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MIRROR SYMMETRY FOR HONEYCOMBS

BENJAMIN GAMMAGE AND DAVID NADLER

ABSTRACT. We prove a homological mirror symmetry equivalence between the
A-brane category of the pair of pants, computed as a wrapped microlocal sheaf
category, and the B-brane category of its mirror LG model, understood as a
category of matrix factorizations. The equivalence improves upon prior results
in two ways: it intertwines evident affine Weyl group symmetries on both sides,
and it exhibits the relation of wrapped microlocal sheaves along different types
of Lagrangian skeleta for the same hypersurface. The equivalence proceeds
through the construction of a combinatorial realization of the A-model via
arboreal singularities. The constructions here represent the start of a program
to generalize to higher dimensions many of the structures which have appeared
in topological approaches to Fukaya categories of surfaces.
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1. INTRODUCTION

This paper fits into the framework of homological mirror symmetry, as introduced
in [23] and expanded in [19,20,22]. The formulation of interest to us relates the
A-model of a hypersurface X in a toric variety to the mirror Landau-Ginzburg B-
model of a toric variety XV equipped with superpotential WY € O(XV). Following
Mikhalkin [27], a distinguished “atomic” case is when the hypersurface is the pair
of pants

Pony={z++zm+1=0}C(C)"=T"(s)"

with mirror Landau-Ginzburg model (A1 z; --- z,.1). In this paper, we will also
be interested in the universal abelian cover P, _; of the pair of pants, which fits in
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72 BENJAMIN GAMMAGE AND DAVID NADLER

the Cartesian diagram

Ppy ——T"R"

.

Pn71< T*(Sl)n

as the pullback of P,_; along the universal covering map T*R" — T*(S')";
it has mirror a torus-equivariant version of the Landau-Ginzburg model (A"*1
21 Znl)-

This paper expands upon prior mirror symmetry equivalences for pairs of pants
found in [1, 36, 39]; however, it differs from those in its understanding of the A-
model. The traditional mathematical realization of the A-model is the Fukaya
category, with objects decorated Lagrangian submanifolds, morphisms their deco-
rated intersections, and structure constants defined by integrals over moduli spaces
of pseudoholomorphic polygons. There is increasing evidence (for example, [3,
9,14-16, 24, 30, 33, 38, 41]) that the Fukaya category of a Weinstein manifold is
equivalent to microlocal sheaves (as developed by Kashiwara-Schapira [21]) along
a Lagrangian skeleton. In this paper, we follow [32] and study the A-model of the
pair of pants in its guise as wrapped microlocal sheaves.

A calculation of microlocal sheaves on a skeleton for the pair of pants was per-
formed already in [32]; our calculation here involves a different skeleton, which is
of independent interest. The skeleton we study is more symmetrical, having an
action of the symmetric group ¥,; rather than just 3,,, but more importantly,
the skeleton here is of a different “flavor” compared to the one constructed there.
The calculations from [32] are well-adapted to considerations of mirror symmetry
which relate a hypersurface in (C*)™ to a toric degeneration and were used in [17]
for this purpose. The skeleton we study in this paper is more adapted to mirror
symmetry equivalences which relate a hypersurface in (C*)™ to a Landau-Ginzburg
model. The first sort of skeleton can be considered as a “degeneration” of the sec-
ond; indeed, the relation between these two flavors of skeleton is very interesting
and will be studied further in future work.

The skeleton from this paper is very well-suited to a combinatorial perspective,
since singularities are all arboreal in the sense of [28]. The form of our calculations
should be understood as a paradigm for extending the substantial literature devoted
to understanding Fukaya categories of Riemann surfaces through topological skeleta
and ribbon graphs (for example, [2,6,18,35,40]) to higher-dimensional examples.

Moreover, the type of skeleton described here has close relations to the dimer
models which have appeared in earlier mirror symmetry contexts (e.g., [10, 11]).
In future work, we hope to explore further the relation between skeleta and dimer
models, along with generalizations to higher dimensions. This correspondence was
noticed (in a slightly different form) in [11], and in Section 4.2 we make use of the
Lefschetz fibrations described in that paper.

1.1. Symplectic geometry.

1.1.1. Cotangent bundles. Fix a characteristic zero coefficient field k, and let L C
T*X be a closed conic Lagrangian submanifold of a cotangent bundle. There are
conic sheaves of dg categories ,uS’h% and uShy on T* X, localized along L, which
to a conic open set  C T*X assign, respectively, the dg category uSh%(Q) of
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MIRROR SYMMETRY FOR HONEYCOMBS 73

unbounded-rank microlocal sheaves and the dg category pShr(€2) of traditional
microlocal sheaves along L N Q.

Definition 1.1.2. The category uSh7" () of wrapped microlocal sheaves along
LN is the category ,uS’h% ()¢ of compact objects inside uSh%(Q).

Proposition 1.1.3 ([32, Proposition 3.16]). The assignment Q — puSh;" () forms
a cosheaf uShY" of dg categories on T*X, localized on L.

If z is a smooth point of L and 2 is a contractible conic neighborhood of z, then
the stalk of the sheaf uSh% is equivalent to the dg category Mody of (unbounded-
rank) k-modules, while the stalk of uShy and the costalk of uSh} at x are both
equivalent to the dg category Perf; of perfect k-modules.

If = is a singular point, the local calculation is more complicated, but this cal-
culation has already been performed in [28] for a certain class of Legendrian sin-
gularities termed arboreal. In this paper we will only be concerned with the A,
arboreal singularity £4,, a certain singular Legendrian in the projectivized cotan-
gent bundle 7°°(R™) which is homeomorphic to Cone(sk,_oA™), the cone on the
(n — 2)-skeleton of an n-simplex.

Proposition 1.1.4 ([28]). Let L be a conic Lagrangian in T*R™ which is locally
equivalent, near a point x € L, to the cone on La,. Then to a neighborhood of x,
the sheaf uShy, and the cosheaf uShT" each assign the category A, -Perfy of perfect
modules over the A, quiver.

1.1.5. Weinstein manifolds. Let W be a Weinstein manifold. The Weinstein struc-
ture of W endows it with a Lagrangian skeleton A, onto which W deformation
retracts.

Since our definition of wrapped microlocal sheaf categories applies only in the
setting of cotangent bundles, in order to apply it here we have to relate the geometry
of our Weinstein manifold to the geometry of a cotangent bundle. Let A be the
skeleton of a Weinstein manifold W and let U be an open neighborhood of A which
is conic for the flow of the Liouville vector field of W, and suppose that there
exist a manifold X and a closed conic Lagrangian L C T*X such that U is exact
symplectomorphic to a neighborhood €2 of L by a symplectomorphism taking A
to L.

Definition 1.1.6. In the situation described above, the category uShy () is the
microlocal A-model category associated to the Weinstein manifold W. (To make
explicit the dependence on Weinstein structure, we will sometimes call this category
the wrapped microlocal A-model category of W associated to A.)

In practice, the symplectomorphism relating A to a conic Lagrangian in a cotan-
gent bundle might not exist. However, such symplectomorphisms always exist lo-
cally, so that we can obtain a cosheaf of categories on the skeleton by defining these
categories locally, gluing them together, and checking that the resulting cosheaf
didn’t depend on choices. A more detailed explanation of our expectations can be
found in Conjecture 4.1.8.

One skeleton for the pair of pants P,,_; was described in [32], where it was used
to prove a mirror symmetry equivalence. In this paper, we study a more symmetric
skeleton of the pair of pants, which we can describe using the geometry of the
permutohedron.
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74 BENJAMIN GAMMAGE AND DAVID NADLER

Let V,, be the quotient of R®*! by the span of the vector Ay + - - -+ A\, 1, where
{\:} is the standard coordinate basis of R"*1.

Definition 1.1.7. The n-permutohedron 3,, C V,, is the convex polytope obtained
as the convex hull

mn = CO’/W{U' (%4»1 ZZI; a)\a) eVn | oc EnJrl}‘

The n-permutohedron is an n-dimensional polytope, and it is a remarkable fact
that the permutohedron actually tiles V,,. We denote by $),,_; the union of all
translates of the boundary 0%,, along this tiling and call this space the honeycomb.
(When n = 2, the honeycomb $); is actually the boundary of the hexagon tiling of
the plane.) Then the main result of Section 4 of this paper is a stronger version of
the following, which we obtain as a Z/(n + 1)Z quotient of a calculation performed
in [11].

Proposition 1.1.8 (Corollary 4.2.2 below). The cover P,_1 admits a skeleton
L,—1 whose image under the (cover of the) argument map Arg : T*R™ — R™ is the
honeycomb $,_1.

This result and the discussion above justifies our modeling of the wrapped Fukaya
category of P,_; as the global sections of a certain cosheaf Q%" of dg categories
on 9,1 (and the infinitesimally wrapped Fukaya category as the global sections

of a certain sheaf Qfl"_f , of dg categories on $,,_1).

1.2. Combinatorics. As mentioned above, the sheaf and cosheaf Qibn_f ; and Q¥T
assign Perfy to a smooth point of $,,_1, but to know their descriptions over the
whole skeleton $,,_1, we need to understand its singularities. These turn out to be
singularities we already understand.

Proposition 1.2.1 (Proposition 2.2.4 below). A neighborhood of a point in a
codimension-m face of a permutohedron in $,_1 is stratified homeomorphic to the
product of R"™™ with the Ay, arboreal singularity La,, .

(In fact, to prove the equivalence of (co)sheaves of categories we need, the above
homeomorphism isn’t sufficient. It’s necessary to check the stronger statement that
a neighborhood of the corresponding point in the skeleton is contactomorphic, up
to a smoothing, to the product R"™™ x L4, or that it admits the same category
of microlocal sheaves. This is Proposition 4.2.3 below.)

The upshot is that all the singularities of the skeleton ]Ijn,l of 73,1,1 are of
type A, (for various m), which proves to be extremely convenient for calculation
of the Fukaya category. As the name suggests, the sections of Qi"fl or QWr,
on a neighborhood of the A,, singularity L4, are equivalent to the dg category
Ay, -Perf}, of perfect modules over the A,, quiver.

Remark 1.2.2. The equivalence of the category associated to an A,, singularity
with the category A,, -Perfy is noncanonical, reflecting the fact that the category
A, -Perfy, has a Z/(m + 1) symmetry. Moreover, due to the standard appearance
of the “metaplectic anomaly” in the construction of Fukaya categories, we cannot
keep global track of the integer grading on this category without making addi-
tional choices, so in practice we will only ever work with a Z/2-graded version of
this local category, which is (noncanonically) equivalent to the Z/2-dg category
(A -Perfy)z/o.
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MIRROR SYMMETRY FOR HONEYCOMBS 75

We can summarize the above discussion as describing the following procedure:
Stratify the space $,,_1 by singularity type, and let P($,_1) be the poset corre-
sponding to the stratification. The Fukaya category associated to the skeleton $,_1
comprises the global sections of a sheaf/cosheaf, taking values in the Z/2-dg cate-
gory Z/2-dgst,, of Z/2-dg categories, which assigns to a neighborhood of a point in
a codimension-(m — 1) stratum of $),_1 a category equivalent to (A, -Perf)z/s.

Definition 1.2.3. The wrapped and infinitesimally wrapped combinatorial Fukaya
categories associated to the pair of pants are the categories

Q-
wr = Idem(colim (P ($,_1)P ——> Z/2-dgst,;,))

n—1

inf Q.
Q! =lim(P($H,-1) — Z/2-dgsty,)
defined as (idempotent-completed) global sections of the cosheaf Q¥"; and sheaf

QZL f 1, respectively, over the honeycomb $,,_;.

