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MIRROR SYMMETRY FOR HONEYCOMBS

BENJAMIN GAMMAGE AND DAVID NADLER

Abstract. We prove a homological mirror symmetry equivalence between the
A-brane category of the pair of pants, computed as a wrapped microlocal sheaf
category, and the B-brane category of its mirror LG model, understood as a
category of matrix factorizations. The equivalence improves upon prior results
in two ways: it intertwines evident affine Weyl group symmetries on both sides,
and it exhibits the relation of wrapped microlocal sheaves along different types
of Lagrangian skeleta for the same hypersurface. The equivalence proceeds
through the construction of a combinatorial realization of the A-model via
arboreal singularities. The constructions here represent the start of a program
to generalize to higher dimensions many of the structures which have appeared
in topological approaches to Fukaya categories of surfaces.
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1. Introduction

This paper fits into the framework of homological mirror symmetry, as introduced
in [23] and expanded in [19, 20, 22]. The formulation of interest to us relates the
A-model of a hypersurface X in a toric variety to the mirror Landau-Ginzburg B-
model of a toric variety X∨ equipped with superpotential W∨ ∈ O(X∨). Following
Mikhalkin [27], a distinguished “atomic” case is when the hypersurface is the pair
of pants

Pn−1 = {z1 + · · ·+ zn + 1 = 0} ⊂ (C∗)n ∼= T ∗(S1)n

with mirror Landau-Ginzburg model (An+1, z1 · · · zn+1). In this paper, we will also

be interested in the universal abelian cover P̃n−1 of the pair of pants, which fits in
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72 BENJAMIN GAMMAGE AND DAVID NADLER

the Cartesian diagram

P̃n−1
��

��

T ∗Rn

��
Pn−1

� � �� T ∗(S1)n

as the pullback of Pn−1 along the universal covering map T ∗Rn → T ∗(S1)n;
it has mirror a torus-equivariant version of the Landau-Ginzburg model (An+1,
z1 · · · zn+1).

This paper expands upon prior mirror symmetry equivalences for pairs of pants
found in [1, 36, 39]; however, it differs from those in its understanding of the A-
model. The traditional mathematical realization of the A-model is the Fukaya
category, with objects decorated Lagrangian submanifolds, morphisms their deco-
rated intersections, and structure constants defined by integrals over moduli spaces
of pseudoholomorphic polygons. There is increasing evidence (for example, [3,
9, 14–16, 24, 30, 33, 38, 41]) that the Fukaya category of a Weinstein manifold is
equivalent to microlocal sheaves (as developed by Kashiwara-Schapira [21]) along
a Lagrangian skeleton. In this paper, we follow [32] and study the A-model of the
pair of pants in its guise as wrapped microlocal sheaves.

A calculation of microlocal sheaves on a skeleton for the pair of pants was per-
formed already in [32]; our calculation here involves a different skeleton, which is
of independent interest. The skeleton we study is more symmetrical, having an
action of the symmetric group Σn+1 rather than just Σn, but more importantly,
the skeleton here is of a different “flavor” compared to the one constructed there.
The calculations from [32] are well-adapted to considerations of mirror symmetry
which relate a hypersurface in (C×)n to a toric degeneration and were used in [17]
for this purpose. The skeleton we study in this paper is more adapted to mirror
symmetry equivalences which relate a hypersurface in (C×)n to a Landau-Ginzburg
model. The first sort of skeleton can be considered as a “degeneration” of the sec-
ond; indeed, the relation between these two flavors of skeleton is very interesting
and will be studied further in future work.

The skeleton from this paper is very well-suited to a combinatorial perspective,
since singularities are all arboreal in the sense of [28]. The form of our calculations
should be understood as a paradigm for extending the substantial literature devoted
to understanding Fukaya categories of Riemann surfaces through topological skeleta
and ribbon graphs (for example, [2, 6, 18, 35, 40]) to higher-dimensional examples.

Moreover, the type of skeleton described here has close relations to the dimer
models which have appeared in earlier mirror symmetry contexts (e.g., [10, 11]).
In future work, we hope to explore further the relation between skeleta and dimer
models, along with generalizations to higher dimensions. This correspondence was
noticed (in a slightly different form) in [11], and in Section 4.2 we make use of the
Lefschetz fibrations described in that paper.

1.1. Symplectic geometry.

1.1.1. Cotangent bundles. Fix a characteristic zero coefficient field k, and let L ⊂
T ∗X be a closed conic Lagrangian submanifold of a cotangent bundle. There are
conic sheaves of dg categories μSh♦

L and μShL on T ∗X, localized along L, which

to a conic open set Ω ⊂ T ∗X assign, respectively, the dg category μSh♦
L(Ω) of
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MIRROR SYMMETRY FOR HONEYCOMBS 73

unbounded-rank microlocal sheaves and the dg category μShL(Ω) of traditional
microlocal sheaves along L ∩ Ω.

Definition 1.1.2. The category μShwr
L (Ω) of wrapped microlocal sheaves along

L ∩ Ω is the category μSh♦
L(Ω)

c of compact objects inside μSh♦
L(Ω).

Proposition 1.1.3 ([32, Proposition 3.16]). The assignment Ω �→ μShwr
L (Ω) forms

a cosheaf μShwr
L of dg categories on T ∗X, localized on L.

If x is a smooth point of L and Ω is a contractible conic neighborhood of x, then
the stalk of the sheaf μSh♦

L is equivalent to the dg category Modk of (unbounded-
rank) k-modules, while the stalk of μShL and the costalk of μShw

L at x are both
equivalent to the dg category Perfk of perfect k-modules.

If x is a singular point, the local calculation is more complicated, but this cal-
culation has already been performed in [28] for a certain class of Legendrian sin-
gularities termed arboreal. In this paper we will only be concerned with the An

arboreal singularity LAn
, a certain singular Legendrian in the projectivized cotan-

gent bundle T∞(Rn) which is homeomorphic to Cone(skn−2Δ
n), the cone on the

(n− 2)-skeleton of an n-simplex.

Proposition 1.1.4 ([28]). Let L be a conic Lagrangian in T ∗Rn which is locally
equivalent, near a point x ∈ L, to the cone on LAn

. Then to a neighborhood of x,
the sheaf μShL and the cosheaf μShwr

L each assign the category An -Perfk of perfect
modules over the An quiver.

1.1.5. Weinstein manifolds. Let W be a Weinstein manifold. The Weinstein struc-
ture of W endows it with a Lagrangian skeleton Λ, onto which W deformation
retracts.

Since our definition of wrapped microlocal sheaf categories applies only in the
setting of cotangent bundles, in order to apply it here we have to relate the geometry
of our Weinstein manifold to the geometry of a cotangent bundle. Let Λ be the
skeleton of a Weinstein manifold W and let U be an open neighborhood of Λ which
is conic for the flow of the Liouville vector field of W , and suppose that there
exist a manifold X and a closed conic Lagrangian L ⊂ T ∗X such that U is exact
symplectomorphic to a neighborhood Ω of L by a symplectomorphism taking Λ
to L.

Definition 1.1.6. In the situation described above, the category μShw
L(Ω) is the

microlocal A-model category associated to the Weinstein manifold W . (To make
explicit the dependence on Weinstein structure, we will sometimes call this category
the wrapped microlocal A-model category of W associated to Λ.)

In practice, the symplectomorphism relating Λ to a conic Lagrangian in a cotan-
gent bundle might not exist. However, such symplectomorphisms always exist lo-
cally, so that we can obtain a cosheaf of categories on the skeleton by defining these
categories locally, gluing them together, and checking that the resulting cosheaf
didn’t depend on choices. A more detailed explanation of our expectations can be
found in Conjecture 4.1.8.

One skeleton for the pair of pants Pn−1 was described in [32], where it was used
to prove a mirror symmetry equivalence. In this paper, we study a more symmetric
skeleton of the pair of pants, which we can describe using the geometry of the
permutohedron.
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74 BENJAMIN GAMMAGE AND DAVID NADLER

Let Vn be the quotient of Rn+1 by the span of the vector λ1 + · · ·+λn+1, where
{λi} is the standard coordinate basis of Rn+1.

Definition 1.1.7. The n-permutohedron Pn ⊂ Vn is the convex polytope obtained
as the convex hull

Pn = conv{σ ·
(

1
n+1

∑n+1
a=1 aλa

)
∈ Vn | σ ∈ Σn+1}.

The n-permutohedron is an n-dimensional polytope, and it is a remarkable fact
that the permutohedron actually tiles Vn. We denote by Hn−1 the union of all
translates of the boundary ∂Pn along this tiling and call this space the honeycomb.
(When n = 2, the honeycomb H1 is actually the boundary of the hexagon tiling of
the plane.) Then the main result of Section 4 of this paper is a stronger version of
the following, which we obtain as a Z/(n+1)Z quotient of a calculation performed
in [11].

Proposition 1.1.8 (Corollary 4.2.2 below). The cover P̃n−1 admits a skeleton

L̃n−1 whose image under the (cover of the) argument map Ãrg : T ∗Rn → Rn is the
honeycomb Hn−1.

This result and the discussion above justifies our modeling of the wrapped Fukaya

category of P̃n−1 as the global sections of a certain cosheaf Qwr
n−1 of dg categories

on Hn−1 (and the infinitesimally wrapped Fukaya category as the global sections

of a certain sheaf Qinf
n−1 of dg categories on Hn−1).

1.2. Combinatorics. As mentioned above, the sheaf and cosheaf Qinf
n−1 and Qwr

n−1

assign Perfk to a smooth point of Hn−1, but to know their descriptions over the
whole skeleton Hn−1, we need to understand its singularities. These turn out to be
singularities we already understand.

Proposition 1.2.1 (Proposition 2.2.4 below). A neighborhood of a point in a
codimension-m face of a permutohedron in Hn−1 is stratified homeomorphic to the
product of Rn−m with the Am arboreal singularity LAm

.

(In fact, to prove the equivalence of (co)sheaves of categories we need, the above
homeomorphism isn’t sufficient. It’s necessary to check the stronger statement that
a neighborhood of the corresponding point in the skeleton is contactomorphic, up
to a smoothing, to the product Rn−m × LAm

or that it admits the same category
of microlocal sheaves. This is Proposition 4.2.3 below.)

The upshot is that all the singularities of the skeleton L̃n−1 of P̃n−1 are of
type Am (for various m), which proves to be extremely convenient for calculation

of the Fukaya category. As the name suggests, the sections of Qinf
n−1 or Qwr

n−1

on a neighborhood of the Am singularity LAm
are equivalent to the dg category

Am -Perfk of perfect modules over the Am quiver.

Remark 1.2.2. The equivalence of the category associated to an Am singularity
with the category Am -Perfk is noncanonical, reflecting the fact that the category
Am -Perfk has a Z/(m+ 1) symmetry. Moreover, due to the standard appearance
of the “metaplectic anomaly” in the construction of Fukaya categories, we cannot
keep global track of the integer grading on this category without making addi-
tional choices, so in practice we will only ever work with a Z/2-graded version of
this local category, which is (noncanonically) equivalent to the Z/2-dg category
(Am -Perfk)Z/2.
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MIRROR SYMMETRY FOR HONEYCOMBS 75

We can summarize the above discussion as describing the following procedure:
Stratify the space Hn−1 by singularity type, and let P (Hn−1) be the poset corre-
sponding to the stratification. The Fukaya category associated to the skeleton Hn−1

comprises the global sections of a sheaf/cosheaf, taking values in the Z/2-dg cate-
gory Z/2 -dgstk of Z/2-dg categories, which assigns to a neighborhood of a point in
a codimension-(m− 1) stratum of Hn−1 a category equivalent to (Am -Perfk)Z/2.

Definition 1.2.3. The wrapped and infinitesimally wrapped combinatorial Fukaya
categories associated to the pair of pants are the categories

Qwr
n−1 = Idem(colim(P (Hn−1)

op
Qwr

n−1 �� Z/2 -dgstk))

Qinf
n−1 = lim(P (Hn−1)

Qinf
n−1 �� Z/2 -dgstk)

defined as (idempotent-completed) global sections of the cosheaf Qwr
n−1 and sheaf

Qinf
n−1, respectively, over the honeycomb Hn−1.

Objects in the infinitesimally wrapped category, which is defined as global sec-

tions of the sheaf Qinf
n−1, have a clearer geometric meaning: heuristically, an object

of this category can be described as the data of an object of (Perfk)Z/2 at each facet
in Hn−1, exact triangles among these at codimension-2 faces of permutohedra, and
higher compatibilities given by codimension k faces. (For instance, the compatibil-
ity at a codimension 3 face involves assembling the four exact triangles around the
face into an “octahedral axiom diagram.”)

