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Minimal Edge Addition for Network Controllability
Ximing Chen , Sérgio Pequito , Member, IEEE, George J. Pappas , Fellow, IEEE,

and Victor M. Preciado

Abstract—We address the problem of optimally modify-
ing the topology of a directed dynamical network to ensure
structural controllability. More precisely, given the structure
of a directed dynamical network (i.e., an existing networked
infrastructure), we propose a framework to find the mini-
mum number of directed edges that need to be added to
the network topology in order to render a structurally con-
trollable system. Our main contribution is twofold: first, we
provide a full characterization of all optimal network modi-
fications, and second, we propose an algorithm able to find
an optimal solution in polynomial time. We illustrate the va-
lidity of our algorithm via numerical simulations in random
networked systems.

Index Terms—Algorithm design and analysis, controlla-
bility, network topology.

I. INTRODUCTION

N ETWORK control theory provides a plethora of tools to
analyze the behavior of dynamical processes taking place

in complex networked systems, such as epidemic outbreaks in
human contact networks [1], information spreading in social
networks [2], or synchronization in power systems [3]. The
analysis and design of complex networks using tools from graph
theory have gained a growing interest in recent years [4]; in
particular, the classical control problem of steering the state of a
dynamical network toward a desired state [5], [6]. However, in
many practical scenarios, an exact quantitative description of the
edges in the network may not be available due to measurement
errors and/or modeling uncertainties [7]. In this scenario, it
is still possible to analyze network control problems resorting
to tools developed in the context of structural systems theory
[8]–[11].

Structural controllability extends the classical controllability
concept to the case of networks with uncertain edges. Loosely
speaking, a network is structurally controllable if it is control-
lable for almost all realizations of edge weights (see Section II
for a formal description of this concept). In this context, given
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a structurally uncontrollable system, one may be interested in
enforcing structural controllability by either 1) adding actua-
tion capabilities to the networked system, or 2) modifying the
topology of the dynamical network by, for example, adding new
edges to the network topology. The former case is explored
in [12]–[19]. Briefly, in [12], [18], and [19], the authors pro-
posed graph-theoretical algorithms to find the minimum num-
ber of driving nodes to ensure structural controllability in com-
plex networks. In [13] and [14], the authors complement this
work to obtain the minimum number of driven nodes in polyno-
mial time. Subsequently, the minimum number of driven nodes
required while accounting for actuation costs was addressed
in [15] and [16]. Alternatively, if one seeks the minimum col-
lection of inputs from an a priori defined collection of actuation
capabilities, then the problem is NP-hard [17]. Notwithstand-
ing, there are several cases when adding actuation capabilities
to the network is either too expensive or not feasible. Therefore,
whenever possible or cost-efficient, one can opt to modify the
topology of the dynamical network. This case is the focus of
the this paper, where we propose a polynomial-time algorithm
to determine the minimum number of extra connections that
must be added to a given structural system in order to ensure
structural controllability.

Wang et al. [20] proposed an approach to perturb the structure
of an undirected network to ensure structurally controllability
when only one driving node was considered. Ding et al. [21]
studied a similar problem for directed networks. However, they
assumed that all the nodes are already reachable from the driving
nodes. Although they solved the problem using a constrained
integer program which is, in general, NP-hard [22], they did not
discuss the complexity of their algorithm. In contrast with pre-
vious works, we address the case of arbitrary directed network
topologies with any number of driving nodes and show that the
problem can be solved in polynomial time without any assump-
tion on reachability. The following are the contributions of this
paper: first, we characterize all possible solutions to the prob-
lem of determining the minimum number of additional edges
required to ensure structural controllability, and second, we pro-
vide a polynomial-time algorithm to find a solution suitable for
large complex networks.

The rest of the paper is organized as follows. A formal de-
scription of the problem under consideration are introduced in
Section II. Preliminaries on graph theory and structural system
theory are introduced in Section III. The main results are pro-
vided in Section IV. In Section V, we illustrate our results in
several complex network topologies. Finally, conclusions and
discussion of future research are presented in Section VI.
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II. PROBLEM STATEMENT

The dynamics of a linear networked dynamical system can
be described as follows:

ẋ(t) = Ax(t) + Bu(t) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input
vector, A ∈ Rn×n is the state transition matrix, and B ∈ Rn×m

is the input matrix. In the following, we refer to system (1) by
the matrix pair (A,B), and if the system is controllable, we
say that the pair (A,B) is controllable. Furthermore, we define
Ā ∈ {0, 1}n×n to be the structural pattern of A, i.e., Āij = 0
if [A]ij = 0, and Āij = 1 otherwise. Similarly, B̄ ∈ {0, 1}n×m

encodes the sparsity pattern of B where B̄ij = 0 of [B]ij = 0,
and B̄ij = 1 otherwise. We say that the structural pattern (Ā, B̄)
is structually controllable if there exists a pair (Â, B̂) with the
same structural pattern as (Ā, B̄) that is controllable [23]. Fur-
thermore, if such pair (Â, B̂) exists, then almost all possible
matrix pairs with the same structural pattern as (Ā, B̄) are con-
trollable [23].

In this paper, given a structurally uncontrollable pair (Ā, B̄),
we are interested in the problem of adding a minimum number
of entries in Ā to obtain a structurally controllable system. In-
tuitively, if we add sufficient edges in the network such that the
resulting network is a complete graph, then the resulting sys-
tem is structurally controllable, provided that at least one node
is actuated, i.e., B̄ �= 0. Nonetheless, adding new edges corre-
sponds, in practice, to building new infrastructure. Therefore,
from a design and implementation perspective, one seeks to add
the minimum number of edges to attain the design objective,
which, in our case, consists in ensuring structural controllabil-
ity. Formally, the problem is described as follows:

Problem 1: Given the pair (Ā, B̄) with B̄ �= 0, find

Ã∗ = arg min
Ã∈{0,1}n ×n

‖Ã‖0 (2)

s.t. (Ā + Ã, B̄) is structurally controllable

where ‖Ã‖0 denotes the number of nonzero entries in a matrix
Ã, and the operator + : {0, 1}n×n × {0, 1}n×n → {0, 1}n×n is
the element-wise exclusive-or for binary matrices.

If (Ā + Ã, B̄) is structurally controllable, we refer to matrix
Ã as a feasible edge-addition matrix, and to Ã∗ in (2) as the op-
timal edge-addition matrix. As part of the solution proposed in
this paper, we provide a characterization of all possible optimal
edge-addition matrices by resorting to graph-theoretical tools.
Furthermore, we provide a polynomial-time algorithm to obtain
one such solution.

III. NOTATION AND PRELIMINARIES

In the rest of the paper, |S| denotes the cardinality of a
set S. Let G = (V, E) denote a directed graph with vertex-
set V = {1, . . . , n}, and edge-set E ⊆ V × V . Given an edge
(i, j) ∈ E , we say that the “tail” vertex i is pointing toward
the “head” vertex j, which we denote by i→ j. A path of
length K in G is defined as an ordered sequence of distinct
vertices (v0 , v1 , . . . , vK ) with vk ∈ V and (vk , vk+1) ∈ E for

all k = 0, . . . ,K − 1. A cycle is either a path (v0 , v1 , . . . , vK )
with an additional edge (vK , v0), or a vertex with an edge to
itself (i.e., self-loop). A vertex v2 ∈ V is reachable from v1 ∈ V
if there exists a path in G from v1 to v2 . A directed graph
Gs = (Vs , Es) is a subgraph of G if Vs ⊆ V and Es ⊆ E . In
particular, if Vs = V , then Gs is said to span G. Given a vertex
set S ⊆ V, we define the S-induced subgraph of G by S as
GS = (S, ES), where ES = E ∩ (S × S) .

A graph is said to be strongly connected if there exists a path
between any two vertices in the graph. A strongly connected
component (SCC) is a maximal subgraph Gs that is strongly
connected. A condensation of G is a directed acyclic graph
(DAG) generated by representing each SCC in G as a virtual
vertex in the condensation and a directed edge between two
virtual vertices in the condensation exists, if and only if, there
exists a directed edge connecting the corresponding SCCs in
G [24]. An SCC is said to be linked if it has at least one incom-
ing/outgoing edge from another SCC. In particular, a source
SCC has no incoming edges from another SCC and a sink SCC
has no outgoing edges to another SCC.

