Physica A 541 (2020) 123348

Contents lists available at ScienceDirect

ST W
A Y appiRinn

Physica A

journal homepage: www.elsevier.com/locate/physa =

Explosive predator and mutualistic preys: A comparative n
Study Sheskicy
Saikat Batabyal?, Debaldev Jana?, Jingjing Lyu”, Rana D. Parshad ©*

¢ Department of Mathematics & SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur-603 203, Tamil
Nadu, India

b Department of Mathematics, Chengdu University, Chengdu, Sichuan 610000, China

¢ Department of Mathematics, lowa State University, Ames, IA 50011, USA

ARTICLE INFO ABSTRACT
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Received 1 May 2019 various harsh environments. These will often take the form of anti-predator strategies.
Received in revised form 31 July 2019 In the current manuscript we consider two preys that mutually benefit each other
Available online 5 November 2019 in the presence of a sexually reproductive generalist predator. In the absence of
Keywords: the predator, the prey grow logistically, and there is no mutualism between them.
Mutualism However, in the presence of the predator the prey will begin to cooperate. We formulate
Restricted growth rate five different models according to their functional responses which are either prey
Predator interference dependent (Holling type-IIl, IV and Hassel Varley functional responses) or predator—
Sexual reproduction prey dependent (Beddington-DeAngelis and Crowley-Martin functional responses). We

Finite time blow up perform dynamical analysis of these five models, and also establish the mathematical

restrictions under which the species can blow up at a finite time. Interestingly it is
observed that the prey populations will blow-up before the predator can. We use our
results to comment on a certain paradox in ecological theory, as well as provide further
insight into the nature of predator interference and exploding populations of invasive
species.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In a mutualistic relationship organisms of different species work together and benefit by an increased fitness. Two
prey might have restricted growth rates in the presence of a predator, but might mutually establish a strong anti-
predatory strategy. There is a large literature on mutualistic modeling in ecology [1-11]. In the current manuscript
“Service-resource relationships™ mutualism is focused upon. For example, pollination between angiosperms such as bee,
wasp etc. Relationship between ants and aphids, aphids produce honeydew for ants, in return ants protect aphids from
predators such as ladybugs. But strict “Service-service" mutualistic interactions are very rare [12]. A rare example of such
a relationship is seen between sea anemones and anemone fish in the family Pomacentridae on the reefs of the Atlantic,
Indian and Pacific Oceans. The anemones provide the anemone fish with protection from predators which cannot tolerate
the stings of the anemone’s tentacles [13,14] and the anemone fish defend the anemones against buttery fish (family
Chaetodontidae), which are predators of anemones [13,14]. A second example is that of the relationship between some
ants in the genus Pseudomyrmex and trees in the genus Acacia, such as the whistling thornand bullhorn acacia [15,16].
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The ants nest inside the plant’s thorns. In exchange for shelter, the ants protect acacias from attacks by herbivores (which
they frequently eat, introducing a resource component to this service-service relationship) and competition from other
plants, by trimming back vegetation that would shade the acacia. We provide some examples of prey mutualism, in the
presence of shared predators. In Indonesian waters, it is often to see that an urchin crab will carry a fire sea urchin on
its back, so the crab can hide from predatory birds and even use urchins as weapons. The urchins, meanwhile can use
the crabs dispersal to avoid such predatory birds, such as sea gulls, which would otherwise depredate on both the crab
and the urchin [17]. Goby fish will play the role of sentries at the entrances of burrows created by host shrimp, and warn
them of impending threats by predators, in which case both the goby and the shrimp will retreat into the burrow, thus
avoiding the predator [18]. In many such cases, the shared predator can be invasive, an aerial or aquatic predator [19-22].
Depending upon the choice of food, availability of resources and growth structure, food uptake process at higher trophic
levels are significantly complicated and can have interesting dynamical impacts on community food chains [22]. When
the predator is of generalist type and grows by sexual reproduction, beginning with [23], it has been shown that many
models in this class (that is those where the top predator is modeled via the modified Leslie-Gower scheme), have

e A potential to blow-up/explode in finite time, for sufficiently large initial values of top predator density [23].
e The blow-up can occur even for small initial values of top predator and middle predator densities [24].

These ideas have also been applied to model invasive populations that seem to be “exploding”, under a variety of
ecological scenarios. The findings thus far are that

Prey refuge for the middle predator (that is prey for the top predator) can prevent blow-up in the top predator [25].
Interference effects among the top predators increases their propensity to blow-up [26].

Climate induced mortality in the top predator can prevent blow-up [27].

Gestation effect in top predator can prevent blow-up [28,29].

Prey defense at lower trophic levels can prevent blow-up of the top predator at the highest trophic level [30].
Mixed boundary conditions can prevent blow-up in the predator [31].

In the current manuscript we ask

e What is the effect of mutualism among prey, if the predator is modeled according to the modified Leslie-Gower
scheme.

e Could the mutualism work as a strategy to prevent blow-up?

o How would the blow-up/blow up-prevention be effected in the case of various functional responses/feeding rates of
the prey.

e In particular, we ask what would the effects be, if there is predator interference as well.

To answer the above we consider two “Service-service” mutualistic preys (X and Y) with restricted growth rates
and one their common predator (Z) where the prey exhibit mutualism in the presence of the predator. Both prey grow
logistically in their respective environment. The predator is modeled on the basis of generalist predation, assuming sexual
reproduction, that is via the modified Leslie-Gower scheme. We establish and compare different models while varying
the functional responses of the predator, some of them are only prey density dependent (Holling type-IIl, IV and Hassel
Varley functional responses) and others are prey—predator density dependent (Beddington-DeAngelis and Crowley-Martin
functional responses). We present details of the model formulation next.

1.1. General model formulation

We consider the following system with two prey and a sexually reproductive generalist predator:

dx

X
- = a1X(1 - Kl) + 1 X(1 — e 21V — F(X(t), Y(£)).Z(t),

% = azY(l - IZ) + Y (1 — e 2%z — B(X(t), Y(£)).Z(t),

dz E 2
—=|{D— ———— |Z°,
dt OL’3+X+Y

where X(t), Y(t) and Z(t) are functions of time representing population densities of the two preys and the sexually
reproductive generalist predator respectively and all parameters are positive constants. a;, a; are the intrinsic growth
rates of X and Y populations respectively, c;, ¢; are marginal rate of change of the per capita growth rate of X and Y
respectively, by, b, are the mutualistic impacts of second prey on first and vice-versa, D denotes the growth rate and E
denotes the death rate of the generalist predator. 3 represents the residual loss in Z population due to severe scarcity
of its favorite food X and Y. «3 signifies that Z is the generalist predator and Fy, F, represent functional responses of Z
population upon X and Y respectively.
The ecological basis in deriving the above model is as follows,
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e Both prey (X and Y) grow logistically.

e Each prey has a mutualistic effect on other prey in the presence of the predator (Z).

¢ [n absence of the predator the model predicts pure logistic growth for both prey populations. If we set Z = 0 then
there are no predation or mutualism terms, in both prey equations. That means, in absence of the predator the prey
refrain from mutualism.

e the predator causes a negative feedback on prey density (it is clear from predation terms in both prey equations
—F1(X(t), Y(t)) and —F,(X(t), Y(t))). However when there is predator presence, the mutualism takes effect. To
describe this, note when Z > 0, then ¢;XZ(1 — e™®¥) > 0, but if you fix X and Z, then see ¢;XZ(1 — e—*1Y)
is monotonically increasing as Y increases (similar for the other). That means, in presence of predator Z, prey Y
provides a positive feedback on the density of prey X via mutualism, and vice versa [32,33].

e When Y = 0, then the mutualism term becomes 0, that means in absence of other prey, there is no mutualism, and
there is no effect of predation of predator Z on prey X when Y = 0 (vice versa) [34].

e The predator is modeled according to the modified Leslie-Gower scheme. In this formulation the functional response
of the predator is not similar to that of its prey. The generalist predator population grows quadratically as Z2,
signifying population growth is directly proportional to the product of males and females (Z xZ = Z2). The population
decays due to intraspecies competition as 4%)22 Thus if the prey population is large, Z has enough prey, and
so the competition coefficient is small. On the other hand if the prey population is small, Z has lack of sufficient prey,
and so the competition coefficient is large, inducing greater competition amongst the predators Z. The &3 shows that
Z is a true generalist predator, and can switch to alternate prey, in case its favorite prey X or Y goes extinct [29].