For F a facet in Hn−1 and ξ a choice of codirection at F (breaking the Z/2Z
indeterminacy in the category associated to F ), we have a stalk functor φF,ξ :

Qinf
n−1 → (Perfk)Z/2 taking an object of Qinf

n−1 to the object of (Perfk)Z/2 which is

placed at the facet F. If we understand the data of an object in Qinf
n−1 as recording

a path of a Lagrangian running along the honeycomb Hn−1, then the stalk of an
object along a facet F records how many times the Lagrangian runs along F .

The following class of objects in Qinf
n−1 is easy to describe and is very useful in

proving mirror symmetry for this category.

Definition 1.2.4. Let B be a connected subset of Hn−1. A rank-one brane along

B is an object F in Qinf
n−1 such that the stalk φF,ξ(F) has rank-one cohomology for

all facets F in B, and all other stalks are zero. An example of a rank-one object is
pictured in Figure 1.

The wrapped category Qwr
n−1, which is defined as a colimit, is a little harder

to understand directly but admits a very nice set of generators. Note that the

stalk functor φF,ξ : Qinf
n−1 → (Perfk)Z/2, when extended to the cocomplete category

Q♦
n−1, is corepresented by an object δF,ξ, which we call the skyscraper along the

facet F .

Lemma 1.2.5. The category Qwr
n−1 is generated by the set of skyscrapers along

facets in Hn−1.

The skyscrapers, though defined abstractly, in practice have a simple description.
Let P be a permutohedron in Vn, and let Fi be the face shared by P and P + λi.
Let B be the boundary of the region obtained as the union of all positive translates

of P in the directions {λ1, . . . , λ̂i, . . . , λn+1}. See Figure 5 for an illustration of such
a region B.
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76 BENJAMIN GAMMAGE AND DAVID NADLER

Figure 1. Part of the honeycomb H2, with the support (indicated

in bold) of a rank-one object in Qinf
2 .

Proposition 1.2.6 (Proposition 2.5.13 below). The rank-one brane along B is the
skyscraper along F .

1.3. Mirror symmetry. The mirror to the pair of pants is the Landau-Ginzburg
model (An+1,Wn+1 = z1 · · · zn+1). Let T

n+1 be the (n+ 1)-torus (Gm)n+1 and let
Tn be the kernel of the map Wn+1 : Tn+1 → Gm. Considering the skeleton Hn−1

for the universal abelian cover of the pair of pants instead of the skeleton Hn−1/Λn

for the pair of pants itself corresponds on the mirror to working equivariantly with
respect to the torus Tn (whose weight lattice is the lattice Λn). Thus, the expec-
tation of homological mirror symmetry is that the wrapped Fukaya category Qwr

n−1

ought to be equivalent to the torus-equivariant derived category of singularities

Db
sing(A

n+1,Wn+1)
Tn

=
(
Coh(W−1

n+1(0))/Perf(W
−1
n+1(0))

)Tn

= Coh(W−1
n+1(0))

Tn

/Perf(W−1
n+1(0))

Tn

,

since passing to the quotient commutes in this case with taking Tn equivariants.
There are a couple of ways to understand this category, coming from theorems of

Orlov. A presentation of Db
sing which keeps manifest the Σn+1 symmetry induced

from permutations of the coordinates of An+1 is as the category MF(An+1,Wn+1)
of matrix factorizations of Wn+1: the objects of this category are pairs (V, d), for
V a Z/2-graded k[z1, . . . , zn+1]-module and d : V → V an odd endomorphism such
that d2 is multiplication by Wn+1 = z1 · · · znzn+1.

A less symmetric presentation is given as follows: for a choice of a ∈ [n+ 1], let
W a

n+1 = Wn+1/za, and set Xa = (W a
n+1)

−1(0). Then we have an equivalence of
categories

Db
sing(A

n+1,Wn+1)
∼ �� Db(Xa) .

This latter presentation is used in [32] to establish a mirror symmetry equiva-
lence. It has the advantage of being built out of a simple inductive definition, but
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MIRROR SYMMETRY FOR HONEYCOMBS 77

the disadvantage that it breaks the natural Σn+1 symmetry of Db
sing(A

n+1,Wn+1).
In this paper, we use the description as matrix factorizations, which allows us to
write a mirror symmetry equivalence which is compatible with more symmetries.
Note that the category Db

sing(A
n+1,Wn+1)

Tn

has a natural action by the group

W̃n = Λn � Σn+1, where Σn+1 acts by permuting the coordinates, and the weight
lattice Λn of Tn acts as twists by characters, and this action is manifest in the ma-

trix factorization description. The group W̃n also acts on Hn−1 in the obvious way,
and hence also on Qwr

n−1. The main theorem of this paper is the expected mirror
symmetry equivalence between the A-model of (the universal abelian cover of) the
pair of pants and the (torus-equivariant) B-model of (An+1,Wn+1).

Theorem 1.3.1 (Theorem 3.3.2 below). There is an equivalence of categories

Φ : MF(An+1,Wn+1)
Tn ∼ �� Qwr

n−1

which is equivariant for the action of W̃n on each side.

This equivalence sends the natural generators of the derived category of singu-
larities, the structure sheaves Oi

n of the coordinate hyperplanes {zi = 0}, to the
skyscrapers δFi

along certain distinguished facets of a standard permutohedron P

inside Hn−1. (Specifically, Fi is the facet separating P fromP+λi.) The skyscrapers
along other facets correspond to certain complexes formed out of the sheaves Oi

n.
The relation between the above correspondence and the combinatorics of the

permutohedron can be seen more explicitly in the matrix factorization category. Let
[n = 1] = {1, . . . , n+1}; for a nonempty proper subset I ⊂ [n+1], write zI =

∏
i∈I zi

and zIc =
∏

i/∈I zi, and similarly set λI =
∑

i∈I λi. Write Oi
n for the image of Oi

n

in the category MF(An+1,Wn+1). Then under the mirror symmetry equivalence Φ,
the skyscraper sheaf along the facet separating P and P + λi corresponds to the
matrix factorization

Oi
n =

(
k[z1, . . . , zn+1]

z{i}c �� k[z1, . . . , zn+1]
z{i} �� k[z1, . . . , zn+1]

)
,

while more generally, a skyscraper along the facet separating P and P+ λI corre-
sponds to the matrix factorization

k[z1, . . . , zn+1]
zIc �� k[z1, . . . , zn+1]

zI �� k[z1, . . . , zn+1] .

1.4. Notation and conventions. We fix an algebraically closed coefficient field
k of characteristic zero. Throughout this paper, we work with (usually pretrian-
gulated) differential Z/2-graded categories, which we refer to as Z/2-dg categories.
Appropriate homotopical contexts for pretriangulated dg categories have been de-
scribed in [42] (with an adaptation of this theory to the Z/2-graded case available
for instance in [7], Section 5.1) and [25,26] (as Hk-linear stable (∞, 1)-categories).

We will denote by Z/2 -dgstk the category of k-linear pretriangulated Z/2-dg
categories in any of the equivalent homotopical contexts just mentioned. One object
of Z/2 -dgstk we will use often is the Z/2-dg category (Perfk)Z/2 of Z/2-dg k-
modules with finite-dimensional cohomology.

When discussing polyhedral cell complexes in this paper, the word “face” will
mean a general face (of any dimension), while “facet” will always refer to codimen-
sion 1 faces only. Facets of the permutohedron Pn are all of the form Pk−1×Pn−k
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78 BENJAMIN GAMMAGE AND DAVID NADLER

(where P0 = {pt}, and we will refer to facets of the form Pn−1 × P0 = Pn−1 as
maximal facets of Pn.

In the table below we collect for the reader’s convenience some of the nonstandard
or frequently used notation used in this paper, in order of appearance.

Tn+1 (n+ 1)-dimensional complex torus
Wn+1 The map Tn+1 → Gm given by (z1, . . . , zn+1) �→

∏
zi

Tn Ker(Wn+1)
Pn n-permutohedron
FI Face of Pn corresponding to I ⊂ [n+ 1]
Λn Weight lattice of the torus Tn

W̃n Affine Weyl group Λn � Σn+1

Qinf
n−1 Infinitesimally wrapped combinatorial A-model category

Qwr
n−1 Partially wrapped combinatorial A-model category

δF,ξ Skyscraper along facet F in normal direction ξ
BP,J Rank-one brane along ∂{P +

∑
j∈J njλj | nj ∈ N}

Oi
n Structure sheaf of {zi = 0} in Coh(Spec k[z1, . . . , zn+1]/(z1 . . . zn+1))

Oi
n Image of Oi

n under the quotient Coh → Coh /Perf

2. Combinatorial A-model

2.1. Permutohedron. Let Tn+1 = (Gm)n+1 be the (n + 1)-dimensional torus,
and let Wn+1 : Tn+1 → Gm be the character defined by Wn+1(z1, . . . , zn+1) =
z1 · · · zn+1. We will denote by Tn the kernel of Wn+1, so that we have a short exact
sequence of tori

1 �� Tn �
� �� Tn+1

Wn+1 �� �� Gm
�� 1.

Let χ∗(Tn+1) = Hom(Tn+1,Gm) 	 Zn+1 denote the weight lattice of Tn+1,
and let λ1, . . . , λn+1 denote its standard coordinate basis. The above short ex-
act sequence of tori induces a short exact sequence of weight lattices, giving the
presentation

χ∗(Tn) 	 Zn+1/Z〈
∑n+1

a=1 λa〉.

Throughout this paper, we will set

Λn := χ∗(Tn), Vn := Λn ⊗ R.

We will abuse notation and write λ1, . . . , λn+1 also for their images in Λn and Vn.
The symmetric group Σn+1 naturally acts on Zn+1 by permutations, and the

action descends to the quotient Λn and further to Vn.

Definition 2.1.1. The n-permutohedron Pn ⊂ Vn is the convex hull

Pn = conv{σ ·
(

1
n+1

∑n+1
a=1 aλa

)
∈ Vn | σ ∈ Σn+1}

of the Σn+1-orbit of the point 1
n+1

∑n+1
a=1 aλa ∈ Vn.
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MIRROR SYMMETRY FOR HONEYCOMBS 79

Remark 2.1.2. The above definition of the permutohedron presents it as a convex
polytope in the n-dimensional quotient space Vn of Rn+1. This disagrees with the
more typical definition as the convex polytope

P′
n = conv{σn+1 · (1, . . . , n+ 1) ∈ (Rn+1)∗ | σ ∈ Σn+1}

in the n-dimensional affine subspace

{(x1, . . . , xn+1) ∈ (Rn+1)∗ |
∑n+1

a=1 xa = n(n+ 1)/2}.

We have chosen our convention with mirror symmetry in mind; in particular, we
prefer a permutohedron which is translated in a natural way by the weight lattice
Λn = χ∗(Tn) rather than the coweight lattice of Tn.

Our definition agrees with the usual one, up to a duality: after translating P′
n

by (−n
2 , . . . , −n

2 ), the identification of Rn+1 with its dual space coming from the

standard basis of Rn+1 sends P′
n to Pn.

Example 2.1.3. The 1-permutohedron P1 is a line segment; the 2-permutohedron
P2 is a hexagon; the 3-permutohedron P3 (pictured in Figure 2) is a truncated
octahedron, with faces consisting of 8 hexagons and 6 squares. For n ≥ 3, the
permutohedron Pn is not a regular polyhedron.

λ1

λ2

λ3

Figure 2. The 3-permutohedron P3 and three generators of Λ3.
The fourth generator points directly into the central hexagon.

By construction, the symmetric group Σn+1 acts transitively on the vertices
of the permutohedron. To organize the combinatorics of this action, we will find
it useful to record here some alternate descriptions and helpful facts about the
permutohedron.

2.1.4. Cayley graph description. We first cite from [12] a description of the permu-
tohedron as a Cayley graph of Σn+1. Recall that the inversions in the symmetric
group Σn+1 are the transpositions of the form (i i+ 1) for some 1 ≤ i < n+ 1.

Lemma 2.1.5 ([12, Theorem 1]). The 1-skeleton of the permutohedron Pn is the
Cayley graph of Σn+1 corresponding to the generating set of inversions in Σn+1.

This description depends in particular on the choice of a vertex of the permu-
tohedron to correspond to the identity of Σn+1; this vertex will subsequently be
denoted (1). Since Σn+1 acts transitively on the vertices of the permutohedron,
a description of the permutohedron near any vertex is sufficient to understand its
global structure.
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From the Cayley graph perspective, we see that k-faces incident to a given
vertex of Pn correspond precisely to those subgroups of Σn+1 generated by k
inversions. Call the inversions (i i + 1) and (i + 1 i + 2) adjacent. Then if
I ⊂ {(1 2), (2 3), . . . , (n n + 1)} is some subset of inversions and we decompose
I =

∐
i Ii into its maximal subsets of adjacent inversions and set ni = #Ii, then

the (
∑

i ni)-dimensional face of Pn corresponding to I is of the form
∏

iPni
. In

other words:

Corollary 2.1.6. The faces (in every dimension) of the permutohedron Pn are
products of lower-dimensional permutohedra.

