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Blue mussels (Mytilus edulis) are important keystone species that have been declining
in the Gulf of Maine. This could be attributed to a variety of complex factors such as
indirect effects due to invasion by epibionts, which remains unexplored mathematically.
Based on classical optimal foraging theory (OFT) and anti-fouling defense mechanisms
of mussels, we derive an ODE model for crab–mussel interactions in the presence of
an invasive epibiont, Didemnum vexillum. The dynamical analysis leads to results on
stability, global boundedness and bifurcations of the model. Next, via optimal control
methods, we predict various ecological outcomes. Our results have key implications for
preserving mussel populations in the advent of invasion by non-native epibionts. In
particular, they help us understand the changing popluation dynamics of local predator–
prey communities, due to indirect effects that epibionts confer.
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1. Introduction

1.1. Background

Blue mussels (Mytilus edulis) are ecologically and economically important
species.1–3 They play several roles in marine ecosystems: as important prey for
many species, such as crabs, shorebirds, sea stars, and gastropod molluscs3–5; as
nutrient recyclers and pollution indicators6; and as a keystone species, serving as
habitat for benthic infaunal organisms.3,7 However, M. edulis has declined in the
Gulf of Maine by over 60% since the 1970s.8 Mussel post-larval settlement, con-
sistent with this observation, has also declined.9 The reasons for this decline are
unclear, but are almost certainly complex. Thus, a clearer understanding of the
ecological factors that influence mussel populations is needed.

A primary cause of a species population decline is predation. Invasive preda-
tors, like the green crab (Carcinus maenas) and the Asian shore crab (Hemigrapsus
sanguineus), readily prey on the blue mussel.10–12 However, mussel size limits crab
predation, with crabs consuming mussel prey below 70mm in shell length.13 Fur-
thermore, mussels have also adapted to crab predation by thickening their shells
in response to novel predator presence, in extremely short time periods.12 Further-
more, substrate complexity reduces predation on mussels as increasingly complex
habitats provide refuge from crab predation.15 Thus, while predation has put con-
siderable pressure on mussel populations, rapidly evolving defense mechanisms,
escape from predation via growth, and physical refuges have counteracted predator
impacts.

Though mussels do have the aforementioned protections against predation, they
are still in decline. Curiously, in the 1970s, an introduced ascidian species Didem-
num vexillum, arrived in the Gulf of Maine.16 D. vexillum is a colonial ascidian
that is dominant as a competitor for substratum, prolifically laying down mat-like
structures on any hard substrate.17 Consequently, it acts as an epibiont (fouling
organism) on M. edulis.9,10 Epibionts impact predator–prey communities indirectly
by affecting predation rates on basibionts. D. vexillum in particular has chemi-
cal anti-predatory defenses. If a crab predator attempts to break off pieces of the
D. vexillum colony to reach the mussel, D. vexillum releases secondary metabolites
and sulfuric acid that deters the crab.17 This mechanism by which the epibiont pro-
tects the mussel from crab predation is known as associational resistance.18 While it
appears to protect mussels from crab predation, D. vexillum also negatively affects
mussel fecundity and fitness, resulting in fewer progeny.9 Thus, D. vexillum has
both a positive and negative impact on mussel populations.

Given this complex relationship, we ask

• Could the introduced epibiont D. vexillum change the predator–prey dynamics
in an established local crab–mussel community?

• Could the net effect of positive and negative impacts from D. vexillum epibiosis,
lead to mussel population decline?
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Our analysis is (to the best of our knowledge) the first mathematical inves-
tigation of predator–prey dynamics under pressure of fouling from epibionts in a
crab–mussel community. Herein,

• we derive a predator–prey model for crab–mussel interactions, given that clearly
a certain size of mussel is preferred or “optimal” for the crab,

• we consider the effects of an invasive epibiont by meshing Optimal Foraging
Theory (OFT) and anti-fouling defense of the mussels,

• we model the effects of associational resistance and reduced fecundity, due to the
epibiont, and

• we next investigate dynamical aspects of the model, and use optimal control
theory to predict various outcomes.

In adult mussels, the protective periostracum, which inhibits epibiont settlement
when present,19 tends to wear off due to age, decay and abrasion. Consequently, the
periostracum is more prevalent on newer regions of the shell, while absent on older
regions.20 This means juvenile mussels are less likely to be overgrown with epibionts
than are adult mussels. When crabs forage for mussels, they typically prefer a
medium-sized adult.13,14 But this preferred size tends to get easily overgrown by
epibionts. Epibionts can alter the prey size choice of predators, including crabs,
in experiments,17,21–23 though this has not yet been tested with D. vexillum. We
hypothesize in this paper that D. vexillum can change the feeding preference of
crabs away from mid-size adult mussels (that are easily overgrown and therefore less
likely to be eaten) towards juvenile mussels (which are less likely to be overgrown
and so are easier targets), even though the latter are not the crab’s preferred food
source. To elucidate our approach, we survey some classical results from OFT.

1.2. Optimal foraging theory

OFT predicts how animals behave when they forage for food. It is well known
that predators optimize feeding strategies to maximize energy intake.24 Essentially,
predators try to gain the most energy from their prey by expending the least amount
of energy in the hunting process. For a crab foraging for mussels, this amounts to
maximizing

e

h
=

energy gained from mussel intake
handling time of mussel

. (1.1)

This translates to a medium-sized adult mussel as the optimally preferred prey
by adult crabs. While large mussels have a potentially high source of energy, they
take a much longer time to open and consume than smaller mussels. Small mussels,
conversely, take a short time to consume, but they offer very little reward. Even so,
juvenile mussels are readily consumed by many species, including green crabs and
dogwhelk.10

We refer the reader to the mathematical treatment by Krivan,25,26 who
describes, via a three species ODE model, in which a predator hunts (optimally)
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for two prey species u and v, where u is favored to v. The term u1 denotes the
attack rate with which prey u is hunted, and u2 denotes the attack rate with which
prey v is hunted. The analysis presented in Ref. 26 draws from classic results in
OFT and shows that, in order to maximize e

h , the optimal pair of (u1, u2) is given
by u1 = 1, u2 = 0 if u > u∗ or u1 = 1, u2 = 1 if u < u∗, or u1 = 1, 0 < u2 < 1 if
u = u∗, where u∗ is the critical density for switching.

1.2.1. OFT in the presence of epibionts

Predators are known to switch prey if preferred prey drop below a threshold den-
sity.27 For example, fish species have been shown to switch habitats if foraging
in one habitat becomes less fruitful than in another habitat.28 Theoretical studies
also support this.25 In our context, if e1

h1
> e2

h2
, the adult mussels are preferred to

juveniles as the optimal prey for crabs. If e1
h1
< e2

h2
, juveniles mussels are optimal to

hunt.

Conjecture 1. An increase in epibiont density will cause crabs to switch from
adult mussels to juveniles even though the juvenile is less preferred and the adult
mussel density remains high.

Essentially, if one considers a predator–prey model with these species (crab–
mussel-epibiont), there are two limiting cases

• There is no epibiont (e = 0), in this setting e1
h1
> e2

h2
, so u1 = 1, u2 = 0.

• The epibiont achieves its carrying capacity K, that is, e = K, in this setting,
high epibiont density causes the handling time h1 ≫ 1, thus e1

h1
< e2

h2
, and so the

crab switches to juveniles, and now u1 = 0, u2 = 1.

To this end, we first split the mussel class into adults and juveniles (we assume
the juveniles have the protective periostracum whereas the adults do not). A crab
species preying on two separate classes of adult and juveniles mussels (with adults
being the preferred food type), places this in a classic one predator–two prey set-
ting.25 Based on the result we got in the experiment, shown in Fig. 1, our hypotheses
for OFT are as follows:

(1) In the absence of epibionts, crab–mussel interactions follow classical OFT. That
is, adult mussels will be attacked with rate 1, whilst the less preferred juveniles
will not be attacked (u1 = 1, u2 = 0). We claim this is the only optimal strategy
for the crab, as long as d1 > e2

h2
, where d1 is the death rate of prey type 1.

(2) There is a change to the classical case, under pressure of epibiosis from D.
vexillum.

(3) If a crab were to be presented with a preferred adult mussel overgrown with
D. vexillum, it would switch to a prey of a less optimal size, even if the overall
adult mussel density was high (assuming their was uniform overgrowing of all
adult mussels).
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Fig. 1. Classic crab preference (without epibiont) shown in left panel. Crabs were presented
with clean and overgrown mussels,9,10 and the handling times of the overgrown ones were up to
6 times greater than the clean ones (seen in center panel). These experimental results9,10 lead us
to conjecture that crabs will switch to the smaller uncovered juvenile mussels under pressure of
epibiosis, shown in right panel.

(4) The switch would be to juvenile mussels, which we know are almost never
overgrown because of their intact protective peristrocum. That is, in the (e =
K) case, we have (u1 = 0, u2 = 1). We claim this is the only optimal strategy
for the crab, as long as d1 > e1

h1
.

(5) This will in turn directly affect the feedback loop to the adult mussel population,
given that juveniles are transitioning to adults.

The above is rigorously shown in Appendix (Sec. A.1).