Given a directed graph G = (V, E) and two vertex sets
S1 , S2 ⊆ V , we define the (undirected) bipartite graph
B(S1 , S2 , ES1 ,S2 ) as a graph, whose vertex set is S1 ∪ S2 and
edge set1 ES1 ,S2 = {{s1 , s2} ∈ E : s1 ∈ S1 , s2 ∈ S2}. Given
B(S1 , S2 , ES1 ,S2 ), a matching M is a set of edges in ES1 ,S2

that do not share vertices, i.e., given edges e = {s1 , s2} and
e′ = {s′1 , s′2}, e, e′ ∈M only if s1 �= s′1 and s2 �= s′2 . The ver-
tex v is said to be right-unmatched (resp., left-unmatched) with
respect to a matching M associated with B(S1 , S2 , ES1 ,S2 ) if
v ∈ S2 (resp., S1), and v does not belong to an edge in the match-
ing M . A matching is said to be maximum if it is a matching
with the maximum number of edges among all possible match-
ings. Additionally, a matching is called a perfect matching if
it does not contain right-unmatched vertices. Given a bipartite
graph B(S1 , S2 , ES1 ,S2 ), the maximum matching problem can
be solved efficiently in O(

√
|S1 ∪ S2 ||ES1 ,S2 |) time [24].

Given a structural pair (Ā, B̄), we associate a directed graph
G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ), which we refer to as the sys-
tem digraph, where X = {x1 , . . . , xn} and U = {u1 , . . . , um}
denote the set of state vertices and input vertices, and EX ,X =
{(xi, xj ) : [Ā]j i �= 0} and EU ,X = {(uj , xi) : [B̄]ij �= 0} de-
note its edge sets. In the remaining of the paper, unless otherwise
specified, a state vertex being reachable means that it is reach-
able from some input vertex. Similarly, a vertex set is reachable
if every vertex in the set is reachable. Also, due to the graph rep-
resentation of the pair (Ā, B̄), when (Ā, B̄) is structural control-
lable, we interchangeably say that G(Ā, B̄) is structurally con-
trollable. In addition, we can associate an undirected bipartite
graph with G(Ā, B̄), called the system bipartite graph and de-
noted by B(Ā, B̄) = B(X+ ∪ U+ ,X−, EX+ ,X− ∪ EU+ ,X−), in
which {x+

i , x−j } ∈ EX+ ,X− if (xi, xj ) ∈ EX ,X , and {u+
i , x−j } ∈

EU+ ,X− if (ui, xj ) ∈ EU ,X . Subsequently, for ease of notation,
we use a signal-notation mapping s : EX ,X ∪ EU ,X → EX+ ,X− ∪
EU+ ,X− to map edges from the system digraph into edges of the

1We denote undirected edges using curly brackets {vi , vj }, in contrast with
directed edges, for which we use parenthesis.
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system bipartite graph, as follows: s((ui, xj )) = {u+
i , x−j } and

s((xi, xj )) = {x+
i , x−j }. In addition, due to the bijectivity of

the signal-notation mapping, we have that s−1({u+
i , x−j }) =

(ui, xj ) and s−1({x+
i , x−j }) = (xi, xj ).

The concepts introduced in this section can be used to de-
termine if a structural system is structurally controllable, as
follows.

Theorem 1 ([11], [13]): The pair (Ā, B̄) is structurally con-
trollable if and only if the following two conditions hold.

1) Every state vertex x ∈ X in the system digraph
G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ) is reachable (from
some input vertex u ∈ U).

2) Any maximum matching M of the system bipartite graph
B(Ā, B̄) = B(X+ ∪ U+ ,X−, EX+ ,X− ∪ EU+ ,X−) has no
right-unmatched vertices. �

Notice that both conditions in Theorem 1 can be verified
in polynomial time [11]. Hence, one could naively try to en-
sure both conditions by adding edges iteratively, but such an
approach is, in general, nonoptimal and does not provide opti-
mality guarantees.

IV. MINIMUM TOPOLOGICAL CHANGES TO ENSURE

STRUCTURAL CONTROLLABILITY

In this section, we provide the main results of the paper.
First, in Section IV-A, we reformulate Problem 1 as a graph-
theoretical problem. Next, in Section IV-B, we sharpen our
intuition by exploring two particular network topologies. In
Section IV-C, we show that iterative solutions are suboptimal.
Next, using graph-theoretical tools, we characterize the set of
feasible solutions to Problem 1 (see Theorem 2). Subsequently,
we obtain a feasible solution containing the minimum num-
ber of additional edges to ensure structural controllability (see
Theorem 3). Finally, we provide a polynomial-time algorithm
(see Algorithm 3) to obtain an optimal solution to Problem 1,
whose correctness and computational complexity are proved in
Theorem 4.

A. Graph-Theoretical Optimization Problem

At a first glance, Problem 1 may seem a purely combinatorial
problem. Naively, one may find a solution by exhaustively ex-
ploring the set of n× n binary matrices. However, Theorem 1
can be leveraged to shrink the search domain of (2). This moti-
vates us to recast (2) as the following graph-theoretical problem.

Recall that the system digraph is given by G(Ā, B̄) = (X ∪
U , EX ,X ∪ EU ,X ). Therefore, given a feasible edge-addition ma-
trix Ã, we can associate a digraph with the perturbed struc-
tural system (Ā + Ã, B̄), which we denote by G(Ā + Ã, B̄) =
(X ∪ U , EX ,X ∪ EU ,X ∪ Ẽ), where the edge set Ẽ ⊆ X × X is
such that (xi, xj ) ∈ Ẽ if and only if Ãji = 1. Subsequently,
since there is an one-to-one correspondence between Ẽ and the
structural matrix Ã, we can provide the following equivalent
formulation of Problem 1.

Problem 2: Given the system digraph G(Ā, B̄) = (X ∪
U , EX ,X ∪ EU ,X ), find

Ẽ∗ = arg min
Ẽ⊆X×X

|Ẽ|

s.t. G(Ā + Ã, B̄) = (X ∪ U , EX ,X ∪ EU ,X ∪ Ẽ)
is structurally controllable.

Additionally, we define a feasible edge-addition configura-
tion as a set of edges that is a feasible solution of Problem 2.
Also, an optimal edge-addition configuration is defined as an
optimal solution of Problem 2.

B. Special Cases

Next, before showing that iterative strategies can be subopti-
mal, we discuss two special cases to sharpen our intuition. First,
recall that according to Theorem 1, the pair (Ā, B̄) is struc-
turally controllable, if and only if, two conditions are satisfied.
Therefore, we explore two special cases, where in each case
only one of the conditions in Theorem 1 is satisfied; hence, only
the remaining condition needs to be ensured to attain feasibility.

Case I: Consider a structured system (Ā, B̄) such that only
Condition 1) in Theorem 1 holds, while Condition 2) is not sat-
isfied. In other words, all state vertices are reachable while there
exists a maximum matching of the system bipartite graph with
right-unmatched vertices. As a result, the cardinality of a maxi-
mum matching M with respect to B(Ā, B̄) is strictly less than
n. Subsequently, let us denote by UL = {vl

i : i ∈ {1, . . . , nl}}
and UR = {vr

i : i ∈ {1, . . . , nr}} the left- and right-unmatched
vertices associated with a maximum matching M , respectively.
In particular, notice that nl ≥ nr since |X+ ∪ U+ | ≥ |X−|, and
|M | = n− nr . Therefore, to ensure that G(Ā + Ã, B̄) is struc-
turally controllable, it is sufficient to add edges between UL

and UR without common end points and such that all right-
unmatched vertices belong to one of such edges. However, such
approach is not necessarily a solution to Problem 2 since some
of the newly considered edges may correspond to edges be-
tween input and state vertices, while we are only allowed to
connect pairs of state vertices. Consequently, let (without loss
of generality) UXL = {vl

i : i ∈ {1, . . . , nr}} ⊆ UL be the set of
nr left-unmatched state vertices. Therefore, an optimal edge-
addition configuration can be obtained as E∗ = {(vl

i , v
r
i ) : vl

i ∈
UXL , vr

i ∈ UR, i ∈ {1, . . . , nr}}. In other words, M ∪ E∗ is a
maximum matching with respect to the bipartite graph B(Ā +
Ã, B̄) without right-unmatched vertices, which implies that
Condition 2) in Theorem holds. Thus, Ẽ∗ = {s−1({vl

i , v
r
i })) :

{vl
i , v

r
i } ∈ E∗} is an optimal solution to Problem 2. Since there

may exist multiple maximum matchings of the system bipar-
tite graph, the optimal edge-addition configuration constructed
using the above procedure may not be unique. However, the
number of right-unmatched vertices are the same for all maxi-
mum matchings due to maximality. As a result, in this case, all
optimal edge-addition configurations contain nr edges.
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Remark 1: Under the assumption that all state vertices in
the system digraph are reachable, Problem 1 can also be solved
via an integer program, as proposed in [21].