We can analyze the description above in more detail to attain information about
k-faces of Pn for all k; in particular we will be interested in the facets. A facet
incident on the vertex (1) is determined by a choice of n− 1 inversions, and hence
the set of such facets is {Pn−k ×Pk−1}k=1,...,n. The polyhedron Pn−k ×Pk−1 has

k!(n−k+1)! vertices, so the total number of such facets in Pn is (n+1)!
k!(n−k+1)! =

(
n+1
k

)
.

Adding all of these up, we find that the total number of facets is
∑n

k=1

(
n+1
k

)
=

2n+1 − 2.
Thus the facets of Pn are in bijection with proper, nonempty subsets of

{1, . . . , n}. In order to transfer the above analysis to the coordinate description
of Pn, it will be helpful to write this bijection in an explicit way.

Lemma 2.1.7. Let S ⊂ {1, . . . , n + 1} be a proper, nonempty subset. Define a

subset FS of the vertices of Pn by declaring that the vertex σ · ( 1
n+1

∑n+1
a=1 aλa) is

in FS if and only if σ(i) < σ(j) for all pairs (i ∈ S, j /∈ S). Then the map S �→ FS

is a bijection between proper nonempty subsets of {1, . . . , n+ 1} and facets of Pn.

Proof. Start by analyzing the facets incident on the vertex v =
∑n+1

a=1 aλa, which
we can treat as the vertex (1) in the Cayley graph. We already have an ex-
plicit description for these facets: they correspond to (n − 1)-element subsets
R ⊂ {(1 2), . . . , (n n + 1)}. We claim that the facet corresponding to the sub-
set R which is missing (i i + 1) has vertex set FS , for S = {1, . . . , i}. Indeed, the
facet corresponding to R is the orbit of v under Σi × Σn−i+1 ⊂ Σn+1, which is
precisely FS .

To extend this result to all the facets of the permutohedron, we note that the
action of Σn+1 on {1, . . . , n+1} induces an action on the set of all proper, nonempty
subsets of this set. Similarly, the action of Σn+1 on the set of vertices of Pn induces
an action on the set of facets, and the correspondence S �→ FS is equivariant
for these actions (since ultimately both are induced in the same way from the
permutation representation of Σn+1). Thus, the check we performed at a single
vertex is sufficient to prove that S �→ FS is a bijection on the set of all facets of
Pn. �
Definition 2.1.8. The facets of Pn which are of the form Pn−1 will be called
the maximal facets of the permutohedron Pn. Under the above bijection, they
correspond to subsets I ⊂ {1, . . . , n+ 1} which have either 1 or n elements.

2.1.9. Minkowski sum description. The other useful description which Pn admits
is as a Minkowski sum of line segments. Recall that the Minkowski sum of two
subsets A and B of Rn is

A+B := {a+ b | a ∈ A, b ∈ B}.

Licensed to Univ of Calif, Berkeley. Prepared on Fri May  1 11:16:12 EDT 2020 for download from IP 128.32.10.230.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MIRROR SYMMETRY FOR HONEYCOMBS 81

Let λ1, . . . , λn+1 be the standard basis vectors of Rn+1. Then we have the following
description of Pn.

Lemma 2.1.10. The n-permutohedron Pn can be represented as the Minkowski
sum ∑

1≤i<j≤n+1[
λi−λj

2(n+1) ,
λj−λi

2(n+1) ],

where [a, b] denotes the set {ta+ (1− t)b | 0 ≤ t ≤ 1} for a, b ∈ Vn.

Proof. By construction, the set of vertices of the permutohedron is contained in the
Minkowski sum ∑

1≤i<j≤n+1

{
λi − λj

2(n+ 1)
,
λj − λi

2(n+ 1)

}
of two-element sets, and it is a general fact that the convex hull conv(A+ B) of a
Minkowski sum A+B is equal to the Minkowski sum conv(A) + conv(B). �

A Minkowski sum of line segments is also known as a zonotope. As a cube
is also a Minkowski sum of line segments, a zonotope can also be understood as
the projection of a cube under an affine transformation. Hence, for instance, Pn

is an affine projection of the
(
n+1
2

)
-dimensional cube. Zonotopes have many nice

properties, and the zonotopal perspective is often helpful for inductively describing
the geometry of Pn; many of the combinatorial arguments which we made above
could have proceeded in the language of zonotopes.

2.1.11. Voronoi cell description. In fact, Pn is a special kind of zonotope. Recall
that every rank n lattice Λ ⊂ Rn has an associated Voronoi tiling, a tiling of Rn

symmetric under translation by Λ: for every lattice point x ∈ Λ, there is a Voronoi
cell Rx centered at x, where we define

Rx := {y ∈ Rn | |y − x| < |y − x′| for all x �= x′ ∈ Λ}.

The vector space Vn is a quotient of Rn+1 and hence a subspace of its dual
(Rn+1)∗, from which it inherits the standard metric (coming from the dual basis to
λ1, . . . , λn+1). With respect to this metric, permutohedra are Voronoi cells.

Lemma 2.1.12 ([4]). The n-permutohedron Pn is a Voronoi cell for the rank n
lattice Λn ⊂ Vn.

Let W̃n denote the semidirect product Λn � Σn+1. Then we have the following
corollary.

Corollary 2.1.13. Λn-translates of Pn provide a tessellation of Vn preserved by

the natural W̃n-action.

This means in particular that for every facet F of Pn, there is a vector v ∈ Λn

such that 1
2v is the center of F . Recall that earlier we exhibited a bijection between

facets of Pn and nonempty proper subsets I ⊂ {1, . . . , n+ 1}. Now we see another
way to understand this bijection: let λI =

∑
i∈I λi. Then Λn is the N-span of

{λI}∅�I�[n+1]. The Voronoi cells adjacent to the cell at the origin are those cells
which are centered at points of the form λI . This gives a correspondence between
facets of Pn and nonempty proper subsets I of [n + 1], associating to I the facet
FI through which λI points. Moreover, if we write Ic for the complement of I in
[n− 1] (also nonempty and proper because I is), then λIc = −λI , so FIc is the face
opposite FI .
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2.2. Honeycomb. We are now ready to introduce the main object of study in this
paper.

Definition 2.2.1. Let ∂Pn ⊂ Vn denote the boundary of the n-permutohedron.
The (n− 1)-honeycomb Hn−1 ⊂ Vn is the piecewise linear hypersurface given by

the union of translates
Hn−1 = ∂Pn + Λn.

We will describe the singularities of Hn−1 in the language of [28], which intro-
duced a special class of Legendrian singularities, called arboreal singularities. These
are conjecturally the deformation-stable Legendrian singularities, and the category
of microlocal sheaves along an arboreal singularity admits a simple description as
modules over an acyclic quiver. In [29], it was shown that any Legendrian singu-
larity admits a deformation to an arboreal singularity which preserves the category
of microlocal sheaves along the singularity. Thus the study of microlocal sheaves
along any Lagrangian in a symplectic manifold is reduced to a two-step process:
first, deform the Lagrangian so that each singularity is the cone on some arboreal
singularity, then glue the corresponding categories together.

In the case of the honeycomb (when, in Section 4, we describe its appearance
as a Weinstein skeleton), the first step is unnecessary, since, as we will see, all the
singularities of the honeycomb are already arboreal. In fact, in the language of [28],
all its singularities are arboreal singularities of type Ak for some k; this arboreal
singularity is homeomorphic to the cone on the (k − 2) skeleton of the k-simplex
Δk. This structure makes it possible to describe the symplectic geometry of the
honeycomb by means of the combinatorial constructions in this section.

Below we describe the singularities of the honeycomb Hn−1 and show that they
are all stratified homeomorphic to An arboreal singularities. Later, when we present
the honeycomb as a Lagrangian skeleton for the pair of pants, we will see that
the singularities of this Lagrangian actually have the symplectic geometry of An

arboreal singularities.
Let Δk ⊂ Rk+1 be a k-simplex with barycenter at the origin, and let skk−2Δ

k ⊂
Rk+1 denote its (k − 2)-skeleton. For A ⊂ Rk+1, we denote by Cone(A) the cone
R≥0 ·A ⊂ Rk+1 given by scalings of A (with cone point at the origin).

Definition 2.2.2. For k > 0, the topological Ak-hypersurface singularity is given
by

LAk
= Cone(skk−2Δ

k) ⊂ Rk+1.

This will be our topological model for the Legendrian arboreal singularity LAn
;

we will return to the symplectic geometry of this singularity in the proof of Propo-
sition 4.2.3. Since so far Hn−1 is only a topological space, we will describe its
singularities for now in terms of the topological singularity LAk

.

Definition 2.2.3. Define the stratified space Hn−1 to be the space Hn−1 equipped
with the stratification by relatively open faces. In other words, the strata of Hn−1

are indexed by faces F , and the stratum SF corresponding to the face F is just the
face F , not including any lower-dimensional faces incident on F .

Now we can describe precisely the singularities of the honeycomb.

Proposition 2.2.4. If p ∈ Hn−1 is a point in an (n − k)-dimensional stratum of
the honeycomb, then a neighborhood of p in Hn−1 is homeomorphic to LAk

×Rn−k.

Licensed to Univ of Calif, Berkeley. Prepared on Fri May  1 11:16:12 EDT 2020 for download from IP 128.32.10.230.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MIRROR SYMMETRY FOR HONEYCOMBS 83

Proof. Suppose first that p is in the 0-dimensional stratum of Hn−1; i.e., p is a vertex
in the honeycomb. In this case the proposition claims that in a small neighborhood
B of p, the complement B◦ := B \ {p} is homeomorphic to R>0 × skn−2Δ

n. As a
simplicial complex, skn−2Δ

n is determined by its face poset, which is the poset of
nonempty subsets of [n+ 1] := {0, 1, . . . , n} containing at most n− 1 elements.

Let ε > 0 such that the radius ε sphere Sε centered at p is contained in B,
and let Blink be the intersection of B◦ with Sε. Then positive dilation gives a
homeomorphism R>0 × Blink

∼= B◦. Hence we need to prove that Blink admits
the structure of a regular cell complex with face poset isomorphic to the poset of
nonempty subsets of [n+ 1] containing at most n− 1 elements.

We claim first that in the honeycomb, the vertex p is incident on n+1 edges. To
see this, we recall the Cayley graph description of Pn: A vertex v in Pn is incident
on n edges, and the n Λn-translates of Pn which contain v correspond to the n
facets in Pn containing v, which correspond in turn to the n choices of n− 1 edges
in Pn which contain v. A copy of Pn which contains v is determined by n edges
containing v, so each translate incident on v contains exactly one new edge which
contains v. In fact, this edge is the same for all translates: otherwise, translations
would produce at least two new edges containing v, but no translate could contain
both of these, contradicting the fact that translates of Pn tile space.

Now by symmetry we can conclude that for 1 ≤ k ≤ n− 1, any choice of k edges
containing p determines a k-face containing p in some translate of ∂Pn, and these
are all the faces containing p. In other words, there is a bijection

{k-faces in Hn−1 containing p} ∼= {k-element subsets of [n+ 1]},

and incidence relations among these are given by the natural poset structure on
the set of subsets of [n+ 1].

Thus we have established the proposition in the case where p is in a 0-dimensional
stratum. We can derive the case where p is in a k-dimensional stratum by starting
with p′ a vertex contained in a small neighborhood B′ and then restricting B′ to a
ball B which does not contain any strata of dimension less than k. In the analysis
above, this corresponds to restricting to a subposet of the set of subsets of [n+ 1],
which we can identify as the face poset of skn−k−2Δ

n−k. �

The proof above actually establishes more than an abstract description of the sin-
gularities of the honeycomb Hn−1: it also explains the inductive way in which they
are embedded in one another. Note that the Ak singularity LAk

= Cone(skk−2Δ
k)

contains k + 1 copies of R × LAk−1
, each embedded as the cone on a small neigh-

borhood of a vertex in skk−2Δ
k. Since the description we gave above respects all

of these identifications, we can elaborate on the above proposition.

Corollary 2.2.5. For 0 ≤ k ≤ n − 2, let α be a k-face in Hn−1 incident on a
(k+1)-face β. Then the singularity LAn−k

×Rk lying along β is one of the n−k+1

copies of LAn−k−1
×Rk+1 embedded as described above in the singularity LAn−k

×Rk

lying along α.

2.3. Cyclic structure sheaf. From the above description we see that the only
data needed around a point in Hn−1 to determine its singularity type is the number
of permutohedra in the tiling of Vn which contain that point. We will encode
that data, along with the data of relations among these singularities, in a cosheaf
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on Hn−1, from which we will subsequently produce a combinatorial model for the
A-model category associated to Hn−1.