2. Mathematical Formulation

Our goal is to derive a mathematical model that best captures our hypotheses. To
this end, we make the following assumptions:

(1) An epibiont has invaded into a local crab–mussel community, and is growing
logistically. It will eventually reach a critical carrying capacity.

(2) We model the pressure from epibiosis, in terms of the attack rates u1, u2. That
is we assume these are dependent on the epibiont density. As a simple first
approach, we assume

u1(e) =
K − e
K

, u2(e) =
e

K
.

Thus, without any epibiont presence (e = 0), the adult mussel is the only prey
eaten and the juvenile is not eaten at all because there is not enough energy
gain for the effort involved, so u1 = 1, u2 = 0, in line with classical theory.26

However, this starts to change as the epibiont starts to overgrow the mussels.
When the epibiont is at carrying capacity, e = K, we assume the adult mussels
are completely overgrown, and thus is not consumed at all. The crab switches
completely to juveniles, so that u1 = 0 and u2 = 1.

(3) We model the decreasing fecundity in mussels due to epibiont cover by con-
sidering a growth rate a = a(e). We consider a = a(e) = a(K− e

2
K ). Hence, as

epibionts get to carrying capacity e = K, this growth rate is cut in half and
becomes a/2.
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(4) We assume the intraspecies competition is present only in adult mussels, and
not juveniles.29

(5) We assume the search rates λ1 and λ2 to be the same, and normalized to 1, so
λ1 = λ2 = 1.

Based on the above assumptions, we have the following system of differential
equations:

dC

dt
= −d1C + e1u1(e)

MA

1 + h1u1(e)MA + h2u2(e)MJ
C

+ e2u2(e)
MJ

1 + h1u1(e)MA + h2u2(e)MJ
C, (2.1)

dMA

dt
= bMJ − δ1M

2
A − u1(e)

MA

1 + h1u1(e)MA + h2u2(e)MJ
C, (2.2)

dMJ

dt
= a(e)MA − bMJ − u2(e)

MJ

1 + h1u1(e)MA + h2u2(e)MJ
C, (2.3)

de

dt
= b1e

!
1− e

K

"
, (2.4)

where

u1(e) =
K − e
K

, u2(e) =
e

K
, a(e) = a

#
K − e

2

K

$
, (2.5)

with positive initial conditions C(0) = C0,MA(0) =MA0,MJ(0) =MJ0, e(0) = e0.
These responses are for the range 0 ≤ e ≤ K.

Here, C,MA and MJ are the densities of crabs, adult mussels and juvenile
mussels population at a given time t, respectively. The population density of D.
vexillum is e, while d1 is the mortality rate of the crab, e1 and e2 are the energy gain
to the crab from preying on the adult mussel and juvenile mussel, respectively, h1
and h2 are the handling time of the adult mussel and juvenile mussel, respectively,
b is the rate at which juveniles leave the juvenile class and become adults, a is
the rate at which juveniles are produced, δ1 measures the intraspecific competition
among adult mussels, b1 is the intrinsic rate of growth of the epibiont population,
and K is its carrying capacity.

3. Dynamical Analysis

3.1. Boundedness

We note from Eqs. (2.2) and (2.3), via positivity of solutions, standard comparison
yields

dMA

dt
≤ bMJ − δ1M

2
A, (3.1)

dMJ

dt
≤ aMA − bMJ . (3.2)
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Integrating (3.2) in the time interval [0, t] yields

MJ(t) ≤ ae− bt

% t

0
ebsMA(s)ds+ e− btMJ(0) ≤ a

% t

0
MA(s)ds+MJ(0). (3.3)

Now, similarly we can integrate (3.1) in the time interval [0, t] to yield

C0δ1

% t

0
MA(s)ds ≤ δ1

% t

0
(MA(s))2ds ≤ b

% t

0
MJ(s)ds+MA(0), (3.4)

where C0 is a constant. This follows via the embedding of L2[0, t] ↪→ L1[0, t]. Next,
we integrate (3.2) in the time interval [0, t] to yield

b

% t

0
MJ(s)ds ≤ a

% t

0
MA(s)ds+MJ(0). (3.5)

Using the estimate via (3.4) in (3.3) yields

MJ(t) ≤ a
#
b

cδ1

% t

0
MJ(s)ds+

1
cδ1
MA(0)

$
+MJ(0), (3.6)

renaming parameters, we obtain

MJ(t) ≤ C1
% t

0
MJ(s)ds+ C2. (3.7)

Thus, the integral version of Gronwall’s lemma,30 yields

MJ(t) ≤ C2(1 + C1teC1 t). (3.8)

Now, since we have lower estimates onMA via (3.3) and (3.5), this implies there
exist constants C3, C4 s.t.

MA(t) ≥C3(teC4 t). (3.9)

For if not, we can assume MA(t) ≤ C3(teC4 t), choose appropriate C3, C4, and
insert this estimate into (3.3), to derive a contradiction to the estimate for MJ .

Now note, the equation for e is bounded trivially by K. Addition of (2.1)–(2.3),
and given the fact that e1 < 1 and e2 < 1, yields:

d(C +MA +MJ)
dt

≤ −d1C + aMA − δ1(MA)2. (3.10)

Integrating the above equation in time, and using positivity of C yields

C +MA +MJ + δ1

% t

0
(MA(s))2ds ≤ a

% t

0
MAds+ C(0) +MA(0) +MJ(0).

(3.11)

We now use the upper and lower estimates on MA via (3.9) and (3.4), yields

C +MA +MJ + (C3)2
% t

0
s2eC42sds ≤ a

% t

0
C2(1 + C1seC1s)ds

+C(0) +MA(0) +MJ(0). (3.12)

One sees that by choosing [0, t] large enough, one can easily dominate a
& t
0 C2(1 +

C1teC1 t)ds by (C3)2
& t
0 s

2eC4 sds, no matter what the constants C1, C2, C3, C4 are.
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This yields the ultimate dissipativity of the system. Essentially, this says, that for all
time beyond some transition time, the state variables C,MA and MJ are bounded,
via a bound that depends only on the initial data, and parameters in the problem.

Thus, we can state the following theorem.

Theorem 3.1. Consider the crab–mussel system (2.1)–(2.4). The solutions (C,
MA,MJ , e), satisfy the following uniform bounds for all times t > T ∗, where T ∗

depends on the initial conditions and parameters in the problem.

||C||∞ ≤ K1, ||MA||∞ ≤ K1, ||MJ ||∞ ≤ K1, ||e||∞ ≤ K1, (3.13)

for any initial conditions (C(0),MA(0),MJ(0), e(0)) ∈ L∞.

Remark 1. Note, K1 will depend on the initial conditions and various parameters
in the problem. However, our focus is not to quantify how the bound K1 depends
on the various parameters in the problem, and/or initial conditions. Also note, our
proof of ultimate dissipativity relies on choosing a large enough time interval [0, t].
However, for any intermediate finite time t∗ ∈ [0, t], MA and MJ remain bounded
via the estimates in (3.8) and (3.4). Thus, they can’t blow-up in finite time. Now,
C remains bounded for any intermediate time, easily seen by integrating (2.1), and
using the earlier mentioned estimates for MA,MJ .

3.2. Equilibrium and local stability with no epibiont

We now consider the existence and stability of the equilibrium for the system when
there is no epibiont (e = 0). The system is simplified as

dC

dt
= −d1C + e1

MA

1 + h1MA
C, (3.14)

dMA

dt
= bMJ − δ1M

2
A −

MA

1 + h1MA
C, (3.15)

dMJ

dt
= aMA − bMJ . (3.16)

Two equilibria, (0, 0, 0) and (0, a
δ1
, a2

δ1 b
), on the boundary and one interior equilib-

rium (C∗,M∗
A,M

∗
J ). It is easy to see (0, 0, 0) is unstable. And (0, a

δ1
, a2

δ1 b
) is globally

stable if 0 < e1 − d1h1 < d1 δ1
a and unstable if e1 − d1h1 > d1 δ1

a . The interior
equilibrium is given by

C∗ =
e1(a(e1 − d1h1)− d1δ1)

(e1 − d1h1)2
, (3.17)

M∗
A =

d1
e1 − d1h1

, (3.18)

M∗
J =

ad1
b(e1 − d1h1)

. (3.19)
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Note that C∗ > 0,M∗
A > 0 andM∗

J > 0 if

e1 − d1h1 >
d1δ1
a
. (3.20)

We next state the following theorem.

Theorem 3.2. Consider the crab–mussel system (2.1)–(2.4), without the pres-
ence of an epibiont, that is when e = 0. There exists an interior steady state
(C∗,M∗

A,M
∗
J ), which is locally asymptotically stable under the following criteria:

d1δ1
a
< e1 − d1h1 <

d1δ1
a

+
d1δ1e1
ah1

, d1 >
e2
h2
. (3.21)

The proof is relegated to Appendix (Sec. A.2).

Remark 2. Note, the second condition d1 > e2
h2

is not a result of the Routh-
Hurwitz criterion, rather it follows from Lemma A.1 in Sec. A.1. We enforce it so
that the attack rates should be as predicted via classical OFT.