2. Specific model formulation

In this section we vary the functional response Fy, F; to get five different models in the following forms:

(i) Model 1: Holling III functional response
Here, we consider the predation processes follows Holling 111 functional response. Therefore, the model system becomes

X _ax(1- %) 4 exa — ety mX*Z
da K ! X2+hy’
dy Y Cbox myY?Z
—=mY(1- — Y(1 — e X)z — , 1
ks ( K2)+Cz (1—e72%) vz ih (1)

dz E 5
—=|D— —— Z“.
dt a3 +X+Y
(ii) Model 2: Holling IV functional response
Here, we consider the predation process follows Holling IV functional response. Therefore, the model system becomes

dX X _bY leZ

Zoax(1- 2 ) teax( etz - 2

dt K TH+X+h

dy y Yz

ar =a2Y(1— —)+C2Y(1—eb2)‘)2—2m2—, )
dt K> oY+

dz E 5
—=|D— ———— )Z“.
dt a3 +X+Y
(iii) Model 3: Beddington-DeAngelis functional response Here, we consider the predation process follows Beddington-
DeAngelis functional response. Therefore, the model system becomes

dx X oy mXZ

— = X(1- =)+ X(1—-e""")Z - —————,

dt K X+ piZ +m

dy Y myoYZ

— =aY|1— — CYl—efb"-XZ—i, 3
dt 2 ( Kz)+ 2Y( ) Y+ Z +an (3)

dz E 2
—=|D— ————— ) Z°.
dt &3+X+Y
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(iv) Model 4: Crowley Martin functional response

Here, we consider the predation process follows Crowley Martin functional response. Therefore, the model system
becomes

dax X by m1XZ

— = X|1— )+ X(1—e")Z — ; e

df Kl 81X —I—ﬁlZ -+ y1XZ +(¥1
mzYZ

dy Y
— = azY(l - —) + 6 Y(1 —eh2X)z —
K;

dz E 5
~—=(p- ——— )22
dt as+X+Y

(v) Model 5: Hassel Varley functional response

Here, we consider the predation process follows Hassel Varley functional response. Therefore, the model system
becomes

&Y + B2 + »YZ + of’

(1) ¢ X m1XZ
=aX(1- X(1—e ™)z — :
df o ( Kl) +C1 ( € )Z Xp + (4]
dy Y m,YZ
— =aqY(1- — |+g¥Y(l—etXz - 2= 5
m 2 ( Kz) LY ( ) Yo, (5)

dz E s
—=(p-—— 2%
dt ez +X+Y

The initial conditions of all the above systems (1)-(5) are givenas X > 0,Y > 0,Z > 0. By the fundamental theory of
functional differential equations [35], we know that there is a unique solution (X(t), Y(t), Z(t)) to systems (1)-(5) with
above initial conditions. In these models, the mutualism starts between the preys X and Y only when the generalist
predator Z enters in the system. In this model, Ky, K3, @1, a3, b1, bs, ¢1, €2, j1, Jo, D, E, hy, hy, b, B, v1, 02, 0q, 02, a3,
oy, a5, 1, B2, By, B5. v1. Y2, 81, 82, my, my, p, q are all positive constants. The interaction of preys X, Y and the generalist
predator Z is modeled by the modified Leslie-Gower scheme where the loss in predator population is proportional to
the reciprocal of per capita availability of its most favorite food. We assume that in the absence of the predator, the prey
population density grows according to a logistic law with carrying capacity K;(> 0) and K;(> 0) for respective prey X
and Y with an intrinsic growth rate constant a(> 0) and ax(> 0) respectively. my, my, E are the maximum values which
per capita reduction rate of X, Y, Z can attain respectively. hy, h} and h,, , are considered as half saturation constant
for Holling type III and IV functional response for the prey X and Y respectively in the absence of any inhibitory effect.
The parameter j; and j, are the measure of the predator’s immunity from or tolerance of the prey X and Y respectively.
a1, ¢z and o}, o) represent the protection provided to the prey by its environment for BD and CM functional responses
respectively. 81, B2 and B;, B; are the intensity of interference between individuals of predator respectively for BD and
CM functional responses. 6; and §; measure the magnitude of interference among the prey individuals for CM functional
response. y; and y; are considered as the inter species interference between prey and predator for CM functional response.
D is the growth rate of the generalist predator Z due to sexual reproduction and Z? signifies the fact that mating frequency
is directly proportional to the number of male as well as female individuals. The mechanism of sexual reproduction of
generalist predator is given in [36,37].
Now if we rewrite the systems (1)-(5) in general form, then we get:

dx -

E =f1(X,0,Z)—|—f1(X,Y,Z),

d -

d_f =hH(0,Y,Z)+f(X,Y,Z), (6)
dz

E :f3(X!Y!Z)

All the functions fi, f», fi, f2, fs are generalized forms of the proposed five models given in Table 1.
3. Stability properties of the systems

Our main aim is to study about the possible solution set of a dynamical model system in a particular environment.
Ecological stability possess resilience, persistence, elasticity, amplitude and constancy. The proper definition depends upon
in the context of the ecosystem. Dynamical system introduces the idea of neighborhood of stability and the domain of
attraction in the ecosystem. Local stability defines that a system is stable over small perturbation and global stability
indicates that a system has unique equilibrium point in the entire domain of attraction. We make mathematical model
with respect to a given environment and investigate the stability of that model. The simplest way to find the stability
of a mathematical model is linearizing the given model. Usually researchers are using Lyapunov stability method for a
mathematical model system.
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Table 1
Functional form of system (1)-(5).
Model fi(X,0,2) hx,v,2) f(0,Y,Z) fax,¥,2) f(X,Y,Z)
2 2
(1) aX(1-£) - ;gfhf G X(1—eti¥)z aY(1- &) - ;’;{hf 6 Y(1 — e biX)z D - 5w 2
Xy_ _mXzZ _ oY YNy mp¥Z _ a—baX _ E 2
(2) aX(1— &) T, oX(1—e ¥z @Y (1- &) i o Y(1 — e b2X)z D- o 2
(3) aX(1— ) - s aX(1—e 1Y)z @Y1 - £) - v GY(1—eh¥)z (D— o2t
X mXZ —b1Y Y myYZ —b3X E 2
(4) @ X(1- E) - 51X+ﬁ"[2§~y[XZ+rx.’L aX(1—e™7)2 aY(1- K_z) - 51Y+ﬂéliy1YZ+ué Y(1—e™)Z (D— XY )4
(5) aX(1- £) - g aX(1-e™)Z  oY(1- £)- e aY(1-etz  (D- £

3.1. Stability properties of systems (1)-(5)

Model systems (1)-(5) have eight possible non-negative equilibria, namely Eq(0, 0, 0), Ex(Kj, 0, 0), Ey(0, K3, 0), Ez(O,
0,Z2), Exy(K{,K5,0),Ey;(0,Y,Z), Exz(X,0,Z) and E.(X*, Y*, Z*). Now we show the feasibility and stability properties of
the first seven equilibria of systems (1)-(5) in Tables 3-7 along with the corresponding feasibility and stability properties
for coexistence equilibrium point E,.

(i) Stability properties of Model 1

FgasibiAlity and stability conditions of Eq(0, 0, 0), Ex(K;, 0, 0), Ey(0, K3, 0), Ez(0, 0,2). Exy(K1, K2, 0), Eyz(0,Y,Z) and
Exz(X, 0, Z) of system (1) are given in Table 3. The coexistence equilibrium point of system (1) is E.(X*, Y*, Z*), where

E *
a5 —a3—X*) a;X*
* E * * az — K3 a - K1
Y =E—a3—X,Z T (B —agx") T T by (E—ag—Xx*)y
”73*('2(176_&2)(5) 5 —cy(1—elp™ )
(E—a3—Xx*)2+hy X*+hy

Let us assume that 0 < X* < K; < % — a3 and X* is the positive root of the equation

myX* —by(E —a3—X*) -
—c(1—e 1D _aXx*
fxry = Xt ! A ks ol
B ma( §—e3—X*) — (1 —eb2X*y g, — az( f—e3—X*) -
( % —az—X* )2 +hy 2 2 Ky
We have,
—by(f—e3)
ci(1—e "1'D7% a
F0) = - . ) _ < o0and
my(5—es3) @ — a(p5—a3)
(E—asP+hy 2 K
miKy _ 7b1(%7ﬂ37!ﬁ)
KZ+h, a(l—e )
fiK) = N — >0,
2\p— M _ _ p—baKyq
(§—3—K; 2+hy e1-e )
by E e L ¢
as MK _ o1 — g hifes—K)y o g and 2o ki)

—byK miKq —by(f—e3—Ky)
— (1 —e™%) > 00r L — (1 —e"1'D7®) < 0 and
K12+h1 2( ) Kf-{—hl 1( )
ma(p-e3—Ki)
(f—e3—K1 2 +hy

the coexistence equilibrium point E.(X*, Y*, Z*) exists.

(5—o3—Kq1)2+hy

(1 — e P2K1) < 0. Since f(0)f(K;) < 0, there is a positive root of this equation lies in (0, K; ). Therefore,

(ii) Stability properties of Model 2

Feasibility and stability conditions of Ey(0, 0, 0), Ex(Kj, 0, 0), Ey(0, K3, 0), Ez(O, 0,2). Exy(K1, K3, 0), Eyz(0, ?,2) and
Ex7(X, 0, Z) of system (2) are given in Table 4. The coexistence equilibrium of system (2) is E.(X*, Y*, Z*), where

E ay( f —a3—X*) aX*
K K1
Yi=—=—0a3—X*, Z¥= = 3 .
D ’ . 2 — (1 — e~b2X") m — o1 — e tilpas—x*)
(L_C‘}_X*Jz E " 2 Cl( € }
-%-2—+(5—03—X’)+h’2 A X+ hy
1

a; — a, —
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Entities of Jacobian matrix for system (1)-(5).

Model Jacobian Matrix entities Model Jacobian Matrix entities
i z— X%z
(1 fx = a1 = F) = ZH% e = cl(1 -2, (2) f=a(1-2)- L;HM,)Z Jx=a(l-—ehtyz,
fiy=0 le = by, XzZe™ ™Y, fiy =0, fiy = by, Xze™Y,
fiz = x2+h . Fp=c(1—e bV )X, fiz = _]_[ﬁmxxh : f1z =e(1—e™¥)X,
Fox =0, fox = bycp¥Ze™%, N fix =0, fox = bycy YZe b2X, 2
L myviz L myvlz
fiy =a(1— E % far = (1 — b2z, foy = a(1 — ,72 2;22;22 for = (1 — e 02Xz,
(2 4y +hy) (2 vty
fz = yzﬂl * oz = 61— e )y, faz = —m oz = 6(1—e Xy,
fx= 2 Fx =0 [
(o3 +X+Y)2 laz HX+Y 2
fy = (m;%y)z,fav=0 fv = m,f3v=0=
Fz=2D~ L)z, fr =0 fz =2D~ 5 )2 fr =0
(3) fx=am(1—- %) - %,flx:fh(l—fwwﬂa (4) fix =a(1- ) - %%aﬁxzcl(l—e_bw)z
fry =0.fiy = bie;Xze ™", fiv =0, fiy = by Xze Y,
fiz = WTTT( fiz =a(1—e")x, fiz = —m;{%%,flz =a(l-e")X,
fox = 0,fox = bacaYZe 2%, fox = 0, fax = bacaYZe %%,
for = a2(1 - —2 - %,ﬁy =1 — e b2z, Sy =a(1—-Z)- %,fzy = (1 — e 22%)z,
Pz = — PR oy = c(1— e Y, fz = [hjjzﬁjyj;;ﬁ z.Jz = (1 - e,
fx = (cx3f§i~)’)2’}.}x fax = (u3+x+y2 o =
fav:m,favfﬂ oy = mfx—+y)zsf3\’:05
fiz =20 - w2 Fz =0 fz=2AD— E)Z.fz =0
®) fix =ai(1- & _%Z)W’ Fix =a(1—eY)z,
fir =0, fiv = biciXze™™Y,
flz:—%s fiz=c(1—e™¥)X,
fx =0, Fax = byca¥Ze 22X,
fzv=ﬂz(1——)—W+(Tf+—ZWa Foy = a1 — e722%)z,
fz = — g oz = (1 - ey,

fax = EZ2
T fag v
for = Ez%
T lagrxtrE?

fiz =2(D— 2,

_E
a3 +X+Y

fax =0,
fv=0
fiz =0.