Definition 2.3.1. Define the cosheaf of finite sets On−1 over the honeycomb Hn−1

to be the connected components of the complement

On−1(B) = π0(B \ (B ∩ Hn−1))

for small open balls B ⊂ Vn centered at points of Hn−1. For inclusions ι : B
′ ↪→ B,

the corresponding corestriction map is the map induced on π0 by ι.

Because the cosheaf On−1 is constructible with respect to a stratification of
Hn−1 as a regular cell complex, the cosheaf On−1 can be equivalently described
as a contravariant functor from the exit-path category P (Hn−1) associated to the
stratified space Hn−1. (Likewise, a constructible sheaf on Hn−1 is a covariant functor
from P (Hn−1).) The category P (Hn−1) is equivalent to the poset which has one
point α for each stratum Sα in Hn−1 and one arrow α → β for every relation
Sα ⊂ S̄β .

For each α ∈ P (Hn−1), pick a ball Uα such that Uα ∩ S̄α = Sα and Uα ∩ Sβ = ∅
for α, β incomparable in P (Hn−1). Then we can define On−1 as the functor

On−1 : P (Hn−1)
op → Sets, On−1(α) = π0(Uα \ (Uα ∩ Hn−1)),

where the map π0(Uβ \ (Uβ ∩ Hn−1)) → π0(Uα \ (Uα ∩ Hn−1)) induced by the
incidence α → β is defined through the inclusions

Uα \ (Uα ∩ Hn−1) Uα ∩ Uβ \ (Uα ∩ Uβ ∩ Hn−1)� ��� � � ∼ �� Uβ \ (Uβ ∩ Hn−1),

using that the second is a homotopy equivalence.
Recall the cyclic category Λ of finite cyclically ordered nonempty sets: its objects

are finite subsets S ⊂ S1, and morphisms S → S′ are given by homotopy classes
of degree 1 maps ϕ : S1 → S1 such that ϕ(S) ⊂ S′. We would like to lift On−1

to Λ; in other words, we want to express On−1 as the composition of the forgetful

functor Λ → Sets with a functor Õn−1 : P (Hn−1) → Λ. Such a lift is the same as a
choice of cyclic ordering on every set On−1(α).

Moreover, we want this lift to respect the W̃n symmetry of Hn−1. The W̃n symme-

try of the honeycomb Hn−1 induces a W̃n action on P (Hn−1), and for α ∈ P (Hn−1),

this symmetry also induces an action of W̃n on the set π0(Bα \ (Bα ∩Hn−1)). This
action does not affect the set itself but will alter the cyclic ordering if this set is en-

dowed with one. Hence the condition of W̃n-equivariance places extra requirements

on the structure of Õn−1.

Lemma 2.3.2. There are n! possible W̃n-equivariant choices of lift Õn−1, each
determined by a choice of cyclic ordering on On−1(α), where α corresponds to any
vertex in Hn−1.

Proof. Suppose we have chosen a cyclic ordering on On−1(α) as in the lemma. For
α → β, the inclusion On−1(β) ↪→ On−1(α) determines a cyclic ordering on all
On−1(β). Conversely, if α

′ ∈ P (Hn−1) also corresponds to a 0-dimensional stratum

in Hn−1, then the action of W̃n transfers the cyclic ordering on On−1(α) toOn−1(α
′)

and hence also determines a cyclic order on all β with α′ → β. We have to show
that for any incidence relation of the form

α �� β α′��
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in P (Hn−1), both of the above methods of determining a cyclic order on On−1(β)

coincide. In other words, if σ ∈ W̃n is any element taking α to α′ and taking β to
itself, then we must show that σ acts as the trivial permutation on On−1(β). Since

the affine Weyl group W̃n is generated by reflections through root hyperplanes, we
may assume σ is a reflection through a root hyperplane. Any intersection of such
a hyperplane with a face of a Voronoi cell for the lattice Λn is transverse. Thus,
if σ · β = β, then σ is reflection through a hyperplane intersecting every connected
component in On−1(β) and hence acts as the trivial permutation on On−1(β). �

Now we fix a cyclic order at vertices as follows: at a vertex α, elements of the set
On−1(α) can be identified with the n+1 copies of the permutohedron which contain
α. We endow this set of permutohedra with the cyclic order [P0, . . . , Pn] such that
(taking indices cyclically modulo n + 1) we have Pi = Pi−1 + λi (see Figure 3 for

an illustration). Since we have w · Pi = w · Pi−1 +w · λi for any w ∈ W̃n, this gives
a consistent choice of cyclic structure at all vertices.

λ1 λ2

λ3

Figure 3. The cyclic order at a vertex in H1.

Definition 2.3.3. We define the functor

Õn−1 : P (Hn−1)
op → Λ

by using this cyclic order to lift the cosheaf of sets defined above to a cosheaf of
cyclic sets:

Õn−1(α) = π0(Bα \ (Bα ∩ Hn−1)),

where Õn−1(α) is given the cyclic order described in the previous paragraph. This
functor factors through the nonfull subcategory Λinj of cyclic sets and injective
morphisms, and we will denote the resulting functor P (Hn−1)

op → Λinj also by

Õn−1.

2.4. Quantization. The cyclic cosheaf Õn−1 encodes the data of all the singulari-
ties of Hn−1, our combinatorial model for a skeleton of the pair of pants. Following
the procedure described in [31], we can produce from this cosheaf a sheaf (re-
spectively, cosheaf) on Hn−1 whose global sections are a dg category modeling the
infinitesimally wrapped (respectively, partially wrapped) Fukaya category of branes
running along the skeleton Hn−1. This procedure is analogous to the constructions
of topological Fukaya categories described in [6,18], although thanks to the arboreal
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singularities of our skeleton, the construction we describe here works in arbitrary
dimensions.

The key ingredient in our construction is a functor

Q : Λop
inj

�� Z/2 -dgstk,

which is described as Construction 2.4.1 below. First, for S = [s1, . . . , sn+1] a
cyclic set of n + 1 elements, consider the Z/2-dg category (An -Perfk)Z/2, whose
objects include the n simple modules k1, . . . , kn and the shifted injective-projective
In[1] = P1[1]. We will relabel these objects s1, . . . , sn+1, respectively, and denote
by 〈s1, . . . , sn+1〉 the full subcategory on these objects. Let CS be the dg category
of twisted complexes on 〈s1, . . . , sn+1〉:

CS := Tw〈s1, . . . , sn+1〉.
Since the category (An -Perfk)Z/2 is generated by simples si, the category CS is

equivalent to (An -Perfk)Z/2 but with a manifest cyclic symmetry: the category CS
admits an action of Z/(n+1)Z, whose generator takes si to si+1, indexed cyclically.

Construction 2.4.1 ([31, Proposition 3.5]). The functor

Q : Λop �� Z/2 -dgstk

has value Q(S) = CS , and the map Q(i) : CS′ → CS induced by the inclusion
i : S ↪→ S′ is the dg quotient of CS′ by the full subcategory on {si | si ∈ S′ \ S}.

Remark 2.4.2. The functor described in [31] actually has target in the category
of (2-periodic) A∞ categories and strict functors; the functor described here is a
(Z/2)-dg model of that one. (In fact, below we will describe two different Z/2-dg
models of this functor.) See also [6] for a more extensive discussion of this functor,
modeled there using the category of matrix factorizations of xn.

Remark 2.4.3. The notational confusion of si ∈ S with si the element of CS in the
lemma above is meant to indicate that our set of distinguished generators of CS
is indexed by the cyclic set S. The cyclic sets we consider will in general be sets
S = [P1, . . . , Pn+1] of adjacent permutohedra as at the end of the previous section;
in this case we will continue to denote the generators of CS by s1, . . . , sn+1, with
the understanding that si is indexed to Pi. We will always understand the indexing
of the si cyclically, so that, for instance, we may denote sn+1 also by s0.

A choice of a linear order {s1 → · · · sn → sn+1} underlying the cyclic order on
S picks out an equivalence CS ∼= (An -Perfk)Z/2 sending si to the simple object
ki for i = 1, . . . , n and sending sn+1 to In[1] ∼= P1[1]. But since the cyclic set S
does not have a distinguished linear order, there is no distinguished equivalence
CS ∼= (An -Perfk)Z/2 without making such a choice.

To see a more explicit description of the maps CS′ → CS which Q induces from
an inclusion S → S′, note first that the category CS is generated by degree 1
morphisms αi : si → si+1. (This corresponds in An+1 -Perfk to the degree 1 map
of simple objects ki → ki+1 representing the class of the nontrivial extension.) For
|j − i| < n, we can form a complex sij from the objects si, si+1, . . . , sj by taking
successive extensions by the maps αi. We write this object schematically as a
complex

si,j := (si
αi �� si+1

αi+1 �� · · ·
αj−1 �� sj) ,
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where sj is placed in degree 0. Under the equivalence CS ∼= (An -Perfk)Z/2 which
sends si to k1, the object sij corresponds to the An-representation

k
∼ �� k

∼ �� · · · ∼ �� k �� 0 �� · · · �� 0

with j − i+ 1 nonzero terms.
Let ik be the inclusion {1, . . . , n+1}\{k} ↪→ {1, . . . , n+1}. Then the map Q(ik)

acts as

Q(ik)(si,j) =

⎧⎪⎨⎪⎩
si,j , i �= k �= j,

si+1,j , i = k,

si,j−1, j = k.

Since any object in CS is a direct sum of the si,j and any inclusion S → S′ can
be written as a composition of inclusions which miss one element, the above gives
a complete description of the behavior of the functor Q on the subcategory of Λop

whose morphisms are injections of cyclic sets.
It will also be useful to have one other description of the functor Q which will

give us a different way of thinking about the Fukaya category we describe below.
Note that instead of taking the pretriangulated closure of 〈s0, . . . , sn〉 by using
twisted complexes, we could equally well have used perfect modules: i.e., we have
an equivalence

CS ∼= 〈s0, . . . , sn〉 -(Perfk)Z/2 := Funex(〈s0, . . . , sn〉op, (Perfk)Z/2).
Since the category 〈s0, . . . , sn〉 is generated by the degree 1 maps αi, an object F
in 〈s0, . . . , sn〉 -(Perfk)Z/2 is determined by the n + 1 objects F(si) of (Perfk)Z/2
and the n+ 1 maps F(si) ← F(si+1) : F(αi).

The n + 1 equivalences of this category with (An -Perfk)Z/2 come from cyclic
reindexing and then applying the equivalence

(〈s0, . . . , sn〉 -Perfk)Z/2 �� (〈s1, . . . , sn〉 -Perfk)Z/2

given by forgetting F(s0) and the maps F(s0) ← F(s1) and F(sn) ← F(s0).
The functor Q is defined in this language by

(Q(ik))(F) =

[
si �→

{
(F(sk−1) ← F(sk)) i = k − 1 (mod n+ 1)

F(si) i �= k − 1

]
.

Remark 2.4.4. We will see below that the two dg models for the functor Q, using
twisted complexes or using perfect modules, give two different ways of talking about
the Fukaya categories we construct. The first is adapted to describing the support
of a brane along an arboreal Lagrangian, while the second is better for describing
its transverse geometry. (See also Example 2.5.2 and the preceding discussion.)

In addition to the functor Q, we would like to produce a covariant functor

Qwr : Λinj
�� Z/2 -dgstk

in order to produce a cosheaf of dg categories on Hn−1. For any object S in Λ and
for any map i : S → S′ in Λinj , we define

Qwr(S) := Q(S), Qwr(i) := Q(i)L : Qwr(S) → Qwr(S′),

where we write Q(i)L for the left adjoint to the map Q(i).
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Definition 2.4.5.
(1) Define the local wrapped and infinitesimal quantizations Qwr

n−1 and Qinf
n−1 to

be the respective compositions

Qwr
n−1 = Qwr ◦ Õn−1 : P (Hn−1)

op �� Z/2 -dgstk,

Qinf
n−1 = Q ◦ Õop

n−1 : P (Hn−1) �� Z/2 -dgstk .

These are, respectively, a cosheaf and sheaf of Z/2-dg-categories on Hn−1 whose
sections in a small ball around a point in a k-face are equivalent to the Z/2-dg-
category of representations of the An−k quiver.

(2) Define the global infinitesimal quantization Qinf
n−1 to be the global sections of

the sheaf Qn−1:

Qinf
n−1 = limP (Hn−1) Qn−1.

Define the global wrapped quantization to be the idempotent-completion of the
global sections of the cosheaf Qwr

n−1:

Qwr
n−1 = Idem

(
colimP (Hn−1)op Qwr

n−1

)
.

These will be our respective models of the infinitesimal and (idempotent-

completed) wrapped Fukaya categories of the Zn cover P̃n−1 of the (n−1)-dimension-
al pair of pants.