Case II: Suppose that a network (Ā, B̄) is such that
Condition 2) in Theorem 1 holds, while Condition 1) does not,
i.e., some state vertex might be unreachable in G(Ā, B̄). Since
at least one state vertex is assumed to be actuated (i.e., B̄ �= 0),
the set of reachable state vertices is nonempty. Therefore, we
propose to partition the state vertices of the system digraph into
two disjoint sets according to their reachability. Let R1 and N
be the sets containing all the reachable and unreachable state
vertices, respectively. Then, we define Gr (respectively, Gu ) as
theR1-induced (respectively, N -induced) subgraph.

Now, notice that if an edge is added to ensure the reacha-
bility of any vertex v in some source SCC in Gu (i.e., the tail
of the edge is a reachable state vertex), then all state vertices
reachable from this particular source SCC become reachable
as well. Consequently, to ensure reachability of all state ver-
tices, it is sufficient to add edges to ensure reachability of one
vertex per each unreachable source SCCs. Additionally, it is
also necessary to have an edge pointing toward each source
SCC in Gu , since otherwise the vertices belonging to it remain
unreachable. Therefore, we first need to identify the source
SCCs in the DAG associated with the unreachable subgraph
Gu (these source SCCs can be efficiently found using, for ex-
ample, [24]). Also, without loss of generality, assume there
are r of these source SCCs, whose vertex sets are denoted by
Sj ⊆ N , j = 1, . . . , r. Subsequently, to ensure the reachabil-
ity of all state vertices in N , we need to add r edges whose
tails are in a reachable vertex and each head points toward
one of the vertices in one of the r source SCCs. Thus, the set
Ẽ∗ = {(vr , vj ) : vr ∈ R1 , vj ∈ Sj , j ∈ {1, . . . , r}} is an opti-
mal edge-addition configuration. Notwithstanding, notice that
Ẽ∗ does not characterize all possible optimal edge-addition con-
figurations, since when an edge is added from a reachable vertex
toward an unreachable source SCC, all state vertices reachable
from this particular source SCC become reachable; thus, the tail
of an edge in an optimal edge-addition configuration should be
inR1 and its head should be in an unreachable source SCC.

From Case I, we notice that selecting new edges for the edge-
addition configuration do not increase the number of right-
unmatched vertex associated with the system bipartite graph.
Similarly, adding more edges never decreases the number of
reachable state vertices in the system digraph. As a consequence,
one may select edges to ensure both conditions in Theorem 1
are satisfied iteratively. Nonetheless, such a selection scheme
often leads to suboptimal solutions, as we show next.

C. Iterative Solutions Are Suboptimal

In order to motivate the need for an algorithm that solves
a general instance of the problem proposed in Problem 2, we
describe below a naive iterative approach leading to suboptimal
solutions. The steps in this iterative algorithm are based on
the cases described in Section IV-B. Specifically, each iteration
consists of a two-stage process. In the first stage, we find the
minimum number of edges required to satisfy Condition 2) in

Fig. 1. In (a), we illustrate a system digraph G({u, x1 , x2}, {(u, x1 )})
with three vertices and one edge depicted in black. The goal is to find
the smallest subset of state edges (depicted by red edges) to ensure
structural controllability. Let us consider the iterative strategy described
in Section IV-C. In (b), we depict a possible solution to the first step
described in Case I, i.e., the edge (x2 , x2 ) suffices to satisfy Condition 2)
in Theorem 1. In (c), we depict a possible solution to the second step
described in Case II when the system digraph considered is the one
depicted in (b). In (d), in contrast, the edge (x1 , x2 ) suffices to satisfy
Condition 1) in Theorem 1, resulting in the system digraph.

Fig. 2. In (a), we illustrate a system digraph G({u, x1 , x2 , x3},
{(u, x1 )}) in black. The goal is to find the smallest subset of state edges
(depicted by red) to ensure structural controllability. Let us consider the
iterative strategy described in Section IV-C. In (b), we depict a possible
solution to the first step described in Case II. In (c), we depict a possible
solution to the second step, which was computed by performing the solu-
tion described in Case I when the system digraph considered is the one
depicted in (b). In (d) , in contrast, the edge (x2 , x3 ) suffices to satisfy
Condition 2) in Theorem 1, resulting in the system digraph.

Theorem 1 using the methodology described in Case I. The
second stage in each iteration is described in Case II, whose aim
is to satisfy Condition 1) in Theorem 1.

To show how this iterative approach can lead to suboptimal
solutions, we show in Fig. 1 an instance where we initially
use the method proposed in Case I to ensure that Condition 2)
in Theorem 1 holds, followed by the method proposed in
Case II is applied to ensure Condition 1) in Theorem 1. As
we explain in the caption of Fig. 1, the naive strategy requires
two edges, whereas the digraph depicted in Fig. 1(d) is also
feasible and requires only one edge. Alternatively, in Fig. 2,
we provide an instance where the strategy adopted aims first to
ensure Condition 1) in Theorem 1, followed by Condition 2)
in Theorem 1, using the solutions in Case II and Case I, re-
spectively. Again, in this case, the naive strategy requires three
edges, whereas the digraph depicted in Fig. 2(d) is also feasible
and requires only two edges. In summary, naive strategies are
(in general) suboptimal.

D. General Case

Hereafter, we characterize the solutions to Problem 2 when
no assumptions are made on the topology of the network. First,
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Fig. 3. Illustration of Algorithm 1. All vertices (blue or black), together
with all black edges, form the initial system digraph G(Ā, B̄). The black
vertices, except the input vertex u, constitute the set of reachable state
vertices R1 (enclosed by the black dashed ellipsoid). Blue vertices con-
stitute the set of unreachable state vertices N . The unreachable state
source SCCs, N1 and N2 , are contained in red dashed squares. In (a),
we depict one possible result for Algorithm 1. In the initialization step, our
algorithm initializes SB as the set containing edge e1 only. Subsequently,
after e1 is added to SB , all the states reachable from N1 become reach-
able [we encircle these reachable states by a blue dashed ellipsoid in
(a)]. Afterward, in the FOR loop, edge e2 in (a) is added to SB (in Step 5
of Algorithm 1), resulting in a digraph in which all vertices are reachable
from the input node. (b) Alternative output of Algorithm 1. Notice that
both in (a) and (b), all vertices are reachable after adding two red edges.
Therefore, SB = {e1 , e2} and S ′B = {e′1 , e′2} are two possible sets of
bridging edges.

we introduce a definition required to characterize the smallest
collection of edges needed to attain reachability, i.e., satisfy
Condition 1) in Theorem 1. In order to introduce this definition,
we need to define the following notation. Let G(Ā, B̄) = (X ∪
U , EX ,X ∪ EU ,X ) be the system digraph, and partition the set
of state vertices X into two sets based on their reachability
(from an input), namely, X = R1 ∪N , where R1 is the set
of reachable vertices and N is the set of unreachable vertices.
Additionally, without loss of generality, let us assume there
are r source SCCs that are unreachable, which vertex sets are
denoted by N1 , . . . ,Nr ⊆ N . Also, let Δ(Nh) denote the set
of vertices that are reachable in G(Ā, B̄) from the vertices in
Nh , for h = 1, . . . , r.