Let us assume that 0 < X* < K; < g — a3 and X* is the positive root of the equation

JX*) =

We have,

fo)=— 2 -

E
# —c(1-— e_b1(§_a3_x*)) ot
X* ’ N A
T i 0 Ky
2 — (1 — e b2X™) ay(f—a3—X*)
——a3—X ) _ =y - -
L= +(E a3 —x*)h, K

m (1 — ebilh-a) .

a(f—03)
(f-asp? a; — —5—
T+(——m3)+h’2 K
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Table 3
Stability analysis of boundary equilibria of system (1).
Equilibrium and Feasibility Jacobian matrix (J) Stability
coordinate condition and eigenvalues (A;,i=1,2,3) status
a; 0 0
(i) Ey(0,0,0) always J= 0 a O Neutral
0 0 0
AM=a,hp=03,4;=0
mK?
. —o 0 _Kfﬂ:,
(ii) Ex(K;,0,0) always J= 0 a 0 Neutral
0 0 0
A =—0pd; =03,43=0
a, 0 0
KZ
(i)  Ey(0,Kz,0) always =l 0 —& - K”ZZ;Z Neutral
0 0 0
A =an,d=—a2,43=0
a 0 0
(iv)  Ez(0,0,2) D=% =] 0 o 0 Neutral
2 2 =
B CE
3
Z is any +ve constant AM=a, Ak =0y, A; =2(D— %)z =0
mK2 |
—a, 0 K,erl‘:l +ciKi(1—e b’KZ)
2
) Exy(K1, Kz, 0) always /= 0 —a _‘222‘:%2 + c3Ky(1 — e~b2K1) Neutral
0 0 0
Al =—a1, Ay = —G2,A3 =0
di 0 0
(Vi) Eyz(o, Y,Z) = ay; ap; az3 a1, az; < 0: Stable
a3 ap 0
Fig. 1(a)
V= (% —01'3) A =ai, A2z = Lzéﬁ a1, dz; > 0 : Unstable
S a(l— g NP 2
Z= + o3 < 5 <Ko+as where A = a3, + 463303, a;y =0/az =0 J A < 0: Neutral
2
ay = ay +ci(1—e 1)z, {A>0,a;, <0,a >0}
_ ¥ my¥Z 2m, ¥3Z .
2= i TR ta=>0.a>0.m <0
ay1 = by YZ, a3 = —%,031 = % = a3 Saddle
R . Qi Gz A3
(vii) Exz(X,0,Z) Jj= 0 ay; 0 dqq, a» < 0 : Stable
a; a4 0
Fig. 1(b)
X = g —Q’g) Ay =y, 12,3 = @ ayq, ap > 0 : Unstable
s o= KRy ,
Z= r;x o3 < <K +a3 where A =aj, +4a1303, a; =0/ay; =0 J A < 0: Neutral
1
1.4 mXZ 2mX32
o = - B+ B 1> 0,0 < 0,00 O
U2 = Gy + C2(1 — e772X)Z, {A>0,a23 >0,a11 <0}:
An 5 252
ay, = b, XZ, a5 = —%,a;l =L —qy Saddle
my _by(E_
as — —¢(1—e bilp—e3)y < 0 and
hl
my
(F—a32? =93
E DT (B e a1 - 22)
fl= —as) = — ——— - >0
D M —c(l—e z(ﬁ—ﬂls)) a

m
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Table 4
Stability analysis of boundary equilibria of system (2).
Equilibrium and Feasibility Jacobian matrix Stability
coordinate condition and eigenvalues status
a; 0 0
(i) Ep(0, 0, 0) always 0 a; O Neutral
0 0 O
AM=a,d=0,43=0
—a; O _szl_’ﬁ
ﬁ+K|+h’] |
ii Ex(K:,0,0 always Neutra
(ii) x (K4 ) \ 0 g 0
0 0 0
Ar=-—a;,A2=0a2,A3=0
a; 0 0
myKz
Ey(0,K;, 0 always 0 —o -4 Neutral
(iii) (0, Kz, 0) way. %+K2+f‘!§
0 0 0
A =0,k =—0,3=0
a 0 0
(iv)  Ez(0,0,2) p=£ 0 aq 0 Neutral
2= Av-LEx
~ u} u} ~
Z is any +ve constant AM=a,l =0,k =2D— %)Z =0
—a 0 —Kz—mlﬁl— + 1Ky(1 —Eible)
oK)
(v) Exy (K1, K3, 0) always 0 —a, _szz—Kz + 6K5(1 — e~bakn) Neutral
Koty
0 0 0
A =—a1, k2 =—02,A3=0
aiq 0 0
(vi)  Ew(0,Y,Z) J=1 a1 an a3 ai, axy < 0 : Stable
a3 a;n 0
Fig. 1 (c)
v — | E _ _ apEJA .
Y= (E - “3) Al =y, A3 = 11, Gy > 0 : Unstable
[ 2 g
az 1—E E-H/+h2
Z = o a3 < g <5+ as WhEI‘EA:ﬂgz-‘r"-lﬂzaﬂ;z, ﬂ11:0f£122:0UA<0:
Neutral
@y =a +oy(1—e )z — E,
_ . ! Zmz_YZZ
an=-% - 4B {A>0,a11 <0,a2 >0}
(g +Y'+h“2) (g +\7+h“2)
Gy = b ¥Z, 03 = — my¥ ) {A>0,a11 >0,a; <0}:
(g+?+h’2)
a3, = DZEZZ =a;; Saddle

(continued on next page)

m P
as —,2 — (1 —e P25~y 5 0,
h,

Under the above assumptions we have, f(O)f(% — a3) < 0. So there is a positive root of this equation lies in (0, g —a3).

Therefore, the non-zero equilibrium point E.(X*, Y*, Z*) exists.
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Table 4 (continued).

Equilibrium and Feasibility Jacobian matrix Stability
coordinate condition and eigenvalues status
. . a;y G2 a3
(Vll) Eyz(x, 0, Z) J= 0 o 0 Q1,03 <0 Stable
a; ap O
Fig. 1 (d)
X= (% - "3) A =ap, A3 = “—”iz”/z ai1, @z > 0 : Unstable
2
R aq 17E)(I+X+hl)
Z=—~—t0—F o3 < £ <Ki+as where A = a2, + 4a,3a3, ayp =0/a; =0(JA <0:
Neutral
U = @3 + C(1 — e™02A)7 — M2,
R N 2m %22
ap =—-%% _ X2 + = {A>0,a2 <0,a;1 >0}

K1 Fl PR
X2 _ gy X2 o
(}T+X+hl) (31—+x+nl)

, {A>0,ay >0,a;; <0}:

ap =bioXZ, a3 = ——"——~
.
(j‘T+x+h1)
252
a3 = LEZ = a3y Saddle

(iii) Stability properties of Model 3

Fgasibility and stability conditions of Eq(0, 0, 0), Ex(K;, 0, 0), Ey(0, K3, 0), Ez(0, 0,2), Exy(Ki, K2, 0), Eyz(0,Y,Z) and
Exz(X, 0, Z) of system (3) are given in Table 5. The coexistence equilibrium of system (3) is E.(X*, Y*, Z*) and to get
the solutions of this model, we have to solve the following system of equations,

X ax(- 5 raxa—eryz mXe
— =a - )+c —e _—
dt ! K ! X+ BiZ + o
dy Y maYZ
S Y- )oYl —etXyy T2
ke ( K2)+C2 (1—e) YTz ey’
dz E

i R — 2
dt ( 013+X+Y)Z

From £ = 0 we have,

E
X* = 7&3*Y*OFY*257(137X*.

Ol m

.
From 2= = 0 we have,

E

: * * Y*
CBa(1 — e P25 Y N7 2 4 (o)1 — e 025 oYYy 4 o)+ azﬁz(1 Bl K_) — my}Z*
2

Y*
+02(1 — —)(Y* +0!2) =0.
K;

From above it is clear that the above equation is function of (Z, Y) variables. Now by numerical method we have to solve
the equation to find its roots.
dx*

Similarly from - = 0 we have,

o " - * X*
C1Bi(1 — e Pba Xz 52 ey (1 — e MBS XINX* 4 o) + i By (1 B K_) —my)z*
1

X*
+al(1 — K—)(X* +0£1) =0.