Remark 2.4.6. These categories inherit W̃n symmetries from the W̃n-action on the

poset Hn−1 (and the equivariance of the cyclic structure sheaf Õn−1). In particular,

these categories have an action by the normal subgroup Λn ⊂ W̃n of translations.
We will denote the action of a translation λ ∈ Λn on an object F by F〈λ〉, so that
F〈λ〉(U) := F(U + λ), to match our notation on the B-side in the next section.

2.5. The quantization categories. We would like to describe more explicitly the

categories Qinf
n−1 and Qwr

n−1. Since the category Qinf
n−1 is presented as a limit, it is

easier to understand: an object of Qinf
n−1 is specified by the data of an object in the

categories Qinf
n−1(α) associated to each vertex α in Hn−1 and coherent isomorphisms

relating the results of restriction maps Qinf
n−1(αi) → Qinf

n−1(F ) associated to pairs

of inclusions α1, α2 ↪→ F̄ from faces α1, α2 into the closure of a higher-dimensional

face F . For F an object of Qinf
n−1 and α a face in the honeycomb Hn−1, we will

denote by Fα ∈ Qinf (α) the component of F placed at the face α.
There are two useful ways to understand this category, corresponding to the two

descriptions of Qinf (α) = C
˜O(α), as perfect modules and as twisted complexes. We

will begin with the first perspective, which allows us to think of an object in Qinf
n−1

as the data of an object of (Perfk)Z/2 at each facet in Hn−1 along with maps among
these at codimension 2 faces, satisfying some conditions.

Let α be a vertex in Hn−1, which is contained in n + 1 cyclically ordered per-

mutohedra P0, . . . , Pn. Then an object F in Qinf
n−1(α), understood as a category of

perfect modules over 〈s0, . . . , sn〉, is a collection of n + 1 objects F(si) and n + 1
degree 1 maps F(si) ← F(si+1).
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Lemma 2.5.1. Let F be the facet separating the permutohedra Pi and Pj , and let

F|F be the restriction of F to Qinf
n−1(F ) (along the inclusion α → F ). Then the

perfect complex F|F ∈ Funex(〈si, sj〉op, (Perfk)Z/2) is given by

F|F (si) = (F(si) · · ·�� F(sj−1)),��

F|F (sj) = (F(sj) · · ·�� F(si−1)).��

Proof. This follows directly from the definition of the functor Qinf
n−1. �

Let Fi be the facet containing α which separates the permutohedra Pi and Pi−1.
Then from the above lemma we understand that the object of (Perfk)Z/2 placed at
Fi is just F(si), and at the codimension 2 intersection of Fi and Fi+1 is the map
F(si) ← F(si+1).

There is also a geometric way of understanding Qinf
n−1(α) as a category of twisted

complexes for a face α in Hn−1: each of the distinguished generators si of the

categoryQinf
n−1(α), which are indexed by permutohedra Pi containing α, corresponds

to a brane in the Fukaya category which locally near α runs along the interior of
the permutohedron Pi; the complexes si,j correspond to branes which cross over to
different permutohedra at α.

The compatibility conditions mentioned in the approach using perfect modules
correspond in this perspective to a list of the possible configurations which a brane
can take locally at each face α. If α is a codimension r face so that it is contained in

r + 1 permutohedra P0, . . . , Pr, then there are r(r+1)
2 possible such configurations,

corresponding to the objects si and si,j in the category Qinf (α).

Example 2.5.2 (n = 2). Let α be a vertex in H1 which is shared by three hexagons
P0, P1, P2. Then locally at α, there are three possible brane configurations s0, s1, s2
(up to a shift, these are equivalent to s1,2, s2,0, and s0,1, respectively). These are
illustrated in Figure 4.

P0

P2

P1

s0 s1 s2

Figure 4. A vertex v in H1 and the brane configurations corre-

sponding to the generating objects s0, s1, s2 of Qinf
n−1(v).

One basic class of objects in the category Qinf
n−1 are the “microlocal rank-one”

objects: these are the objects F such that for every facet α, the object Fα is equiva-
lent in Qinf (α) to either s0 or s1 (where these correspond to the two permutohedra
separated by α; cf. Remark 2.4.3). The microlocal rank-one objects in the Fukaya
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category perspective are those objects which run along each facet in Hn−1 at most
once.

Definition 2.5.3. Let P = {Pi}i∈I be a set of permutohedra involved in the tiling
of Vn. Then the boundary B = ∂(

⋃
i Pi) is a subset of Hn−1 which is a union of

strata. (We will occasionally denote B by ∂P.) A rank-one brane along ∂P is an

object of Qinf
n−1 whose support along each facet α in B is equivalent to s0, where s0

is the generator of Qinf
n−1(α) corresponding to the permutohedron in P containing

α and whose support along each facet α not in B is zero. If such an object exists,
it is necessarily unique, and we will denote it by BP .

Example 2.5.4. Let P = {P0} be a single permutohedron P0. Then the object

BP exists: for any face α in Hn−1, its support (BP)α ∈ Qinf
n−1(α) is given by

(BP)α =

{
s0 α ∈ ∂P0,

0 α /∈ ∂P0.

This object, which under the mirror symmetry equivalence presented later in this
paper will map to the skyscraper sheaf at the origin of An+1, corresponds in the
Fukaya category side to the immersed sphere whose endomorphisms were calculated
by Sheridan in [39].

Example 2.5.5. Let n = 3. The 3-permutohedron is the truncated octahedron,
which has both hexagon and square facets. Let P = {P0, P0 + λ1 + λ2} be a set of
two permutohedra which share a single square facet. Then there does not exist a
rank-one brane along ∂P.

The second example above shows that we need to institute an additional condi-
tion on the set P in order to guarantee the existence of a rank-one brane along ∂P.
One such condition, which will be sufficient for our purposes, is given in the lemma
below.

Recall that for every face α of a permutohedron, we have a cyclic set Õ(α) of all
permutohedra containing α.

Lemma 2.5.6. For P a set of permutohedra, write ÕP(α) ⊂ Õ(α) for the subset

of permutohedra in Õ(α) which are contained in P. If the subset ÕP(α) ⊂ Õ(α)

is connected in the cyclic order on Õ(α) for every face α in ∂P, then the rank-one
brane BP along ∂P exists.

Proof. We can define the object BP as follows: at any face α not in ∂P, we set

(BP)α = 0. At any face α in ∂P, denote the cyclic set Õ(α) of permutohedra con-

taining α by [P0, . . . , Pr], and let [Pi, Pi+1, . . . , Pj ] denote the cyclic subset ÕP(α)
of permutohedra contained in P. By assumption, this set is connected in the cyclic

order on Õ(α), and hence in Qinf
n−1(α) we can define the complex

si,j := (si �� si+1
�� · · · �� sj) ,

and we set (BP)α = si,j . �
We would like to give a similarly explicit description of the category Qwr

n−1, but
the definition above is not well-suited to describing objects of this category, for the
reason that colimits of dg categories are more difficult to present than limits are.
In order to understand this colimit, we cite from [13] the following useful trick,
originally due to Jacob Lurie.
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Lemma 2.5.7 ([13, Lemma 1.3.3]). Let P be a category and let F : P op → StLk
be a functor to the category of cocomplete k-linear dg categories and continuous
functors. Let G : P → Stk be a functor to the category of cocomplete k-linear dg
categories which agrees with F on objects and such that G(α → β) is right adjoint to
F (α → β). Then there is an equivalence colimP op F ∼= limP G.

By construction, Qinf
n−1 : P (Hn−1) → Z/2 -dgstk agrees with Qwr

n−1 on objects,

andQinf
n−1(α → β) is right adjoint toQwr

n−1(α → β), so we are almost in the situation

in the lemma. However, the functors Qinf
n−1 and Qwr

n−1 as defined have codomain all
dg categories and not just cocomplete dg categories. We can rectify this by passing
to Ind-completions.

Let Q♦ be the functor defined the same way as the functor Q, except that its
values on objects are equivalent to (An -Modk)Z/2 instead of (An -Perfk)Z/2; that
is, we allow complexes of any dimension, with no restriction to perfect complexes.

Following the procedure by which we defined Qinf
n−1, we produce in the same way a

category Q♦
n−1, which is similar to Qinf

n−1 but allows infinite-rank stalks along facets.
We are now in a position to apply the above lemma.

Corollary 2.5.8. The category Qwr
n−1 is equivalent to the category of compact ob-

jects in Q♦
n−1.

Proof. The functors Ind ◦Qwr
n−1 and Ind ◦Qinf

n−1 = Q♦
n−1 satisfy the conditions of

the above lemma, which thus provides an equivalence colimP (Hn−1)op(Ind ◦Qwr
n−1)

∼=
Q♦

n−1 between their respective colimit and limit. Passing to the full subcategory of
compact objects on each side turns this into an equivalence:

(
colimP (Hn−1)op(Ind ◦Qwr

n−1)
)cpt ∼= (Q♦

n−1)
cpt.

Since the Ind-completion commutes with the colimit, the left-hand side of this equiv-

alence is
(
Ind(colimP (Hn−1)op Qwr

n−1)
)cpt

, which is just the idempotent-completion of
the category colimP (Hn−1)op Qwr

n−1. By definition, this latter category is Qwr
n−1. �

We can use the above lemma to give an explicit description of the generators of
Qwr

n−1. For F a facet in Hn−1 and ξ a choice of normal direction to F , consider the
map

φF,ξ : Q♦
n−1

�� Q♦
n−1(F )

ξ

∼
�� (Modk)Z/2,

which takes an object of Q♦
n−1 to the object of the category Q♦

n−1(F ) (which
ξ identifies with (Modk)Z/2) which is placed at the facet F of Hn−1. If ξ± are
the two choices of normal to F , then the resulting functors agree up to a shift:
φF,ξ+ = φF,ξ− [1]. (Note that a choice of ξ is equivalent to a choice of one of the two
permutohedra containing the facet F. If P is a choice of one of these permutohedra,
we will occasionally denote the corresponding functor by φF,P .)

Licensed to Univ of Calif, Berkeley. Prepared on Fri May  1 11:16:12 EDT 2020 for download from IP 128.32.10.230.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



92 BENJAMIN GAMMAGE AND DAVID NADLER

Since the functor φF,ξ preserves products, it admits a left adjoint φ�
F,ξ : Modk →

Q♦
n−1, and since it preserves coproducts, φ�

F,ξ preserves compact objects. Hence, if

we define δF,ξ to be φ�
F,ξ(k), then δF,ξ is an object of Qwr

n−1, which by construction
corepresents the functor φF,ξ.

Definition 2.5.9. For F a facet in Hn−1, the functor φF,ξ is a stalk functor along
F . The object δF,ξ in Qwr

n−1 corepresenting φF,ξ is a skyscraper along F .

It will be useful to restrict our attention to the maximal facets in the honeycomb
Hn−1. Recall that the facets of the permutohedron Pn are of the form Pn−k × Pk

for k = 1, . . . , n and that we call “maximal facets” the facets of the form Pn−1.
Equivalently, these are the facets which are shared by a pair of permutohedra P

and P + λi for some i. In the description of Qinf
n−1 using perfect modules, if an

object Fv : 〈s0, . . . , sn〉op → (Perfk)Z/2 is placed at a vertex v, then F(si) are its
stalks along the n+1 maximal facets containing v. We can use this to establish the
following lemma.

Lemma 2.5.10. The category Qwr
n−1 is generated by the set {δF,ξ} of skyscrapers

along maximal facets of Hn−1.

Proof. An object of Q♦
n−1 is zero if and only if its stalks along all maximal facets F

are zero, which shows that the set of skyscrapers generates Q♦
n−1. Since the category

Q♦
n−1 is the Ind-completion of its compact objects Qwr

n−1, the skyscrapers generate
Qwr

n−1. �
Remark 2.5.11. For a non-simply-connected symplectic manifold, the category of
wrapped microlocal sheaves (modeled here by Qwr) lacks the necessary finiteness
conditions to embed into the category of infinitesimally wrapped microlocal sheaves
(modeled by Qinf ); instead, both are contained inside a larger category Q♦. How-
ever, passing from Hn−1/Λn to its covering space Hn−1 unwraps branes: consider
for instance the toy case R → S1, in which a brane wrapping S1 countably many
times might run only once along the universal cover. We might thus expect that
the objects in Q♦ which corepresent stalk functors have sufficient finiteness to live

inside Qinf
n−1. This turns out to be the case, as we will see below.

The following collection of objects of Qinf
n−1 will play an important role in the

proof of the main mirror symmetry equivalence of this paper.

Definition 2.5.12. Let P be a permutohedron in Vn, and let J � {1, . . . , n+1} be
a proper subset. Set P = {P+

∑
j∈J njλj | nj ∈ N}. The hypothesis of Lemma 2.5.6

is satisfied, so this choice of P defines a rank-one brane BP , which we will denote
by BP,J .