Objects in the infinitesimally wrapped category, which is defined as global sec-
tions of the sheaf Qi:fcl, have a clearer geometric meaning: heuristically, an object
of this category can be described as the data of an object of (Perfy )z, at each facet
in $,_1, exact triangles among these at codimension-2 faces of permutohedra, and
higher compatibilities given by codimension k faces. (For instance, the compatibil-
ity at a codimension 3 face involves assembling the four exact triangles around the
face into an “octahedral axiom diagram.”)

For F a facet in $,_1 and £ a choice of codirection at F' (breaking the Z/27Z
indeterminacy in the category associated to F'), we have a stalk functor ¢re :
Q;"_fl — (Perfy)z/, taking an object of Qfl"_fl to the object of (Perfy)z/o which is
placed at the facet F. If we understand the data of an object in Qﬁl"_l as recording
a path of a Lagrangian running along the honeycomb $,_1, then the stalk of an
object along a facet F' records how many times the Lagrangian runs along F'.

The following class of objects in Q;n_f 1 is easy to describe and is very useful in
proving mirror symmetry for this category.

Definition 1.2.4. Let B be a connected subset of $,_1. A rank-one brane along
B is an object F in QZZI such that the stalk ¢ ¢(F) has rank-one cohomology for
all facets F' in B, and all other stalks are zero. An example of a rank-one object is
pictured in Figure 1.

The wrapped category @w’,, which is defined as a colimit, is a little harder
to understand directly but admits a very nice set of generators. Note that the
stalk functor ¢p ¢ : Q:l"_f 1 — (Perf)z/2, when extended to the cocomplete category
ngl, is corepresented by an object dr¢, which we call the skyscraper along the
facet F.

Lemma 1.2.5. The category QFT, is generated by the set of skyscrapers along
facets in $p,_1.

The skyscrapers, though defined abstractly, in practice have a simple description.
Let P be a permutohedron in V,,, and let F; be the face shared by P and P + \;.
Let B be the boundary of the region obtained as the union of all positive translates
of P in the directions {Aq, ..., 5\:‘, <oy A1} See Figure 5 for an illustration of such
a region B.
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76 BENJAMIN GAMMAGE AND DAVID NADLER

FIGURE 1. Part of the honeycomb $)2, with the support (indicated

in bold) of a rank-one object in Qé"f .

Proposition 1.2.6 (Proposition 2.5.13 below). The rank-one brane along B is the
skyscraper along F'.

1.3. Mirror symmetry. The mirror to the pair of pants is the Landau-Ginzburg
model (A" Y W, 411 = 21+ 2p41). Let T""! be the (n + 1)-torus (G,,)"*! and let
T™ be the kernel of the map W,y : T"*! — G,,. Considering the skeleton £, _;
for the universal abelian cover of the pair of pants instead of the skeleton $,,—1/A,,
for the pair of pants itself corresponds on the mirror to working equivariantly with
respect to the torus T (whose weight lattice is the lattice A,). Thus, the expec-
tation of homological mirror symmetry is that the wrapped Fukaya category Qw’,
ought to be equivalent to the torus-equivariant derived category of singularities
Dl (W™, W)™ = (Coh(W,, ), (0))/ Perf(W, 1 (0))) "

n

= Coh(W, !, (0))™" / Perf(W, .}, (0))™",

n

since passing to the quotient commutes in this case with taking T™ equivariants.

There are a couple of ways to understand this category, coming from theorems of
Orlov. A presentation of ngg which keeps manifest the ¥, symmetry induced
from permutations of the coordinates of A"*! is as the category MF(A" T W, 1)
of matriz factorizations of Wi, 11: the objects of this category are pairs (V,d), for
V a Z/2-graded k[z1, ..., znt1]-module and d : V' — V an odd endomorphism such
that d? is multiplication by Wy11 = 21 -+ 2n 2041

A less symmetric presentation is given as follows: for a choice of a € [n + 1], let
Wo, 1 = Wyi1/2a, and set X* = (W2, ;)~1(0). Then we have an equivalence of
categories

Db (A" W, ) —= DY(X?) .

sing

This latter presentation is used in [32] to establish a mirror symmetry equiva-
lence. It has the advantage of being built out of a simple inductive definition, but
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MIRROR SYMMETRY FOR HONEYCOMBS 77

the disadvantage that it breaks the natural ¥,,;1 symmetry of ngg(A”“, Whi1)-
In this paper, we use the description as matrix factorizations, which allows us to
write a mirror symmetry equivalence which is compatible with more symmetries.
Note that the category ngg(A”H,WnH)T" has a natural action by the group
Wn = A, ¥ X, 41, where ¥, ;1 acts by permuting the coordinates, and the weight
lattice Ay, of T™ acts as twists by characters, and this action is manifest in the ma-
trix factorization description. The group W,, also acts on $),,_; in the obvious way,
and hence also on ;. The main theorem of this paper is the expected mirror
symmetry equivalence between the A-model of (the universal abelian cover of) the

pair of pants and the (torus-equivariant) B-model of (A1 W, 1).

Theorem 1.3.1 (Theorem 3.3.2 below). There is an equivalence of categories
®: MF(A"H W, )T —=Qvr,

which is equivariant for the action of Wn on each side.

This equivalence sends the natural generators of the derived category of singu-
larities, the structure sheaves O of the coordinate hyperplanes {z; = 0}, to the
skyscrapers dp, along certain distinguished facets of a standard permutohedron B
inside $),,—1. (Specifically, F; is the facet separating 3 from P+ A;.) The skyscrapers
along other facets correspond to certain complexes formed out of the sheaves O .

The relation between the above correspondence and the combinatorics of the
permutohedron can be seen more explicitly in the matrix factorization category. Let
[n=1] = {1,...,n+1}; for a nonempty proper subset I C [n+1], write z; = [[;¢; 2
and zye = HW z;, and similarly set A7 = >, ; A;. Write Qil for the image of OF,
in the category MF (A" W, ,1). Then under the mirror symmetry equivalence @,
the skyscraper sheaf along the facet separating 8 and 3 + \; corresponds to the
matrix factorization

. Z{iye Z{i}
0, = (k[zlv---vzn+1] —k[21,. s Zng1] —k[21, .oy 2] ) ;

while more generally, a skyscraper along the facet separating 8 and P + A\; corre-
sponds to the matrix factorization

]{)[Zl,...,zn+1] Lk‘[zl, .,ZnJrl] L>k[zl,. ..,Zn+1] .

1.4. Notation and conventions. We fix an algebraically closed coefficient field
k of characteristic zero. Throughout this paper, we work with (usually pretrian-
gulated) differential Z/2-graded categories, which we refer to as Z/2-dg categories.
Appropriate homotopical contexts for pretriangulated dg categories have been de-
scribed in [42] (with an adaptation of this theory to the Z/2-graded case available
for instance in [7], Section 5.1) and [25,26] (as Hk-linear stable (oo, 1)-categories).

We will denote by Z/2-dgst, the category of k-linear pretriangulated Z/2-dg
categories in any of the equivalent homotopical contexts just mentioned. One object
of Z/2-dgst, we will use often is the Z/2-dg category (Perfy)z/o of Z/2-dg k-
modules with finite-dimensional cohomology.

When discussing polyhedral cell complexes in this paper, the word “face” will
mean a general face (of any dimension), while “facet” will always refer to codimen-
sion 1 faces only. Facets of the permutohedron 3, are all of the form Br_1 X B,k
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78 BENJAMIN GAMMAGE AND DAVID NADLER

(where By = {pt}, and we will refer to facets of the form B,,_1 X Py = P,—_1 as
mazimal facets of P,

In the table below we collect for the reader’s convenience some of the nonstandard
or frequently used notation used in this paper, in order of appearance.

T | (n + 1)-dimensional complex torus

Wya1 | The map T — G, given by (21,...,2n41) = [ 2
T Ker(Wy,41)

B n-permutohedron

Fy Face of B,, corresponding to I C [n + 1]

A, Weight lattice of the torus T"™

W Affine Weyl group A, ¥ X,,41

Qi"f 1 | Infinitesimally wrapped combinatorial A-model category
Partially wrapped combinatorial A-model category

n—1
Ore Skyscraper along facet F' in normal direction &
Bp,s | Rank-one brane along 0{P + 3, ;n;\; | nj € N}
(’);:L Structure sheaf of {z; = 0} in Coh(Speck[z1,...,2zn4+1]/(21 - Znt1))

O Image of 0% under the quotient Coh — Coh / Perf

2. COMBINATORIAL A-MODEL

2.1. Permutohedron. Let T"*! = (G,,)"*! be the (n + 1)-dimensional torus,
and let W,1 : 7"t — G,, be the character defined by W, 11(z1,...,2n41) =
21+ Zny1. We will denote by T™ the kernel of W,, 41, so that we have a short exact
sequence of tori

1 e s ot M 6 1.

Let x*(T"*) = Hom(T""},G,,) ~ Z™"! denote the weight lattice of 771,
and let A1,..., \,41 denote its standard coordinate basis. The above short ex-
act sequence of tori induces a short exact sequence of weight lattices, giving the
presentation

X*(T") = ZMH 2701 N).
Throughout this paper, we will set
Ay = x*(T™), Vo =A, ®R.

We will abuse notation and write A1, ..., A,4+1 also for their images in A,, and V,,.
The symmetric group X, naturally acts on Z"*! by permutations, and the
action descends to the quotient A, and further to V,,.

Definition 2.1.1. The n-permutohedron 3,, C V,, is the convex hull
B, = conv{o - (n%—l ZZ;Lll a)\a) eEVh|loeZui}

of the ¥, 1-orbit of the point n+r1 Zii adg €V,,.
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MIRROR SYMMETRY FOR HONEYCOMBS 79

Remark 2.1.2. The above definition of the permutohedron presents it as a convex
polytope in the n-dimensional quotient space V,, of R"*!. This disagrees with the
more typical definition as the convex polytope

B, = conv{opi1-(1,...,n+1) € (R ™) |oc €, 11}

in the n-dimensional affine subspace

{(@1, .- Tn1) € R [ S0 o = n(n+1)/2}.

We have chosen our convention with mirror symmetry in mind; in particular, we
prefer a permutohedron which is translated in a natural way by the weight lattice
A, = x*(T™) rather than the coweight lattice of T™.

Our definition agrees with the usual one, up to a duality: after translating 3!,

by (5*,..., "), the identification of R™! with its dual space coming from the
standard basis of R"*! sends ¥, to B,,.
Example 2.1.3. The 1-permutohedron B is a line segment; the 2-permutohedron
PBo is a hexagon; the 3-permutohedron B3 (pictured in Figure 2) is a truncated
octahedron, with faces consisting of 8 hexagons and 6 squares. For n > 3, the
permutohedron ‘3, is not a regular polyhedron.

F1GURE 2. The 3-permutohedron 3 and three generators of Ags.
The fourth generator points directly into the central hexagon.

By construction, the symmetric group ¥,,; acts transitively on the vertices
of the permutohedron. To organize the combinatorics of this action, we will find
it useful to record here some alternate descriptions and helpful facts about the
permutohedron.

2.1.4. Cayley graph description. We first cite from [12] a description of the permu-
tohedron as a Cayley graph of 3, 1. Recall that the inversions in the symmetric
group X,1 are the transpositions of the form (i ¢ + 1) for some 1 <i <n+ 1.

Lemma 2.1.5 ([12, Theorem 1]). The 1-skeleton of the permutohedron 9B,, is the
Cayley graph of 3,11 corresponding to the generating set of inversions in 3, 1.

This description depends in particular on the choice of a vertex of the permu-
tohedron to correspond to the identity of ¥,41; this vertex will subsequently be
denoted (1). Since X,41 acts transitively on the vertices of the permutohedron,
a description of the permutohedron near any vertex is sufficient to understand its
global structure.