Definition 1: A set SB is called a set of bridging edges if it
can be generated by the following recursive algorithm.

Algorithm 1 is illustrated in Fig. 3. In particular, notice that
at the end of this algorithm N =

⋃r
h=1 Δ(Ntk

), which implies
that all unreachable states become reachable. Furthermore, no-
tice that the set of bridging edges contains the minimum num-
ber edges required to ensure that all state vertices are reach-
able. In fact, it readily follows that the solutions to Case II in
Section IV-B can be characterized by the possible sets of bridg-
ing edges. Furthermore, the set of bridging edges only ensure
Condition 1) in Theorem 1, which is not sufficient to ensure
structural controllability in general. More specifically, to ensure
structural controllability and, subsequently, to obtain a feasible
edge-addition configuration, two types of edges are required:
1) a set of bridging edges, and 2) edges that connect left-
unmatched state vertices to right-unmatched vertices in some
maximum matching associated with the system bipartite graph
(recall Case I in Section IV-B). In what follows, we state neces-
sary and sufficient conditions to obtain a feasible edge-addition
configuration.

Theorem 2: Let G(Ā, B̄) be a system digraph and B(Ā, B̄)
be its bipartite representation. Furthermore, let M be a

Algorithm 1: Set of Bridging Edges.
Input: SetsR1 and N1 , . . . ,Nr ;
1: Initialize K = {1, . . . , r}, t1 as any value in K, and the

set SB to contain a single edge (i, j) where i is any
vertex inR1 and j is any vertex in Nt1 ;

2: for k = 2 : r do
3: Rk ← Rk−1 ∪Δ(Ntk −1 );
4: Assign tk to any value in K \

⋃k−1
h=1{th};

5: SB ← SB ∪ {(i, j)} for any i ∈ Rk and any
j ∈ Ntk

;
6: end for

maximum matching associated with B(Ā, B̄) and UL (M) =
{vl

i : i ∈ {1, . . . , nl}} and UR (M) = {vr
i : i ∈ {1, . . . , nr}}

be the left- and right-unmatched vertices of M . Without loss of
generality, let UXL (M) = {vl

i : i ∈ {1, . . . , nr}} denotes the set
of nr left-unmatched state vertices of M . A set Ẽ is a feasible
edge-addition configuration if and only if it contains the union
of the following two sets.

a) SB is the set of bridging edges.
b) SM ={s−1({vl

i , v
r
i }) : vl

i ∈UXL (M), vr
i ∈ UR (M), and

i = {1, . . . , nr}}, for some maximum matching M
associated with the system bipartite graph.

�
From Theorem 2, we can readily obtain a lower bound on the

number of edges in a feasible edge-addition configuration.
Corollary 1: The cardinality of an optimal edge-addition

configuration Ẽ∗ satisfies |Ẽ∗| ≥ max{nr , r}, where nr is
the number of right-unmatched vertices of any given maxi-
mum matching M associated with the system bipartite graph
B(Ā, B̄), and r is the number of unreachable state source SCCs
in the DAG associated with the system digraph G(Ā, B̄).

In particular, it is easy to verify that the equality in Corollary 1
is ensured when both special cases addressed in Section IV-B
are considered.

Although Theorem 2 characterizes feasible edge-addition
configurations, we seek to find a feasible edge-addition config-
uration of minimum cardinality. To achieve this goal, we notice
that it is preferable to obtain a maximum matching whose set
of right-unmatched vertices are spread across different unreach-
able source SCCs. This is because the edges connecting left- to
right-unmatched vertices in this particular maximum matching
are useful to simultaneously satisfy both Conditions (a) and (b)
in Theorem 2. To formalize this reasoning, we introduce the
following concept.

Definition 2: Let G(Ā, B̄) be the system digraph and M
be a maximum matching associated with its bipartite repre-
sentation B(Ā, B̄). Furthermore, denote by UR (M) the set of
right-unmatched vertices of M . An unreachable state source
SCC of the DAG associated with the system digraph G(Ā, B̄)
is said to be unreachable assignable if it contains at least one
right-unmatched vertex in UR (M).

Whether an unreachable state source SCC S is unreach-
able assignable depends on the specific maximum matching
M . In other words, given two sets UR (M1) and UR (M2) of
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Fig. 4. Example illustrating Algorithm 2. The black vertices and edges
in (a) form the initial system digraph G(Ā, B̄). In this case, N =
{x2 , x3 , x4} is the set of unreachable state vertices. Moreover, there is
only one unreachable source SCC, whose vertex set is N1 = {x2 , x3}.
The black vertices and edges in (b) constitute the original system bipartite
graph B(Ā, B̄), while the blue vertex γ1 represents a slack variable asso-
ciated withN1 . In addition, the blue dashed edges {γ1 , x2} and {γ1 , x3}
together constitute EI . The minimum-weighted maximum matching M ′

of Bw is depicted using red edges in (c). By removing {γ1 , x−2 } ∈ EI , we
have that M = {{u, x−1 }, {x

+
2 , x−3 }, {x

+
3 , x−4 }} is a maximum matching

of B(Ā, B̄). In (d), we depict in red the edges from the system digraph
G(Ā, B̄) associated with those in the maximum matching M. Notice that
x2 is a right-unmatched vertex of M and it is in N1 ; hence, M is a
maximum matching attaining the USAN of G(Ā, B̄).

right-unmatched vertices associated with two different maxi-
mum matchings M1 and M2 , it is possible that UR (M1) con-
tains a vertex from S while UR (M2) does not. We introduce
the following definition to characterize the maximum number
of possible unreachable-assignable state source SCCs.

Definition 3: The unreachable source assignability num-
ber (USAN) of the system digraph G(Ā, B̄) is defined as the
maximum number of unreachable-assignable state source SCCs
among all the maximum matchings associated with the system
bipartite graph B(Ā, B̄).

Remark 2: According to Definition 3, for every system
digraph G(Ā, B̄), the USAN must be less or equal to the num-
ber of right-unmatched vertices associated with any maximum
matching of the B(Ā, B̄) and the total number of unreachable
state source SCCs in G(Ā, B̄).

To find a maximum matching associated with the system
bipartite graph that attains the USAN, one can naively enumer-
ate all possible maximum matchings associated with B(Ā, B̄),
but this approach incurs into a problem that is computationally
�P -complete2 [25]. Instead of using an exhaustive search, it is
possible to determine in polynomial time a maximum matching
attaining the USAN using the following algorithm.

Remark 3: The proof of correctness of the algorithm de-
scribed above is very similar to the proof of [13, Th. 11 in
Sec. VI].

Essentially, in order to find a maximum matching attaining
the USAN, we associate a slack vertex γi with each unreach-
able source SCCNi . We create additional edges from each slack
vertex to every state vertex of its corresponding SCC. In other
words, we let EI =

⋃r
i=1{{γi, x

−
j } : xj ∈ Ni}. Next, we set the

weights of edgesEI higher than the weights of edges inB(Ā, B̄).
With this particular selection of weights, the minimum-weighted
maximum matching M ′ prefers selecting edges in B(Ā, B̄)
to edges in EI . In particular, edges are selected from EI if it

2The class of �P -complete problems is a class of computationally equivalent
counting problems that are at least as difficult as the NP-complete problems.

Algorithm 2: Maximum Matching Attaining the USAN.

Input: A system digraph G(Ā, B̄);
Output: A maximum matching M attaining the USAN;
1: Partition the set of state vertices in the system digraph

G(Ā, B̄) based on their reachability. Obtain the set
containing all the unreachable vertices of G(Ā, B̄),
denoted asN , and itsN -induced subgraph, denoted as
Gu.