The object BP,∅ is the brane wrapping a single permutohedron, discussed in
Example 2.5.4 above. At the opposite extreme, in the case where J = {i}c =
{1, . . . , n+ 1} \ {i}, we get a skyscraper.

Proposition 2.5.13. Let P be a permutohedron in Vn and let Fi be the facet
separating P from P + λi. Then the rank-one object BP,{i}c defined above is the
skyscraper δFi,P .

Proof. Let P be as in the definition of BP,{i}c . As usual we will denote by B
the boundary B = ∂(

⋃
P∈P P ). To show that the object BP is isomorphic to the
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2

Figure 5. The support (in bold) of the skyscraper δF,P = BP,{2,3}
along the edge F.

skyscraper δFi,P , we need to define an equivalence

HomQinf
n−1

(BP ,G) ∼ �� HomQinf
n−1

(δFi,P ,G) ∼= φFi,P (G)

which is natural in G.
If we define a functor

h : P (Hn−1) �� (Perfk)Z/2, α � h �� HomQ(α)((BP)α,Gα),

then we have an equivalence

HomQinf
n−1

(BP ,G) ∼= limP (Hn−1) h,

so it would be enough to show that this limit is naturally equivalent to φFi,P (G).
We will calculate this limit by making a series of simplifications until we arrive at
the desired result. Heuristically, we will see that after restricting to the support of
B, the calculation we want can be understood in a category of representations of a
certain acyclic quiver.

First, let P (B) ⊂ P (Hn−1) be the full subposet on faces contained inB. Note that
h(β) = 0 for any β /∈ P (B), and there are no maps β → α for α ∈ P (B), β /∈ P (B).
Hence the natural map

limP (Hn−1) h
�� limP (B) h

is an equivalence.
But this latter limit is just the Hom space

limP (B) h ∼= HomlimP (B) Qinf
n−1

(BP |P (B),G|P (B))

of the objects BP and G after restriction to the category limP (B)Qinf
n−1, so we need

to compute this latter category, which is equivalent to the category of modules over
a certain quiver with relations (QB, RB).

Let QB be the quiver with one vertex for every facet in B and one arrow for
every codimension 2 face in B, with the direction of the arrows determined as in

the description of Qinf
n−1 by perfect modules. For k > 2, the two paths around each
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codimension k face form a nonoriented k-cycle, and we add to RB the relation that
these two paths commute.

Then limP (B)Qinf
n−1 is equivalent to the category of modules over the quiver

QB with relations RB . The quiver representation corresponding to an object F
in limP (B)Qinf

n−1 has at the vertex of QB corresponding to the facet α the perfect
complex φα,ξ(F), where ξ is the normal direction along α which points into P and
φα,ξ is the corresponding stalk functor.

The quiver QB is a connected quiver with an initial vertex corresponding to the
facet Fi; it has no oriented cycles, and any two paths with the same start and
endpoint are forced by a relation in RB to agree. By construction, the object BP
is mapped by this equivalence to the quiver representation with k placed at every
vertex and every map an isomorphism. This object corepresents the functional on
(QB, RB)-mod sending a quiver representation to the object of (Perfk)Z/2 placed
at the initial vertex. Hence we have an isomorphism

Hom(QB -Perfk)Z/2(BP |P (B),G|P (B)) ∼= φFi,P (G).

Composing all of the above equivalences, we conclude that the object BP corep-
resents the stalk functor φFi,P , as claimed. �

We will also need the following fact about the objects BP,J , which expresses how
they can be built out of one another.

Lemma 2.5.14. Let P be a permutohedron in Vn, let J ′ ⊂ {1, . . . , n + 1} be a
proper subset, and suppose that J ′ = J \ {i} for some i and some proper subset

J ⊂ {1, . . . , n + 1}. Then in Qinf
n−1 there exist a map xi : BP,J → BP,J 〈λi〉 and an

isomorphism of complexes

BP,J′ ∼= (BP,J〈−λi〉
xi �� BP,J ).

Proof. The definition of the map xi is clear in the case where J = {1, . . . , n+1}\{j}
for some j. In this case we want to exhibit a map xi : δFj ,P 〈−λi〉 → δFj ,P . But
since the domain corepresents the stalk functor along the facet Fj+λi and we know
that the codomain is rank-one along this facet, there is a one-dimensional space of
maps between these two, so such an xi exists. Moreover, from the definition of
these two objects as the rank-one branes BP+λi,J and BP,J , we see that the cone
on this map is the rank-one brane BP,J\{i}.

To produce the maps on the objects BP,J for other J , we just need to note that
the maps xi commute, i.e., that the squares

δFj ,P 〈−λi − λk〉
xk ��

xi

��

δFj ,P 〈−λi〉

xi

��
δFj ,P 〈−λk〉 xk

�� δFi,P

are commutative. Hence we can read this square as a map of complexes in two
different ways: either vertically, as the map

xi : BP,{j,k}c〈−λi〉 → BP,{j,k}c ,

or horizontally, as the map

xk : BP,{j,i}c〈−λk〉 → BP,{j,i}c .
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We can produce all the maps xi by iterating this procedure, and they manifestly
satisfy the relations described in the lemma. �

3. Mirror symmetry

3.1. Landau-Ginzburg B-model. Here we recall from [32] the structure of the
B-brane category associated to the Landau-Ginzburg B-model with background
An+1 and superpotential Wn+1 = z1 · · · zn+1.

3.1.1. Matrix factorizations. Consider the background M = SpecA, with A =
k[z1, . . . , zn+1], and a superpotential W ∈ A such that 0 ∈ A1 is its only possible
critical value.

We will denote by X the special fiber W−1(0) = Spec(A/(W )).
Let Perf(X) be the dg category of perfect complexes on X, and let Coh(X) be

the dg category of bounded coherent complexes of sheaves on X.
The category of B-branes associated to the LG model (M,W ) is the derived

category of singularities Dsing(X), which is defined as the 2-periodic dg quotient
category

Dsing(X) = Coh(X)/Perf(X).

Orlov [34] established an equivalence of the derived category of singularities with
the Z/2-dg category MF(M,W ) of matrix factorizations associated to (M,W ). The
objects of this category are pairs (V, d) of a Z/2-graded free A-module V of finite
rank equipped with an odd endomorphism d such that d2 = W id. Thus we have
V = V 0⊕V 1, d = (d0, d1) ∈ Hom(V 0, V 1)⊕Hom(V 1, V 0), and d2 = (d1d0, d0d1) =
(W id,W id) ∈ Hom(V 0, V 0) ⊕ Hom(V 1, V 1). We denote the data of a matrix
factorization by a diagram

V 0 d0 �� V 1 d1 �� V 0.

Orlov’s equivalence

MF(M,W )2Z
∼ �� Dsing(X)

is given by

(V 0 d0 �� V 1 d1 �� V 0) � �� coker(d1).

3.1.2. Coordinate hyperplanes. For n ∈ N, set [n] = {1, . . . , n}.
In this paper, we are interested in the matrix factorization category associated

to the background An+1 = SpecAn+1, with An+1 = k[za | a ∈ [n + 1]], and the
superpotential

Wn+1 = z1 · · · zn+1 ∈ An+1.

This LG model is mirror to the pair of pants.
The special fiber of this superpotential is

Xn = W−1
n+1(0) = SpecBn,

where we set Bn = An+1/(Wn+1).
It will also be convenient to set W a

n+1 = Wn+1/za ∈ A for a ∈ [n+ 1].
For a ∈ [n + 1], let Xa

n = SpecA/(za) ⊂ Xn denote the coordinate hyperplane
and Oa

n its structure sheaf. As an object of Perf(An+1), it admits the free resolution

An+1
za �� An+1

�� Oa
n,
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and as an object of Coh(Xn), it admits the infinite resolution

· · ·
Wa

n+1 �� Bn
za �� Bn

Wa
n+1 �� Bn

za �� Bn
�� Oa

n.

For a ∈ [n+ 1], let Oa
n ∈ MF(An+1,Wn+1) denote the matrix factorization

An+1

Wa
n+1 �� An+1

za �� An+1.

Proposition 3.1.3. The Z/2-dg category MF(An+1,Wn+1) is split-generated by
the collection of objects Oa

n, for a ∈ [n]. There are equivalences of Z/2-graded
k-modules

H∗(Hom(Oa
n,Oa

n)) 	 An+1/(za,W
a
n+1), a ∈ [n+ 1],

H∗(Hom(Oa
n,Ob

n)) = An+1/(za, zb)[−1], a �= b ∈ [n+ 1].

Proof. The collection of objects Oa
n, for a ∈ [n+ 1], generates Coh(Xn), and On+1

n

is in the triangulated envelope of the collection of objects Oa
n, for a ∈ [n]; hence the

collection of objects Oa
n, for a ∈ [n], generates MF(An+1,Wn+1). The cohomology

of morphism complexes is a straightforward calculation. �

3.2. Equivariant/graded version. In order to match the passage to a universal
abelian cover on the pair of pants, we must pass to a quotient on the mirror.
Equivalently, we must work with a B-model category which has been enhanced by
equivariance data.

Let us return to the general setup M = SpecA, with A = k[z1, . . . , zn], and
now assume the superpotential W ∈ A is homogeneous for an algebraic torus T ⊂
(Gm)n.

Let χ∗(T ) = Hom(T,Gm) denote the weight lattice of T , and let w ∈ χ∗(T ) be
the weight of W .

Recall that a T -equivariant k-module is equivalently a T -representation or equiv-
alently again a χ∗(T )-graded k-module. Given a T -equivariant k-module V , we
write Vλ for the λ-component of V for λ ∈ χ∗(T ). Given a T -equivariant k-
module V and a weight μ ∈ χ∗(T ), we have the μ-twisted k-module defined by
V 〈μ〉λ = Vλ−μ for λ ∈ χ∗(T ).

As before, let X = W−1(0) = SpecB denote the special fiber, with B = A/(W ).
Let Perf(X)T be the dg category of T -equivariant perfect complexes on X, and

let Coh(X)T be the dg category of T -equivariant bounded coherent complexes of
sheaves on X.

Let Dsing(X)T = Coh(X)T/Perf(X)T be the dg quotient category of T -equivar-
iant singularities. Note that Dsing(X)T is not a 2-periodic dg category, but rather
the shift [2] is equivalent to the twist 〈w〉.

Let MF(M,W )T be the dg category of T -equivariant matrix factorizations.
Its objects are pairs (V, d) of a Z/2-graded free T -equivariant A-module V =
V 0 ⊕ V 1 of finite rank together with a T -equivariant morphism d = (d0, d1) ∈
Hom(V 0〈−w〉, V 1) ⊕ Hom(V 1, V 0) such that d2 = (d1d0, d0d1) = (W id,W id) ∈
Hom(V 0〈−w〉, V 0)⊕Hom(V 1〈−w〉, V 1). We denote the data of a matrix factoriza-
tion by a diagram

V 0〈−w〉 d0 �� V 1 d1 �� V 0
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or equivalently by its w-twisted periodicization

· · · �� V 1〈−w〉 d1 �� V 0〈−w〉 d0 �� V 1 d1 �� V 0 d0 �� V 1〈w〉 �� · · · .

The morphism complex between T -equivariant matrix factorizations is the usual
T -equivariant morphism complex between their w-twisted periodicizations. (Hence
if T is the trivial torus, then MF(M,W )T is the usual Z/2-dg category MF(M,W )
of plain matrix factorizations, considered as a 2-periodic dg category.) Note that
the shift [2] is equivalent to the twist 〈w〉.

As in the nonequivariant case, there is an equivalence of dg categories

MF(M,W )T
∼ �� Dsing(X)T (V = V 0 ⊕ V 1, d = (d0, d1))

� �� coker(d1).

Now let us focus on the background An+1 = SpecAn+1, with An+1 = k[za | a ∈
[n+ 1]], and the superpotential

Wn+1 = z1 · · · zn+1 ∈ An+1.

Recall the union of coordinate hyperplanes

Xn = W−1
n+1(0) = SpecBn,

where we set Bn = An+1/(W ).
Now consider the entire torus Tn+1 = (Gm)n+1 with weight lattice χ∗(Tn+1) 	

Zn+1 = Z〈λ1, . . . , λn+1〉. We will be interested in the subtorus Tn which is the
kernel of the restriction of the superpotential Wn+1 = z1 · · · zn+1 to Tn. The torus
Tn has weight lattice Λn = Z〈λ1, . . . , λn+1〉/(

∑
λi). (As before we use λi to denote

the class of λi in χ∗(Tn). Since we will never be interested in the torus Tn+1,
this ambiguity poses no problems for us.) As a subtorus of Tn+1, the torus Tn

inherits a natural action on An+1, equipping An+1 with the Λn-grading for which
the coordinate function za ∈ An+1 has weight λa for a ∈ [n+ 1].