Licensed to Univ of Calif, Berkeley. Prepared on Fri May 1 11:16:12 EDT 2020 for download from IP 128.32.10.230.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



80 BENJAMIN GAMMAGE AND DAVID NADLER

From the Cayley graph perspective, we see that k-faces incident to a given
vertex of 3, correspond precisely to those subgroups of ¥,,; generated by k
inversions. Call the inversions (¢ ¢ + 1) and (i + 1 ¢ + 2) adjacent. Then if
Ic{(12),(23),...,(nn+1)} is some subset of inversions and we decompose
I =[], I; into its maximal subsets of adjacent inversions and set n; = #1;, then
the (>, ni)-dimensional face of 9, corresponding to I is of the form [[,B,,. In
other words:

Corollary 2.1.6. The faces (in every dimension) of the permutohedron B, are
products of lower-dimensional permutohedra.

We can analyze the description above in more detail to attain information about
k-faces of 9B, for all k; in particular we will be interested in the facets. A facet
incident on the vertex (1) is determined by a choice of n — 1 inversions, and hence
the set of such facets is {PBp—x X Pr—1}k=1,....n. The polyhedron B,,_ x P_1 has

El(n—E+1)! vertices, so the total number of such facets in 93, is k,((:%ljj_'l), =(".

Adding all of these up, we find that the total number of facets is Y _, (”Zl) =

ontl _ 9,
Thus the facets of 93, are in bijection with proper, nonempty subsets of
{1,...,n}. In order to transfer the above analysis to the coordinate description

of B,,, it will be helpful to write this bijection in an explicit way.

Lemma 2.1.7. Let S C {1,...,n+ 1} be a proper, nonempty subset. Define a
subset Fs of the vertices of B, by declaring that the vertex o - (n+r1 22211 alg) is
in Fs if and only if o(i) < o(j) for all pairs (i € S,j ¢ S). Then the map S — Fgs

is a bijection between proper nonempty subsets of {1,...,n+ 1} and facets of P,.

Proof. Start by analyzing the facets incident on the vertex v = ZZLI aMg, which
we can treat as the vertex (1) in the Cayley graph. We already have an ex-
plicit description for these facets: they correspond to (n — 1)-element subsets
R c {(12),...,(n n+1)}. We claim that the facet corresponding to the sub-
set R which is missing (i ¢ + 1) has vertex set Fg, for S = {1,...,i}. Indeed, the
facet corresponding to R is the orbit of v under ¥; x ¥, ;11 C X,41, which is
precisely Fg.

To extend this result to all the facets of the permutohedron, we note that the
action of ¥, 11 on {1,...,n+1} induces an action on the set of all proper, nonempty
subsets of this set. Similarly, the action of 3,11 on the set of vertices of °3,, induces
an action on the set of facets, and the correspondence S +— Fg is equivariant
for these actions (since ultimately both are induced in the same way from the
permutation representation of 3,y1). Thus, the check we performed at a single
vertex is sufficient to prove that S — Flg is a bijection on the set of all facets of

PLI 0

Definition 2.1.8. The facets of B,, which are of the form ,,_; will be called
the mazimal facets of the permutohedron 3,. Under the above bijection, they
correspond to subsets I C {1,...,n + 1} which have either 1 or n elements.

2.1.9. Minkowski sum description. The other useful description which 3, admits
is as a Minkowski sum of line segments. Recall that the Minkowski sum of two
subsets A and B of R™ is

A+B:={a+b|lac Abe B}
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Let Aq,..., A\,41 be the standard basis vectors of R"*!. Then we have the following
description of ,,.

Lemma 2.1.10. The n-permutohedron B, can be represented as the Minkowski

sum
Z |:>\'L_>\j )\j_)\i ]
1<i<j<n+1l2(n¥1)’ 2(n+1) D’

where [a,b] denotes the set {ta+ (1 —¢)b|0<t <1} fora,beV,.

Proof. By construction, the set of vertices of the permutohedron is contained in the

Minkowski sum
Z Xi— A A=\
2(n+1)"2(n+1)

1<i<j<n+1

of two-element sets, and it is a general fact that the convex hull conv(A + B) of a
Minkowski sum A + B is equal to the Minkowski sum conv(A) + conv(B). O

A Minkowski sum of line segments is also known as a zonotope. As a cube
is also a Minkowski sum of line segments, a zonotope can also be understood as
the projection of a cube under an affine transformation. Hence, for instance, 7,
is an affine projection of the (ngl)—dimensional cube. Zonotopes have many nice
properties, and the zonotopal perspective is often helpful for inductively describing
the geometry of B,,; many of the combinatorial arguments which we made above
could have proceeded in the language of zonotopes.

2.1.11. Voronoi cell description. In fact, 93, is a special kind of zonotope. Recall
that every rank n lattice A C R™ has an associated Voronoi tiling, a tiling of R™
symmetric under translation by A: for every lattice point x € A, there is a Voronoi
cell R, centered at x, where we define

R, ={yeR"||y—z|<|y—2 forallz#a" €A}

The vector space V;, is a quotient of R®™! and hence a subspace of its dual
(R™*1)*, from which it inherits the standard metric (coming from the dual basis to
ALy Apa1). With respect to this metric, permutohedra are Voronoi cells.

+

Lemma 2.1.12 ([4]). The n-permutohedron B, is a Voronoi cell for the rank n
lattice A,, C V,,.

Let Wn denote the semidirect product A,, x ¥,,+1. Then we have the following
corollary.

Corollary 2.1.13. A, -translates of B, provide a tessellation of V;, preserved by
the natural W, -action.

This means in particular that for every facet F' of 3,,, there is a vector v € A,
such that %v is the center of F'. Recall that earlier we exhibited a bijection between
facets of 9B,, and nonempty proper subsets I C {1,...,n+ 1}. Now we see another
way to understand this bijection: let Ay = > ,.; A;. Then A, is the N-span of
{A1}ocicing1)- The Voronoi cells adjacent to the cell at the origin are those cells
which are centered at points of the form A;. This gives a correspondence between
facets of B,, and nonempty proper subsets I of [n + 1], associating to I the facet
F7 through which A; points. Moreover, if we write I¢ for the complement of [ in
[n — 1] (also nonempty and proper because [ is), then Ajc = —Ay, so Fc is the face
opposite FT.
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2.2. Honeycomb. We are now ready to introduce the main object of study in this
paper.

Definition 2.2.1. Let 9B,, C V,, denote the boundary of the n-permutohedron.
The (n — 1)-honeycomb $H,,—1 C V,, is the piecewise linear hypersurface given by
the union of translates

fJnfl - a‘pn + An

We will describe the singularities of $),,_; in the language of [28], which intro-
duced a special class of Legendrian singularities, called arboreal singularities. These
are conjecturally the deformation-stable Legendrian singularities, and the category
of microlocal sheaves along an arboreal singularity admits a simple description as
modules over an acyclic quiver. In [29], it was shown that any Legendrian singu-
larity admits a deformation to an arboreal singularity which preserves the category
of microlocal sheaves along the singularity. Thus the study of microlocal sheaves
along any Lagrangian in a symplectic manifold is reduced to a two-step process:
first, deform the Lagrangian so that each singularity is the cone on some arboreal
singularity, then glue the corresponding categories together.

In the case of the honeycomb (when, in Section 4, we describe its appearance
as a Weinstein skeleton), the first step is unnecessary, since, as we will see, all the
singularities of the honeycomb are already arboreal. In fact, in the language of [28],
all its singularities are arboreal singularities of type Ay for some k; this arboreal
singularity is homeomorphic to the cone on the (k — 2) skeleton of the k-simplex
A¥. This structure makes it possible to describe the symplectic geometry of the
honeycomb by means of the combinatorial constructions in this section.

Below we describe the singularities of the honeycomb $),,_1 and show that they
are all stratified homeomorphic to A,, arboreal singularities. Later, when we present
the honeycomb as a Lagrangian skeleton for the pair of pants, we will see that
the singularities of this Lagrangian actually have the symplectic geometry of A,
arboreal singularities.

Let A¥ ¢ R¥*! be a k-simplex with barycenter at the origin, and let skj_oA* C
R**1 denote its (k — 2)-skeleton. For A C R¥*1 we denote by Cone(A) the cone
R>o - A C REF! given by scalings of A (with cone point at the origin).

Definition 2.2.2. For k > 0, the topological Ag-hypersurface singularity is given
by
La, = Cone(skj_oAF) C RFFL

This will be our topological model for the Legendrian arboreal singularity L4 ;
we will return to the symplectic geometry of this singularity in the proof of Propo-
sition 4.2.3. Since so far £),_1 is only a topological space, we will describe its
singularities for now in terms of the topological singularity L4, .

Definition 2.2.3. Define the stratified space $,,—1 to be the space $,,_1 equipped
with the stratification by relatively open faces. In other words, the strata of £, _1
are indexed by faces F', and the stratum Sp corresponding to the face F' is just the
face F, not including any lower-dimensional faces incident on F'.

Now we can describe precisely the singularities of the honeycomb.

Proposition 2.2.4. If p € 9,,_1 is a point in an (n — k)-dimensional stratum of
the honeycomb, then a neighborhood of p in $,_1 is homeomorphic to L4, X Rk,
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Proof. Suppose first that p is in the 0-dimensional stratum of £),,_1; i.e., p is a vertex
in the honeycomb. In this case the proposition claims that in a small neighborhood
B of p, the complement B° := B\ {p} is homeomorphic to Rsg X sk, _oA™. As a
simplicial complex, sk, _oA"™ is determined by its face poset, which is the poset of
nonempty subsets of [n 4 1] := {0,1,...,n} containing at most n — 1 elements.

Let € > 0 such that the radius e sphere S, centered at p is contained in B,
and let Bynr be the intersection of B° with S.. Then positive dilation gives a
homeomorphism R<y X Bpinre = B°. Hence we need to prove that Bj;,ir admits
the structure of a regular cell complex with face poset isomorphic to the poset of
nonempty subsets of [n 4 1] containing at most n — 1 elements.

We claim first that in the honeycomb, the vertex p is incident on n+1 edges. To
see this, we recall the Cayley graph description of 3,,: A vertex v in 93,, is incident
on n edges, and the n A,-translates of 9,, which contain v correspond to the n
facets in 9B,, containing v, which correspond in turn to the n choices of n — 1 edges
in 93, which contain v. A copy of 98,, which contains v is determined by n edges
containing v, so each translate incident on v contains exactly one new edge which
contains v. In fact, this edge is the same for all translates: otherwise, translations
would produce at least two new edges containing v, but no translate could contain
both of these, contradicting the fact that translates of 3, tile space.

Now by symmetry we can conclude that for 1 < k < n —1, any choice of k edges
containing p determines a k-face containing p in some translate of 3, and these
are all the faces containing p. In other words, there is a bijection

{k-faces in $),,—1 containing p} = {k-element subsets of [n + 1]},

and incidence relations among these are given by the natural poset structure on
the set of subsets of [n + 1].

Thus we have established the proposition in the case where p is in a 0-dimensional
stratum. We can derive the case where p is in a k-dimensional stratum by starting
with p’ a vertex contained in a small neighborhood B’ and then restricting B’ to a
ball B which does not contain any strata of dimension less than k. In the analysis
above, this corresponds to restricting to a subposet of the set of subsets of [n + 1],
which we can identify as the face poset of sk, _,_sA"7F. O

The proof above actually establishes more than an abstract description of the sin-
gularities of the honeycomb $,,_1: it also explains the inductive way in which they
are embedded in one another. Note that the Ay singularity La, = Cone(skj_2A¥)
contains k + 1 copies of R x Ly, ., each embedded as the cone on a small neigh-
borhood of a vertex in skj,_sAF. Since the description we gave above respects all
of these identifications, we can elaborate on the above proposition.