2: Obtain the source SCCs of Gu and denote their vertex
sets as N1 , . . . ,Nr , where r is the total number of
source SCCs in Gu ;

3: Define a vertex set I = {γ1 , . . . , γr} comprising r
slack vertices. Construct a weighted bipartite graph
Bw = B(X+ ∪ U+ ∪ I,X−, EX+ ,X− ∪ EU+ ,X− ∪ EI),
where EI =

⋃r
i=1{{γi, x

−
j } : xj ∈ Ni}. The weights

in Bw are as follows: every edge in EX+ ,X− ∪ EU+ ,X− is
assigned to have unit weight, whereas every edge in EI
has weight two;

4: Let M ′ be the minimum-weighted maximum matching
of Bw ;

5: Return M = M ′ \ EI .

helps to increase the matching. As a consequence, the vertices
that are matched using edges in EI must correspond to right-
unmatched vertices in the matching M ′ \ EI . Furthermore, these
right-unmatched vertices are spread across different unreach-
able source SCCs. Finally, due to maximality of matching, we
can ensure that M achieves the USAN. To further illustrate the
algorithm, we present an example in Fig. 4.

Remark 4: Due to maximality, the USAN is unique for every
system digraph G(Ā, B̄). Nonetheless, there may exist multiple
maximum matchings that attains this value. Algorithm 2 obtains
one particular solution.

Although the maximum matching that achieves the USAN
can be efficiently obtained as described in Algorithm 2, this is
not sufficient to obtain an optimal feasible edge-addition con-
figuration. To illustrate this claim, let us consider the example
depicted in Fig. 5. In this case, the optimal feasible edge-addition
configuration depends on the maximum matching achieving the
USAN. Specifically, if all the left-unmatched vertices are un-
reachable state vertices, then after fulfilling Condition (b) in
Theorem 2, we should add extra edges to form a set of bridging
edges to ensure Condition (a) in Theorem 2. This would result
in a suboptimal solution.

Since ‖B‖0 �= 0, one can find a path rooted at an input ver-
tex u ∈ U whose end vertex is some state vertex x ∈ X . Thus,
x− is a left-unmatched vertex in the maximum matching con-
taining the path. Consequently, it is always possible to obtain a
maximum matching associated with B(Ā, B̄) with at least one
reachable left-unmatched state vertex—See Proof of Theorem 3
in Appendix A for more details. Moreover, when an edge is
added from the reachable left-unmatched vertex to a right-
unmatched state vertex in an unreachable source SCC, the set
of reachable state vertices can be extended. We will use this fact
to circumvent the suboptimality issue mentioned above. In our
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Fig. 5. This figure presents two examples where different maximum
matchings lead to sets of feasible edge-addition configurations with dif-
ferent cardinalities. The black vertices and edges in (a) form the ini-
tial system digraph G(Ā, B̄). The red edges in (c) and (e) constitute
two different maximum matchings associated with B(Ā, B̄). The red
edges in (b) and (d) are direct graph representations of the edges de-
termined by the maximum matchings in (b) and (d), respectively. The
edge-set Ẽ2 = {(x1 , x2 )} [depicted by blue dashed arrows in (d)] is a
feasible edge-addition configuration, since the addition of (x1 , x2 ) en-
sures both conditions in Theorem 1. In contrast, in (b) we also need to
add edge (x2 , x2 ) [in addition to (x1 , x2 )] to ensure that Theorem 2-(b)
holds, which leads to a feasible edge-addition configuration given by
Ẽ1 = {(x1 , x2 ), (x2 , x2 )}. Thus, Ẽ2 is an optimal edge-addition configu-
ration with cardinality 1 while Ẽ1 is not.

next result, we characterize the relationship between the USAN
and the optimal value to Problem 2.

Theorem 3: Given the system digraph G(Ā, B̄) and its bi-
partite representationB(Ā, B̄), if ‖B̄‖0 > 0, then the cardinality
of an optimal edge-addition configuration p∗ = |Ẽ∗| satisfies

p∗ = nr + r − q (3)

where nr is the number of right-unmatched vertices in any
maximum matching associated with B(Ā, B̄), r is the number
of unreachable source state SCCs in the DAG associated with
G(Ā, B̄), and q is the USAN.

In fact, based on the constructive proof of Theorem 3 in
Appendix A, we propose a procedure (described in Algorithm 3)
to find an optimal edge-addition configuration in polynomial
time. Briefly, Algorithm 3 consists of the following four main
steps: Step 1—Decompose the system digraph based on the
reachability of state vertices. Step 2—Determine a maximum
matching that achieves the USAN; if the obtained maximum
matching admits no reachable left-unmatched vertex, then we
alter the matching by finding a path rooted at certain input ver-
tex. Step 3—Based on the obtained maximum matching, in order
to ensure both conditions in Theorem 2, select the edges from
reachable left-unmatched vertices to right-unmatched vertices
in unreachable source SCCs iteratively. (Step 4) If the system is
still not structurally controllable, then add the smallest collec-
tion of edges ensuring that both conditions in Theorem 2 hold
independently. The correctness and computational complexity
of this procedure are described in the following result.

Theorem 4: Given the system digraph G(Ā, B̄) = (X ∪
U , EX ,X ∪ EU ,X ), Algorithm 3 provides an optimal solution
to Problem 2. Furthermore, the computational complexity of
Algorithm 3 is O(|X ∪ U|3).

Remark 5: The computational complexity incurred by
Algorithm 3 is comparable to that incurred by the algorithms
required to solve the special cases described in Section IV-B.
Specifically, the solution to Case I can be determined through
the computation of a maximum matching, whose computational
complexity is given by O(

√
|X ∪ U||EX+ ,X− ∪ EU+ ,X−|) [24].

Fig. 6. System digraph G(Ā, B̄) containing a single input vertex u and
ten state vertices {x1 , . . . , x10} (depicted in black dots). Black arrows
correspond to the edges of G(Ā, B̄). The dashed blue ellipsoid contains
all the reachable state vertices, i.e., R1 = {x1 , . . . , x4}, whereas each
red dashed square contains an unreachable source SCC, whose vertex
sets are N1 = {x5}, N2 = {x10}, and N3 = {x7 , x8}, respectively.

Alternatively, the solution to Case II can be obtained by de-
termining the SCCs of the system digraph, which can be ob-
tained by running a depth-first search algorithm twice [24] and
incurring in O(|X ∪ U|2) computational complexity. A MAT-
LAB implementation of Algorithm 3 can be found in [26].

V. SIMULATIONS

In this section, we illustrate the use of the main results of
this paper. In particular, given a structurally uncontrollable sys-
tem, we determine the minimum number of additional edges
required for ensuring structural controllability in a some artifi-
cial network models. First, in Section V-A, we provide a peda-
gogical example capturing the outcome of the different steps of
Algorithm 1. In Section V-B, we evaluate the minimum num-
ber of edges required in the context of large-scale randomly
generated networks.

A. Illustrative Example

Consider the pair (Ā, B̄), whose system digraph is depicted
in Fig. 6. Notice that the system is not structurally controllable
since both conditions in Theorem 1 fail to hold. Therefore, ad-
ditional edges are required to ensure structural controllability.
Toward this goal, we invoke Algorithm 3 to obtain an opti-
mal edge-addition configuration that solves Problem 1 given
(Ā, B̄). In this algorithm, we need to decompose the system
digraph G(Ā, B̄) according to the reachability of its state ver-
tices. In particular, the set of reachable state vertices is given by
R1 = {x1 , . . . , x4}, while the set of unreachable state vertices
is N = {x5 , . . . , x10}. Subsequently, we find the unreachable
source SCCs, whose vertex sets are denoted byN1 , N2 , andN3
in Fig. 6; hence, the set of states in unreachable source SCCs
is {x5 , x7 , x8 , x10}. Step 2 of Algorithm 3 computes a maxi-
mum matching M̄ using Algorithm 2. In Fig. 7(a), we present in
red such maximum matching, whose set of left-unmatched state
vertices and right-unmatched vertices are UXL (M̄) = {x2 , x9}
and UR (M̄) = {x5 , x10}, respectively. Notice that x5 and
x10 belong to two different unreachable source SCCs; hence,
the USAN equals two, i.e., q = 2. As a result, by invoking
Theorem 3, it follows that an optimal edge-addition configura-
tion consists of p∗ = 3 edges.

Now, notice that x2 is a reachable left-unmatched vertex,
i.e., x2 ∈ UXL (M̄) ∩R1 . Thus, Step 2 of Algorithm 3 sets
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Algorithm 3: Computing an Optimal Edge-Addition Con-
figuration Ẽ∗ to Problem 2.