3.3. Equilibrium and local stability analysis with epibiont

Systems (2.1)–(2.4) have five possible equilibria. There is one in the inte-
rior of the positive octant (C∗,M∗

A,M
∗
J , e

∗), and four on the boundary,
(0, 0, 0, 0), (0, 0, 0,K), (0, a

δ1
, a2

bδ1
, 0) and (0, a

2δ1
, a2

4bδ1
,K). It is easy to check that

the equilibria with no epibiont, (0, 0, 0, 0) and (0, a
δ1
, a2

bδ1
, 0), are unstable. Fur-

thermore, (0, a
2δ1
, a2

4bδ1
,K) is stable if 0 < e2− d1h2 < 4bd1 δ1

a2 and unstable if
e2− d1h2 > 4bd1 δ1

a2 . In fact, it is common that prey exist in a stable state in the
absence of the predator. Finally, (0, 0, 0,K) is also unstable. We will focus on the
interior equilibrium.

Consider the interior equilibrium, i.e., (C∗,M∗
A,M

∗
J , e

∗). It is easy to see e∗ = K
in the equilibrium state. Then we have u1(e∗) = 0, u2(e∗) = 1, a(e∗) = a

2 . To get
(C∗,M∗

A,M
∗
J , e

∗) explicitly, it is equivalent to solve the following equations:

− d1C + e2
MJ

1 + h2MJ
C = 0, (3.22)

bMJ − δ1M
2
A = 0, (3.23)

a

2
MA − bMJ −

MJ

1 + h2MJ
C = 0, (3.24)

e = K. (3.25)

Thus, the interior equilibrium is given by

C∗ =
1
2

ae2
'

bd1
(e2 − d1h2 )δ1

d1
− e2b

e2 − d1h2
, (3.26)

M∗
A =

(
bd1

(e2 − d1h2)δ1
, (3.27)

J. 
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M∗
J =

d1
e2 − d1h2

, (3.28)

e∗ = K. (3.29)

Note that M∗
A > 0 and M∗

J > 0 if e2 − d1h2 > 0. C∗ > 0 if e2 − d1h2 > 4bd1 δ1
a2 .

Therefore, the feasibility criteria for this system are

e2 − d1h2 >
4bd1δ1
a2

. (3.30)

We next state the following theorem.

Theorem 3.3. Consider the crab–mussel system (2.1)–(2.4), there exists an inte-
rior steady state (C∗,M∗

A,M
∗
J ,K) when the epibiont reaches the equilibrium, that

is e = K. And it is locally asymptotically stable under the following criteria:

4bd1δ1
a2

< e2 − d1h2 <
16bd1δ1
a2

, d1 >
e1
h1
. (3.31)

The proof relies on the Routh–Hurwitz criterion,31 and is relegated to Appendix
Sec. A.3.

Remark 3. Note that the condition d1 > e1
h1

is not a result of the Routh–Hurwitz
criterion, rather it follows from Lemma A.1 in Appendix Sec. A.1. In a sense, we
enforce it so that the attack rates should be as predicted via classical OFT.

3.4. Global stability

We now derive some results on the global stability of the internal equilibrium when
e = 0.

Theorem 3.4. Consider the models (3.14)–(3.16). There exists an ϵ > 0, s.t. the
internal equilbrium point, (C∗,M∗

A,M
∗
J ), is globally asymptotically stable under the

following parametric restriction:

d1δ1
a
< e1 − d1h1 <

d1
ϵ
, 0 < ϵ <

a

δ1
,

1
2
< e1 < 1. (3.32)

Proof. Consider MA = MA + ϵ, under this transformation, we have the following
transformed system:

dC

dt
= −d1C + e1

MA + ϵ

1 + h1(MA + ϵ)
C, (3.33)

dMA

dt
= bMJ − δ1(MA + ϵ)2 − MA + ϵ

1 + h1(MA + ϵ)
C, (3.34)

dMJ

dt
= a(MA + ϵ)− bMJ . (3.35)

J. 
B

io
l. 

Sy
st

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

B
IR

M
IN

G
H

A
M

 o
n 

04
/0

9/
20

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



2nd Reading

April 5, 2020 16:13 WSPC/S0218-3390 129-JBS 2050006

The Effects of Invasive Epibionts on Crab–Mussel Communities 11

It is enough to show the new system (3.33)–(3.35) is globally asymptotically stable.
The equilibrium of (3.33)–(3.35) is given by

C∗ =
e1a

d1
(MA

∗ + ϵ)− e1δ1
d1

(MA
∗ + ϵ)2,

MA
∗ =

d1
e1 − d1h1

− ϵ,

M∗
J =

ad1
b(e1 − d1h1)

.

(3.36)

Note that solutions to this new system are feasible if
d1δ1
a

< e1 − d1h1 <
d1
ϵ
, 0 < ϵ <

a

δ1
. (3.37)

We define the following Lyapunov function:

V (C,M∗
A,MJ) = C +M∗

A +MJ . (3.38)

Note that V ≥ 0 because of the positivity of the solutions. Furthermore, V is
radially unbounded. Now consider

dV

dt
=
dC

dt
+
dMA

dt
+
dMJ

dt

= −d1C + (e1 − 1)
MA + ϵ

1 + h1(MA + ϵ)
C − δ1(MA + ϵ)2 + a(MA + ϵ),

< −d1C − δ1(MA + ϵ)2 + a(MA + ϵ)

= −d1C − δ1(MA)2 − 2δ1ϵMA − δ1ϵ
2 + aMA + aϵ

= −d1C − δ1

#
MA −

a

2δ1

$2
− δ1

#
ϵ− a

2δ1

$2
+
a2

2δ1
− 2δ1ϵMA

= −δ1

)#
MA −

a

2δ1

$2
+
#

ϵ− a

2δ1

$2*
+
a2

2δ1
− 2δ1ϵMA − d1C. (3.39)

We hope a2

2δ1
< δ1[(MA− a

2δ1
)2+(ϵ− a

2δ1
)2]+2δ1ϵMA +d1C. Since 2[(MA− a

2δ1
)2+

(ϵ− a
2δ1

)2]≥(MA − ϵ)2, it is enough to show

⇒ a2

δ21
< (MA − ϵ)2 + 2ϵMA +

2d1C
δ1

= (MA)2 + ϵ2 +
2d1C

δ1
. (3.40)

Since MA is bounded by a
δ1
− ϵ from the feasibility conditions, we show

⇒ a2

δ21
− ϵ2 <

#
a

δ1
− ϵ

$2
+

2d1C
δ1

, (3.41)

⇒ a

δ1
< ϵ +

d1C

ϵδ1
. (3.42)
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Since ϵ+ d1C
ϵδ1

≥2
'

d1C
δ1

, it is enough to show a
δ1
< 2
'

d1C
δ1

. Due to C∗ = e1a
d1

(MA
∗+

ϵ)− e1 δ1
d1

(MA
∗ + ϵ)2 = e1a

d1
M∗

A − e1 δ1
d1

(M∗
A)2, it is enough to show

a2

δ1
< 4d1C = 4e1aMA − 4e1δ1M2

A

= −4e1δ1
#
MA −

a

2δ1

$2
+

2e1a2

δ1
. (3.43)

Therefore, we only need to show

a2

δ1
< max

+
−4e1δ1

#
MA −

a

2δ1

$2
+

2e1a2

δ1

,
=

2e1a2

δ1
, (3.44)

and this requires we have 1
2 < e1 < 1.Then the system (3.14)–(3.16) is globally

stable if
d1δ1
a

< e1 − d1h1 <
d1
ϵ
, 0 < ϵ <

a

δ1
,

1
2
< e1 < 1. (3.45)

Figure 2 gives an example on the global stability of this model.

0 100 200 300 400 500 600 700 800 900 1000
time
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3 species predator-structured prey-without epibiont system

crab
adult mussel
juvenile mussel
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time
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crab
adult mussel
juvenile mussel

(a) (b)

Fig. 2. The above figures verify Theorem 3.4. We consider the parameters e1 = 0.9, e2 =
0.01, d1 = 0.2, b = 1, h1 = 0.2, h2 = 0.1, δ1 = 0.6, a = 0.8, ϵ = 0.2. (a) The initial condi-
tion (C0, MA0, MJ0) = (0.5, 0.5, 0.5). (b) The initial condition (C0, MA0, MJ0) = (500, 500, 500)
(zooming in time scale). They both reach a stable level (0.9312, 0.0326, 0.2394).

Remark 4. Note, although we prove global stability (under certain parametric
restrictions) for the case without epibiont (e = 0), it is easily proven using the
same approach as above for the (e = K) case by just replacing MA =MA + ϵ and
defining a new Lyapunov function as V (C,MA,MJ , e) = C +MA +MJ + e.
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4. Hopf Bifurcation

Now, we will investigate the Hopf bifurcation for the system in terms of parameter
a. In this paper, we will follow the method developed by Liu.32 First, let us consider
the system (2.1)–(2.4), without the presence of an epibiont (e = 0), that is when
e = 0. The Hopf bifurcation at a = a∗ can occur if A2(a∗), A0(a∗), and φ(a∗) =
A2(a∗)A1(a∗) − A0(a∗) are smooth functions of a in an open interval of a∗ ∈ R
such that

(1) A1(a∗) > 0, A0(a∗) > 0, and φ(a∗) = A2(a∗)A1(a∗)−A0(a∗) = 0.
(2) dφ(a)

da |a=a∗ ̸= 0.

We check the above, in Sec. A.4, to state the following theorem.