Corollary 2.2.5. For 0 < k < n —2, let « be a k-face in $H,_1 incident on a
(k+1)-face B. Then the singularity La, _, x R* lying along 3 is one of the n—k+1
copies of La, , | X R**1 embedded as described above in the singularity La, . X% R*
lying along a.

2.3. Cyclic structure sheaf. From the above description we see that the only
data needed around a point in $),,_1 to determine its singularity type is the number
of permutohedra in the tiling of V,, which contain that point. We will encode
that data, along with the data of relations among these singularities, in a cosheaf
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on 9,_1, from which we will subsequently produce a combinatorial model for the
A-model category associated to £,_1.

Definition 2.3.1. Define the cosheaf of finite sets O,,_1 over the honeycomb $),,_1
to be the connected components of the complement

On-1(B) =mo(B\ (BN Hn-1))

for small open balls B C V,, centered at points of §),,_1. For inclusions ¢ : B’ — B,
the corresponding corestriction map is the map induced on my by .

Because the cosheaf O,,_1 is constructible with respect to a stratification of
Hn—1 as a regular cell complex, the cosheaf O, _;1 can be equivalently described
as a contravariant functor from the exit-path category P($),—_1) associated to the
stratified space $),,—1. (Likewise, a constructible sheaf on $,,_1 is a covariant functor
from P($),_1).) The category P($),_1) is equivalent to the poset which has one
point « for each stratum S, in $,_1 and one arrow a — [ for every relation
So C 5’3.

For each oo € P($),,—1), pick a ball U, such that U, N S, =25, and U, N Sz =10
for «, § incomparable in P($),,—1). Then we can define O,,_; as the functor

Onfl : P(Sjnfl)op — Sets, Onfl(a) = WO(Ua \ (Ua N ﬁnfl))v

where the map mo(Ug \ (Ug N Hp-1)) = 70(Us \ (Ua N Hp—1)) induced by the
incidence o« — f is defined through the inclusions

Uoc \ (Ua mﬁn—l) QU& N UB \ (Ua N Uﬂ mf)n—l)c—N> U,B \ (UB N ﬁn—l)v

using that the second is a homotopy equivalence.

Recall the cyclic category A of finite cyclically ordered nonempty sets: its objects
are finite subsets S C S!, and morphisms S — S’ are given by homotopy classes
of degree 1 maps ¢ : St — S* such that ¢(S) C S’. We would like to lift O,,_;
to A; in other words, we want to express O, _1 as the composition of the forgetful
functor A — Sets with a functor (5,1,1 : P($,-1) = A. Such a lift is the same as a
choice of cyclic ordering on every set O, _1(a).

Moreover, we want this lift to respect the Wn symmetry of §,,_1. The Wn symme-
try of the honeycomb $),,_1 induces a Wn action on P($),,—1), and for a € P(9),,_1),
this symmetry also induces an action of W, on the set To(Ba \ (Ba N $Hn—1)). This
action does not affect the set itself but will alter the cyclic ordering if this set is en-
dowed with one. Hence the condition of Wn—equivariance places extra requirements
on the structure of (5,1,1.

Lemma 2.3.2. There are n! possible Wn-equivamant choices of lift 6n_1, each
determined by a choice of cyclic ordering on O,_1(a), where « corresponds to any
verter in Hp_1.

Proof. Suppose we have chosen a cyclic ordering on @,,_1(«) as in the lemma. For
a — B, the inclusion O,_1(8) — On_1(®) determines a cyclic ordering on all
Op—1(B). Conversely, if o/ € P($),—1) also corresponds to a O-dimensional stratum
in $,_1, then the action of Wn transfers the cyclic ordering on O,,_1 () to Op,_1 (')
and hence also determines a cyclic order on all 8 with o/ — 3. We have to show
that for any incidence relation of the form

a——f<~—2a
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in P($,—1), both of the above methods of determining a cyclic order on O,,_1(5)
coincide. In other words, if o € AW/n is any element taking a to o’ and taking 8 to
itself, then we must show that o acts as the trivial permutation on O, _1(3). Since
the affine Weyl group W,L is generated by reflections through root hyperplanes, we
may assume o is a reflection through a root hyperplane. Any intersection of such
a hyperplane with a face of a Voronoi cell for the lattice A,, is transverse. Thus,
if 0 - 8 = 3, then o is reflection through a hyperplane intersecting every connected
component in O, _1(f) and hence acts as the trivial permutation on O, _1(8). O

Now we fix a cyclic order at vertices as follows: at a vertex «, elements of the set
Or—1(a) can be identified with the n+1 copies of the permutohedron which contain
a. We endow this set of permutohedra with the cyclic order [Py,..., P,] such that
(taking indices cyclically modulo n + 1) we have P; = P;,_; + \; (see Figure 3 for
an illustration). Since we have w-P; = w - P;_1 +w - A; for any w € ,V[v/n, this gives
a consistent choice of cyclic structure at all vertices.

b
B

FiGURE 3. The cyclic order at a vertex in ;.

Definition 2.3.3. We define the functor
671—1 : P(yjn—l)Op — A

by using this cyclic order to lift the cosheaf of sets defined above to a cosheaf of
cyclic sets:

57171(04) = 7TO(-Boz \ (Ba N S/.')nfl)%

where 6n_1(o¢) is given the cyclic order described in the previous paragraph. This
functor factors through the nonfull subcategory A;n; of cyclic sets and injective
morphisms, and we will denote the resulting functor P($),-1)°? — Asy,; also by

Op_1.

2.4. Quantization. The cyclic cosheaf (5n,1 encodes the data of all the singulari-
ties of §),,_1, our combinatorial model for a skeleton of the pair of pants. Following
the procedure described in [31], we can produce from this cosheaf a sheaf (re-
spectively, cosheaf) on $),,_1 whose global sections are a dg category modeling the
infinitesimally wrapped (respectively, partially wrapped) Fukaya category of branes
running along the skeleton $),,_1. This procedure is analogous to the constructions
of topological Fukaya categories described in [6,18], although thanks to the arboreal
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singularities of our skeleton, the construction we describe here works in arbitrary
dimensions.
The key ingredient in our construction is a functor

Q: A% — > 7/2-dgst,,

inj
which is described as Construction 2.4.1 below. First, for S = [s1,...,8n41] a
cyclic set of n + 1 elements, consider the Z/2-dg category (A, -Perfy)z o, whose
objects include the n simple modules k1, ..., k, and the shifted injective-projective
I,[1] = Py[1]. We will relabel these objects s1,. .., Sn+1, respectively, and denote
by (s1,...,8n+1) the full subcategory on these objects. Let Cg be the dg category
of twisted complexes on (s1,...,Spt+1):
Cs :=Tw(s1,...,Snt1)-

Since the category (A, -Perfy)z/s is generated by simples s;, the category Cs is
equivalent to (A, -Perfy)z/o but with a manifest cyclic symmetry: the category Cg
admits an action of Z/(n+1)Z, whose generator takes s; to s;41, indexed cyclically.

Construction 2.4.1 ([31, Proposition 3.5]). The functor
Q: AP ——=7,/2-dgst,

has value Q(S) = Cg, and the map Q(i) : Cs» — Cg induced by the inclusion
i:S < S’ is the dg quotient of Cgs by the full subcategory on {s; | s; € S’ \ S}.

Remark 2.4.2. The functor described in [31] actually has target in the category
of (2-periodic) A categories and strict functors; the functor described here is a
(Z/2)-dg model of that one. (In fact, below we will describe two different Z/2-dg
models of this functor.) See also [6] for a more extensive discussion of this functor,
modeled there using the category of matrix factorizations of z™.

Remark 2.4.3. The notational confusion of s; € S with s; the element of Cg in the
lemma above is meant to indicate that our set of distinguished generators of Cg
is indexed by the cyclic set S. The cyclic sets we consider will in general be sets
S =|[Py,...,P,1] of adjacent permutohedra as at the end of the previous section;
in this case we will continue to denote the generators of Cs by s1,...,S,4+1, with
the understanding that s; is indexed to P;. We will always understand the indexing
of the s; cyclically, so that, for instance, we may denote s,11 also by sq.

A choice of a linear order {s; — -+ $, — Sn+1} underlying the cyclic order on
S picks out an equivalence Cs = (A, -Perfy)z/; sending s; to the simple object
k; for i = 1,...,n and sending s,41 to I,[1] & Pyi[1]. But since the cyclic set S
does not have a distinguished linear order, there is no distinguished equivalence
Cs = (A, -Perfy)z/o without making such a choice.

To see a more explicit description of the maps Cg» — Cg which Q induces from
an inclusion S — S’, note first that the category Cs is generated by degree 1
morphisms «; : $; — $;+1. (This corresponds in A, 11 -Perfy to the degree 1 map
of simple objects k; — ki1 representing the class of the nontrivial extension.) For

|7 —i| < n, we can form a complex s;; from the objects s;, s;41,...,5; by taking
successive extensions by the maps «;. We write this object schematically as a
complex
«; Qi1 Qj—1
Sij = (8i Sit1 $j)
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where s; is placed in degree 0. Under the equivalence Cs = (A, -Perfy)z/, which
sends s; to kq, the object s;; corresponds to the A,-representation

AN A 0 0

with 7 — ¢ + 1 nonzero terms.
Let ix be the inclusion {1,...,n+1}\{k} — {1,...,n+1}. Then the map Q(ix)

acts as
Si,gs { 7£ k 7£ 75
Qi) (sij) = § sit14, 1=k,
Sij—1, J=k.

Since any object in Cg is a direct sum of the s; ; and any inclusion S — S’ can
be written as a composition of inclusions which miss one element, the above gives
a complete description of the behavior of the functor Q on the subcategory of A°P
whose morphisms are injections of cyclic sets.

It will also be useful to have one other description of the functor Q@ which will
give us a different way of thinking about the Fukaya category we describe below.
Note that instead of taking the pretriangulated closure of (sg,...,s,) by using
twisted complexes, we could equally well have used perfect modules: i.e., we have
an equivalence

Cs = (0, . .,5n) -(Perf; )z/9 := Fun® ({(so, ..., 5,)°7, (Perfy)z/2).

Since the category (so,..., sn) is generated by the degree 1 maps «;, an object F
in (sg,...,sn)-(Perf,)z/, is determined by the n + 1 objects F(s;) of (Perfy)z/s
and the n + 1 maps F(s;) < F(si+1) : Flay).

The n + 1 equivalences of this category with (A, -Perfy)z/, come from cyclic
reindexing and then applying the equivalence

(<805 B STL> _Perfk)Z/Q - (<517 SRR 57l> _Perfk)Z/Q

given by forgetting F(so) and the maps F(sg) < F(s1) and F(s,) + F(so).
The functor @ is defined in this language by
) (F(sg—1) < F(sg)) i=k—1(modn+1)
F) = i =
(Q(i)(F) [ { i P

Remark 2.4.4. We will see below that the two dg models for the functor Q, using
twisted complexes or using perfect modules, give two different ways of talking about
the Fukaya categories we construct. The first is adapted to describing the support
of a brane along an arboreal Lagrangian, while the second is better for describing
its transverse geometry. (See also Example 2.5.2 and the preceding discussion.)

In addition to the functor Q, we would like to produce a covariant functor
Qwr : Ainj ——— Z/2 _ngtk

in order to produce a cosheaf of dg categories on $),,_1. For any object S in A and
for any map ¢ : S — S in A;,,;, we define

QU(5) == Q(59), Qur(i) = Q(i)" : Qv (S) — Qv(5"),

where we write Q(i)” for the left adjoint to the map Q(i).
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Definition 2.4.5.
(1) Define the local wrapped and infinitesimal quantizations Q¥", and Q" "f to
be the respective compositions

n 1 = Qwr o On 1 - (Sﬁnfl)Op ﬂZ/Q—ngtk,

QM = QoO%  : P($, 1) — Z/2-dgst, .