Input: The system digraph G(Ā, B̄);
Output: An optimal edge-addition configuration Ẽ∗;

Step 1: System digraph decomposition
1: Obtain the set of all reachable (resp. unreachable) state

verticesR1 (resp. N in G(Ā, B̄).
Step 2: Maximum matching attaining the USAN

2: Obtain a maximum matching M̄ associated with
B(Ā, B̄) attaining the USAN q using Algorithm 2;

3: if UXL (M̄) ∩R1 = ∅ then
4: Find v such that v ∈ R1 and (u, v) ∈ EU ,X \ M̄ ;
5: Find v̂ such that {v̂+ , v−} ∈ M̄ ;
6: M ←

(
M̄ \ {{v̂+ , v−}}

)
∪ {{u+ , v−}};

7: else
8: Set M equal to M̄ ;
9: end if

Step 3: Add edges to satisfy (a) and (b) in Theorem 2
10: Obtain the unique set of disjoint paths P =

⋃q
i=1 Pi in

the matching M , where the starting vertex of each Pi

is in some unreachable source SCC and the end vertex
is a left-unmatched state vertex;
� We remark that the uniqueness of P is a direct
consequence of M being a matching.

11: Construct two sets of vertices S = {s1 , . . . , sq} and
T = {t1 , . . . , tq} such that si and ti are the starting
and ending vertices of each path Pi , respectively;

12: Let Ẽ∗ ← ∅ and k ← 1;
13: if T ∩ R1 = ∅ then
14: Select a t0 such that t+0 ∈ UXL (M) and t0 ∈ R1 ;
15: for k ≤ q do
16: Ẽ∗ ← Ẽ∗ ∪ {(tk−1 , sk )}; k ← k + 1;
17: end for
18: UXL (M)← UXL (M) \ {t+0 , . . . , t+q−1};
19: else
20: Find and apply a permutation of the i indexes

associated to the paths Pi such that t1 ∈ R1
(accordingly, permute the elements in S and T );

21: for k < q do
22: Ẽ∗ ← Ẽ∗ ∪ {(tk , sk+1)}; k ← k + 1;
23: end for
24: Ẽ∗ ← Ẽ∗ ∪ {(tq , s1)}; UXL (M)← UXL (M) \ T ;
25: end if
26: UR (M)← UR (M) \ S;

Step 4: Add extra edges to satisfy Theorem 2
27: for v+

l ∈ UXL (M) do
% to satisfy Theorem 2-(b)

28: if UR (M) �= ∅ then
29: Ẽ∗ ← Ẽ∗ ∪ {(vl , vr )}, for some v−r ∈ UR (M);
30: UXL (M)← UXL (M) \ v+

l ;
UR (M)← UR (M) \ v−r ;

31: end if
32: end for

Algorithm 3: Continued.

33: Construct a graph Gaug = (X ∪ U , EX ,X ∪ EU ,X ∪ Ẽ∗).
Let Ci, i = 1, . . . , β, be the vertex-sets of β unreach-
able source SCCs in the DAG of Gaug. Additionally,
letRaug be the set of all reachable
vertices in Gaug;

34: for i = 1 : β do % to satisfy Theorem 2-(a)
35: Ẽ∗ ← Ẽ∗ ∪ {(vi, zi)}, for some vi ∈ Raug, zi ∈ Ci.
36: end for

Fig. 7. Maximum matching M̄ obtained using Step 2 in Algorithm 3.
In (a), we depict the system bipartite graph associated with the pair
(Ā, B̄), whose edges are depicted in black and red (edges in red are
those in the maximum matching M̄ ). In (b), we depict in red the edges
from the system digraph G(Ā, B̄) associated with those in the maximum
matching M̄ .

M equal to M̄. To obtain an optimal edge-addition configu-
ration Ẽ∗, we should add an edge with tail in x2 and head
in some right-unmatched unreachable state vertex. According
to M, we obtain P = P1 ∪ P2 , where P1 = {x5 , x6 , x1 , x2}
andP2 = {x10 , x9}. FromP, the set S = {s1 = x5 , s2 = x10}
and T = {t1 = x2 , t2 = x9} are constructed accordingly. As a
result, Step 3 in Algorithm 3 adds the edge (x2 , x10) to the
edge-addition configuration Ẽ∗. By selecting this edge, all ver-
tices reachable from x10 become reachable. Subsequently, the
algorithm adds (x9 , x5) to Ẽ∗, after which Condition (b) in
Theorem 2 is satisfied, since M ∪ Ẽ∗B is a maximum match-
ing of G(Ā + Ã, B̄) without right-unmatched vertices, where
Ẽ∗B = {(x−2 , x+

10), (x
−
9 , x+

5 )} represents the bipartite representa-
tion of the edges in Ẽ∗ in G(Ā + Ã, B̄).

Finally, it remains to ensure that every state vertex is reach-
able, i.e., that Condition (a) in Theorem 2 is satisfied by
G(Ā + Ã, B̄). Toward this end, notice that the only remain-
ing unreachable state source SCC is given by N3 = {x7 , x8}.
Consequently, it suffices to add (x1 , x7) into Ẽ∗ to ensure their
reachability. However, there are multiple choices of edges to
ensure the reachability of N3 . More specifically, instead of
adding (x1 , x7) into Ẽ∗, one can add any edge (xi, xj ) with
i ∈ {1, . . . , 6, 10} and j ∈ {7, 8} as an alternative. In sum-
mary, an optimal edge-addition configuration, i.e., a solution to
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Fig. 8. Evolution of the average value of p∗ as c and pb vary. In
(a), we fix the value of c and show the evolution of p∗ versus pb ,
when pb ranges from 0.1 to 0.8 with step size 0.1. The red, blue,
and black lines correspond to c = 0.1, c = 1.5, and c = 3, respec-
tively. In (b), we plot the evolution of p̄∗ when c varies in the interval
c ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.5, 2, 3, 4}, while fixing pb . The red, blue, and
black lines show the value of p̄∗ when pb = 0.1, pb = 0.5, and pb = 0.8,
respectively. In both figures, the error bars represent the standard devi-
ation of p∗.

Problem 2, is given by Ẽ∗ = {(x2 , x10), (x9 , x5), (x1 , x7)},
which contains p∗ = 3 edges, as prescribed by Theorem 3.

B. Random Networks

In this section, we explore the minimum number of edges p∗

contained in an optimal edge-addition configuration Ẽ∗ required
to ensure structural controllability of random networks. We as-
sume that the structure of Ā is generated using an Erdős–Renyi
model, i.e., [Ā]ij = 1 with probability 0 < pa < 1 for all i, j;
0 otherwise. In our simulations, the size of Ā is assumed to
be n = 1000. We let c ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.5, 2, 3, 4} and
define pa = c

n for every c accordingly. Thus, c represents the
average sum of in-degree and out-degree of each vertex in the
graph represented by A. Moreover, we assume B̄ to be a random
diagonal matrix with pbn entries equal to 1, and 0 otherwise,
where pb ∈ (0, 1) represents the fraction of vertices to be set
equal to 1. With this particular setup, we examine the value of
p∗ as we vary c and pb , independently.

In Fig. 8, we plot the empirical average of p∗ (over ten random
realizations). Notice that p∗ decreases as c or pb increase. Intu-
itively, a larger value of c results in a denser state digraph. Thus,
both conditions in Theorem 1 are more likely to be satisfied.
In other words, the number of right-unmatched vertices associ-
ated with the maximum matching of the system bipartite graph
and the number of unreachable state vertices are smaller as c
increases. Furthermore, when pb becomes close to one, almost
every state vertex is actuated by an individual input. Thus, (a) in
Theorem 1 holds with high probability. Since p∗ = nr + r − q,
it follows that p∗ decreases as c or pb increase.