1
Similarly is a function of (Z, X) variables. So again by numerical method we have to solve the equation to find its roots.
(iv) Stability properties of Model 4

Fgasibility and stability conditions of Ey(0, 0, 0), Ex(K;, 0, 0), Ey(0, K3, 0), Ez(0, 0,2). Exy(K1, Kz, 0), Eyz(0,Y,Z) and
Exz(X, 0, Z) of system (4) are given in Table 5. The coexistence equilibrium of system (4) is E.(X*, Y*,Z*) and to get
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Table 5
Stability analysis of boundary equilibria of system (3).
Equilibrium and Feasibility Jacobian matrix Stability
coordinate condition and eigenvalues status
a; 0 0
(i) Eo(0,0,0) always 0 a O Neutral
0 0 0
A =anA2=0,A=0
mK
—a 00—l
(ii) Ex(K1,0,0) always 0 @& 0 Neutral
0 0 0
Al =—0;,A =03,A3 =0
a; 0 0
(iii) Ey(0,K3,0) always 0 —-a - my Ky Neutral
Ky+op
0 0 0
A =01,k =0, A3 =0
_ mi
= B2+ 0 0
: 7 — E __m ¥4
(iv) E(0,0,2) b=_ ] o — S5 0 Neutral
7% Ez2 _ENs
oT = 2(D E)Z
7 i o mZ g _mi
Z is any +ve constant M=aq —(ﬂliwl)’kz a B
A=200-£)Z=0
—ay 0 _Kij-Iil] +c1Ki(1 — E_blxz)
v) Exv(K1, K2, 0) always 0 —m -2 4 oky(1-eiek) Neutral
0 0 0
A= =G,k =—0O3, k3 =0
an 0 0
(vi) Eyz(0,Y,Z) = @, ap  apn aq1, Gy; < 0 : Stable
a ap 0
Fig. 1 (e)
Y= (:% —“3) Ar=ap, k3= —"22?/2 a1, ax; > 0 : Unstable
Z=—n¥;“2— w3 < f-) <Ky + a3 whereA=a§2+4a23a32, ﬂ11=0/022=0UA<0:

g =0y +ey(1-e¥)Z - 7

Bri+ay’
ayp = _% - %,
@z = by2¥Z, 033 = _(\7+;ran;2y+u2) (?fﬂ?ﬁz)l’
a3 = g a3z

E

Neutral

{A>0,ﬂ11 <G,ﬂ22>0]U
{A>0,ﬂ]1 >O,ﬂ22<0][

Saddle

the solutions of this model, we have to solve the following system of equations,

m]XZ

& _ aX(1— i) +aiX(1—e 1)z —
dt Kq

81X+ BiZ +wnXZ +af’

(continued on next page)
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Table 5 (continued).

Equilibrium and Feasibility Jacobian matrix Stability
coordinate condition and eigenvalues status
. a4z a3
(Vll) Eyz(x, D,Z) J= 0 az 0 Q1,03 <0 Stable
a3 ap O
Fig. 1 (f)
X= (% - “3) A =axn, A3 = a—”?@ ai1, gz > 0 : Unstable
2=% d3<%<K1+C¥3 Whel‘eﬂ=a%1+4algﬂ31, ﬂ22=0/011=0UA<02
a ([—Ki[)
Neutral
@ =y +op(1—e2%)2 - Ml
. » BaZ+az
—_mX __ mXz
an = —7%; RipritaP' N {A>0,a5 <0,ay; >0}
_ V7 — my X my B1XZ .
ap = b]zf.:;XZ, a3 = (2+312+m1) ()A(_*_’Blj_*_“[)z, {A >0,an >0,a;; < 0} H
a3 = % = a3 Saddle
dy Y maYZ
— =qY(1— —)+Y(1—e )7 - , z
dt K> 8Y + B Z + »wYZ +a;
dz E

L=p- —— 2
dt ( 0!3+X+Y)Z

From %° = 0 we have,

E E

X=——a3—Yor¥Y =—- —a; — X"
D D

From % = 0 we have,
Co(By + YY) 1 — 57Nz 92 4 (oy(1 — e 25775, 7" + o)
Y* Y* ,
=+ ﬂz(ﬁé =+ yzy*)(l — K_) — mz}Z* +(12(1 — K—)(ézY* +0.’2) =0.
2 2

From above it is clear that the above equation is function of (Z, Y) variables. Now by numerical method we have to solve
the equation to find its roots.
Similarly from 2= = 0 we have,

E

ci(B 4+ p1X*)(1 — el B3 X Nz *2 4 (010 — embilpes—XNy g yx 4 )

X* X*
%ﬂl(ﬁfl + ]/]X*)(l — ) — m1}Z* + a; (1 — )((Slx* +a’1) =0.
K] K'l
Similarly it is a function of (Z, X) variables. So again by numerical method we have to solve the equation to find its roots.
(v) Stability properties of Model 5:

Feasibility and stability conditions of Ey(0, 0, 0), Ex(K;, 0, 0), Ey(0, K3, 0), Ez(O, 0,2), Exy(K1, K3, 0), Eyz(0, ?,2) and
Exz(X, 0, Z) of system (5) are given in Table 7. The coexistence equilibrium point of system (5) is E.(X*, Y*, Z*), where

a4, _ “2b=as=x") 4 X
Y* = E X* 7* = 2 K3 _ 1 Ky
Tp BTt T Tm o ety m 1 — e~br(f—ea—x")y’
(53 —X* P+, XPiu ci(l—e )
Let us assume that 0 < X* < K; < % — a3 and X* is the positive root of the equation
m —b1(£ —az3—X* *
X*pil —ci(l1—e 1lg—a3 J) a) — u;{)(
f[X*) — +vq _ 1 =0
2 (1 — ebaX") ay(E—a3-x*)
(F—ag—X*P+vy Uy — =

We have,

m g1 ,e—bﬂ%—ﬂtsJ) a
floy=2 = - L <0,

M2 a:
(h-a3P+v ax(1— DTQB)
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Table 6
Stability analysis of boundary equilibria of system (4).
Equilibrium and Feasibility Jacobian matrix Stability
coordinate condition and eigenvalues status
a 0 0
(i) Eo(0,0,0) always 0 a O Neutral
0 0 O
AM=a,A=0,r=0
_ ___mKj
I
(ii) Ex(K;,0,0) always 0 a 0 Neutral
0 0 0
AM=—a,k =0,k =0
ai 0 0
il Ev(0,K3,0 always — Mk Neutral
(iii) v(0, K3, 0) way! 0 a, ot
0 0 0
M=a,h=—a,r=0
o mi
a1 (ﬁ;Zm’,) 0 0
; 7 - E __mZ
(iv) E;(0,0,2) D= 0 %~ G 0 Neutral
EZ2 EZ2 _ENS
- r 2(D E)Z
7 o mZ g _mgF
Z is any +ve constant M= —(ﬁ;iwﬂ’)“z %~ iy
A3 =2(D— H%)Z:o
miK- —bK:
—a; 0 —W +C1K1[1—E 1 2)
(V) Exy(Ki, Kz, 0) always 0 —a - w;}gﬁé) + Ck(1 — eb2K1) Neutral
0 0 0
A =0,k =0, A3 =0
aiq 0 0
(vi) Eyz(0,Y,2) J=| 6 an ax ayy, Gy < 0 : Stable

o3 < % < Ky + a3

8V ety

ﬁ()

a4
A =an, Ay = S

where A = a2, + 4a3a3;,

an =a +c(1—et¥)7 — M

el
BlZ+e]

B = — Y m¥ZlsinZ)

22 K T GBI iR

o — — my¥ my¥Z(By+y2Y)

23 (oY +ByZ+ra¥ita) | (B ¥ +PyZ+raVi+ay)
- V7 — p¥z? _

a3 =biYZ, a3 = =~ = a3y,

Fig. 1 (g)
aq1, a2z > 0 : Unstable

a1 =0/a =0JA <0:

Neutral

{A>0,011 <0,ﬂ22>0]U
{A>0,ﬂ11 >G,ﬂ22<0]2

Saddle

(continued on next page)
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Table 6 (continued).

Equilibrium and Feasibility Jacobian matrix Stability
coordinate condition and eigenvalues status
. . ay a4 a3
(Vll) Eyz(x, 0, Z) J= 0 az 0 Q1,03 <0 Stable
a; ap 0
Fig. 1 (h)
)2 = (g — 053) A =0, A3 = @ a1, a2 > 0 : Unstable
) a3 <5 <Ki+a where A = a2, + 4a;303, ayp =0/a; =0 JA <0:
A . B Neutral
il *(ﬂ'ﬁr}'[x)
. (1%]
- _eh¥yy . ml
Uy =0 "':CZ(I e - )4 R
— X _ myXZ2(81+y1Z)
ap = K (51)?*5?2*V1§(2+“332’M ) {A>U=022<01011 >U}U
_ m R miXZ(8;+1X) .
ay3 = [61X+ﬂ12+y1)?2+;tjg OB By Rara {A>0,a;>0,a, <0}:
app = b1c1XZ, az; = % = a3 Saddle
1 _ba(E
as — —cy(1—e ™)) <0
U1
my —o
—_— $—93
E (F—a3lP+v a(1— K )
flo —as3)= £ - >0
D my _ c(1 — e7b2(517u3) a;

)
m ,
as — — (1 —e’bz(%]”“) > 0.
V2
From the above assumptions we get, f(O]f(g — a3) < 0. So there is a positive root of this equation lies in (0, (% —as)).
Therefore, the coexistence equilibrium point E,(X*, Y*, Z*) exists.