Theorem 4.1. Under the condition (3.20), there is a simple Hopf bifurcation of
the positive equilibrium point (C∗,M∗

A,M
∗
J) of model system (3.14)–(3.16) at some

critical value of parameter a∗ given by (A.41) and (A.42).
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(a) (b)

Fig. 3. Here we demonstrate the species density change with time. We see in (a), the population
of the species are stable when a = 0.235, while in (b) occurence of a Hopf bifurcation has lead to
population cycles.

5. Optimal Control

In this section, our goal is to investigate mechanisms in our crab–mussel–epibiont
system, that, if controlled, could lead to optimal levels of crab or mussel densities.
We assume that the attack rates u1 and u2 are not known a priori and enter the
system as time-dependent controls. They no longer depend on the epibiont density.
Instead, we assume that the handling time depends on the epibiont density e in the
following way:
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where

h1(e) = 1 +
e

K
, a(e) = a

#
K − e

2

K

$
. (5.1)

These responses are for the range 0 ≤ e ≤ K. Increase in epibiont density still
negatively effects mussel fecundity and the handling time for adult mussels increases
with increasing epibiont density.

This has a twofold advantage. We can visualize the system from the crab’s point
of view. That is, the crab can “optimally” control its attack rate, to reach the best
possible population density. Also we can visualize the system from the mussel’s
point of view. That is, the mussel can induce defenses or other mechanisms, that
would alter the attack rate of the crab, thus enabling the mussel population density
to reach optimum levels. Our model takes the following form:

C′ = −d1C + e1u1(t)
MA

1 + h1(e)u1(t)MA + h2u2(t)MJ
C

+ e2u2(t)
MJ

1 + h1(e)u1(t)MA + h2u2(t)MJ
C, (5.2)

M ′
A = bMJ − δ1M

2
A − u1(t)

MA

1 + h1(e)u1(t)MA + h2u2(t)MJ
C, (5.3)

M ′
J = a(e)MA − bMJ − u2(t)

MJ

1 + h1(e)u1(t)MA + h2u2(t)MJ
C, (5.4)

e′ = b1e
!
1− e

K

"
. (5.5)

We next derive optimal strategies for three objective functions, where we maxi-
mize both crab and mussel populations. To simplify the calculation, we will consider
the case when e = K, which is when the epibiont achieves carrying capacity. In this
case, our system reduces to

C′ = −d1C + e1u1(t)
MA

1 + 2u1(t)MA + h2u2(t)MJ
C

+ e2u2(t)
MJ

1 + 2u1(t)MA + h2u2(t)MJ
C, (5.6)

M ′
A = bMJ − δ1M

2
A − u1(t)

MA

1 + 2u1(t)MA + h2u2(t)MJ
C, (5.7)

M ′
J =

a

2
MA − bMJ − u2(t)

MJ

1 + 2u1(t)MA + h2u2(t)MJ
C. (5.8)

5.1. Maximizing crab denisty w.r.t. attacking rates

To maximize density of the crab, the density of juvenile mussels (thus leading to
more adult mussels, its favored food) should be maximized. Crab attack rates should

J. 
B

io
l. 

Sy
st

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

B
IR

M
IN

G
H

A
M

 o
n 

04
/0

9/
20

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



2nd Reading

April 5, 2020 16:13 WSPC/S0218-3390 129-JBS 2050006

The Effects of Invasive Epibionts on Crab–Mussel Communities 15

be miminized on the juvenile mussels, as they are less preferred by the crab. Thus,
we choose the following objective functional:

J1(u1, u2) =
% T

0

#
C +MJ −

1
2
u22

$
dt, (5.9)

s.t. (5.6)− (5.8) and C(t0) = C0, MA(t0) =MA0 , MJ(t0) =MJ0 .

and we search for the optimal controls in the set U where

U = {(u1, u2) |ui measurable, 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, t ∈ [0, T ], ∀T }. (5.10)

The goal is to seek an optimal (u∗1, u∗2) s.t.,

J1(u∗1, u
∗
2) = max

(u1 ,u2 )

% T

0

#
C +MJ −

1
2
u22

$
dt. (5.11)

We can state the following existence theorem.

Theorem 5.1. Consider the optimal control problem (5.6)–(5.8). There exists
(u∗1, u∗2) ∈ U s.t.

J1(u∗1, u
∗
2) = max

(u1 ,u2 )∈U

% T

0

#
C +MJ −

1
2
u22

$
dt. (5.12)

Proof. The compactness (closed and bounded in ODE case) of the functional J1
follows from the global boundedness of the state variables via Theorem 3.3, and the
boundedness assumption on the controls. Also the functional J1 is concave in the
argument u2. This is easily verified via standard application.33 These in conjunction
give the existence of an optimal control via application of classical one predator–two
prey theory.34

In order to derive necessary conditions on the optimal control, we use Pontrya-
gin’s maximum principle (PMP). The Hamiltonian for our problem is given by

H = C +MJ −
1
2
u22 + λ1C

′ + λ2M
′
A + λ3M

′
J . (5.13)

We use the Hamiltonian to find a differential equation of the adjoint λi, i =
1, 2, 3.

λ′1(t) = −λ1

#
−d1 +

MAe1u1 +MJe2u2
MAh1u1 +MJh2u2 + 1

$

+
λ2u1MA

MAh1u1 +MJh2u2 + 1
+

λ3u2MJ

MAh1u1 +MJh2u2 + 1
− 1,
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λ′2(t) = −λ1

+
e1u1C

MAh1u1 +MJh2u2 + 1
− (MAe1u1 +MJe2u2)Ch1u1

(MAh1u1 +MJh2u2 + 1)2

,

−λ2

#
−2 δ1MA −

u1C

MAh1u1 +MJh2u2 + 1

+
u12MACh1

(MAh1u1 +MJh2u2 + 1)2

$

−λ3

#
a

2
+

u2MJCh1u1
(MAh1u1 +MJh2u2 + 1)2

$
,

λ′3(t) = −λ1

#
e2u2C

MAh1u1 +MJh2u2 + 1
− (MAe1u1 +MJe2u2)Ch2u2

(MAh1u1 +MJh2u2 + 1)2

$

−λ2

#
b+

u1MACh2u2
(MAh1u1 +MJh2u2 + 1)2

$

−λ3

#
−b− u2C

MAh1u1 +MJh2u2 + 1
+

u22MJCh2
(MAh1u1 +MJh2u2 + 1)2

$
− 1,

(5.14)

with the transversality condition given as

λ1(T ) = λ2(T ) = λ3(T ) = 0. (5.15)

Considering the optimality conditions, the Hamiltonian function is differentiated
with respect to control variables u1 and u2 resulting in

∂H

∂u1
=λ1

#
MAe1C

MAh1u1 +MJh2u2 + 1
− (MAe1u1 +MJe2u2)CMAh1

(MAh1u1 +MJh2u2 + 1)2

$

+ λ2

#
− MAC

MAh1u1 +MJh2u2 + 1
+

u1MA
2Ch1

(MAh1u1 +MJh2u2 + 1)2

$

+ λ3
u2MJCMAh1

(MAh1u1 +MJh2u2 + 1)2
,

∂H

∂u2
=λ1

#
MJe2C

h1u1MA + h2u2MJ + 1
− (e1u1MA + e2u2MJ)CMJh2

(h1u1MA + h2u2MJ + 1)2

$

+ λ2
u1MACMJh2

(h1u1MA + h2u2MJ + 1)2

+ λ3

#
− MJC

h1u1MA + h2u2MJ + 1
+

u2MJ
2Ch2

(h1u1MA + h2u2MJ + 1)2

$
− u2.

(5.16)
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We find a characterization of u∗1 by considering three cases:

∂H

∂u1
< 0⇒ u∗1 = 0,

∂H

∂u1
= 0⇒ u∗1 = u11 s.t.

∂H

∂u1

-----
u11

= 0,

∂H

∂u1
> 0⇒ u∗1 = 1.

(5.17)

When the control is at the upper bound, u11 is strictly greater than 1. When
the control is at the lower bound, the solution of u11 is strictly less than 0. Similarly
for u∗2. Thus a compact way of writing the optimal control is

u∗1 = min(1,max(0, u11 )),

u∗2 = min(1,max(0, u21 )),
(5.18)

where u11 and u21 are given by

u11 =
w1
w2
,

u21 =
−e1λ1 + λ2

MJ(e1h2λ1 − e2h1λ1 + h1λ3 − h2λ2)
.

(5.19)

with

w1 = CMJ
2e13h2

3λ1
3 − 3CMJ

2e12e2h1h2
2λ1

3 + 3CMJ
2e1e22h1

2h2λ1
3

−CMJ
2e23h1

3λ1
3 + 3CMJ

2e12h1h2
2λ1

2λ3 − 3CMJ
2e12h2

3λ1
2λ2

−6CMJ
2e1e2h1

2h2λ1
2λ3 + 6CMJ

2e1e2h1h2
2λ1

2λ2 + 3CMJ
2e22h1

3λ1
2λ3

−3CMJ
2e22h1

2h2λ1
2λ2 + 3CMJ

2e1h1
2h2λ1λ3

2 − 6CMJ
2e1h1h2

2λ1λ2λ3

+3CMJ
2e1h2

3λ1λ2
2 − 3CMJ

2e2h1
3λ1λ3

2 + 6CMJ
2e2h1

2h2λ1λ2λ3

−3CMJ
2e2h1h2

2λ1λ2
2 + CMJ

2h1
3λ3

3 − 3CMJ
2h1

2h2λ2λ3
2

+3CMJ
2h1h2

2λ2
2λ3 − CMJ

2h2
3λ2

3 + e1e2h12λ12 − e1h12λ1λ3

−e2h12λ1λ2 + h12λ2λ3,

w2 = MAh1
2(e12h2λ12 − e1e2h1λ12 + e1h1λ1λ3 − 2 e1h2λ1λ2 + e2h1λ1λ2

−h1λ2λ3 + h2λ22). (5.20)

We can thus state the following theorem.