To emphasize the effect of varying pb (respectively, c) on
the minimum number of additional edges to ensure structural
controllability, we plot in Fig. 8(a) [respectively, Fig. 8(b)] the
evolution of p∗ when c is fixed (respectively, pb is fixed). In
Fig. 8(a), we observe that for a reasonably small value of c (e.g.,
c = 3), the impact of pb in the size of the optimal edge-addition
configuration is almost negligible. Intuitively, as c increases
toward log(n), the number of isolated vertices in the random

subgraph induced by state vertices decreases. In particular, if c ≈
log(n), then the state digraph presents a unique giant SCC [27].
Subsequently, p∗ is small even when there is only one state
being actuated by an input. Indeed, in our experiment, p̄∗ = 1.1
when c = 7 and pb = 0.001. In Fig. 8(b), we observe an almost
exponential decrease of p∗ with respect to c.

VI. CONCLUSION

We have addressed the problem of designing the topology
of a networked dynamical system in order to achieve struc-
tural controllability. In particular, given a system digraph, we
have developed an efficient methodology to find the minimum
number of edges that must be added to the digraph to ren-
der a structurally controllable system. As part of our analysis,
we have characterized the set of all possible solutions to this
problem, and provided a polynomial-time algorithm to obtain
an optimal solution. Additionally, we have presented scalable
algorithms to solve our problem under additional assumptions
that are commonly found in engineering applications. Finally,
we have numerically illustrated our results in the context of ran-
dom networked systems. In future research, we will extend these
results to the case when the cost of adding a particular edge is
not a fixed value. Furthermore, since structural controllability
can be achieved by either (1) adding edges to the system or
(2) actuating more state vertices, we will explore the tradeoffs
between these two alternative strategies. In certain scenarios, it
is of definite practical and theoretical interest to find efficient
suboptimal algorithms with quality guarantees. Finally, it would
be interesting to solve the optimal design problem under consid-
eration when only a subset of variables is required to be under
control.

APPENDIX A

Proof of Theorem 2: First, we show that if the set of
edges Ẽ contains SM and SB as subsets, then it must be a
feasible edge-addition configuration. We notice that, given the
system digraph G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ), it suffices
to show that SM ∪ SB satisfies both conditions in Theorem 1
when the graph Gaug ≡ (X ∪ U , EX ,X ∪ EU ,X ∪ SM ∪ SB ) is
considered. Hereafter, we denote the bipartite representa-
tion of Gaug by Baug ≡ B(X+ ∪ U+ ,X−, EX+ ,X− ∪ EU+ ,X− ∪
S±M ∪ S±B ), where S±M = {s(e) : e ∈ SM } and S±B = {s(e) :
e ∈ SB }.

To verify Condition 1) of Theorem 1, we decompose the set
of state vertices X , into R1 and N based on their reachability
as in Definition 1. Specifically, R1 contains all the reachable
state vertices and N contains all the unreachable state vertices.
Since N =

⋃r
h=1 Δ(Nth ), every state vertex v ∈ N must be

contained in some Δ(Nth
) for some iteration step h. By the

recursive construction of the bridging set SB as described in
Definition 1,Nth

is reachable provided thatNth −1 is also reach-
able. Thus, we conclude that all v ∈ N become reachable in
Gaug.

To verify Condition 2) of Theorem 1, let M be a maximum
matching associated with the system bipartite graph. Next, we
propose to consider a bipartite graph BM ≡ B(X ∪ U , EX ,X ∪
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EU ,X ∪ S±M ), which is a subgraph of the bipartite graphBaug. By
the construction of SM , M ∪ SM is a matching in BM . Further-
more, it is a maximum matching since it has no right-unmatched
vertices in BM . Since Baug has the same set of vertices as BM ,
it follows that M ∪ SM is also a maximum matching associ-
ated with Baug. Subsequently, M ∪ SM satisfies Condition (b)
in Theorem 1 for the system bipartite graph Baug.

Therefore, if SM ∪ SB is added to the system digraph, the
resulting system is structurally controllable, which implies that
SM ∪ SB is a feasible edge-addition configuration.

Next, we show that if Ẽ is a feasible edge-addition configura-
tion, then it must contain the union of the two sets as described
in the theorem. Assume, by contradiction, that there is no such
SB in Ẽ , then there is a source SCC containing only state ver-
tices that is unreachable. This implies that none of its states
are reachable, which precludes the Condition 1) in Theorem 1
to hold; hence, a contradiction is attained. On the other hand,
assume that for any maximum matchings M associated with
B(Ā, B̄), we have SM \ Ẽ �= ∅, then there exists at least one
right-unmatched vertex corresponding to the head of an edge in
S±M \M , which precludes Condition 2) in Theorem 1 to hold;
hence, a contradiction is attained. Thus, a set Ẽ is a feasible
edge-addition configuration if and only if it contains SM and
SB as subsets. �

Proof of Corollary 1: From Theorem 2, any feasible
edge-addition configuration contains SM , for some maximum
matching M associated with the system bipartite graph, and
SB , the bridging edges as subsets, i.e., Ẽ ⊇ SM ∪ SB . Conse-
quently, an optimal edge-addition configuration should satisfy
|Ẽ∗| ≥ |SM | = nr and |Ẽ∗| ≥ |SB | = r. �

Proof of Theorem 3: Briefly, the proof requires the follow-
ing steps. First, we show that an optimal edge-addition config-
uration Ẽ∗ must satisfy |Ẽ∗| ≥ nr + r − q. Then, we construct
a feasible edge-addition configuration such that its cardinality
achieves nr + r − q.

From Theorem 2, a feasible edge-addition configuration must
satisfy Ẽ ⊇ SM ∪ SB . As a result, the cardinality of a feasible
edge-addition configuration should satisfy |Ẽ | ≥ |SM ∪ SB |,
which implies that |Ẽ | ≥ |SM |+ |SB | − |SM ∩ SB |. Notice
that, SM = nr and |SB | = r, then |Ẽ | ≥ nr + r − |SM ∩ SB |.
Thus, an optimal edge-addition configuration, which we de-
note as Ẽ∗, must satisfy |Ẽ∗| ≥ nr + r −maxM,SB

|SM ∩ SB |,
where the maximum is taken over all possible maximum match-
ings M of the system bipartite graph and possible bridg-
ing sets SB for the system digraph. To obtain the value of
maxM,SB

|SM ∩ SB |, we recall that maximizing the inter-
section between SM and SB gives the maximum number of
right-unmatched vertices across all possible maximum match-
ings associated with B(Ā, B̄) in the unreachable source SCCs,
i.e., the USAN q, from Definition 3. Therefore, we have that
maxM,SB

|SM ∩ SB | = q, which implies that |Ẽ∗| ≥ nr + r −
q. Next, we show that there exists a feasible edge-addition con-
figuration that achieves p∗ = nr + r − q, which we approach
by construction.

Given the system digraph G(Ā, B̄), we partition its state ver-
tices based on reachability. Specifically, we denoteR1 as the set

of all reachable state vertices and N as the set of all unreach-
able state vertices. Moreover, we use N1 , . . . ,Nr ⊆ N to de-
note the vertex sets of r source SCCs that are unreachable, as in
Definition 1. Furthermore, let Gr be the R1-induced subgraph
of G(Ā, B̄).

Next, we obtain a maximum matching M̄ that attains the
USAN using Algorithm 2. Without loss of generality, we as-
sume there are q unreachable-assignable source SCCs whose
vertex sets are denoted as N1 , . . . ,Nq with q ≤ r. Let UXL (M̄)
and UR (M̄) be the set of left-unmatched and right-unmatched
state vertices associated with M̄ , respectively. We can ob-
tain a digraph G(V(s−1(M̄)), E(s−1(M̄))) from M̄ , where
E(s−1(M̄))) = {s−1(e) : e ∈ M̄} andV(s−1(M̄)), the vertices
used by the edges belonging to E(s−1(M̄)). In particular, the
set of edges E(s−1(M̄)) is spanned by a disjoint union of paths
{Pi}i∈I and cycles {Cj}j∈J , where I and J denote their
indices. Furthermore, to construct an optimal edge-addition
configuration, we define the following sets according to the
correspondence between the maximum matching attaining the
USAN q and the path and cycle decomposition captured by
G(V(s−1(M̄)), E(s−1(M̄))). Let VL be the set of ending ver-
tices of paths in {Pi}i∈I whose starting vertex is in U . Let S be
the set containing q starting vertices corresponding to disjoint
paths in {Pi}i∈I and belonging to different unreachable source
SCCs. Finally, let S± = {x+

i : xi ∈ VL}, which by construc-
tion is a subset of left-unmatched vertices associated with M̄.
Thus, either UXL (M̄) ∩ S± �= ∅ or UXL (M̄) ∩ S± = ∅ holds.