These are, respectively, a cosheaf and sheaf of Z/2-dg-categories on $,_1 whose
sections in a small ball around a point in a k-face are equivalent to the Z/2-dg-
category of representations of the A4,,_j quiver.

(2) Define the global infinitesimal quantization Qi:ﬂ to be the global sections of
the sheaf Q,,_1:

Qi) =limp(g, ) Qn-1.

Define the global wrapped quantization to be the idempotent-completion of the
global sections of the cosheaf QW’ ;:

wr ) = Idem (colimps, ,)er Q¥7 ).

These will be our respective models of the infinitesimal and (idempotent-
completed) wrapped Fukaya categories of the Z™ cover P,,_; of the (n—1)-dimension-
al pair of pants.

Remark 2.4.6. These categories inherit Wn symmetries from the Wn—action on the
poset $,—1 (and the equivariance of the cyclic structure sheaf 6n_1). In particular,
these categories have an action by the normal subgroup A, C Wn of translations.
We will denote the action of a translation A € A,, on an object F by F(\), so that
F(MN(U) :== F(U + A), to match our notation on the B-side in the next section.

2.5. The quantization categories. We would like to describe more explicitly the
categories Q")) and Q¥ . Since the category QY| is presented as a limit, it is
easier to understand: an object of Q;nfl is specified by the data of an object in the
categories Q;"_f 1(a) associated to each vertex « in §,,_1 and coherent isomorphisms
relating the results of restriction maps Q" (a;) — Q| (F) associated to pairs
of inclusions a1, s — F from faces a1, s into the closure of a higher-dimensional
face F. For F an object of Q;"_'l and « a face in the honeycomb $,,_1, we will
denote by F, € Q""f(a) the component of F placed at the face a.

There are two useful ways to understand this category, corresponding to the two
descriptions of Q"f(a) = C5( ) as perfect modules and as twisted complexes. We

will begin with the first perspective, which allows us to think of an object in me

as the data of an object of (Perf})z/, at each facet in $),,_; along with maps among
these at codimension 2 faces, satisfying some conditions.

Let o be a vertex in $,_1, which is contained in n + 1 cyclically ordered per-
mutohedra Py, ..., P,. Then an object F in Q"7 (a), understood as a category of
perfect modules over (s, ..., s,), is a collection of n 4+ 1 objects F(s;) and n + 1
degree 1 maps F(s;) < F(si+1)-
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Lemma 2.5.1. Let F be the facet separating the permutohedra P; and Pj, and let
Flp be the restriction of F to Q™ (F) (along the inclusion a — F). Then the

n—1

perfect complex F|r € Fun“((s;, s;)°P, (Perfy)z,2) is given by
Flr(si) = (F(si) =—— - =—— F(s5-1)),
Flr(s;) = (F(s;j) <— - <— F(si-1))-

Proof. This follows directly from the definition of the functor Q;nf 1- O

Let F; be the facet containing o which separates the permutohedra P; and P;_.
Then from the above lemma we understand that the object of (Perfy,)z /o placed at
F; is just F(s;), and at the codimension 2 intersection of F; and F;; is the map
.F(Sl) <—.7:(Si+1). '

There is also a geometric way of understanding Q;"f 1 (@) as a category of twisted
complexes for a face a in $),_1: each of the distinguished generators s; of the
category Q;nf 1(a), which are indexed by permutohedra P; containing c, corresponds
to a brane in the Fukaya category which locally near « runs along the interior of
the permutohedron F;; the complexes s; ; correspond to branes which cross over to
different permutohedra at «.

The compatibility conditions mentioned in the approach using perfect modules
correspond in this perspective to a list of the possible configurations which a brane
can take locally at each face a. If « is a codimension r face so that it is contained in
r 4+ 1 permutohedra Py, ..., P, then there are w possible such configurations,
corresponding to the objects s; and s; ; in the category o"f ().

Example 2.5.2 (n = 2). Let a be a vertex in $); which is shared by three hexagons
Py, Py, P>. Then locally at «, there are three possible brane configurations sg, s1, S2
(up to a shift, these are equivalent to si 9,520, and sg 1, respectively). These are
illustrated in Figure 4.

~ 4

So S1 S>

FIGURE 4. A vertex v in $; and the brane conﬁgurations corre-
sponding to the generating objects sg, s1, so of Q:L"fl (v).

One basic class of objects in the category Qiﬁl are the “microlocal rank-one”
objects: these are the objects F such that for every facet a, the object F, is equiva-
lent in Q"f () to either sq or 51 (where these correspond to the two permutohedra
separated by «a; cf. Remark 2.4.3). The microlocal rank-one objects in the Fukaya
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category perspective are those objects which run along each facet in $,,_; at most
once.

Definition 2.5.3. Let P = {P,;};cs be a set of permutohedra involved in the tiling
of V,,. Then the boundary B = J(|J; P;) is a subset of $),,_1 which is a union of
strata. (We will occasionally denote B by OP.) A rank-one brane along OP is an
object of Qflnfl whose support along each facet o in B is equivalent to sg, where sq
is the generator of Q;"f 1(a) corresponding to the permutohedron in P containing
« and whose support along each facet o not in B is zero. If such an object exists,
it is necessarily unique, and we will denote it by Bp.

Example 2.5.4. Let P = {Py} be a single permutohedron Py. Then the object
Bp exists: for any face o in $,,_1, its support (Bp)a € Q7 (a) is given by

so « € 9Py,
Bp)a =
( P) {0 O[¢(9P0.

This object, which under the mirror symmetry equivalence presented later in this
paper will map to the skyscraper sheaf at the origin of A"*!, corresponds in the
Fukaya category side to the immersed sphere whose endomorphisms were calculated
by Sheridan in [39].

Example 2.5.5. Let n = 3. The 3-permutohedron is the truncated octahedron,
which has both hexagon and square facets. Let P = {Py, Py + A1 + A2} be a set of

two permutohedra which share a single square facet. Then there does not exist a
rank-one brane along 9P.

The second example above shows that we need to institute an additional condi-
tion on the set P in order to guarantee the existence of a rank-one brane along 9P.
One such condition, which will be sufficient for our purposes, is given in the lemma
below. _

Recall that for every face a of a permutohedron, we have a cyclic set O(«) of all
permutohedra containing a.

Lemma 2.5.6. For P a set of permutohedra, write Op(a) C O(a) for the subset
of permutohedra in O() which are contained in P. If the subset Op(a) C O(a)
is connected in the cyclic order on (5(@) for every face a in P, then the rank-one
brane Bp along OP exists.

Proof. We can define the object Bp as follows: at any face a not in IP, we set
(Bp)o = 0. At any face o in P, denote the cyclic set O(a) of permutohedra con-
taining o by [P,. .., P.|, and let [P;, P41, ..., P;] denote the cyclic subset Op (@)
of permutohedra contained in P. By assumption, this set is connected in the cyclic
order on O(«), and hence in Q;”f 1(a) we can define the complex

Sij = (8i Sit1 $5)
and we set (Bp)a = s, ;. O

We would like to give a similarly explicit description of the category Qw’,, but
the definition above is not well-suited to describing objects of this category, for the
reason that colimits of dg categories are more difficult to present than limits are.
In order to understand this colimit, we cite from [13] the following useful trick,

originally due to Jacob Lurie.
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Lemma 2.5.7 ([13, Lemma 1.3.3]). Let P be a category and let F : PP — Str
be a functor to the category of cocomplete k-linear dg categories and continuous
functors. Let G : P — Stg be a functor to the category of cocomplete k-linear dg
categories which agrees with F' on objects and such that G(a — 8) is right adjoint to
F(a— B). Then there is an equivalence colimpor F' = limp G.

By construction, Q;”fl : P($n-1) — Z/2-dgst;, agrees with Q" on objects,
and Q;"_fl(a — f) is right adjoint to Q¥" ; (v = ), so we are almost in the situation
in the lemma. However, the functors Qibn_f ; and Q%" as defined have codomain all
dg categories and not just cocomplete dg categories. We can rectify this by passing
to Ind-completions.

Let Q¢ be the functor defined the same way as the functor Q, except that its
values on objects are equivalent to (A, -Mody)z/o instead of (A, -Perfy)z/o; that
is, we allow complexes of any dimension, with no restriction to perfect complexes.
Following the procedure by which we defined Q;nf 1
category Qg_l, which is similar to Q;"_f , but allows infinite-rank stalks along facets.
We are now in a position to apply the above lemma.

we produce in the same way a

Corollary 2.5.8. The category Q¥ is equivalent to the category of compact ob-
jects in QY.

Proof. The functors IndoQY¥", and Ind Ome = Q2—1 satisfy the conditions of

n—1
the above lemma, which thus provides an equivalence colimp(g, ,)yor (Ind0 Q") =
Q2—1 between their respective colimit and limit. Passing to the full subcategory of
compact objects on each side turns this into an equivalence:

: wr cpt ~, c
(colimpg, ,yor(Indo QW7 )" 22 (QY_,)ert.

Since the Ind-completion commutes with the colimit, the left-hand side of this equiv-
alence is (Ind(colim P($n_1)oP Qﬁ’ﬁl))cm, which is just the idempotent-completion of

the category colimp(g, ,yor @57 1. By definition, this latter category is Q" ;. [

We can use the above lemma to give an explicit description of the generators of
Quwr. . For F a facet in $,,—1 and £ a choice of normal direction to F', consider the
map

3
bre: QY —= QY |(F) —— (Mody)z),

which takes an object of Q2—1 to the object of the category Q2—1(F) (which
¢ identifies with (Mody)z/2) which is placed at the facet F' of $,_1. If {1 are
the two choices of normal to F', then the resulting functors agree up to a shift:
dre. = ore¢_[1]. (Note that a choice of & is equivalent to a choice of one of the two
permutohedra containing the facet F. If P is a choice of one of these permutohedra,
we will occasionally denote the corresponding functor by ¢p p.)
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Since the functor ¢ ¢ preserves products, it admits a left adjoint ¢§% : Mody —

Qg_l, and since it preserves coproducts, ¢%7§ preserves compact objects. Hence, if

wr
n—1»

we define 6p¢ to be qﬁ%}g(k), then dp¢ is an object of
corepresents the functor ¢p .

which by construction

Definition 2.5.9. For F' a facet in $,,_1, the functor ¢ is a stalk functor along
F'. The object dp¢ in Q)" corepresenting ¢r ¢ is a skyscraper along F.

It will be useful to restrict our attention to the maximal facets in the honeycomb
Hn_1. Recall that the facets of the permutohedron P,, are of the form P, _p x Py
for Kk = 1,...,n and that we call “maximal facets” the facets of the form P,_;.
Equivalently, these are the facets which are shared by a pair of permutohedra P
and P + \; for some i. In the description of Qﬁl"_l using perfect modules, if an
object Fy : (so,...,5,)°7 — (Perfg)z/s is placed at a vertex v, then F(s;) are its
stalks along the n 4+ 1 maximal facets containing v. We can use this to establish the
following lemma.

Lemma 2.5.10. The category Q" is generated by the set {dp¢} of skyscrapers
along mazximal facets of $H,_1.

Proof. An object of Qg_l is zero if and only if its stalks along all maximal facets F'

are zero, which shows that the set of skyscrapers generates ngr Since the category

Q2—1 is the Ind-completion of its compact objects Q" ;, the skyscrapers generate

wr |:|

n—1-

Remark 2.5.11. For a non-simply-connected symplectic manifold, the category of
wrapped microlocal sheaves (modeled here by Q*") lacks the necessary finiteness
conditions to embed into the category of infinitesimally wrapped microlocal sheaves
(modeled by Q™"f); instead, both are contained inside a larger category Q. How-
ever, passing from $,,_1/A,, to its covering space $),,—1 unwraps branes: consider
for instance the toy case R — S', in which a brane wrapping S! countably many
times might run only once along the universal cover. We might thus expect that
the objects in Q° which corepresent stalk functors have sufficient finiteness to live
inside Qi"fl. This turns out to be the case, as we will see below.