From the above feasibility and stability analysis of seven boundary equilibrium points (Eo(0, 0, 0), Ex(Ki, 0, 0),
Ey(0, K3, 0), Ez(0, 0, Z), Exy(K1, K3, 0), Eyz(0, Y, Z), Exz(X, 0, Z)) of all the systems (1)-(5), we see that first five equilibrium
points are all neutral point where the rest two are showing different dynamics depending upon system parametric
conditions. Ey(0, 0, 0), E¢(K1, 0, 0), Ey(0, K3, 0) and Exy(K;, Kz, 0) are always feasible for all the systems. Also feasibility of
E;(0, 0, Z) is same for all the systems. But feasibility of Ey(0, Y, Z) and Exz(X, 0, Z) are depending upon some parametric
restrictions. Now we are focusing to determine the stability condition of coexistence equilibrium point E.(X*, Y*, Z*) for
systems (1)-(5), characteristic equation at E,(X*, Y*, Z*) is given by

P(h) = 1% + pA® + pah + o =0, (7)
with coefficients

o = (11 + Ja2 + Ja3),
iy = J1ss +Jidoz +J22033 — Js2J23 — J12J21 — Jaalsu,
o = J11J3223 + J22J13)51 + JzaJ12)21 — JiiJ2a)s3 — J3uJzafi2 — Jiafei)s2,
where
Ju Jiz Ji3
J=1Jn J2 J=s
Js1 Js2 I3

represents the Jacobian matrix of the model system (1)-(5) calculated at E.(X*, Y*, Z*). The components of the Jacobian
matrix are given below:

Ji1 = fix + fix Jo1 = fax + fax J31 = fax + fx
Ji2 = fiv + fiy Joz = fov + fov Js2 = fay + fay
T3 = fiz + fiz s =Fz +foz Js3 =faz + faz

The above entities of the Jacobian matrix of the model system (1)-(5) have been listed in the Table 2.
According to Routh-Hurwitz criterion, the coexistence equilibrium point E.(X*, Y*, Z*) is locally asymptotically stable
if Re(A) < 0 for each model system (1)-(5), if and only if these conditions hold:

B2 >0, py >0, po>0 and [papq — pol > 0. (8)
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Table 7
Stability analysis of boundary equilibria of system (5).
Equilibrium and Feasibility Jacobian matrix Stability
coordinate condition and eigenvalues status
a; 0 0
(i) Eo(0,0,0) always 0 a O Neutral
0 0 0

AM=a,A=0,,=0

_ _ miky
a 0 K +uy
(ii) Ex(K1,0,0) always 0 a4 0 Neutral
0 0 0
M =-a,k=0,k3=0
a 0 0
(iii) Ey(0, Kz, 0) always 0 —a -k Neutral
Ky +ug
0 0 0
M =an, A =—a2,A3=0
a, — Tl 0 0
U
(iv) E;(0,0,Z) D= ;53 0 ay — Mt 0 Neutral
)
j22] EZ2 _ENy
=z Fy 2Ap- L2
Z is any +ve constant Mo=ag— T gy =ay - 22
v 3
M=2AD- £)Z=0
K -
—ay 0 _Kr:;:—L‘I1 =+ ClK]('l —e bjkz)
K. -
(v) Exy(K1, K2, 0) always 0 -a - Kr;;zﬂzz + k(1 — e 2K1) Neutral
0 0 0
A =—a1,A = =@, A3 =0
aqq 0 0
(vi) Ey(0,Y,Z) J=1 an apn ax ay1, @3 < 0 : Stable
a3 ap 0
Fig, 1 (i)
Y= (% — 03 A =an, A3 = M aq1, @ > 0: Unstable
az (17 %2) (S_f“ﬂ'z)
Z=—m2 a3 < % < Ky + a3 whereA=a§2 + 4ay3as3, ﬂ11=0/022=0UA<0:
Neutral
an=a;+c(1—e )z - mTllz,
_ - .
GZZ:—%'F%,QNZbngYZ, {A>0,ﬂ11<0,ﬂ22>0]u
Y 272
ay3 = __?Ti\zz ,d31 = % =ds3 {A>0,ay; >0,a5 <0}:
Saddle

(continued on next page)

To represent any explicit result for each models are difficult due to the highly nonlinear mathematical expressions. So,
we show the local stability results of the coexistence equilibrium point E.(X*, Y*, Z*) for system (1)-(5) numerically by
time series Fig. 2, stability domain diagrams w.r.t the phase-portrait in parametric domains Fig. 6 and phase-portrait in
initial data domain Fig. 5.
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Table 7 (continued).

Equilibrium and Feasibility Jacobian matrix Stability
coordinate condition and eigenvalues status
~ ~ aj; a4z a3
(Vll) EW(X, O,Z) J= 0 ax 0 Q1,03 <0 Stable
a3 ap O
Fig. 1 (j)
)? = (g — (13) Al =an, )Lz‘g = M ai1,0; > 0: Unstable
o8 0)
ZA':miL v <f<K+a where A = a2, + 4a,3a3,, ayp =0/a; =0(JA <0:
Neutral
G = Gy + (1 — e72X)Z — 2E,
X xrz %5
a“:—"K‘—].+ &’;’L—Ul}z,au:blclxz, {A>0,a5 <0,ay; >0}
272
313:_)%1331:%:”32 {A>0,a5 >0,a,; <0}:
Saddle

4. Finite time blow-up
4.1. Motivation and control mechanisms

Invasive predators often wreak havoc on native ecosystems. Data shows that the growth in the population of small
Indian mongoose (Herpestes auropunctatus) in Fiji, Mauritius and Amami-oshima islands has resulted in a severe decline
in the population of native species such as mammals, birds and reptiles [38]. Another example are Zebra mussels
(Dreissena polymorpha), which are mostly found in Russia, Europe and North America, and are one of the most aggressive
freshwater invaders because their population numbers grow so quickly [39]. Several other examples can be found in the
literature [20,21,40].

Biological control is an adopted strategy to limit harmful populations [41]. The objective of a biological control is to
establish a management strategy that best controls and decreases the harmful population to healthy levels as opposed to
high and risky levels. Naturally, how does one define high level and further, how well does the biological control actually
work, at various high levels? We have recently started investigating this question via the mathematical property of finite
time blow-up [25,26,42]. Finite time blow up of model system (1)-(5) has been investigated in this section. We first
present our motivation.

Definition 4.1. Given a ODE model of a nonlinear process say,

du
— = f(u), 9
i (u) (9)
we say finite time blow-up occurs if,
lim |u| = oo, (10)
t—T*<oc0
where || - || is the standard sup norm on R", u is the state variable in question that depends on time (t) (x) and T* is the

blow-up time.

In the context of population biology, finite time blow-up has also been well investigated [43-46]. Note, we have now
introduced an alternate viewpoint: finite time blow-up, can be viewed as mimicing the explosive growth of an invasive
species. This is formalized by equating:

finite time blow-up = uncontrollable and unmanageable population level. (11)

Here, the blow-up time T* is viewed as the disaster time, for the ecosystem.

Remark 4.2. Although populations cannot reach infinite values in finite time, they can grow rapidly [47]. For example,
experimental evidence suggest that the human population may be growing hyperbolically, rather than logistically [48].
Data on the Burmese python suggests, that its population is growing at least exponentially [19].

Our approach investigates biological control mechanisms, that attempt to lower and control the targeted population
before time T*. This approach has distinct advantages:

(i) There is no ambiguity as to what is a disastrous high level of population.

(ii) There is a clear demarcation between when or if the disaster occurs.
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Fig. 1. Time series diagrams for the stability of Eyz and Ex; equilibria of the model systems (1)-(5) are shown in first and second panels respectively.
Here red, green and blue colors represent first prey, second prey and generalist predator respectively. Parameter sets are given in Table 9.

(iii) Our controls focus on avoiding classical chemical and biological controls.

(iv) This method provides a predictive modeling tool for various ecological settings.
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Fig. 2. Phase portrait (first panel: asymptotic stability corresponding to Tables 10 and 11) and time series (second panel corresponding to Table 10

and third panel corresponding to Table 11: blow-up) of system (1)-(5).

4.2. Large data blow-up in the model system

We first prove a classical result on this system

Theorem 4.3. Consider the three species food chain model (1)-(3). Z(t) the solution to (3) blows up in finite time, that is

lim [|Z(t)]loc — oo,
t>T*<o0
for initial data (Xq, Yo, Zo) that is sufficiently large.
Remark 4.4. The proof follows [23].

Proof. Consider (1)-(3), with positive initial conditions.

(12)
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and generalist predator respectively. Parameter set is given in Table 12.

By integrating (3) we obtain

1+ DfﬁLEfr ds
zZ Iy o X(8)+Y(s)+ a3

which gives

1
1 t ds '
Zy Dt +E fo X(s)+Y(s)H+as
Our goal is to show that the function:

1 t ds
ty=—-Dt+E| —————— > 0ast—>T* < oco. 13
v Zo ﬂ X(s)+ Y(s)+ as (13)
This will then show that the solution Z will blow-up at the finite time, t = T*. Essentially, for (X;, Yy) chosen sufficiently
large, there exists a > 0 such that

! Dt+E[t ds
Zy o X(s)+Y(s)+asz
t

=1 +[ D+E & ]r
I t Jo X(s)+Y(s)+ a3

1 7D7D+E1f* ds )
T Z 2 2 t Jo X(s)+ Y(s)+ a3

! Dt for all t € (0, 8) (14)
<Z0 b or a € (0,0).
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This is because by the continuity of the state variables X, Y, we have for § sufficiently small, and t € (0, §)

Eft ds Dt s
) X(5)+Y(s)+as 2 (15)

and so

gl d D (16)
r£ X +Y(6) +as 2

If now Z; is chosen sufficiently large, then we can find T** € (0, §) such that

1 D

— —ZT*=0.
Zy 2

Now by application of the classical intermediate value theorem on the continuous function v, we obtain the existence of

some T* € (0, 8), T* < T*, s.t ¢ (T*) = 0. This implies Z(t) the solution of (3), blows-up in finite time, at t = T*, and

the theorem is proved. O

4.3. Sufficient conditions for large or small data blow-up in the model system

We now posit sufficient conditions on the initial data so that blow-up occurs, whether the data is large or small.
Since all of the presented models have a similar generic structure, we prove the blow-up results for one case. We pick
system (4). We will first show that this model blows-up in finite time and prove it in three cases in the following.
Consider

X ax(1- %) exa—ety X

— =a - —]+c —e - ,

dt ~ K ! 8 X + B\Z + i XZ +
myYZ

dy Y
o =(12Y(1 - ) +cY(1—e 22Xz — (17)

K,

dz E 2
—=|D———7— )2
dt a3 +X+Y

with suitable positive initial condition (Xg, Yg, Zo).