Theorem 5.2. An optimal control (u∗1, u∗2) ∈ U for the system (5.6)–(5.8) that
maximises the objective functional J1 is characterized by (5.18).
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5.2. Maximizing mussel density w.r.t. attacking rates

To maximinize mussel density, the attack rate on the adult mussels should be mini
mized. We choose the following objective function:

J2(u1, u2) =
% T

0

#
MA +MJ −

1
2
u21

$
dt, (5.21)

s.t. (5.6)−−(5.8) and C(t0) = C0, MA(t0) =MA0 , MJ(t0) =MJ0 .

and we search for the optimal controls in the set U where

U = {(u1, u2) |ui measurable, 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, t ∈ [0, T ], ∀T }. (5.22)

We can state the following existence theorem.

Theorem 5.3. Consider the optimal control problem (5.6)–(5.8). There exists
(u∗1, u∗2) ∈ U s.t.

J2(u∗1, u
∗
2) = max

(u1 ,u2 )∈U

% T

0

#
MA +MJ −

1
2
u21

$
dt. (5.23)

The proof is similar to Theorem 5.1.

Theorem 5.4. An optimal control (u∗1, u∗2) ∈ U for the system (5.6)–(5.8) that
maximizes the objective function J2 is characterized by

u∗1 = min(1,max(0, u12 )),

u∗2 = min(1,max(0, u22 )).
(5.24)

For details of the proof of the above necessary conditions and forms of u12 , u22
the reader is refered to Appendix in Sec. A.5.

5.3. Maximizing mussel density w.r.t. intraspecific competition
rate

In this approach, we view the competition coefficient as a control. To reach certain
optimal population densities, the mussels would maximize the densities of both
adult and juvenile groups whilst minimising intraspecific competition. To this end,
our system reduces to

C′ = −d1C + e1u1
MA

1 + 2u1(t)MA + h2u2(t)MJ
C + e2u2

MJ

1 + 2u1MA + h2u2MJ
C,

(5.25)

M ′
A = bMJ − δ1(t)M2

A − u1
MA

1 + 2u1MA + h2u2MJ
C, (5.26)

M ′
J =

a

2
MA − bMJ − u2

MJ

1 + 2u1MA + h2u2MJ
C. (5.27)
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We choose the following objective function:

J3(δ1) =
% T

0

#
MA +MJ −

1
2
δ21

$
dt, (5.28)

s.t. (5.25)− (5.27) and C(t0) = C0, MA(t0) =MA0 , MJ(t0) =MJ0 .

and we search for the optimal controls in the set U1, where

U1 = {δ1|δ1measurable, 0 ≤ δ1 ≤ ∞, t ∈ [0, T ], ∀T }. (5.29)

We can state the following existence theorem.

Theorem 5.5. Consider the optimal control problem (5.25)–(5.27). There exist
(u∗1, u∗2) ∈ U s.t.

J3(δ1) = max
(u1 ,u2 )∈U

% T

0

#
MA +MJ −

1
2
δ21

$
dt. (5.30)

The proof is similar to Theorem 5.1.

Theorem 5.6. An optimal control (u∗1, u∗2) ∈ U for the system (5.25)–(5.27) that
maximises the objective function J3 is characterized by

δ∗1 = max(0,−M2
Aλ2). (5.31)

For the details of the proof of the above necessary conditions and forms of
u12 , u22 , the reader is refered to the Appendix in Sec. A.6.

5.4. Numerical simulations

In this section, we investigate via numerical simulation and compare the species’
population of the control system (5.2)–(5.5) and the classical system (2.1)–(2.4)
under the epibiont achieving the carrying capacity (e = K). The solutions of the
state and adjoint equations are a priori bounded. This follows via Theorem 3.1.
Also, note that the Objective functions (see Secs. 5.1–5.3), are concave in the control
variables. Thus, the optimal controls exist by using classical results from Fleming
and Rishel [Chapter III, Theorem 2.1, p. 63].34 Our goal is to now apply this the-
ory to compute various optimal scenarios. To this end, we use a Forward–Backward
Sweep iteration algorithm, and perform various numerical simulations. The param-
eter set chosen for our simulation is given in (5.32). The unit of time is days. We
choose parameters in accordance with the biological literature, so our simulations
are realistic. A more thorough discussion of how this is done is presented in the
discussion section.

d1 = 0.015, e1 = 0.9, e2 = 0.5, h1 = 2.0, h2 = 1.0, b = 0.05,

δ1 = 0.1, a = 0.3, C(0) = 1, MA(0) = 1, MJ(0) = 1.
(5.32)
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Fig. 4. (a) Solid curves are the density change for each species of the system (2.1)–(2.4) with
e = K and the dashed line are the optimal state of the control system (5.2)–(5.5) for the objective
function J1(u1, u2). (b) Optimal controls of J1(u1, u2) with the above parameter set (5.32).
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Fig. 5. (a) Optimal control u1 changes with increasing h1 and (b) u1 increases slightly with large
h1.

In Fig. 5, we set h1 = 2 since h1 = 1 + e
K , however, if we just assume h1 as a

constant and increase h1 and keep other parameters the same, we found the optimal
control u2 always to be 0, and u1 decreases and gradually become stable. In fact,
when h1 achieves to some critical value, u1 begins to increase slightly.

The optimal foraging strategies are u1 = 0 and u2 = 1 for the system (2.1)–
(2.4) under e = K. However, for the control system (5.2)–(5.5), J1(u1, u2) will be
maximized when u1 = 0.5515, u2 = 0; J2(u1, u2) will be maximized when u1 = 0,
u2 = 0.9937 and J3(δ1) will be maximized when δ1 = 0 with parameters in (5.32)
which are shown in Figs. 4–8. Therefore, the optimal control approach does increase
the targeted population.
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Fig. 6. (a) Solid curves are the density change for each species of the system (2.1)–(2.4) with
e = K and the dashed line are the optimal state of the control system (5.2)–(5.5) for the objective
function J2(u1, u2). (b) Optimal controls for J2(u1, u2) with the above parameter set shown in
(5.32).
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Fig. 7. In this simulation, we look at how u2 changes w.r.t. h1. Here h2 = 1. We want to see the
change of the control u2 as h1 increases. The control u1 = 0 no matter how large h1 is. What we
notice is that u2 suddenly goes down to 0 from 0.7783, at a critical value h∗

1 = 2.05.

Remark 5. Based on the initial condition (C(0),MA(0),MJ(0)) = (1, 1, 1), we see
that the juvenile mussel population size dropped over 90% (1–0.03) of the dynamics
(2.1)–(2.4) with e = K in a few days in Figs. 4–8. Note, this is solely a feature of the
chosen parameters and initial conditions (that is for these parameters the steady
states are fairly low, ≈ 0.03). Thus, given the chosen parameters, the dynamics
causes a decay to the juvenile mussel steady state fairly quick. In Figs. 9–10, we
see as we vary parameters and initial conditions, this can change to predict a more
realistic ecological scenario.
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Fig. 8. (a) Solid curves are the density change for each species of the system (2.1)–(2.4) with
e = K and the dashed line are the optimal state of the control system (5.2)–(5.5) for the objective
function J3(δ1). (b) The optimal control for the objective function J3 is always to be δ1 = 0.
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Fig. 9. Here we simulate the dynamics of our system (2.1)–(2.4) (in the case of e = K) with same
parameters but different initial conditions. We take d1 = 0.015, e1 = 0.9, e2 = 0.5, h1 = 2, h2 = 1,
b = 0.05, δ1 = 0.1 and a = 0.3. (a) The initial condition is (1, 1, 1). (b) The initial condition is
(0.6, 0.1, 0.04). Both initial conditions go to same steady state (0.5722, 0.1244, 0.0309) but with
different decay rates. Also, it is seen in (b), that it takes about 200 days for the populations to reach
steady levels. Therein, the mussel populations actually rise, and the fall in the crab population is
not to drastic.
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Fig. 10. Here we simulate the dynamics of our system (2.1)–(2.4) (in the case of e = 0) with
different initial conditions. We take d1 = 0.015, e1 = 0.9, e2 = 0.5, h1 = 1, h2 = 0.2, b = 0.05, δ1 =
0.1 and a = 0.3. (a) The initial condition is (1, 1, 1). (b) The initial condition is (0.1, 0.1, 0.1).
Both initial conditions go to same steady state (0.3020, 0.171, 0.01023) but with different decay
rates. Herein, we choose h2 = 0.2, to model a case where the handling times of juvenile mussel is
five times less than that of handling an adult mussel.