The following collection of objects of Q™ will play an important role in the

proof of the main mirror symmetry equivalence of this paper.

Definition 2.5.12. Let P be a permutohedron in V;,, and let J C {1,...,n+1} be
a proper subset. Set P = {P+}_,.;n;A; | n; € N}. The hypothesis of Lemma 2.5.6
is satisfied, so this choice of P defines a rank-one brane Bp, which we will denote
by Bp,;.

The object Bpy is the brane wrapping a single permutohedron, discussed in
Example 2.5.4 above. At the opposite extreme, in the case where J = {i}¢ =
{1,...,n+ 1} \ {i}, we get a skyscraper.

Proposition 2.5.13. Let P be a permutohedron in V, and let F; be the facet
separating P from P + A;. Then the rank-one object Bp (i) defined above is the
skyscraper g, p.

Proof. Let P be as in the definition of Bp ;.. As usual we will denote by B
the boundary B = d(|Upep P). To show that the object Bp is isomorphic to the
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FIGURE 5. The support (in bold) of the skyscraper 0r p = Bp 12,3}
along the edge F.

skyscraper o, p, we need to define an equivalence
Hom yins (Bp,G) ——Hom yins (65,.p,G) = ¢r, p(G)

which is natural in G.
If we define a functor

h: P(f.)n—l) I (Perfk:)Z/Qa o 'L> HomQ(a)((BP)aa goz)a
then we have an equivalence
HOin:Lfl (Bp,G) =limp(g, ,)h,

so it would be enough to show that this limit is naturally equivalent to ¢g, p(G).
We will calculate this limit by making a series of simplifications until we arrive at
the desired result. Heuristically, we will see that after restricting to the support of
B, the calculation we want can be understood in a category of representations of a
certain acyclic quiver.

First, let P(B) C P($),-1) be the full subposet on faces contained in B. Note that
h(B) = 0 for any 8 ¢ P(B), and there are no maps 8 — « for o € P(B), ¢ P(B).
Hence the natural map

limp(y)nfl) h—— limP(B) h

is an equivalence.
But this latter limit is just the Hom space

limp(p) h = Homy,, o gins) (Bplp(B),9lp(B))

of the objects Bp and G after restriction to the category limpp,) mel, so we need
to compute this latter category, which is equivalent to the category of modules over
a certain quiver with relations (Qp, Rp).

Let @p be the quiver with one vertex for every facet in B and one arrow for
every codimension 2 face in B, with the direction of the arrows determined as in
the description of Q;"_f 1 by perfect modules. For k > 2, the two paths around each
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codimension k face form a nonoriented k-cycle, and we add to Rp the relation that
these two paths commute.

Then limpp,) Q;nj 1 is equivalent to the category of modules over the quiver
@p with relations Rp. The quiver representation corresponding to an object F
in limp(p,) Qi:fcl has at the vertex of @Qp corresponding to the facet o the perfect
complex ¢, ¢(F), where & is the normal direction along o which points into P and
®a,¢ is the corresponding stalk functor.

The quiver B is a connected quiver with an initial vertex corresponding to the
facet Fj; it has no oriented cycles, and any two paths with the same start and
endpoint are forced by a relation in Rp to agree. By construction, the object Bp
is mapped by this equivalence to the quiver representation with k placed at every
vertex and every map an isomorphism. This object corepresents the functional on
(@B, Rp)-mod sending a quiver representation to the object of (Perfy)z/» placed
at the initial vertex. Hence we have an isomorphism

Hom(q, -perty), . (Brlp(B), Glp(B)) = ¢F;,P(G).

Composing all of the above equivalences, we conclude that the object Bp corep-
resents the stalk functor ¢r, p, as claimed. O

We will also need the following fact about the objects Bp, s, which expresses how
they can be built out of one another.

Lemma 2.5.14. Let P be a permutohedron in V,, let J' C {1,...,n+ 1} be a
proper subset, and suppose that J' = J\ {i} for some i and some proper subset
JcA{l,...,n+1}. Then in Qfl"_fl there exist a map x; : Bpy — Bp j(\;) and an
isomorphism of complexes

BP,J’ =~ (Bp’]<—)\i> $lgpyj).

Proof. The definition of the map x; is clear in the case where J = {1,...,n+1}\{j}
for some j. In this case we want to exhibit a map x; : 5Fj7p<—)\i> — 0F;,p. But
since the domain corepresents the stalk functor along the facet F; +\; and we know
that the codomain is rank-one along this facet, there is a one-dimensional space of
maps between these two, so such an x; exists. Moreover, from the definition of
these two objects as the rank-one branes Bpyy, s and Bp,;, we see that the cone
on this map is the rank-one brane Bp p (4} -

To produce the maps on the objects Bp ; for other J, we just need to note that
the maps z; commute, i.e., that the squares

O, (=i — M) —=p, p(— )

0F;,P(—Ak) ———>=0F, P

are commutative. Hence we can read this square as a map of complexes in two
different ways: either vertically, as the map

z; : Bp (jkye{—Ai) = Bpjryes
or horizontally, as the map

Ty - BP7{j)i}C<_)\k> — BP7{j7i}C'
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We can produce all the maps z; by iterating this procedure, and they manifestly
satisfy the relations described in the lemma. (Il

3. MIRROR SYMMETRY

3.1. Landau-Ginzburg B-model. Here we recall from [32] the structure of the
B-brane category associated to the Landau-Ginzburg B-model with background
A™! and superpotential Wy, 11 = 21 -+ 2p11.

3.1.1. Matriz factorizations. Consider the background M = Spec A, with A =
k[z1,...,2n11], and a superpotential W € A such that 0 € A is its only possible
critical value.

We will denote by X the special fiber W~1(0) = Spec(A/(W)).

Let Perf(X) be the dg category of perfect complexes on X, and let Coh(X) be
the dg category of bounded coherent complexes of sheaves on X.

The category of B-branes associated to the LG model (M, W) is the derived
category of singularities Dgipg(X), which is defined as the 2-periodic dg quotient
category

Dging(X) = Coh(X)/ Perf(X).

Orlov [34] established an equivalence of the derived category of singularities with
the Z/2-dg category MF (M, W) of matrix factorizations associated to (M, W). The
objects of this category are pairs (V,d) of a Z/2-graded free A-module V of finite
rank equipped with an odd endomorphism d such that d> = Wid. Thus we have
V= VO@Vl, d= (do, dl) S HOI’H(VO, Vl)@HOI’H(Vl, VO), and d2 = (dldo,dodl) =
(Wid,Wid) € Hom(V° V? @ Hom(V!, V). We denote the data of a matrix
factorization by a diagram

do

d
ooyt L

Vo — sV,
Orlov’s equivalence
MF (M, W )2z — Dying(X)

is given by

do dy

(Vo Vi VO coker(dy).

3.1.2. Coordinate hyperplanes. For n € N, set [n] = {1,...,n}.

In this paper, we are interested in the matrix factorization category associated
to the background A™*! = Spec 4,11, with 4,11 = k[z4|a € [n + 1]], and the
superpotential

WnJrl =21 2n+1 € AnJrl'
This LG model is mirror to the pair of pants.
The special fiber of this superpotential is

X, = W, 1 (0) = Spec By,

where we set By, = A1/ (Whi1).

It will also be convenient to set W, = Wy41/2, € A for a € [n+ 1].

For a € [n+ 1], let X% = Spec A/(z,) C X,, denote the coordinate hyperplane
and O2 its structure sheaf. As an object of Perf(A™*1) it admits the free resolution

Za
Apy1 —= Ap1 —= O,
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and as an object of Coh(X,,), it admits the infinite resolution

a
Za Wi

By

Za

Wi

B, B, B, o

For a € [n+ 1], let O € MF(A™! W,,;1) denote the matrix factorization

Wa+1 z
Appr =25 Ay =255 Ay

Proposition 3.1.3. The Z/2-dg category MF (A"t W, 1) is split-generated by
the collection of objects Oy, for a € [n]. There are equivalences of 7/2-graded
k-modules

H*(Hom(O7:, O0%)) ~ Apt1/(2a, Wi 1), a € [n+1],

n

H*(Hom(QZ,QfL)) :AnJrl/(Zmzb)[_l]v a#be [n+1]‘

Proof. The collection of objects O%, for a € [n + 1], generates Coh(X,,), and O"**
is in the triangulated envelope of the collection of objects Oy, for a € [n]; hence the

collection of objects 0%, for a € [n], generates MF(A"** W, ). The cohomology
of morphism complexes is a straightforward calculation. O

3.2. Equivariant/graded version. In order to match the passage to a universal
abelian cover on the pair of pants, we must pass to a quotient on the mirror.
Equivalently, we must work with a B-model category which has been enhanced by
equivariance data.

Let us return to the general setup M = Spec A, with A = k[z1,..., 2], and
now assume the superpotential W € A is homogeneous for an algebraic torus T' C
(G

Let x*(T) = Hom(T, G,,,) denote the weight lattice of T', and let w € x*(T) be
the weight of W.

Recall that a T-equivariant k-module is equivalently a T-representation or equiv-
alently again a x*(T")-graded k-module. Given a T-equivariant k-module V', we
write V) for the A-component of V for A € x*(T). Given a T-equivariant k-
module V' and a weight u € x*(T), we have the p-twisted k-module defined by
V{pysr = Va—, for A e x*(T).

As before, let X = W~1(0) = Spec B denote the special fiber, with B = A/(W).

Let Perf(X)” be the dg category of T-equivariant perfect complexes on X, and
let Coh(X)T be the dg category of T-equivariant bounded coherent complexes of
sheaves on X.

Let Dying (X)T = Coh(X)?/Perf(X)? be the dg quotient category of T-equivar-
iant singularities. Note that Dg;ny(X)? is not a 2-periodic dg category, but rather
the shift [2] is equivalent to the twist (w).

Let MF(M,W)T be the dg category of T-equivariant matrix factorizations.
Its objects are pairs (V,d) of a Z/2-graded free T-equivariant A-module V =
VO @ V1 of finite rank together with a T-equivariant morphism d = (do,d;) €
Hom(V%(—w), V1) & Hom(V!,V?) such that d®> = (didy,dod1) = (Wid,Wid) €
Hom(V°{—w), V?) @ Hom(V*(—w), V!). We denote the data of a matrix factoriza-
tion by a diagram

VO(—w) —2os y1 B yo
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or equivalently by its w-twisted periodicization

s V) =D VO () 2 = d“

V! Vo Viw) — -

The morphism complex between T-equivariant matrix factorizations is the usual
T-equivariant morphism complex between their w-twisted periodicizations. (Hence
if T'is the trivial torus, then MF (M, W)T is the usual Z/2-dg category MF(M, W)
of plain matrix factorizations, considered as a 2-periodic dg category.) Note that
the shift [2] is equivalent to the twist (w).

As in the nonequivariant case, there is an equivalence of dg categories

MF(M,W)T —== D, (X)T (V=V2® V! d=(dy,dy)) — coker(dy).

Now let us focus on the background A"t = Spec A,, 1, with A, 11 = k[z,|a €
[n + 1]], and the superpotential

WnJrl =21 2Znt1 € AnJrl'
Recall the union of coordinate hyperplanes

X, = W, }1(0) = Spec B,,

m

where we set By, = Apt1/(W).