&Y + BLZ + 1aYZ + oy’
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Theorem 4.5. Consider the model system given by (17), for any choice of parameters, and 8; > 0, such that D > §,, there
exists initial data such that if this data meets the largeness condition,

Case 1:
m
PAILY ELCE, P (18)
g — O3 8182
Case 2
1 1 ax
2| —— =) > 5 (19)
D%] — 3 |Y0| 51k2
Case 3
1Yol
% Yol+ 22
K2 B m;
1Zo| In F =7 (20)
D—3; *3 61 ,62
A= TR A
then the state variable Z will blow-up in finite time, that is
lim ||Z]| = oo. (21)
t>T*<00
: * 1
Here the blow-up time T* < 5ol
Proof.
Case 1 Consider the equation for the top predator
dz E
=0 )7,
dt oz +X+Y
blow-up is trivial if D > u% [42]. However if D < 5—3 in order to guarantee blow-up, we must guarantee that
E
Y - . 22
- (D — 5 ”‘3) (22)
To get the result, we will solve one of the prey equations
dy m,YZ

Y
— =mY(1- — Y(1—e %)z - ,
ar =~ Y ) Y e T T

and we have via positivity
dy m;
. 2 = Al bl
de BY

now from above we get,

_m,

Y| > |Yole % .

Thus using (22) we have,

4 Y,
my DT&_I_D:";

Note that

= =472,
da '

p * 1
blows-up at time T* = 511200

; Y 1
ﬁln —E[Ol >t>T"= .
my Do — 3 811Zo]

thus if we choose data such that
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Then the above guarantees that Y will remain above the critical level Df_& — a3, for sufficiently long enough time, for Z
to blow-up. This yields that as long as the following holds

Y,
1Zo| In Eli‘ﬂ - m_z”
b-s — 93 818,

Z will blow up in finite time, independent of the choice of the parameters. Thus the theorem is proved.

Case 2
If we will follow similarly as Case1 then we have,
d_Y > _Eyz’
dt — K2
and we get,
1 1 az

> .
Y[ Yol Kz
Now using (22) we have,

1 1),
a; D—Lchia'i‘ [Yol .

Thus the above guarantees that Y will remain above the critical level fos] — a3, for sufficiently long enough time, for Z
to blow-up. This yields that as long as the following holds

|Z | 1 1 an
oll —————— | > —.
- [Nl) T sk

Z will blow up in finite time, independent of the choice of the parameters. Thus the theorem is proved.

Case 3
Similarly as previous two cases, we will follow the same steps. In this case, we consider
dy a; m

now from above we get,

1Yl
éWOHIBTZ m
In Kl 2 > ﬂ_?t
0y 2 2
K /
2 By

Thus using (22) we have,

Yol
D5 "3

o, Ty
20 E
& (= “33+§§‘

Note that
Z _ ¢ 72
T =0z,
blows-up at time T* = m thus if we choose data such that
[Yol
2 vl + 77
ﬂé Ka 0 5."2 * 1
m—an E >t>T = 5@

D-3; %3
W, E_ .,y
rgtntbyl—uwﬁ—;
Then the above guarantees that Y will remain above the critical level I)f_él — a3, for sufficiently long enough time, for Z
to blow-up. This yields that as long as the following holds

|Ygl

|ZolIn | ———*— | > 4
2
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Table 8
Blow-up phenomena of system (1)-(5).
Model Blow-up condition Blow-up condition Blow-up condition
System X Y for Z
D> £) D<£)
ivi ivi i 1L o
(1) Trivial Trivial Trivial |Zo] ( Df,s[ - IVnI) > 50
Fig. 2 (c) Fig. 2 (b)
L. .. .. 1 a
(2) Trivial Trivial Trivial |Zo] (_’r_m] - |YT|) > ﬁ
Fig. 2 (f) Fig. 2 (e)
3 Trivial Trivial Trivial Case 1: |Zy|In| —%ol— ) » M2
3) | nI m
-3 oy
Fig. 2 (i) Case 2: |zg| T % > 5,
( 2% +"’2
m
Case 3: |Z|In . > ﬁ.
Kz (g =) *El)
Fig. 2 (h)
(4) Trivial Trivial Trivial Case 1: |Z| ln( Yl ) 51 T
u—al
" 1 a2
Fig. 2 (1) Case 2: |Zo| (D—Eq - mﬂ > Far
(K2 o IEF)
a2
Case 3: |Z|In s > Py
(K D£b1 —ay) P )
Fig. 2 (k)
L. .. .. 1 1 a
(5) Trivial Trivial Trivial |Zo] (rfrﬁ“! - |YT|) > ﬁ
Fig. 2 (0) Fig. 2 (n)

Z will blow up in finite time, independent of the choice of the parameters. Thus the theorem is proved. O

For the results of the rest models, we follow the same process and the results are listed in Table 8.
4.4. Blow-up time comparisons in the model system

Remark 4.6. The three species food chain model (1)-(3), is by far the most interesting food chain model that has appeared
in the literature thus far, where the predator Z is modeled via the modified Leslie-Gower scheme. In the other models
that have appeared in the literature, only Z has the potential to blow-up in finite time, whereas X, Y do not, and one can
actually construct absorbing sets in the phase space for those state variables. However, in (1)-(3), X, Y can both blow up.
In fact they blow-up together, and blow-up before Z.

Here we posit that if blow-up occurs, it must occur in X, Y before Z. To this end we consider the generic system

% = a1X(1 - %) + a1 X(1 — e "z — Fy(X(¢t), Y(£)).Z(1),

dy Y
== az‘{(l - Kz) + 6 Y(1 — e 292 — Fy(X(1), Y(£).Z(t),

dz E 5
—=(pD-————)2°,
dt s +X+Y

We enforce the following structural restrictions on F1(X(t), Y(t)), Fa(X(t), Y(t))
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o miX > Fy(X(t), Y(£)), mpY > Fy(X(¢), Y(t))

Remark 4.7. The above structural restrictions are a technical requirement to prove blow-up via Theorem 4.10. Physically,
the condition amounts to saying that the linear growth of the prey X, Y, are greater than the depredation/loss caused to
their density by the predator Z. If not, the prey could be driven to extinction. Hence this is a persistence condition of
sorts. However, we do not investigate this rigorously. It may well be that for super linear Fi, F>, blow-up is avoided, and
global existence is a possibility.

Lemma 4.8. Consider the three species food chain model given by (1)-(3), given a choice of parameters, there is initial data
(Xo, Yo. Zp), and a time T* < oo, s.t X, Y can blow-up at T*, that is

Iim || X|e = 00, lim Y]y, — 00,
t—T*<oco t—>T*<oo

whereas Z remains bounded at T*,

Iim ||Z]e < o0.
t—>T*<co

Proof. Consider (1)-(3), with positive initial conditions (Xo, Yo, Zo).
By integrating equation (3) in time we obtain

1

1 t d :

Zy Dt +E fu X[s]+Y€s)+a3

In the event that we have a globally existing solution, it must be that the continuous function:
1 t ds

Y({t)=—=——Dt+E — >0, Vt.

Zy 0o X(8)+Y(s)+as

The first time t = T* < 0o s.t ¢ (T*) =0, z, blows up in finite time. Note we can have a time T** < T* s.t

Z(t) =

lim || X||le = oc, lim |Y|lee — o0,
t—=>T** <00 t—>T** <00

Whilst % > DT**, but Zio = DT*. Thus ¥ (T**) > 0, but ¥ (T*) = 0. Thus X, Y could blow up in finite time before
Z. O

Remark 4.9. From the form of the solution for Z, it seems the other way is also possible, that is Z might blow-up at a
finite time T*, whereas X, Y remain bounded at T*. We show that this is actually not possible.

We next show under certain parametric restriction, X, Y will always blow-up before Z.

Theorem 4.10. Consider the three species food chain model given by (1)-(3), for any choice of parameters s.t ¢; > mq, c3 >
my, and any choice of initial data (Xo, Yo, Zo), if there exists a time T* < oo, s.t

Iim ||Z]ec — o0.

t—T*<oo

Then X, Y must have blown-up at a finite time T** < T*, that is

lim | X|lee = 00, lim |Y|leoc—= 00, lim |Z]e < 00.
t—T** <00 t—>T** <co t—>T** <co

Proof. Note it follows via simple comparison that the X, Y solving (1)-(2) are super solutions to the X, Y solving

dx X
= =1 X(1 = )+ XZ(1 — e Y) — mXZ, (23)
dt K
dy Y
— =1Y(1 - =)+ YZ(1 —e %) —m,YZ, (24)
dt K5

This follows via positivity of solutions and because of our assumed structural assumptions on F;, F, (similar estimate
holds for y).

Now we consider (23)-(24) and (3). Assume Z blows up at a finite time T* < oo, and so does Y, whilst X remains
bounded. Then we have Ve, and a given IC (Xg, Yo, Zo), 3te s.t t. < T*, e~®1¥le) < ¢, and lime_ot. — T*.