We now begin to construct a feasible edge-addition configu-
ration that achieves p∗ under the assumption that UXL (M̄) ∩ S±
�= ∅ holds. We first initialize Ẽ∗ to be an empty set. Then, at the
initialization (k = 1), we add an edge (v1 , z1) into Ẽ∗, where
v+

1 ∈ UXL (M̄) ∩ S± and z−1 is a right-unmatched vertex associ-
ated with M̄ in some unreachable source SCCs, i.e., z1 ∈ Nl for
some l ∈ {1, . . . , q}. Since v+

1 ∈ S±, it follows that v1 ∈ R1 .
Consequently, if we add the edge (v1 , z1) to the system digraph,
then the vertex z1 becomes reachable, which implies that all
the state vertices in Δ(Nl) become reachable as well. On the
other hand, if z−1 ∈ UR (M̄), then there must exist a path in
G(V(s−1(M̄)), E(s−1(M̄))) departing from z1 . In addition, the
end of this path is a left-unmatched state vertex v+

2 ∈ UXL (M̄)
with v+

2 �= v+
1 . In particular, v2 ∈ Δ(Nl) since it is reachable

from z1 . Then, we can add another edge departing from v+
2 to

another right-unmatched vertex z−2 in a different unreachable
source SCC, i.e., to add the edge (v2 , z2) to Ẽ . We iterate this
procedure for another q − 1 steps, i.e., k = 2, . . . , q, until all
q unreachable-assignable SCCs become reachable by adding
edges into Ẽ∗.

Now, without loss of generality, let Ẽ∗ = {(vk , zk ) : k =
1, . . . , q}, where v+

k ∈ UXL (M̄) and z−k ∈ UR (M̄) for all k =
1, . . . , q, respectively. Nonetheless, there are r − q remaining
unreachable source SCCs, i.e.,Nq+1 , . . . ,Nr . To ensure reach-
ability of all state vertices, it suffices to add edges from the set of
reachable state vertices to each one of the remaining unreachable
source SCCs. Consequently, the complementary set of edges to
account in Ẽ∗ is a set of bridging edges containing r edges by
Definition 1. However, as implied by Theorem 2, to construct

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 01,2020 at 15:21:15 UTC from IEEE Xplore.  Restrictions apply. 



322 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 6, NO. 1, MARCH 2019

a feasible edge-addition configuration, we still need to include
SM as a subset. Toward this service, we notice that q right-
unmatched vertices, i.e., those in the unreachable-assignable
SCCs, have been matched during the iterative procedure. Con-
sequently, it suffices to add nr − q edges to ensure that all the
remaining right-unmatched state vertices are matched, i.e., those
in UR (M̄) \ {z−1 , . . . , z−q }. As such, we have constructed a set

of edges considered to be added, i.e., Ẽ∗, that contains a set of
bridging edges and SM̄ for the maximum matching M̄. As a re-
sult, Ẽ∗ is a feasible edge-addition configuration by Theorem 2.
In addition, it contains nr + r − q edges, which implies that
it is an optimal edge-addition configuration—the construction
considered in this paragraph leads to Step 4 of Algorithm 3.

Next, we discuss the case when UXL (M̄) ∩ S± = ∅. First,
we define G±r = {x−i : xi ∈ R1} as the set of left-unmatched
state vertices in Gr . As a consequence, two particular
cases may happen: either UXL (M̄) ∩G±r = ∅ or UXL (M̄) ∩
G±r �= ∅ holds. Consider the first case, where UXL (M̄) ∩
G±r = ∅, since UXL (M̄) ∩ S± = ∅, then the subgraph of
G(V(s−1(M̄)), E(s−1(M̄))) constrained to the vertices in Gr

consists only of cycles. Therefore, and without loss of gener-
ality, we let cr be the number of those cycles, whose set of
vertices are denoted as Ci , i = 1, . . . , cr . According to the as-
sumption ‖B̄‖0 �= 0, there exists an edge (u, v) ∈ EU ,X , with
u ∈ U and v ∈ V. Additionally, v belongs to the vertex set of
some cycle, i.e., v ∈ Cj for some j ≤ cr , which we represent
by the ordered sequence (v, v1 , . . . , vk , v). If we replace the
cycle (v, v1 , . . . , vk , v) by the path (u, v, v1 , . . . , vk ), then the
new digraph will correspond to another maximum matching M̂
associated with B(Ā, B̄) with a reachable left-unmatched state
vertex vk . Additionally, UXL (M̂) ∩ S± �= ∅, and, as a result, we
may reduce the case with assumptions UXL (M̄) ∩ S± = ∅ and
UXL (M̄) ∩G±r = ∅ to the case previously discussed by con-
structing a new maximum matching M̂—this procedure corre-
sponds to steps 3–9 in Algorithm 3.

Now, we suppose that UXL (M̄) ∩ S± = ∅ and UXL (M̄) ∩
G±r �= ∅ hold simultaneously. Then, there exists v1 ∈ UXL (M̄) ∩
G±r and vr ∈ UR (M̄) such that (vr , . . . , v1) is a path whose
edges are associated with those in M̄ through a signal-notation
mapping. In particular, vr /∈ U . If vr is not a vertex in some
unreachable source SCCs, then we may apply the procedure in-
troduced in the case when UXL (M̄) ∩ S± �= ∅ to construct a fea-
sible edge-addition configuration containing p∗ edges. Nonethe-
less, if vr is a vertex in some unreachable source SCCs, then
a modification of the iterative construction must be adopted.
Specifically, recall that previously, at the basis step of iteration,
we add (v1 , z1) into Ẽ∗, in which z1 ∈ Nl is arbitrarily chosen.
Now, if z1 is chosen to be equal to vr , then (v1 , vr ) is added
into Ẽ∗ and follow-up iteration steps cannot be performed since
the end of the path starting at z1 is v1 . Consequently, we must
adopt the following modification: if q = 1, then we must add
an edge (v1 , vr ) into Ẽ∗; otherwise, we add an edge (v1 , z1)
into Ẽ∗ with z−1 ∈ UR (M̄) being a vertex in some unreachable
source SCCs and z1 �= vr at the basis step. In other words,
when constructing the first q steps of a feasible edge-addition
configuration, we force z−i ∈ UR (M̄), zi ∈ Nl and zi �= vr for

all i = 1, . . . , q − 1 and zq = vr , whereas the rest of the con-
struction readily follows as previously discussed. As such, we
can obtain a feasible edge-addition configuration achieving p∗

if UXL (M̄) ∩ S± = ∅ and UXL (M̄) ∩G±r �= ∅ simultaneously—
This construction procedure is summarized in steps 20–32 in
Algorithm 3.

Therefore, we conclude that if ‖B̄‖0 > 0, we can con-
struct a feasible edge-addition configuration achieving p∗ = nr

+ r − q.
Proof of Theorem 4: The correctness of the algorithm

follows from the proof of Theorem 3. To determine the com-
putational complexity of the algorithm, we consider the com-
putational complexity incurred by each one of the major steps
in the algorithm. Specifically, Step 1 requires the computation
of SCCs, which can be achieved by applying the depth-first
search algorithm twice with complexity O(|X ∪ U|+ |EX ,X ∪
EU ,X |) [24]. Finding a minimum-weighted maximum matching
in Step 2 incurs in O(|X ∪ U|3), and can be achieved as de-
scribed in Algorithm 2, and we can guarantee that exists at least
one left-unmatched vertex of M̄ that is reachable in O(|X |). In
Step 3, we iteratively construct an optimal edge-addition con-
figuration as described in the proof of Theorem 3, which can be
attained in O(|X |+ |U|), since it searches over the computed
maximum matching and the source SCCs in the system digraph.
Finally, in Step 4, we add the remaining edges to ensure condi-
tions in Theorem 2, which incurs in O(|X |). In summary, the
computational complexity of Algorithm 3 is dominated by the
second step, which implies an overall computational complexity
in O(|X ∪ U|3). �
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