6. Discussion and Conclusion

Epibiotic invasive species often have anti-predator defenses that are behavioral,
chemical, or mechanical,35,36 giving them a survival advantage in a novel habi-
tat because potential predators avoid using them as a food source.37,38 While
this provides a benefit to the basibiont, it impacts other members of the com-
munity, including predators of the basibiont as they may show lower preference
for basibionts that are overgrown by invasive epibionts.10,39 However, the effects
of epibionts on basibionts are not always positive. Many times the epibiont may
attract predators resulting in consumption of the epibiont, which automatically
leads to consumption of the basibiont. This is referred to in the literature as
“shared doom”.18 Epibionts can also negatively affect basibiont fecundity and fit-
ness, resulting in fewer offspring.9 In essence, invasion of predator–prey communi-
ties by epibionts is complex, and warrants a thorough mathematical investigation
of their impact on predator–prey interactions and populations.

Population cycles are common in predator–prey communities, and although
these are possible in our model without epibionts, extensive numerical simulations
indicate that at carrying capacity e = K, a Hopf bifurcation is not possible. This
points to the epibiont having a stabilizing influence in that it can eliminate popula-
tion oscillations. A rigorous proof of this is an interesting future direction. Within
our study, Theorem 3.4 tells us that if the energy gain from the adult mussel is in
a certain critical region 0 < e1 < 1, then one has global stability; even very large
perturbations would still allow the system to return to its base state.
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Our central question focuses on the effect of the introduced epibiont on the pop-
ulation densities of the local crab–mussel communities. Could high epibiont density
lead to lower mussel populations (and so subsequently lower crab populations)? To
answer this, we compare the equilibrium levels of the juvenile mussel population in
two cases, one in which there is no epibiont, and the other in which the epibiont
reaches carrying capacity. If the epibionts do have an adverse effect, then we would
have

M∗
J |(e=K) < M

∗
J |(e=0).

Comparing these yields

be1 + d1h2a < ae2 + d1h1b. (6.1)

Although we know e1 > e2, under high epibiont density (e = K), we have
h1 ≫ h2, thus even if a > b, (6.1) could easily hold meaning that there is an adverse
effect on the juvenile mussel density via epibiont presence, leading to fewer adults
subsequently, and so epibionts could clearly be a factor in mussel population declines
as seen via data from the Gulf of Maine.8 Such decline could eventually lead to crab
population decline as well, if the crab species is a specialist on mussels. However, the
effects of epibionts on mussel fecundity could also be a cause of predator decline. In
order to understand the effects of epibiosis, we investigate the equilibrium density
of the crab populations for the “no epibiont” case versus the “carrying capacity”
case. What we note is

C∗|(e=0) =
e1(a(e1 − d1h1)− d1δ1)

(e1 − d1h1)2
, (6.2)

C∗|(e=K) =
1
2

ae2
'

bd1
(e2 − d1h2 )δ1

d1
− e2b

e2 − d1h2
. (6.3)

Clearly, as epibiont cover reduces mussel fecundity from a to a
2 , this directly

affects the crab population. In the (e = K) case, there is an increase by a factor of
only a

2 , as opposed to a factor of a in the (e = 0) case. Thus reduced fecundity in
mussels due to epibiont cover, can also reduce crab populations as well.

We assume logistic growth in the epibiont density. Although in the Gulf of
Maine epibiont density fluctuates seasonally, our model could be a useful predictive
tool in periods where logistic growth is seen. In locations, such as Japan and New
Zealand, the epibiont D. vexillum grows logistically9 due to water temperatures
staying above, the threshold for D. vexillum viability.

Note, we have used the biology literature in order to come up with realistic
parameter values for our numerical simulations. Carcinus maenas crabs seem to
vary in lifespan, ranging from 3–4 years on the west coast of the US in Oregon40

to 6 years in Maine.41 Klassen and Locke42 summarized C. maenas life span to be
between 4–7 years in their biological synopsis of the species. Note, C. maenas can
survive up to three months without food. Thus, from Eq. (2.1), if there were no
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mussels present, we should have the crabs survive up to 90–100 days. This yields
the death rate of the crab, d1 ≈0.015.

Mussel life span varies greatly, depending on whether or not predators are
present. For example, in subtidal areas when exposed to predators, mussels lived
from 2 to 3 years.44 At higher zones on the same shoreline, in the absence of preda-
tors, they reached 15–20 years of age. At a site in England, mussels rarely lived
into their third year,45 but in an extremely high latitude, they were found living
from 18 to 24 years.46 We model, based on the lower numbers as in our setting,
the mussels that are exposed to predators (and those seem to be more typical
numbers in the field). Mussels become sexually mature at about 1 year.47,48 One
study found mussels reaching maturity at just over 1 year.43 The size at which
mussels become mature has varied in reports since there are several factors that
determine mussel growth; these sizes vary anywhere between 4mm and 35mm,
though it seems that most mussels are somewhere between 20mm and 30mm in
size.48 However, our modeling scenario compartmentalizes mussels as adults or
juveniles, based on when they lose their periostracum. Mussels lose their perios-
tracum sometime between 3mm and 5mm in size,49 when they become fouled
by epibionts. Thus, there is some leeway we have in choosing the maturation
rate b, of mussels from juveniles to adults, as there clearly is a size difference
(thus a time lag) between when the they lose their periostracum (3–5mm), to
when they sexually mature (4–35mm). Thus, we model the maturation rate b, to
be in the range 0.005–0.01, that is maturing to loose their periostracum, in the
range of 100–200/250 days — just short of their sexual maturity of 300 days–
1 year. Detailed simulations via these parameters are provided in Sec. 5.4. Also,
note the handling times h1 and h2, are to be understood in a relative sense. So,
h1 is the time it takes for crabs to handle adult mussels, and h2 is the time
it takes for crabs to handle juvenile mussels. Our premise is that, under high
epibiont cover, it takes mussels twice as long to handle adults. Here, we refer
to Ref. 10, which finds the handling time, could vary anywhere between staying
roughly the same to maybe six times longer. An interpretation of h1 = 2 and
h2 = 1, would mean it takes the crabs twice as long to handle the adult mussels,
as it takes to handle juveniles. Detailed simulations to this end are also provided
in Sec. 5.4.

We also use optimal control theory to visualize various optimal scenarios to
maximize each crab and mussel densities. Herein, we change the problem slightly,
and assume the attack rates u1, u2 are not known a priori, but are time-dependent.
Our objective is to explore various scenarios that a species of crab or mussel might
attempt to optimize, by manipulating the attack rates. Epibionts are assumed to
be present, and their effect is modeled via increasing the handling time h1 of adult
mussels, as epibiont density increase.

Simulations suggest (Fig. 4(a)) that even under high epibiont density (which in
this scenario amounts to doubled h1), the crab should not attack juvenile mussels,
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but attempt to attack adults. Figure 4(b) demonstrates, that what is optimal for
the mussel is if u1 = 0, and so the adult mussel must induce defenses to reduce u1,
even if it realistically cannot drive that rate to zero. This confirms experimental
results of rapid shell thickening by mussels, seen via Ref. 12.

Figure 5(a) looks at the attack rate on adut mussels u1, as h1 changes. Here,
we are trying to maximize mussel populations, and u1 decreases as h1 increases, as
expected. However, u1 is approximately 0.23; that is, it does not change significantly
if handling times become very large. Curiously, it goes up ever so slightly as shown
in Fig. 5(b). This likely corresponds to the adult mussel thickening its shell just
enough to increase handling time by the crab.

Figure 7 looks at the attack rate on juvenile mussels u2, as h1 changes. Here
again we are trying to maximize mussel populations. When handling time on adults
is low, juvenile mussels are protected from crab predation due to the predators pref-
erence for larger mussels. However, when handling time on adults is high (greater
than 2.05 in this simulation), it is likely that crabs would switch to the juvenile;
therefore, juveniles must be able to disperse or seek refuge in order to bring attack
rates on the juvenile mussels to zero (in turn maximizing their population size).
Young mussels drift in the water column until they reach a size of approximately
2.5mm, then they settle on a filamentous algal substrate.3 Some mussel species
settle on algal substrate until they are 30mm in length.50 This substrate acts as
refuge and must be available for juveniles in order to maximize mussel popula-
tions. However, with degradation of suitable habitat, the opportunities for escape
from crab populations becomes diminished. Major disturbance events, either natu-
ral or anthropogenic, in conjunction with invasion by substrate-smothering colonial
species and voracious predators, are likely to decrease opportunities for escape.
Endeavors to model predator–prey systems incorporating prey refuge may yield
surprising results on stability.51,52 Thus, it would be very interesting to model
refuge effects for the juvenile mussels herein.