Now (1) can be rewritten,

dx X
— =rX(1—- = —my —e )Xz,
o riX( K1)+(C] m—e )
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integrating the above in time from [0, t.], we obtain

te X Le te
X(ts):X(O)Jrrlf X(1 - k—)+(c1 fml)f Xstff e 1Y xzds (25)
0 1 0 0

Note, via the mean value theorem for integrals, that is there exists a C s.t,
te Le Le
f e 1Y Xzds = Ce’“ly(‘()f XZds < Ce/ XZds. (26)
0 0 0

Thus using this in the above equation we obtain

te te
X(t€)>X(0)+r1/ X(l—i)—l—(c] —m1—Ce)f XZds (27)
0 Kl 0

We now let ¢ — 0 to obtain,
T* X
MZX(T*)>X(0)+r1f X(lfK—)ds+(c17m1)j XZds = 400 (28)
0 1 0

this follows via the blow-up assumption on z, and the boundedness assumption on X, which immediately yields a
contradiction. That is if Z blows up at a finite time T* < o0, and so does Y, then X cannot remain bounded at T*, and
must have blown up before at some T** < T*. The exact same argument is applied integrating (24), and using the above
method to show, if z blows up at a finite time T* < oo, and so does X, then Y cannot remain bounded at T*, and must
have blown up before at some T** < T*. We put these together to obtain the desired result. O

We next state the following corollary

Corollary 4.11. Consider the three species food chain model given by (1)-(3), for any choice of parameters s.t ¢; > mq, ¢; >
my, and large enough initial data (X, Yy, Zp), there exists a time T* < oo, S.t
X, Y must have blown-up by T*, whereas z will blow-up at some T** > T*,

Proof. The proof is a simple application of Lemma 1 in conjunction with Theorem 1. O

Remark 4.12. Corollary 4.11 tells us that X, Y, Z could all possibly blow-up at the same finite time. This is also seen
numerically.

5. Numerical simulation

In this section, we validate the analytical results of our model systems (1)-(5) which are obtained by the numerical
simulation. First we consider the parameter sets twice for each model system as shown as in the Table 9 and observe the
stability of Evz(0, Y, Z) and Exz(X, 0, Z) equilibrium points respectively as shown in the first and second panels respectively
of Fig. 1.

Now we consider the five different parameter sets of systems (1)-(5) with two different initial values for each model as
shown in Table 10 and investigate that each of the model system (1)—(5) is asymptotically stable at coexistence equilibrium
point (E,) w.r.t. the first initial condition (first panel of Fig. 2), here we are using the red and green bullets to identify
the initial and coexistence equilibrium point (E,) respectively. But blows up happen for the second initial condition as
shown in the second panel of the Fig. 2. Now we choose two different parameter sets and a common initial condition for
each model systems (1)-(5) as shown in Table 11, where we observe that each model system is asymptotically stable at
coexistence equilibrium point (E.) (first column of Fig. 2) for first parameter set and blows up (third column of Fig. 2) for
second parameter set.

In Table 8, we illustrate the finite time blow up properties of model system (1)-(5). We elucidate the blow up property
of the generalist predator in two parts for each of the model system (1)—(5). The first part is D > £ and the second part

o3
isD < % From the differential equations for the prey species of the model system (1)-(5), we notice that if the generalist
predator blows up then the prey species blow up obviously. So from Table 8 , one can clearly understand that the blow up
conditions for prey species are trivial for the condition D > % Now we concentrate our focus on the blow up property
of the generalist predator (Z). For the first part (D > m%), the blow up condition for the generalist predator is trivial and
for the second part (D < ai ), we expatiate all the possibilities of the blow up condition for the generalist predator.

In third panel of Fig. 2, we depict the trivial case of finite time blow up for the generalist predator and for the other
cases we follow the second panel of the Fig. 2. Fig. 3 shows in certain parameter set shown in Table 12, both the preys
blow up before the generalist predator for the model system (1)-(5). Fig. 4 illustrates the phenomena of together blow
up along the parameter set listed in the Table 12 of the model system (1)-(5).

In Fig. 5, we observe the dynamical changes of each system (1)-(5) with respect to the varying initial conditions Yy
and Z, along parameter set as in Table 8 where stable and blow up regions are stated as AS (Asymptotic Stable) and BL
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Table 9
Parameter sets for the stability of Eyz; and Exz equilibria of model system (1)-(5) in first and second panels respectively.

Model Parameter set Figure Parameter set Figure
for stability of Eyz for stability of Exz

(1) a; =0.01,K; =5,¢, =0.1 a;, =0.1,K; = 1.1,¢, = 0.1
b; = 0.1, m; = 8.5, hy = 0.01 1 (a) bi=1,m =0.1,h; =60 1 (b)
a=1,K;=12,c; =0.1 a; = 0.01,K; =5,c0 =0.01
b, =1,m; = 0.5, h, =0.05 by, =0.01,my =2, h; =60
D=07,E=9.5,a3 =10 D=07,E=9.5,a; =10
IC: (1, 0.5, 1.5) IC: (1, 0.5, 1.5)

(2) a;=0.1,K;, =03,¢;, =0.1 a; =0.1,K; =0.5,¢c;, =0.1
by =0.25,m; = 5.5, = 0.6 1 (c) by =0.15,m; = 0.5, K, = 2.06 1(d)
a =0.1,Kb =05,c0=1 a =0.1,K :U.?:, c=0.1
b, = 0.15,m; = 0.5, h, = 2.06 by =0.25,my; =5.5,h, = 0.6
D=09,E=950; =10 D=0.92,E=95a; =10
j1 =0.525,j, = 0.625 j1 = 0.625,j, = 0.525
IC: (1, 3, 2) IC: (1, 3, 2)

(3) a; =0.1,K;, =0.3,¢;, =0.1 a; =0.1,K; =05,¢;, =0.1
b, =0.25,m; =55,a; =0.6 1 (e) b, =0.15,m; = 0.5, @; = 2.06 1(f)
a;, =0.1,K =05,cc =1 a =0.1,K> :U.3, c;=0.1
b, =0.15,m; = 0.5, a3 = 2.06 by, =0.25,my; =5.5,a; = 0.6
D=09,E=950; =10 D=0.92,E=95a; =10
P=2,p=2 Pr=2,p=2
IC: (1, 1.2, 1.5) IC: (1, 1.2, 1.5)

(4) a, =0.1,K; =0.3,¢; = 0.1 a; =0.1,K; =0.5,¢; =0.1
by =0.25,m; =5.5,0, = 0.6 1(g) by = 0.15,m; = 0.5, &/}, = 2.06 1 (h)
a;, =0.1,K =05,cc =1 a =0.1,K> :U.3, c;=0.1
b, = 0.15,m; = 0.5, &) = 2.06 by =025,my =55,a, =06
D=0.9,E=95,0; =10 D=0.92,E=95,a; =10
Bi=28=2 Bi=2p=2
y1 =0.03,y, =0.05,8; =0.4,8, =02 y1 =0.03,y, =0.05,8; = 0.4, 5 =0.2
IC: (0.5, 0.8, 1.2) IC: (0.5, 0.8, 1.2)

(5) a; =0.1,K; =0.3,¢c; = 0.1 a, =0.1,K; =0.5,¢;, =0.1
by =0.25,m; =5.5,v; =0.6 1 (i) b; =0.15,m; = 0.5, v; = 2.06 14)
a=0.1,K; =05,c=1 a =01,K;=03,c,=0.1
b, = 0.15,m; = 0.5, v, = 2.06 b, =0.25,m, =5.5,v, = 0.6
D=09,E=95a3 =10 D=092,E=95,03 =10
p=07,g=05 p=05,9q=0.7
IC: (1, 0.5, 1.5) IC: (1, 0.5, 1.5)

(Blow up) respectively. We distinguish the parametric domains of stability and blow up properties of the model system
(1)-(5) in Fig. 6 in different parametric planes. Similarly stable and blow up regions are stated as AS (Asymptotic Stable)
and BL (Blow up) respectively. In both of the figures we define the conditional blow up phenomenon which is shown in
Table 8.