Now consider the entire torus T}, 11 = (G,,)" " with weight lattice x*(Tj11) ~
7" = Z(\1, ..., Ant1). We will be interested in the subtorus T" which is the
kernel of the restriction of the superpotential W, 11 = 21 - - - 2,41 to T™. The torus
T"™ has weight lattice Ay, = Z{A1, ..., Ant1)/(O_ Ai). (As before we use A; to denote
the class of A\; in x*(T™). Since we will never be interested in the torus 77"
this ambiguity poses no problems for us.) As a subtorus of T},;1, the torus T"
inherits a natural action on A"*!, equipping A,;; with the A,-grading for which
the coordinate function z, € A, has weight A\, for a € [n + 1].

We will be interested in the T"-equivariant matrix factorization category
MF (A", W,;1)"". Note that since the superpotential W,, 11 € A, has weight 0
for the T™ action, the shift [2] in this category is actually equivalent to the identity,
and hence T"-equivariant matrix factorizations actually form a Z/2-dg category.

For a € [n+ 1], let 0% € MF(A"*' W,,11)™" denote the T"-equivariant matrix

factorization
W;LL+1 Za
AnJrl —— An+1<>\a> E—— An+1~

We have the following elaboration of Proposition 3.1.3.

Proposition 3.2.1. The dg category MF(A™ T, W, 1)T" is generated by the collec-
tion of objects O (X) for a € [n] and X\ € A,,. There are equivalences of Z./2-graded

k-modules
H*(Hom(O5 (A), O3 (1)) = Any1/(za, Wiii1)a—ps a€n+1],
H* (Hom(OF (), 0% (1)) = Ans1/Gas ) [—Upinss  a#be +1]

Proof. This is the same calculation as in Proposition 3.1.3 but restricted to the
subcomplex of T™-equivariant maps. The extra twist by ), in the second equality
is a result of our choice to twist the degree 1 (rather than degree 0) piece when
defining the equivariant complex OF. O
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We highlight also one additional piece of structure which is useful for under-
standing the equivalence proved in the next subsection.

Definition 3.2.2. We will let
fij + OLl1] —— O%(\)
be the (closed, degree 0) map of matrix factorizations which is given by

—z; Wy
Ap1 (i) —— Apys —— > A1 (N)

l—id lw}lil l—id
wi ;

n+1

An+1<>\'> S Aty + A = A (A,

n+1

where we write W7 1 for Tz,

The map f;; is a representative for

1€ Any1/(2i,2))[—1)o = H* (Hompypant1 w, e (O, 04 (A))),
and the collection of maps f;; (together with their twists by A € A) form a set of
generating morphisms for the category MF(A™1 W, )T
Lemma 3.2.3. Let I = {i1,... i} C {1,...,n+1} be a nonempty subset equipped

with an ordering. By taking successive extensions of the O along the morphisms
Jijijen, we can define a twisted complex

i1i2 Jigig fif_qi
Qi:—(Q“f 0 () L2 kO”“<Z]M>>

(where we leave implicit in our notation the homotopies witnessing the triviality of
compositions) which is independent of the choice of ordering on I, up to a shift of
A-grading. Moreover, if I = {1,...,n+1}, then O =0.

Proof. In order to simplify notation, we will work nonequivariantly (i.e., forgetting
the A-grading). Now the objects Q£ become easy to understand if we work in the
derived category of singularities Dg;ng(Spec(Ant1/Wni1)) instead of the matrix
factorization category. The equivalence between these two categories takes the
matrix factorization O to the structure sheaf O} = A, /() of the hyperplane
{#z; = 0}, and it takes the degree 1 map f;; to the extension

Ant1/(2) =2 Ang1/(2125) —2> Apir/(20).

Similarly, the map f;; : O7[1] — OF descends to a map O} 1] — OF which
in the singularity category is equivalent to the extension

A1) (z1) =2 A /(zi2528) —2 Angr/(2i2)).

By iterating this process, we see that Ofl is represented in

szng (Spec( n+1/Wn+1))

by Ani1/(2i, -+ 2i,,), the structure sheaf of the union of the hyperplanes {z;, = 0}.
This proves the final statement of the lemma, since if 7 = {1,...,n + 1}, then

QfL is represented by a free rank-one module over A, 1/W,,, which is zero in the
singularity category. ([l
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MIRROR SYMMETRY FOR HONEYCOMBS 99

3.3. Main result. The main result of this paper will be a Wn—equivariant equiv-
alence between the equivariant matrix factorization category MF(A"™+!, Wn+1)T"
and the combinatorial Fukaya category Q" constructed in the previous section.
We will establish this equivalence by describing a functor

Coh(W, 1, (0)™" —2= Qi)

and checking that it factors through both the projection
Coh (W, (0))™ ——= Coh(W, 4 (0))™ / Perf(W, 1, (0))™" = MF (A", W, 41)™

n

and the inclusion

wil(—> Qi:ylv
and that the middle functor @ in the resulting sequence of functors
Coh (W, 14(0)™" ——= ME (A", W, p0)™ W QY

is an equivalence of categories.
In order to define a functor with domain Coh(W,, ., (0)), we use the fact that the

n

variety W, _ +1( ) can be obtained by gluing together copies of affine space: Let D be
the poset of proper subsets I of the set {1,...,n+1}, and write A’ for A”!. Then the
natural inclusion maps A7 — W, ﬁl(O) and the inclusion maps A7 — A7 induced

by inclusions I C J give a D-diagram of varieties, and we have an equivalence
colimp AT —== W, 1, (0).
This induces an equivalence

colimp Coh(A?)T" —== Coh(W,, ", (0))™",

so that the functor ® will be an object of
Fun(colimp Coh(AD™, Q"7 ) n = hmFun(Coh(AI) .Qint )W”

n—1 n—1
A W,-equivariant functor from Coh(AT)™ is just a choice of object Oy with com-
muting maps x; : Or(—X\;) = Oy for each i € I. Since the limit diagram

D 5 I+ Fun(Coh(AN)™", Q)W

no1
is strict, objects of this limit can be defined “by hand” without any higher coherence
data: such an object is a choice of a W, -equivariant functor Coh(AD)T" — Q;"f 1
for each I, plus coherent equivalences
Ongiy = (0r(=\i) s 0p).
According to the above analysis, we can define a functor ® as follows: fix once

and for all a permutohedron P in V,,. Then we define ® by declaring O; = Bp,r
and the maps z; to be the maps from Lemma 2.5.14.

Lemma 3.3.1. These choices satisfy the necessary relations to define a functor

Coh(W~=1(0))T" 2 colimp Coh(AT)T" —25 Q..

Proof. This is exactly the content of Lemma 2.5.14. O
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100 BENJAMIN GAMMAGE AND DAVID NADLER

Note that this means in particular that for I = {1,...,n+1}\{i}, the structure
sheaf O,r is mapped by ® to the skyscraper d, p, where F; is the facet separating

P from P+ \;.
Theorem 3.3.2. The functor ® can be factored as a composition
_ mn n [ i
Coh (W1 (0))™" —— MF(A™, W,41)" no1 Q,

where the left-hand map is the projection, the right-hand map is the inclusion, and
the middle map ® is an equivalence of categories equivariant for the W, action.

Proof. To see that ® factors through the projection

n

Coh(W, 1 (0))™ —— Coh(W, 1, (0))™"/ Perf(W, [, (0))™ = MF (A", W, 11) ™",

n m n
we need only check that the structure sheaf Oy, - 1(0) is sent to 0 by ®. The structure
sheaf OW,’jl 0) of the colimit colim A’ is presented as the limit of the structure

sheaves i7,0,: (where i is the inclusion of A? into colim Af). The image of this
object under @ is the limit of the rank-one branes B p,1, which is zero, as required.

Hence ® does indeed induce a map MF(A™! W, )T — Qiﬁl. Moreover,
by construction this map sends the generators O;, to the skyscrapers d, p, which

R ~n
generate QT . and so we see that ® factors through a map

O : MF(A™ W, )T —— Qur,.

To show that this functor ® is an equivalence, it suffices to check that each of
the generating morphisms

05 [1] == 03 ()
for the category MF(A™ ! W, 1)T" is sent by ® to the unique nonzero morphism
Op,,p[l] —— 0r; p(Ni),

which we will denote by g;;. This follows from the fact that a representative for
fi; in the colimit presentation of Coh(W,,*;(0))"" is the map presenting O7, as the
cone on the map

hm(OA{i}C —_— OAU,J‘}C D OA{J’}C)[H —_— OAU}C [1],
so that ®(f;;) is the map presenting dr; p as the cone on
1im(Bp7{i}c —— BP,{i,j}C < pr{j}c)[l} I BP,{@'}C[” .
But this is a presentation of the map g;;, as desired. We conclude that ® is a
Wp-equivariant equivalence of categories. O
4. SYMPLECTIC GEOMETRY

So far in this paper we have described a category Q5" , and shown that it is
equivalent to Coh(A, 41, W,41)T . However, we have not yet explained why the
category Qw" , is the A-model associated to the A,-cover P,_1 of the pair of pants.
In this section, we will recall our perspective on the A-model of a Weinstein manifold
as a category of wrapped microlocal sheaves on a Lagrangian skeleton, and, using
the skeleton for the pair of pants described in [32], we will show that our category
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MIRROR SYMMETRY FOR HONEYCOMBS 101

wr | is the A-model category associated to P,_1 in this formalism. This establishes
the main equivalence of our paper as an instance of homological mirror symmetry.

4.1. Microlocal A-model. We recall here some properties of microlocal sheaf
categories. We refer to [21] for definitions and a full exposition of the theory
of microlocal sheaves and to [32] for a brief review of the theory along with the
definition of the wrapped microlocal sheaf categories.

4.1.1. Setup. Let Z be a real-analytic manifold. We will denote by Sh<(Z) the dg
category of all complexes of sheaves of k-vector spaces on Z for which there exists a
Whitney stratification S = {Z,}aca of Z such that for each stratum Z, C Z, the
total cohomology sheaf of the restriction F|z_ is locally constant. We will denote
by Sh(Z) the full subcategory of Sh¥(Z) on the sheaves whose cohomology sheaves
on each stratum are finite rank.

We would like to consider the subcategories of ShO(Z ) defined by singular sup-
port conditions, which we recall now. Fix a point (2,£) € T*Z. Let B C Z be
an open ball around z € Z, and let f : B — R be a smooth function such that
f(z) =0 and df|, = £&. We will refer to f as a compatible test function.

Then the vanishing cycles functor ¢ associated to the function f is defined by

o5 : Sh®(Z) — Mody,

¢5(F) = Tis20y(B, Flp) = Cone(U(B, F|p) = T({f < 0}, Flr<o)) 1],

where we take B C Z sufficiently small. In other words, we take sections of F over
the ball B supported where f > 0 or equivalently vanishing where f < 0.
To any object F € ShO(Z), we can associate its singular support

ss(F)cT*Z

to be the smallest closed subset such that ¢;(F) ~ 0, for any (z,£) € T*Z \ ss(F),
and any compatible test function f. The singular support ss(F) is a closed conic
Lagrangian subvariety of T Z.

For a conic Lagrangian subvariety A C T*Z, we write Sh¥(Z) C Sh®(Z) (re-
spectively Sha(Z) C Sh(Z)) for the full dg subcategory of objects F € ShO(Z)
(respectively F € Sh(Z)) with singular support satisfying ss(F) C A.

4.1.2. Microlocal sheaf categories. Now we can recall the definition of the microlocal
sheaf and wrapped microlocal sheaf categories associated to a conic Lagrangian.

Let A C T*Z be a closed conic Lagrangian subvariety. To A we can associate
a conic sheaf of dg categories uShX on T*Z which is supported on A. Its global
sections ,uS’hO(T*Z) form the category of large microlocal sheaves along A.

Since uS’hX is a sheaf, its definition can be stated locally. Let (z,&) € T*Z, and
let © be a small conic open neighborhood of (z, ). We will write B = 7(Q2) for the
projection of €2 to a small neighborhood of z in Z.