We will be interested in the Tn-equivariant matrix factorization category
MF(An+1,Wn+1)

Tn

. Note that since the superpotential Wn+1 ∈ An+1 has weight 0
for the Tn action, the shift [2] in this category is actually equivalent to the identity,
and hence Tn-equivariant matrix factorizations actually form a Z/2-dg category.

For a ∈ [n+ 1], let Oa
n ∈ MF(An+1,Wn+1)

Tn

denote the Tn-equivariant matrix
factorization

An+1

Wa
n+1 �� An+1〈λa〉

za �� An+1.

We have the following elaboration of Proposition 3.1.3.

Proposition 3.2.1. The dg category MF(An+1,Wn+1)
Tn

is generated by the collec-
tion of objects Oa

n〈λ〉 for a ∈ [n] and λ ∈ Λn. There are equivalences of Z/2-graded
k-modules

H∗(Hom(Oa
n〈λ〉,Oa

n〈μ〉)) 	 An+1/(za,W
a
n+1)λ−μ, a ∈ [n+ 1],

H∗(Hom(Oa
n〈λ〉,Ob

n〈μ〉)) 	 An+1/(za, zb)[−1]λ−μ+λa
, a �= b ∈ [n+ 1].

Proof. This is the same calculation as in Proposition 3.1.3 but restricted to the
subcomplex of Tn-equivariant maps. The extra twist by λa in the second equality
is a result of our choice to twist the degree 1 (rather than degree 0) piece when
defining the equivariant complex Oa

n. �
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We highlight also one additional piece of structure which is useful for under-
standing the equivalence proved in the next subsection.

Definition 3.2.2. We will let

fij : Oi
n[1] �� Oj

n〈λi〉

be the (closed, degree 0) map of matrix factorizations which is given by

An+1〈λi〉
−zi ��

−id

��

An+1

−W i
n+1 ��

W i,j
n+1

��

An+1〈λi〉

−id

��
An+1〈λi〉

W j
n+1 �� An+1〈λj + λi〉

zj �� An+1〈λi〉,

where we write W i,j
n+1 for Wn+1

zizj
.

The map fij is a representative for

1 ∈ An+1/(zi, zj)[−1]0 ∼= H∗(HomMF(An+1,Wn+1)T
n (Oi

n,Oj
n〈λi〉)),

and the collection of maps fij (together with their twists by λ ∈ Λ) form a set of

generating morphisms for the category MF(An+1,Wn+1)
Tn

.

Lemma 3.2.3. Let I = {i1, . . . , ik} ⊂ {1, . . . , n+1} be a nonempty subset equipped
with an ordering. By taking successive extensions of the Oij

n along the morphisms
fij ,ij+1

, we can define a twisted complex

OI
n :=

(
Oi1

n

fi1i2 �� Oi2
n 〈λi1〉

fi2i3 �� · · ·
fik−1ik�� Oik

n 〈
∑k

j=1 λij 〉
)

(where we leave implicit in our notation the homotopies witnessing the triviality of
compositions) which is independent of the choice of ordering on I, up to a shift of

Λ-grading. Moreover, if I = {1, . . . , n+ 1}, then OI
n = 0.

Proof. In order to simplify notation, we will work nonequivariantly (i.e., forgetting

the Λ-grading). Now the objects OI
n become easy to understand if we work in the

derived category of singularities Dsing(Spec(An+1/Wn+1)) instead of the matrix
factorization category. The equivalence between these two categories takes the
matrix factorization Oi

n to the structure sheaf Oi
n = An+1/(zi) of the hyperplane

{zi = 0}, and it takes the degree 1 map fij to the extension

An+1/(zj)
zi �� An+1/(zizj)

zj �� An+1/(zi).

Similarly, the map fjk : Oj
n[1] → Ok

n descends to a map O{i,j}
n [1] → Ok

n which
in the singularity category is equivalent to the extension

An+1/(zk)
zizj �� An+1/(zizjzk)

zk �� An+1/(zizj).

By iterating this process, we see that OI
n is represented in

Db
sing(Spec(An+1/Wn+1))

by An+1/(zi1 · · · zik), the structure sheaf of the union of the hyperplanes {zij = 0}.
This proves the final statement of the lemma, since if I = {1, . . . , n + 1}, then
OI

n is represented by a free rank-one module over An+1/Wn, which is zero in the
singularity category. �
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3.3. Main result. The main result of this paper will be a W̃n-equivariant equiv-
alence between the equivariant matrix factorization category MF(An+1,Wn+1)

Tn

and the combinatorial Fukaya category Qwr
n−1 constructed in the previous section.

We will establish this equivalence by describing a functor

Coh(W−1
n+1(0))

Tn Φ̄ �� Qinf
n−1

and checking that it factors through both the projection

Coh(W−1
n+1(0))

Tn �� �� Coh(W−1
n+1(0))

Tn

/Perf(W−1
n+1(0))

Tn ∼= MF(An+1,Wn+1)
Tn

and the inclusion

Qwr
n−1

� � �� Qinf
n−1,

and that the middle functor Φ in the resulting sequence of functors

Coh(W−1
n+1(0))

Tn �� �� MF(An+1,Wn+1)
Tn Φ �� Qwr

n−1
� � �� Qinf

n−1

is an equivalence of categories.
In order to define a functor with domain Coh(W−1

n+1(0)), we use the fact that the

variety W−1
n+1(0) can be obtained by gluing together copies of affine space: Let D be

the poset of proper subsets I of the set {1, . . . , n+1}, and write AI for A|I|. Then the
natural inclusion maps AI → W−1

n+1(0) and the inclusion maps AI → AJ induced
by inclusions I ⊂ J give a D-diagram of varieties, and we have an equivalence

colimD AI ∼ �� W−1
n+1(0).

This induces an equivalence

colimD Coh(AI)T
n ∼ �� Coh(W−1

n+1(0))
Tn

,

so that the functor Φ̄ will be an object of

Fun(colimD Coh(AI)T
n

, Qinf
n−1)

˜Wn = lim
D

Fun(Coh(AI)T
n

, Qinf
n−1)

˜Wn .

A W̃n-equivariant functor from Coh(AI)T
n

is just a choice of object OI with com-
muting maps xi : OI〈−λi〉 → OI for each i ∈ I. Since the limit diagram

D � I �→ Fun(Coh(AI)T
n

, Qinf
n−1)

˜Wn

is strict, objects of this limit can be defined “by hand” without any higher coherence

data: such an object is a choice of a W̃n-equivariant functor Coh(AI)T
n → Qinf

n−1

for each I, plus coherent equivalences

OI\{i} ∼= (OI〈−λi〉
xi �� OI).

According to the above analysis, we can define a functor Φ̄ as follows: fix once
and for all a permutohedron P in Vn. Then we define Φ̄ by declaring OI = BP,I

and the maps xi to be the maps from Lemma 2.5.14.

Lemma 3.3.1. These choices satisfy the necessary relations to define a functor

Coh(W−1(0))T
n ∼= colimD Coh(AI)T

n Φ̄ �� Qinf
n−1.

Proof. This is exactly the content of Lemma 2.5.14. �
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Note that this means in particular that for I = {1, . . . , n+1}\{i}, the structure
sheaf OAI is mapped by Φ̄ to the skyscraper δFi,P , where Fi is the facet separating
P from P + λi.

Theorem 3.3.2. The functor Φ̄ can be factored as a composition

Coh(W−1
n+1(0))

Tn �� MF(An+1,Wn+1)
Tn Φ �� Qwr

n−1
�� Qinf

n−1,

where the left-hand map is the projection, the right-hand map is the inclusion, and

the middle map Φ is an equivalence of categories equivariant for the W̃n action.

Proof. To see that Φ̄ factors through the projection

Coh(W−1
n+1(0))

Tn �� Coh(W−1
n+1(0))

Tn

/Perf(W−1
n+1(0))

Tn ∼= MF(An+1,Wn+1)
Tn

,

we need only check that the structure sheafOW−1
n+1(0)

is sent to 0 by Φ̄. The structure

sheaf OW−1
n+1(0)

of the colimit colimAI is presented as the limit of the structure

sheaves iI∗OAI (where iI is the inclusion of AI into colimAI). The image of this
object under Φ̄ is the limit of the rank-one branes BP,I , which is zero, as required.

Hence Φ̄ does indeed induce a map MF(An+1,Wn+1)
Tn → Qinf

n−1. Moreover,
by construction this map sends the generators Oa

n to the skyscrapers δFi,P , which
generate Qwr

n−1, and so we see that Φ̄ factors through a map

Φ : MF(An+1,Wn+1)
Tn �� Qwr

n−1.

To show that this functor Φ is an equivalence, it suffices to check that each of
the generating morphisms

Oi
n[1]

fij �� Oj
n〈λi〉

for the category MF(An+1,Wn+1)
Tn

is sent by Φ to the unique nonzero morphism

δFi,P [1] �� δFj ,P 〈λi〉,

which we will denote by gij . This follows from the fact that a representative for

fij in the colimit presentation of Coh(W−1
n−1(0))

Tn

is the map presenting Oj
n as the

cone on the map

lim(OA{i}c �� OA{i,j}c OA{j}c )[1]�� �� OA{i}c [1],

so that Φ(fij) is the map presenting δFj ,P as the cone on

lim(BP,{i}c �� BP,{i,j}c BP,{j}c)[1]�� �� BP,{i}c [1] .

But this is a presentation of the map gij , as desired. We conclude that Φ is a

W̃n-equivariant equivalence of categories. �

4. Symplectic geometry

So far in this paper we have described a category Qwr
n−1 and shown that it is

equivalent to Coh(An+1,Wn+1)
Tn

. However, we have not yet explained why the

category Qwr
n−1 is the A-model associated to the Λn-cover P̃n−1 of the pair of pants.

In this section, we will recall our perspective on the A-model of a Weinstein manifold
as a category of wrapped microlocal sheaves on a Lagrangian skeleton, and, using
the skeleton for the pair of pants described in [32], we will show that our category
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Qwr
n−1 is the A-model category associated to P̃n−1 in this formalism. This establishes

the main equivalence of our paper as an instance of homological mirror symmetry.

4.1. Microlocal A-model. We recall here some properties of microlocal sheaf
categories. We refer to [21] for definitions and a full exposition of the theory
of microlocal sheaves and to [32] for a brief review of the theory along with the
definition of the wrapped microlocal sheaf categories.

4.1.1. Setup. Let Z be a real-analytic manifold. We will denote by Sh♦(Z) the dg
category of all complexes of sheaves of k-vector spaces on Z for which there exists a
Whitney stratification S = {Zα}α∈A of Z such that for each stratum Zα ⊂ Z, the
total cohomology sheaf of the restriction F|Zα

is locally constant. We will denote

by Sh(Z) the full subcategory of Sh♦(Z) on the sheaves whose cohomology sheaves
on each stratum are finite rank.

We would like to consider the subcategories of Sh♦(Z) defined by singular sup-
port conditions, which we recall now. Fix a point (z, ξ) ∈ T ∗Z. Let B ⊂ Z be
an open ball around z ∈ Z, and let f : B → R be a smooth function such that
f(z) = 0 and df |z = ξ. We will refer to f as a compatible test function.

Then the vanishing cycles functor φf associated to the function f is defined by

φf : Sh♦(Z) �� Modk,

φf (F) = Γ{f≥0}(B,F|B) 	 Cone(Γ(B,F|B) → Γ({f < 0},F|{f<0}))[−1],

where we take B ⊂ Z sufficiently small. In other words, we take sections of F over
the ball B supported where f ≥ 0 or equivalently vanishing where f < 0.

To any object F ∈ Sh♦(Z), we can associate its singular support

ss(F) ⊂ T ∗Z

to be the smallest closed subset such that φf (F) 	 0, for any (z, ξ) ∈ T ∗Z \ ss(F),
and any compatible test function f . The singular support ss(F) is a closed conic
Lagrangian subvariety of T ∗Z.

For a conic Lagrangian subvariety Λ ⊂ T ∗Z, we write Sh♦
Λ (Z) ⊂ Sh♦(Z) (re-

spectively ShΛ(Z) ⊂ Sh(Z)) for the full dg subcategory of objects F ∈ Sh♦(Z)
(respectively F ∈ Sh(Z)) with singular support satisfying ss(F) ⊂ Λ.

4.1.2. Microlocal sheaf categories. Now we can recall the definition of the microlocal
sheaf and wrapped microlocal sheaf categories associated to a conic Lagrangian.

Let Λ ⊂ T ∗Z be a closed conic Lagrangian subvariety. To Λ we can associate
a conic sheaf of dg categories μSh♦

Λ on T ∗Z which is supported on Λ. Its global

sections μSh♦(T ∗Z) form the category of large microlocal sheaves along Λ.