6. Conclusions and discussions

In this paper, we elaborately discuss about the behavior of the dynamical system consisting two mutualistic prey and
a sexually reproductive generalist predator. We formulate five general structure of dynamical models with five different
prey dependent and predator dependent functional responses. The stability properties of each of model system has been
studied into deep. We observe the stability analysis of boundary equilibrium points and as well as we investigate the
stability properties of the coexistence equilibrium point for each of the model system (1)-(5). In this paper we have eight
possible non-negative equilibria points from each of the model system of (1)-(5). Eo(0, 0, 0), Ex(Ky, 0, 0), Ey(0, K3, 0),
E;(0,0,Z), Exy(K,, K2, 0) are the equilibrium points of the model systems and the stability region becomes neutral for
each of the equilibrium point of the corresponding model system. For the equilibrium points Ey;(0, ¥, Z) and EXZ()A( ,0, 7 )
we observe that stability of the model systems are varying according to their eigenvalues are changed. We show the
stability time series diagram of Eyz(0, Y, Z) and EXZ(}A( ,0, V4 ) in Fig. 1 and notice that under some parametric restriction,
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Table 10
Stability and Blow-up phenomena w.r.t different initial data with fixed parametric values of system (1)-(5).
Model Parameter Initial Stability Blow-Up Initial Blow-Up
set Condition (IC) status Condition (IC)
(1) ay =0.01,K; = 1.1,¢q = 1,by =0.50,mq = 0.75,h; =60 Asymptotically No Yes
a3 =0.05,K3 = 1.2,c3 = 1, by = 0.25,m3 = 0.50, hy = 60 (0.2,0.1,0.4) stable (10, 15, 25) (Figure)
D =30,E =500,a3 = 12 (Figure) 2 (b)
2 (a)
(2) ay =1,K;y =30,¢; =1,by =050, my =0.75, h’1 =60 Asymptotically No Yes
ay =1,Ky =30,¢5 = 1,by = 0.25,my = 0.50, h’z =60 (1, 1.4, 1.5) stable (30, 25, 20) (Figure)
D =0.01,E = 10,03 = 10,1 = 0.625,j = 0.525 (Figure) 2 (e)
2 (d)
(3) a; =0.1,Ky =50,cq =1,b; =0.50, my = 0.25, 07 =50 Asymptotically No Yes
ap = 1,Kp =50,c3 =1,by =0.25,my =0.20,a3 =50 (1, 1.2, 1.5) stable (10, 15, 20) (Figure)
D=0.1,E=25a3=10,8] =20,6 =20 (Figure) 2 (h)
2 (g)
(4) ay =1,K; =30,¢; =1,by =05, my =0.25, a’] =50 Asymptotically No Yes
ay =1,Ky =30,65 =1,by =025,my = 0.20, &/, =50 (2, 05, 1.5) stable (15, 20, 20) (Figure)
D=0.01,E = 10,03 = 10, 8 = 20, 8 = 20 (Figure) 2 (k)
¥1=0.03,1p =0.05,8; = 0.4,5p =0.2 2 (j)
(5) ap =0.01,K; =0.5,¢q =0.01,b; = 1.50, my = 0.75, vy =60 Asymptotically No Yes
a3 = 0.05,K3 = 0.3,c3 = 0.01, by = 2.25,my = 0.50, vz = 60 (0.05, 0.1, 0.5) stable (1,2 3) (Figure)
D=35E=500,a3=12,p=07,9=05 (Figure) 2 (n)
2 (m)
Table 11
Stability and Blow-up phenomena w.r.t different parametric values with same initial data of system (1)-(5).
Model Initial Parameter Stability Blow-Up Parameter Blow-Up
Condition (IC) set status set
(1) (0.2, 0.1, 0.4) a; =001,K; =1.5,¢1 =1 Asymptotically No a1 =001,Ky =11,¢c; =1 Yes
by =0.50,my = 0.75, hy = 60 stable by =0.50,my = 0.75,h; = 60 (Figure)
ay =005K =12, =1 (Figure) a3 =005,K; =12, =1 2 (c)
by = 0.25, my = 0.50, hy = 60 2 (a) by =0.25,my = 0.50, hy = 60
D =30,E=500,a3 =12 D =30,E =500,a3 =20
(2) (1, 1.4, 1.5) a; =1,K; =30,c1 =1 Asymptotically No a1 =1,K; =30,c1 =1 Yes
by =0.25,my = 0.50, b} = 60 stable by =025,m; = 050, =60 (Figure)
) =1,Ky =30,cp =1 (Figure) ay =1,Kp =30,cp =1 2 (f)
/ i
by =0.25,my = 0.50, hfy = 60 2 (d) by =0.25,my = 0.50, h}, = 60
D=001,E=10,03 =10 D=10.01,E=10,03 =10
j1 = 0.625,j =0.525 Jj1=0625,j5 =0525
(3) (1, 1.2, 1.5) a; =0.1,K; =50,¢1 =1 Asymptotically No a1 =0.1,K; =50,¢c; =1 Yes
by =0.50,my = 0.25, 21 =50 stable by =0.50,m) =0.25,a1 =50 (Figure)
ay =1,Ky =50,c5 =1 (Figure) a3 =1,K3 =50,¢cp =1 2 (i)
by =0.25,my = 0.20,ap = 50 2 (g) by =0.25,mp = 0.20,ap = 50
D=01E=250a3=10 D=10.1,E =25,a3 =10
B1 =208 =20 B1 =20,y =20
(4) (2, 05, 1.5) a; =1,K; =30,c; =1 Asymptotically No a1 =1K; =30,cy =1 Yes
by =05,m; =025, =50 stable by =05,m; =0.25,a] =50 (Figure)
ap=1K;=30cp=1 (Figure) ay =1,K3 =30,cp =1 2y
by =0.25, my = 0.20, &, = 50 2 () by =025, my = 0.20, @y =50
D=001,E=10,a3 =10 D=10.01,E =10,a3 =10
ﬁ; :Zﬂ,ﬁé:ZU ,g; :Zﬂ,ﬁé:ZO
y1 = 0.03, y3 = 0.05,8; = 0.4,8p = 0.2 71 =0.03, 7 =0.05,8; = 0.4,5y = 0.2
(5) (0.05, 0.1, 0.5) a; =0.01,K1 =0.5,¢c] =0.01 Asymptotically No ay =0.01,Ky =0.5,c1 =0.01 Yes
by =1.50,my = 0.75,v1 =60 stable by =1.50,mq = 0.75, v =60 (Figure)
ay =0.05,K3 =0.3,c3 =0.01 (Figure) ap; =0.05,K; =0.3,¢c3 =0.01 2 (o)
by =2.25,my = 0.50, vy = 60 2 (m) by =2.25,my = 0.50, v = 60

D=35E=500,a3 =12
p=07,0=05

D=35,E=>500a3 =20
p=07,0=05

stability region of Ey;(0, Y, Z) switches into the stability region of EXZ(R ,0, V4 ). We investigate asymptotic stable region

for the coexistence equilibrium points for each of the model systems under the restriction of the parameter set.

From Table 8 we determine that for each model system (1)-(5), the condition for the trivial case of blow up of the

generalist predator is D > ai Otherwise (in the case of D <

o

E

), we have seen a conditional blow up phenomena

which depends on initial values of the model system (1)-(5). In Table 8 , we have shown that the conditional blow up
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Table 12
Parameter sets for prey blows up before predator and parameter sets for all three species blow up together of model system (1)-(5) in first and
second panels respectively.

Model Parameter set Figure Parameter set Figure
for any prey blow up for all species blow up
(1) a; =01,K; =30,¢, =1 a,=1,K =05¢=1
by =0.5,m; =0.75,h; =60 3 (a) b; =0.5,m; =0.75,h; =60 4 (a)
a=1,K =30,c; =1 a=1,K=1c=1
b, = 0.25,m, = 0.5, h, = 60 b, =0.25,m, = 0.5, h, =60
D =0.01,E =10, @3 = 1000 D =0.01,E = 10, @3 = 10000
IC: (0.2, 0.1, 0.4) IC: (0.2, 0.1, 0.4)
(2) a;=1,K;, =30,c; =1 a,=1,K =05¢=1
by =0.5,m; =0.75, h{ =60 3 (b) b; =0.5,m; =0.75,h =60 4 (b)
a=1,K;=30,cc =1 a=1,K =1,c =01
by = 0.25,m; = 0.5, h) = 60 by =0.25,m; = 5.5, b, = 60
D=0.01,E =10, @5 = 1000 D =0.01,E = 10, @3 = 10000
ji =0.625,j; = 0.525 ji =0.625,j; = 0.525
IC: (1, 1.4, 1.5) IC: (1, 1.4, 1.5)
3) a; =0.1,K; =50,¢; = 1 2, =0.1,K;=0.1¢c, =1
b, =0.5,m; = 0.25,@y =50 3 (c) b; =0.5,m; =0.25,¢; =50 4 (c)
am=1K =50,c;=1 a=1,K=1c=1
by = 0.25,m3 = 0.20, a> = 50 by =0.25,my = 0.20,a» = 50
D =0.01,E =10, @3 = 1000 D=0.01,E=10,03 =10
B1 =0.25, 8, =0.20 B1 =0.25, 8 =0.20
IC: (1, 1.2, 1.5) IC: (1, 1.2, 1.5)
(4) a,=1,K =30,c; =1 a;=1,K =01,¢c=1
by =0.5,m; = 0.25,&f =50 3(d) b, =0.50,m; = 0.5, @] =50 4 (d)
a=1,K =30, =1 a=1,K=1c=1
by = 0.25, m; = 0.20, ag =50 b, = 0.25, my = 0.20, ai =50
D=0.1,E =100, @3 = 5000 D =0.1,E = 100, @3 = 5000
By =0.25,8,=0.20 By =0.25, 8, =0.20
y1 =0.03,9, =0.05,8; =0.4,6;, =0.2 y1 =0.03,9 =0.058 =04,5, =02
IC: (2, 0.5, 1.5) IC: (2, 0.5, 1.5)
(5) a; =01,K; =30,¢, =1 a=1K=05¢=1
by =0.5,m; =0.75,v; =60 3 (e) b; =0.50,m; = 0.75, v, =60 4 (e)
HQ:],KZ:3U,C2:] a=1,K=1c=1
b, =0.25,m; =0.5,v, =60 b, =0.25,m; = 0.5, v, =60
D=0.01,E =10, @3 = 1000 D =0.01,E = 10, @3 = 10000
p=07,9g=0.5 p=07,9=05
IC: (0.05, 0.1, 0.5) IC: (0.05, 0.1, 0.5)

phenomena depends on the initial value Yy (here for analytic purpose we consider the differential equation ‘fj—}; of the
second prey species for each of the model system (1)-(5)). However, it also depends on the initial value X;. For example,
if we take the differential equation % of the first prey species of the model system (1) for analytic purpose in place

of %' we get the blow up condition of Z when D < % is |Zp| | —— — IX]T > ;—}q In the same fashion we can
D-5; %3

observe the blow up phenomena of Z in the case D < ai for rest of systems depend on initial value X, and Z; as well.
Therefore we conclude that the initial values of each of the model system (1)-(5) has a significant impact in their blow up
phenomena. Note the structural assumptions on F;, F; are a persistence condition of sorts. However, we do not investigate
this rigorously. It may be that for F;, F> growing super linearly, blow-up is avoided, and global existence is a possibility.
This may be true for any initial condition, and so a global in time existence result, may be posited for global data. The
effects of such growth conditions on the damping of blow-up solutions in the current model would make for interesting
future investigations.

Invasive species pose direct (or indirect) threats to the ecosystems and also decrease biodiversity. In the event that
a predator invades an ecosystem, whose population has a possibility of exploding, our key finding is that mutualism
amongst its target prey can actually cause their own population to explode. This will occur most times before the actual
explosion of the predator population (and at a few times together). Thus in this sense mutualism amongst prey benefits
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them, as they continue to survive. In the absence of mutualism ¢; = ¢; = 0, blow up in the predator Z is trivial, and
would then lead to it wiping out its prey in most realistic scenarios.

Also note, theory claims that generalist predators are poor agents for biological control — but this is not observed in
field studies [49]. Herein, clearly prey mutualism could further reaffirm this theory, because if the prey were cooperating,
in the presence of an introduced predator — it would not be as effective as when they were not. All in all we establish
that in the current modeling framework, mutualism is a key survival strategy for prey, in the presence of an explosive
generalist predator.
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