If £ =0 so that = T*B, then we have a natural equivalence

Sh{ (B) —> uSh{ ()

of the category of large microlocal sheaves along A N with the category of large
constructible sheaves on B with singular support in A.
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102 BENJAMIN GAMMAGE AND DAVID NADLER

If £ # 0 so that QN Z = (), then the category of large microlocal sheaves on AN§
is naturally equivalent to a dg quotient category,

Sh3 (B, Q)/K (B, Q) — > uSh{ (1),

where Shf\> (B,Q) C Sh®(B) is the full dg subcategory of objects F € Sh®(B) with
singular support satisfying ss(F) N Q ¢ A and K9(B,Q) c Sh{(B,Q) denotes
the full dg subcategory of objects F € Sh¥(B) with singular support satisfying
ss(F)nQ =0.

The main fact we will need about the calculation of these microlocal sheaf cat-
egories is the calculation, done in [28], that the category of microlocal sheaves on
an arboreal singularity of type A, is equivalent to the category of modules over the
A,, quiver.

Now we recall from [32] the category of wrapped microlocal sheaves.

Definition 4.1.3. The category of wrapped microlocal sheaves along A N € is the
full dg subcategory

S (Q) C pShS ()
of compact objects inside the category uShX(Q) of big microlocal sheaves.
In that paper was proved the following fact.

Proposition 4.1.4 ([32, Proposition 3.16]). The categories uSh¥" () assemble
into a cosheaf of categories on A.

We will refer to the global sections of this cosheaf as the category of wrapped
microlocal sheaves along A.

Remark 4.1.5. The cosheaf of wrapped microlocal sheaf categories as defined above
is a dg rather than a Z/2-dg category; i.e., it possesses a natural Z-grading, equiv-
alent to the canonical grading on the Fukaya category of a cotangent bundle. How-
ever, later on, we will be interested in gluing together different cotangent bundles,
where these gradings will no longer agree (unless we make some additional choices).
Thus, we will forget the Z-grading on pShy" and for the rest of this paper will work
instead with a Z/2-graded version, which we denote by (uShy")z/2-

4.1.6. Skeleta and quantization categories. Now we are almost ready to discuss the
relation of this paper to Fukaya categories. Recall first the definition of a Weinstein
manifold.

Definition 4.1.7. A Weinstein manifold (W,w,Z,h) is a symplectic manifold
(W,w) along with a vector field Z satisfying the Liouville condition Lzw = w
and a Morse function h : W — R for which the Liouville field Z is gradient-like.

We will write A for the Liouville 1-form (corresponding to Z under the equiv-
alence given by w), and we will often refer to the Weinstein manifold (W,w, Z, h)
by W when the other data are understood. The basic references for the theory
of Weinstein manifolds are [5, 8], where details and elaborations of the material
described here can be found.

To a Weinstein manifold is associated a canonical skeleton L, given as the union
of stable manifolds for flow of the Liouville field Z. In other words, if we denote by
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¢! the time t flow of Z, then the skeleton Ly, (or just L if W is understood) of W
is defined by

Ly = {z € W | lim;_, ¢*(x) € Crit(h)}.

The Liouville flow gives a retraction of W onto L.

Weinstein manifolds are often understood by gluing together Weinstein pairs. A
Weinstein pair is the data of a Weinstein manifold W?2" along with a Weinstein
manifold ¥2"~2 embedded in the ideal contact boundary of W, such that the Li-
ouville form on ¥ is obtained by restriction of the contact form from 0W. We refer
for details to [8] (or to [15], where these are called sectors). There is a notion of
skeleton for a Weinstein pair (W, X) defined by

In other words, the skeleton of a Weinstein pair (W, X) is the union of Ly, with the
cone (under the Liouville flow) for the skeleton of 3.

The cosheaf of Z/2-dg categories (uSh}y")z/2 defined in the previous section is
expected to be of use in computing the wrapped Fukaya category Fuk™" (W) of a
Weinstein manifold W, defined in the standard way through counts of holomorphic
disks. We state this as the following conjecture (an elaboration of the original
conjecture of Kontsevich from [24]).

Conjecture 4.1.8. Let W be a Weinstein manifold (or Weinstein pair) with skele-
ton L.

(1) There is a cosheaf of Z/2-dg categories, which we denote by ush™", on the
space L such that psh"(IL) is equivalent to the wrapped Fukaya category
Fuk™" (W). (If W is a Weinstein pair, this is the partially wrapped category,
with stops determined by X.)

(2) If W2 T*X (with standard cotangent Liouville structure but possibly also
with Weinstein pair structure) and we write A for the skeleton of T*X,
then on the space A = L there is an equivalence of cosheaves ush" =2

(Mthjr)Z/}
Remarks 4.1.9.

(1) That the Fukaya category possesses the appropriate covariance properties
for inclusions of Weinstein pairs is proved in [15]; a full proof of descent,
which would imply part (1) of the conjecture, is expected to appear in a
forthcoming sequel to that work.

(2) Since the first appearance of this article, part (2) of this conjecture has
been proved in [16].

Part (2) tells us how to construct the conjectural cosheaf: for each point p in
the skeleton I of W, take some neighborhood p € U C W and an equivalence
between (U, LNU) = (T*X,Lx), where T*X is some cotangent bundle equipped
with a Weinstein pair structure with associated skeleton Lx; then define push™"|y
to be the cosheaf (uShy, )z/2, and check that the resulting cosheaf is independent
of choices. A detailed construction of this cosheaf, through a procedure slightly
different to the one described here, can be found in [37].

In the case of interest to us, the calculation of the cosheaf will be especially
easy, since all the singularities which appear in the skeleton we describe for the
pair of pants will be arboreal singularities of type A,,, for some m, in the sense
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of [28]. The appropriate microlocal sheaf calculation in this case is already known,
and the independence of the above construction on choices follows from our earlier
discussion of the construction from [31] of the functor Q.

4.2. The permutohedron skeleton. In this section, we will show that the quo-
tient of the honeycomb $),,_; by translations in A,, actually appears as a skeleton
for the (n — 1)-dimensional pair of pants P,,_; or equivalently that the boundary
of the tiling of R™ by 9,41 is a skeleton for the universal abelian cover of the pair
of pants.

Recall that the standard (n — 1)-dimensional pair of pants is the complex variety

Prno1={z1+ -+ 2,+1=0} C (C)".

Define the variety Y, _1 by

Yooi:={a1+ 2+ ;75 =0} C(C)".

It has a free action of the group Z/(n+1), generated by (z1, ..., 2n)— (C21, .., (2n),
where ( is a primitive (n + 1)st root of unity whose quotient is the pair of pants.

The reason we begin by studying the (n + 1)-fold cover Y,,_1 of P,,_; instead of
the pair of pants itself is that a procedure for constructing a permutohedron skeleton
of the former variety has already been described (though not in those terms) in the
paper [11], so working with Y;,_; allows us to appeal to their calculation directly.

The trick from [11] involves describing the spaces Y, _; inductively: the space
Y,, admits a description as the total space of a Lefschetz fibration with fiber Y,,_;.
As a consequence, we will see that a skeleton for Y,, can be obtained by attaching
n -+ 1 handles to a skeleton for Y,,_1.

This Lefschetz fibration is the map

Yn$’cx7 (Zl7~-~7zn+1)'_>zn+1-

It has n+2 critical points {(Ck, - . ., Ck, —(n+1)Ck) th=o0,... n+1, Where i, are (n+2)nd
roots of n;-i}]. and hence n + 1 critical values {—(n + 1)k }x=0,... n+1. This Lefschetz
fibration gives us a very convenient presentation of the Liouville structure on the
total space Y,,.

Theorem 4.2.1 ([11, Theorem 1.5]). Let Ly, denote the skeleton of Y;,. The re-
striction to Ly, of the argument projection Arg : (C*)"*1 — T"*1 to the (n + 1)-
torus is a finite map, and its image Arg(Ly, ) divides T"* into n + 2 (n + 1)-
permutohedra Bn4+1. Moreover, the monodromy of the fibration p, cylically per-
mutes these permutohedra.

Proof. We will indicate here only the modifications to the argument from [11] which
are necessary in order to understand Ly;, as a Weinstein skeleton; the remainder of
the calculations can be found there.

The proof is by induction. The base case n = 1 is clear, so assume the theorem
for Y, _1.

We can use the Lefschetz fibration p, to construct a skeleton for Y, as follows:
first, let U be a neighborhood of S* € CJ which does not contain any critical
values of p,,. Then p,}(U) has a skeleton I which is given by the mapping torus
of the monodromy transformation on a skeleton of the general fiber. From our
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induction hypothesis, we can see that this skeleton divides the (n 4 1)-torus into
an oblique cylinder over the n-permutohedron.

So far we have described a Liouville structure and skeleton for p,, 1 (U); a Liouville
structure for the total space Y,, = p,(C*) comes from extending this Liouville
structure over the n 4+ 2 handles attached at the critical points of p,. This results
in a skeleton Ly, for Y,, obtained by attaching n + 2 disks to L.

The locations of the vanishing cycles along which these disks are glued and the
resulting permutohedra can be found in [11]. O

Corollary 4.2.2. The pair of pants P, has a skeleton L,, whose image under Arg
divides the torus T into a single permutohedron. Equivalently, the universal
abelian cover of P, has a skeleton ]]jn whose image under Arg is the honeycomb
lattice $),,.

Proof. The pair of pants P, has a Lefschetz fibration p,, : P,, = C*/Z/(n+2) = C*
obtained from the Lefschetz fibration p, by a Z/(n + 2) quotient. (In standard

771

coordinates on P, this is the map (21,...,2n41) — Zl”—“ )

Hence the skeleton L,, can be obtained as the quotlentzof Ly, by the monodromy
transformation, which cyclically exchanges the permutohedra into which T7*! is
divided; this gives us the desired description of LL,,. Moreover, by a diffeomorphism
of T (and hence by a symplectomorphism of T*T" ! 2 (C*)"*1) we can assume
this permutohedron is in standard position on 77!, so that Arg(ﬂn) is equal
to 9,,. O

Finally, we want to show that our combinatorial cosheaf from Section 2 is the
same as the microlocal cosheaf psh™” described in Section 4.1. This latter cosheaf,
for the cover P,_; of the pair of pants, is a cosheaf on the space LL,,_1, but by
pushing forward along Arg we can equivalently consider this as a cosheaf on $,,_1.

Proposition 4.2.3. There is an equivalence push" = QY of cosheaves of dg
categories on the space $Hp_1.

Proof. Let p be a vertex in $),,_;. We know that near p, the space $,,_; (or equiva-
lently the skeleton L,,_1) is stratified homeomorphic to the A,, arboreal singularity.
We need to show that at p, the skeleton LL,_; actually has the correct microlo-
cal sheaf category (A, -Perfy)z o, with the appropriate (co)restriction maps. We
can see this from the inductive description of the skeleton IL,,_; : this skeleton
was obtained from the mapping torus M,, of a monodromy action on L,_o by
attaching a disk along a sphere transverse to the singularities of M,,. Hence, by
induction we see that there exists a neighborhood p € U C P,,_; and an equlvalence
(U,L,_1 NU) = (T*R"1, L), where £ is the union of the zero section with the
cone on Legendrian lifts of the n — 1 hyEErplanes, taking p to 0. This establishes
the microlocal sheaf calculation, and by W, _; symmetry this is sufficient to prove
an equivalence of cosheaves. |

Corollary 4.2.4 (Homological mirror symmetry for the pair of pants). There is an
equivalence MF (A" W, )" = ,ushwr( _1) between a category of equivariant
matriz factorizations and a category of mzcmlocal sheaves on the universal abelian
cover of the pair of pants.
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