})]) −

m-dim(Ā, B̄),∀ui ∈ Ucan. Similarly, in the second iter-
ation, u3 is selected by Algorithm 1. This results that
m-dim(Ā, [B̄, B̄Ucan

({3, 4})]) = 10. Finally, u7 is selected
and m-dim(Ā, [B̄, B̄Ucan({3, 4, 7})]) = 11. Since the max-
imum possible stabilizable subspace is always less than
or equal to the total number of states, in this example,
Algorithm 1 returns an optimal solution to Problem 4.

VII. CONCLUSION

In this paper, we studied the structural stabilizability
problem of undirected networked dynamical systems. We
proposed a computationally-efficient graph-theoretic method
to derive the maximum dimension of the stabilizable sub-
space of an undirected network. In addition, we formulated
the optimal actuator-disabling attack problem and optimal
recovery problem. We proved that these two problems are
NP-hard, and we developed a (1 − 1/e) approximation
algorithm for the optimal recovery problem.

Future work will focus in extending the present frame-
work for arbitrary algebraic constraints on the state space
representation.
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