As a future direction in modeling the crab–mussel–epibiont interaction, we
would also like to examine interference effects.53–55 This effect has often seen to
be stabilizing,56 and thus modeling interference among the crab population, at
high epibiont density is also realistic. Note, Theorem 5.6 suggests that eliminat-
ing intraspecific competition among mussels is optimal from their point of view,
and yields a maximum density, if there was no competition present. Future mod-
eling endeavors may also investigate if high epibiont cover promotes cannibalism
in crabs. That is, under high epibiont cover of adult mussels, would a crab prefer
to cannibalize its own conspecifics,57,58 rather than switching to juvenile mussels?
Another interesting future direction is to look at the foraging of crabs as they move
in and out of patches containing mussels, some of which might be protected by
mussel farmers, akin to marine protected areas.59,60 A spatially explicit approach
to this end, modeling a changing habitat based on mussel density, would also be
interesting.61
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The empirical literature shows that while epibionts alter the prey choice of
predators, including crabs and sea stars,17,21–23 there are no prey switching experi-
ments using D. vexillum. Our goal is to provide firm modeling grounds for the scope
of such experiments in the future. Thus a logical next step for empirical studies is
to conduct experiments with D. vexillum to confirm our switching hypothesis, as
well as look at switching scenarios under varying levels of overgrowth (with both
living and artificial epibionts such as in Ref. 21). An interesting research question
therein would be to ask if one sees the inverted parabola-shaped curve, typical of
OFT scenarios when measuring crab size versus mussel preference. If our switching
hypothesis is confirmed, this should not be the case, as smaller size juvenile mussels
should be preferred to adults under heavy epibiont cover. All in all, we hope our
results will help devise suitable strategies and measures that will enable a boost in
dwindling mussel populations, particularly as new complexities arise in ecosystems,
driven by rapid increase in invasions.
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Appendix A

A.1. Optimal strategy in our setting

Here, we give a rigorous reasoning for our switching hypothesis. If one considers
classical optimal foraging theory (OFT), we can define a fitness function

R(u1, u2) =
e1u1MA

1 + h1u1MA + h2u2MJ
+

e1u1MJ

1 + h1u1MA + h2u2MJ
. (A.1)

We endeavor to maximize R(u1, u2), the net rate of energy intake during foraging.
The optimal strategy for a crab (according to classical OFT) relies on the density
of mussels. That is for each (MA,MJ), we get a set of optimal controls S(MA,MJ)
known as the strategy map.

S(MA,MJ) = {(u1, u2)|R(u1, u2) = max
0≤p1 ,p2≤1

R(p1, p2)}. (A.2)

This is (2.1)–(2.4), which is actually a control system with controls (u1, u2)
relying on the state of the system. Now we look for controls belonging to the strategy
map S(MA,MJ). Then we calculate the derivatives of S(MA,MJ) to investigate
the maximizing controls u1 and u2.

∂R

∂u1
=
MAe1 +MAMJu2(e1h2 − e2h1)

(1 + h1u1MA + h2u2MJ)2
, (A.3)

∂R

∂u2
=
MJ(e2 −MAu1(e1h2 − e2h1))

(1 + h1u1MA + h2u2MJ)2
. (A.4)
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The sign of ∂R
∂u1

and ∂R
∂u2

depend on the e1h2 − e2h1.
A tricky point here is that attack rates depend critically on the density of adult

and juvenile mussels. That is of (u1 = 1, u2 = 0), or (u1 = 0, u2 = 1) are feasible as
attack rates if the mussel densities are above a certain density. However if MA, or
MJ fall below a certain critical level, theory predicts that the less preferred prey
should also be attacked, and one might have a situation of (u1 = 1, u2 = 1). What
we show next, is that if certain parametric restrictions are met, (u1 = 1, u2 = 0),
or (u1 = 0, u2 = 1) are the only optimal choices for the crab, irrespective of mussel
density.

Lemma A.1. Consider (2.1)–(2.4). If e = 0, and d1 > e2
h2

then (u1 = 1, u2 = 0) is
the only optimal choices for the crab. Whereas if e = K, and d1 > e1

h1
(u1 = 0, u2 =

1) is the only optimal choices for the crab.

Proof. If e1
h1
> e2

h2
, ∂R

∂u1
> 0, the maximum of R(u1, u2) is thus achieved for u1 = 1.

And since the sign of ∂R
∂u2

does not depend on u2, it follows if ∂R
∂u2

̸= 0. R(u1, u2)
will be maximized either with u2 = 0 or u2 = 1. Then we get the strategy map

S(MA,MJ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1, 1) if MA <
e2

e1h2 − e2h1
,

(1, 0) if MA >
e2

e1h2 − e2h1
,

(1, u2), 0 ≤ u2 ≤ 1 if MA =
e2

e1h2 − e2h1
.

(A.5)

Now M∗
A = d1

e1 − d1h1
from the earlier stability calculations. We note,

M∗
A =

d1
e1 − d1h1

>
e2

e1h2 − e2h1
, (A.6)

as long as d1 > e2
h2

, and if this is enforced (u1 = 1, u2 = 0) is the only optimal
strategy for the crab.

If e1
h1
< e2

h2
in order to maximize R(u1, u2), we need u2 = 1. The strategy map

will switch to

S(MA,MJ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1, 1) if MJ <
e1

e2h1 − e1h2
,

(0, 1) if MJ >
e1

e2h1 − e1h2
,

(u1, 1), 0 ≤ u1 ≤ 1 if MJ =
e2

e1h2 − e2h1
.

(A.7)

Now, M∗
J = d1

e2 − d1h2
from the earlier stability calculations. We note

M∗
J =

d1
e2 − d1h2

>
e1

e2h1 − e1h2
, (A.8)

as long as d1 > e1
h1

, and if this is enforced (u1 = 0, u2 = 1) is again, the only optimal
strategy for the crab.
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A.2. Proof of Theorem 3.2

The Jacobian matrix about (C∗,M∗
A,M

∗
J ) of system (3.14)–(3.16), without epibiont,

is given by

J =

⎡

⎢⎢⎣

0 J12 0

J21 J22 J23

0 J32 J33

⎤

⎥⎥⎦, (A.9)

where

J12 = a(e1 − d1h1)− d1δ1, (A.10)

J21 = −d1
e1
, (A.11)

J22 = −a(e1 − d1h1)
2 + d21δ1h1 + d1δ1e1

e1(e1 − d1h1)
, (A.12)

J23 = b, (A.13)

J32 = a, (A.14)

J33 = −b. (A.15)

The characteristic equation is

λ3 +A2λ2 +A1λ +A0 = 0, (A.16)

with

A2 = −J33 − J22, (A.17)

A1 = −J12J21 + J22J33 − J23J32, (A.18)

and

A0 = J33J21J12. (A.19)

It follows from the Routh–Hurwitz stability criteria that all eigenvalues have neg-
ative real part if

A2 > 0, A0 > 0, A2A1 > A0. (A.20)

It is obvious that the first two conditions are always satisfied under feasibility
condition (3.20). Furthermore, A2A1 −A0 > 0 if J23J32 − J22J33 < 0.

J23J32 − J22J33 = −bd1(ad1h
2
1 − ae1h1 + d1δ1h1 + δ1e1)
e(e1 − d1h1)

< 0. (A.21)

It is enough to solve bd1(ad1h21−ae1h1+d1δ1h1+δ1e1) > 0, that is, e1−d1h1 <
d1 δ1

a + d1 δ1 e1
ah1

.
Therefore, the system (3.14)–(3.16) is asymptotically stable if

d1δ1
a
< e1 − d1h1 <

d1δ1
a

+
d1δ1e1
ah1

. (A.22)
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A.3. Proof of Theorem 3.3

The equilibrium state, of the system (2.1)–(2.4), for the epibiont is e = K. At the
interior equilibrium state, the parameters u1 = 0, u2 = 1 and a(e) = a

2 . Since e will
not effect the solution of C,MA andMJ once u1, u2 and a(e) are determined, then it
is enough to investigate the following three dimension system with the equilibrium

(C∗,M∗
A,M

∗
J ) =

8
1
2

ae2
q

bd1
(e2−d1h2 )δ1

d1
− e2 b

e2 − d1h2
,
'

bd1
(e2 − d1h2 )δ1

, d1
e2− d1h2

9
when e = K.

dC

dt
= −d1C + e2

MJ

1 + h2MJ
C, (A.23)

dMA

dt
= bMJ − δ1M

2
A, (A.24)

dMJ

dt
= aMA − bMJ −

MJ

1 + h2MJ
C. (A.25)

The Jacobian matrix about (C∗,M∗
A,M

∗
J ) is

J =

⎡

⎢⎢⎣

0 0 J13

0 J22 J23

J31 J32 J33

⎤

⎥⎥⎦, (A.26)

where

J13 =
1
2

:
a(e2 − d1h2)

'
bd1

(e2 − d1h2 )δ1
− 2bd1

;
(e2 − d1h2)

d1
, (A.27)

J22 = −2δ1

(
bd1

(e2 − d1h2)δ1
, (A.28)

J23 = b, (A.29)

J31 = −d1
e2
, (A.30)

J32 =
a

2
, (A.31)

J33 = −1
2

a(e2 − d1h2)2
'

bd1
(e2 − d1h2 )δ1

+ 2bd21h2

e2d1
. (A.32)

Since all the parameters are positive, it is obvious that J22 < 0, J23 > 0,
J31 < 0, J32 > 0, and J33 < 0. Under the feasibility condition (3.30), J13 > 0.
And the characteristic equation is given by

λ3 +B2λ2 +B1λ +B0 = 0, (A.33)
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where

B2 = −J33 − J22, (A.34)

B1 = −J13J31 + J22J33 − J23J32, (A.35)

B0 = J13J22J31, (A.36)

By Routh–Hurwitz stability criteria, all eigenvalues have negative real part if

B0 > 0, B1 > 0, B2 > 0, B2B1 −B0 > 0. (A.37)

It is easy to check B2 > 0 and B0 > 0 under the feasility criterion (3.30). B1 > 0
if J22J33 − J23J32 > 0.