Since μSh♦
Λ is a sheaf, its definition can be stated locally. Let (z, ξ) ∈ T ∗Z, and

let Ω be a small conic open neighborhood of (z, ξ). We will write B = π(Ω) for the
projection of Ω to a small neighborhood of z in Z.

If ξ = 0 so that Ω = T ∗B, then we have a natural equivalence

Sh♦
Λ (B)

∼ �� μSh♦
Λ (Ω)

of the category of large microlocal sheaves along Λ ∩ Ω with the category of large
constructible sheaves on B with singular support in Λ.
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If ξ �= 0 so that Ω∩Z = ∅, then the category of large microlocal sheaves on Λ∩Ω
is naturally equivalent to a dg quotient category,

Sh♦
Λ (B,Ω)/K♦(B,Ω)

∼ �� μSh♦
Λ (Ω),

where Sh♦
Λ (B,Ω) ⊂ Sh♦(B) is the full dg subcategory of objects F ∈ Sh♦(B) with

singular support satisfying ss(F) ∩ Ω ⊂ Λ and K♦(B,Ω) ⊂ Sh♦
Λ (B,Ω) denotes

the full dg subcategory of objects F ∈ Sh♦(B) with singular support satisfying
ss(F) ∩ Ω = ∅.

The main fact we will need about the calculation of these microlocal sheaf cat-
egories is the calculation, done in [28], that the category of microlocal sheaves on
an arboreal singularity of type An is equivalent to the category of modules over the
An quiver.

Now we recall from [32] the category of wrapped microlocal sheaves.

Definition 4.1.3. The category of wrapped microlocal sheaves along Λ ∩ Ω is the
full dg subcategory

μShwr
Λ (Ω) ⊂ μSh♦

Λ (Ω)

of compact objects inside the category μSh♦
Λ (Ω) of big microlocal sheaves.

In that paper was proved the following fact.

Proposition 4.1.4 ([32, Proposition 3.16]). The categories μShwr
Λ (Ω) assemble

into a cosheaf of categories on Λ.

We will refer to the global sections of this cosheaf as the category of wrapped
microlocal sheaves along Λ.

Remark 4.1.5. The cosheaf of wrapped microlocal sheaf categories as defined above
is a dg rather than a Z/2-dg category; i.e., it possesses a natural Z-grading, equiv-
alent to the canonical grading on the Fukaya category of a cotangent bundle. How-
ever, later on, we will be interested in gluing together different cotangent bundles,
where these gradings will no longer agree (unless we make some additional choices).
Thus, we will forget the Z-grading on μShwr

Λ and for the rest of this paper will work
instead with a Z/2-graded version, which we denote by (μShwr

Λ )Z/2.

4.1.6. Skeleta and quantization categories. Now we are almost ready to discuss the
relation of this paper to Fukaya categories. Recall first the definition of a Weinstein
manifold.

Definition 4.1.7. A Weinstein manifold (W,ω,Z, h) is a symplectic manifold
(W,ω) along with a vector field Z satisfying the Liouville condition LZω = ω
and a Morse function h : W → R for which the Liouville field Z is gradient-like.

We will write λ for the Liouville 1-form (corresponding to Z under the equiv-
alence given by ω), and we will often refer to the Weinstein manifold (W,ω,Z, h)
by W when the other data are understood. The basic references for the theory
of Weinstein manifolds are [5, 8], where details and elaborations of the material
described here can be found.

To a Weinstein manifold is associated a canonical skeleton L, given as the union
of stable manifolds for flow of the Liouville field Z. In other words, if we denote by
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φt the time t flow of Z, then the skeleton LW (or just L if W is understood) of W
is defined by

LW = {x ∈ W | limt→∞ φt(x) ∈ Crit(h)}.
The Liouville flow gives a retraction of W onto L.

Weinstein manifolds are often understood by gluing together Weinstein pairs. A
Weinstein pair is the data of a Weinstein manifold W 2n along with a Weinstein
manifold Σ2n−2 embedded in the ideal contact boundary of W , such that the Li-
ouville form on Σ is obtained by restriction of the contact form from ∂W. We refer
for details to [8] (or to [15], where these are called sectors). There is a notion of
skeleton for a Weinstein pair (W,Σ) defined by

L(W,Σ) := {x ∈ W | limt→∞ φt(x) ∈ Crit(h) ∪ Σ}.

In other words, the skeleton of a Weinstein pair (W,Σ) is the union of LW with the
cone (under the Liouville flow) for the skeleton of Σ.

The cosheaf of Z/2-dg categories (μShwr
Λ )Z/2 defined in the previous section is

expected to be of use in computing the wrapped Fukaya category Fukwr(W ) of a
Weinstein manifold W , defined in the standard way through counts of holomorphic
disks. We state this as the following conjecture (an elaboration of the original
conjecture of Kontsevich from [24]).

Conjecture 4.1.8. Let W be a Weinstein manifold (or Weinstein pair) with skele-
ton L.

(1) There is a cosheaf of Z/2-dg categories, which we denote by μshwr, on the
space L such that μshwr(L) is equivalent to the wrapped Fukaya category
Fukwr(W ). (If W is a Weinstein pair, this is the partially wrapped category,
with stops determined by Σ.)

(2) If W ∼= T ∗X (with standard cotangent Liouville structure but possibly also
with Weinstein pair structure) and we write Λ for the skeleton of T ∗X,
then on the space Λ ∼= L there is an equivalence of cosheaves μshwr ∼=
(μShwr

Λ )Z/2.

Remarks 4.1.9.

(1) That the Fukaya category possesses the appropriate covariance properties
for inclusions of Weinstein pairs is proved in [15]; a full proof of descent,
which would imply part (1) of the conjecture, is expected to appear in a
forthcoming sequel to that work.

(2) Since the first appearance of this article, part (2) of this conjecture has
been proved in [16].

Part (2) tells us how to construct the conjectural cosheaf: for each point p in
the skeleton L of W , take some neighborhood p ∈ U ⊂ W and an equivalence
between (U,L ∩ U) ∼= (T ∗X,LX), where T ∗X is some cotangent bundle equipped
with a Weinstein pair structure with associated skeleton LX ; then define μshwr|U
to be the cosheaf (μShwr

LX
)Z/2, and check that the resulting cosheaf is independent

of choices. A detailed construction of this cosheaf, through a procedure slightly
different to the one described here, can be found in [37].

In the case of interest to us, the calculation of the cosheaf will be especially
easy, since all the singularities which appear in the skeleton we describe for the
pair of pants will be arboreal singularities of type Am, for some m, in the sense
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of [28]. The appropriate microlocal sheaf calculation in this case is already known,
and the independence of the above construction on choices follows from our earlier
discussion of the construction from [31] of the functor Q.

4.2. The permutohedron skeleton. In this section, we will show that the quo-
tient of the honeycomb Hn−1 by translations in Λn actually appears as a skeleton
for the (n − 1)-dimensional pair of pants Pn−1 or equivalently that the boundary
of the tiling of Rn by Pn+1 is a skeleton for the universal abelian cover of the pair
of pants.

Recall that the standard (n−1)-dimensional pair of pants is the complex variety

Pn−1 = {z1 + · · ·+ zn + 1 = 0} ⊂ (C×)n.

Define the variety Yn−1 by

Yn−1 := {z1 + · · ·+ zn + 1
z1···zn = 0} ⊂ (C×)n .

It has a free action of the group Z/(n+1), generated by (z1, . . . , zn) �→(ζz1, . . . , ζzn),
where ζ is a primitive (n+ 1)st root of unity whose quotient is the pair of pants.

The reason we begin by studying the (n+ 1)-fold cover Yn−1 of Pn−1 instead of
the pair of pants itself is that a procedure for constructing a permutohedron skeleton
of the former variety has already been described (though not in those terms) in the
paper [11], so working with Yn−1 allows us to appeal to their calculation directly.

The trick from [11] involves describing the spaces Yn−1 inductively: the space
Yn admits a description as the total space of a Lefschetz fibration with fiber Yn−1.
As a consequence, we will see that a skeleton for Yn can be obtained by attaching
n+ 1 handles to a skeleton for Yn−1.

This Lefschetz fibration is the map

Yn
pn �� C×, (z1, . . . , zn+1) �→ zn+1.

It has n+2 critical points {(ζk, . . . , ζk,−(n+1)ζk)}k=0,...,n+1, where ζk are (n+2)nd
roots of −1

n+1 and hence n+1 critical values {−(n+1)ζk}k=0,...,n+1. This Lefschetz
fibration gives us a very convenient presentation of the Liouville structure on the
total space Yn.

Theorem 4.2.1 ([11, Theorem 1.5]). Let LYn
denote the skeleton of Yn. The re-

striction to LYn
of the argument projection Arg : (C×)n+1 → Tn+1 to the (n+ 1)-

torus is a finite map, and its image Arg(LYn
) divides Tn+1 into n + 2 (n + 1)-

permutohedra Pn+1. Moreover, the monodromy of the fibration pn cylically per-
mutes these permutohedra.

Proof. We will indicate here only the modifications to the argument from [11] which
are necessary in order to understand LYn

as a Weinstein skeleton; the remainder of
the calculations can be found there.

The proof is by induction. The base case n = 1 is clear, so assume the theorem
for Yn−1.

We can use the Lefschetz fibration pn to construct a skeleton for Yn as follows:
first, let U be a neighborhood of S1 ⊂ C×

zn
which does not contain any critical

values of pn. Then p−1
n (U) has a skeleton L′ which is given by the mapping torus

of the monodromy transformation on a skeleton of the general fiber. From our
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induction hypothesis, we can see that this skeleton divides the (n + 1)-torus into
an oblique cylinder over the n-permutohedron.

So far we have described a Liouville structure and skeleton for p−1
n (U); a Liouville

structure for the total space Yn = p−1
n (C×) comes from extending this Liouville

structure over the n + 2 handles attached at the critical points of pn. This results
in a skeleton LYn

for Yn obtained by attaching n+ 2 disks to L′.
The locations of the vanishing cycles along which these disks are glued and the

resulting permutohedra can be found in [11]. �

Corollary 4.2.2. The pair of pants Pn has a skeleton Ln whose image under Arg
divides the torus Tn+1 into a single permutohedron. Equivalently, the universal

abelian cover of Pn has a skeleton L̃n whose image under Arg is the honeycomb
lattice Hn.

Proof. The pair of pants Pn has a Lefschetz fibration p̄n : Pn → C×/Z/(n+2) ∼= C×

obtained from the Lefschetz fibration pn by a Z/(n + 2) quotient. (In standard

coordinates on Pn, this is the map (z1, . . . , zn+1) �→
zn+1
n+1

z1···zn .)
Hence the skeleton Ln can be obtained as the quotient of LYn

by the monodromy
transformation, which cyclically exchanges the permutohedra into which Tn+1 is
divided; this gives us the desired description of Ln. Moreover, by a diffeomorphism
of Tn+1 (and hence by a symplectomorphism of T ∗Tn+1 ∼= (C×)n+1) we can assume

this permutohedron is in standard position on Tn+1, so that Arg(L̃n) is equal
to Hn. �

Finally, we want to show that our combinatorial cosheaf from Section 2 is the
same as the microlocal cosheaf μshwr described in Section 4.1. This latter cosheaf,

for the cover P̃n−1 of the pair of pants, is a cosheaf on the space Ln−1, but by
pushing forward along Arg we can equivalently consider this as a cosheaf on Hn−1.

Proposition 4.2.3. There is an equivalence μshwr ∼= Qwr
n−1 of cosheaves of dg

categories on the space Hn−1.

Proof. Let p be a vertex in Hn−1. We know that near p, the space Hn−1 (or equiva-
lently the skeleton Ln−1) is stratified homeomorphic to the An arboreal singularity.
We need to show that at p, the skeleton Ln−1 actually has the correct microlo-
cal sheaf category (An -Perfk)Z/2, with the appropriate (co)restriction maps. We
can see this from the inductive description of the skeleton Ln−1 : this skeleton
was obtained from the mapping torus Mm of a monodromy action on Ln−2 by
attaching a disk along a sphere transverse to the singularities of Mm. Hence, by
induction we see that there exists a neighborhood p ∈ U ⊂ Pn−1 and an equivalence
(U,Ln−1 ∩ U) ∼= (T ∗Rn−1,L), where L is the union of the zero section with the
cone on Legendrian lifts of the n − 1 hyperplanes, taking p to 0. This establishes

the microlocal sheaf calculation, and by W̃n−1 symmetry this is sufficient to prove
an equivalence of cosheaves. �

Corollary 4.2.4 (Homological mirror symmetry for the pair of pants). There is an

equivalence MF(An+1,Wn+1)
Tn ∼= μshwr(L̃n−1) between a category of equivariant

matrix factorizations and a category of microlocal sheaves on the universal abelian
cover of the pair of pants.
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