J22J33 − J23J32 =

!
4
'

bd1
δ1 (e2 − d1h2 )

d1δ1h2 − 2ad1h2 + ae2
"
b

2e2d1

=

!
4
'

bd1
δ1 (e2 − d1h2 )

d1δ1h2 − ad1h2 − ad1h2 + ae2
"
b

2e2d1

=

!
4
'

bd1
δ1 (e2 − d1h2 )

d1δ1h2 − ad1h2 + a(e2 − d1h2)
"
b

2e2d1
. (A.38)

To make J22J33 − J23J32 > 0, it is enough to show 4
'

bd1
δ1 (e2 − d1h2 )

d1δ1h2 −
ad1h2 > 0, which gives us e2 − d1h2 < 16bd1 δ1

a2 . Furthermore,

B2B1 −B0 = J13J31J33 − J222J33 + J22J23J32 − J22J233 + J23J32J33

= J13J31J33 + J22(J23J32 − J22J33) + J33(J23J32 − J22J33). (A.39)

Since J22 < 0 and J33 < 0, J22J33 − J23J32 > 0 implies B2B1 − B0 > 0. Thus,
the system (2.1)–(2.4) is asymptotically stable if

4bd1δ1
a2

< e2 − d1h2 <
16bd1δ1
a2

. (A.40)

A.4. Proof of Theorem 4.1

Now let a, the growth rate of juvenile mussels, as the bifurcation parameter.
Therefore, if condition (3.20) holds, A0(a∗) are always positive. A2(a∗) > 0 if
e1 − d1h1 < d1 δ1

a + d1 δ1 e1
ah1

. φ(a∗) = A2(a∗)A1(a∗)−A0(a∗) = 0 if

a∗ =
f1
f2
, (A.41)
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where

f1 = 4bδ21h
5
1(M

∗
A)7 + (2b2δ1h51 + 20bδ21h

4
1(M

∗
A)6 + (10b2δ1h41 + 40bδ21h

3
1)(M

∗
A)5

+ (4C∗bδ1h31 + 20b2δ1h31 + 2C∗δ1e1h21 + 40bδ21h
2
1)(M

∗
A)4

+ (C∗b2h31 + 12C∗bδ1h21 + 20b2δ1h21 + 4C∗δ1e1h1 + 20bδ21h1)(M
∗
A)3

+ (3C∗b2h21 + 12C∗bδ1h1 + 10b2δ1h1 + 2C∗δ1e1 + 4bδ21)(M
∗
A)2

+ ((C∗)2bh1 + 3C∗b2h1 + (C∗)2e1 + 4C∗bδ1 + 2b2δ1)M∗
A + (C∗)2b+ C∗b2,

f2 = b(M∗
Ah1 + 1)3(2(M∗

A)3δ1h21 + b(M∗
A)2h21 + 4(M∗

A)2δ1h1 + 2bM∗
Ah1

+ 2M∗
Aδ1 + C∗ + b), (A.42)

and C∗,M∗
A are given by (3.17) and (3.18).

Furthermore, it is easy to verify that
dφ(a)
da

|a=a∗ = − (b(M∗
A)3h31 + 3b(M∗

A)2h21 + 3bM∗
Ah1 + b)(2(M∗

A)2δ1h21
(M∗

A + 1)5

− (bh21 + 4δ1h1)(M∗
A)2 + (2bh1 + 2δ1)M∗

A + C∗ + b)
(M∗

A + 1)5

< 0 ̸= 0. (A.43)

A.5. Proof of Theorem 5.4

The Hamiltonian of the system is given by

H =MA +MJ −
1
2
u21 + λ1C

′ + λ2M
′
A + λ3M

′
J . (A.44)

We use the Hamiltonian to find a differential equation of the adjoint λi, i =
1, 2, 3.

λ′1(t) = −λ1

#
−d1 +

MAe1u1 +MJe2u2
MAh1u1 +MJh2u2 + 1

$

+
λ2u1MA

MAh1u1 +MJh2u2 + 1
+

λ3u2MJ

MAh1u1 +MJh2u2 + 1
,

λ′2(t) = −λ1

#
e1u1C

MAh1u1 +MJh2u2 + 1
− (MAe1u1 +MJe2u2)Ch1u1

(MAh1u1 +MJh2u2 + 1)2

$

−λ2

#
−2 δ1MA −

u1C

MAh1u1 +MJh2u2 + 1

+
u12MACh1

(MAh1u1 +MJh2u2 + 1)2

$

−λ3

#
a/2 +

u2MJCh1u1
(MAh1u1 +MJh2u2 + 1)2

$
− 1,
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λ′3(t) = −λ1

#
e2u2C

MAh1u1 +MJh2u2 + 1
− (MAe1u1 +MJe2u2)Ch2u2

(MAh1u1 +MJh2u2 + 1)2

$

−λ2

#
b+

u1MACh2u2
(MAh1u1 +MJh2u2 + 1)2

$

−λ3

#
−b− u2C

MAh1u1 +MJh2u2 + 1
+

u22MJCh2
(MAh1u1 +MJh2u2 + 1)2

$
− 1,

(A.45)

with the transversality condition gives as

λ1(T ) = λ2(T ) = λ3(T ) = 0. (A.46)

By solving

0 =
∂H

∂u1
= λ1

#
MAe1C

MAh1u1 +MJh2u2 + 1
− (MAe1u1 +MJe2u2)CMAh1

(MAh1u1 +MJh2u2 + 1)2

$

+ λ2

#
− MAC

MAh1u1 +MJh2u2 + 1
+

u1MA
2Ch1

(MAh1u1 +MJh2u2 + 1)2

$

+ λ3
u2MJCMAh1

(MAh1u1 +MJh2u2 + 1)2
− u1,

0 =
∂H

∂u2
= λ1

#
MJe2C

MAh1u1 +MJh2u2 + 1
− (MAe1u1 +MJe2u2)CMJh2

(MAh1u1 +MJh2u2 + 1)2

$

+ λ2
u1MACMJh2

(MAh1u1 +MJh2u2 + 1)2

+ λ3

#
− MJC

MAh1u1 +MJh2u2 + 1
+

u2MJ
2Ch2

(MAh1u1 +MJh2u2 + 1)2

$
.

(A.47)

u12 and u22 equal to

u12 =
e2λ1 − λ3

MA(e1h2λ1 − e2h1λ1 + h1λ3 − h2λ2)
,

u22 =
w1
w2
,

(A.48)

where

w1 = CMA
2e1

3h2
3λ1

3 − 3CMA
2e1

2e2h1h2
2λ1

3 + 3CMA
2e1e2

2h1
2h2λ1

3

−CMA
2e2

3h1
3λ1

3 + 3CMA
2e1

2h1h2
2λ1

2λ3 − 3CMA
2e1

2h2
3λ1

2λ2

− 6CMA
2e1e2h1

2h2λ1
2λ3 + 6CMA

2e1e2h1h2
2λ1

2λ2 + 3CMA
2e2

2h1
3λ1

2λ3

− 3CMA
2e2

2h1
2h2λ1

2λ2 + 3CMA
2e1h1

2h2λ1λ3
2 − 6CMA

2e1h1h2
2λ1λ2λ3

+ 3CMA
2e1h2

3λ1λ2
2 − 3CMA

2e2h1
3λ1λ3

2 + 6CMA
2e2h1

2h2λ1λ2λ3
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− 3CMA
2e2h1h2

2λ1λ2
2 + CMA

2h1
3λ3

3 − 3CMA
2h1

2h2λ2λ3
2

+ 3CMA
2h1h2

2λ2
2λ3 − CMA

2h2
3λ2

3 − e1e2h22λ12 + e1h22λ1λ3

+ e2h22λ1λ2 − h22λ2λ3,

w2 = MJh
2
2(e1e2h2λ

2
1 − e22h1λ21 − e1h2λ1λ3 + 2 e2h1λ1λ3 − e2h2λ1λ2 − h1λ23

+ h2λ2λ3). (A.49)

So that the optimal controls for J2(u1, u2) is

u∗1 = min(1,max(0, u12 )),

u∗2 = min(1,max(0, u22 )).
(A.50)

A.6. Proof of Theorem 5.6

The Hamiltonian of our problem is given by

H =MA +MJ −
1
2
δ21 + λ1C

′ + λ2M
′
A + λ3M

′
J . (A.51)

The differential equations for λ′1(t), λ′2(t) and λ′3(t), are standard and are derived
as in Theorem 5.4.

The transversality condition is

λ1(T ) = λ2(T ) = λ3(T ) = 0. (A.52)

Considering ∂H
∂δ1

= −MA
2λ2 − δ1, we derive the optimal control for J3(δ1)

δ∗1 = max(0,−M2
Aλ2). (A.53)

A.7. Numerical explorations of bifurcations of alternate models

In the case e = K, we do not see a Hopf bifurcation numerically. It is worthwhile
considering certain alternate models for the epibiont dynamics as future work. We
motivate this via considering the following model:

dC

dt
= −d1C + e1u1(e)

MA

1 + h1u1(e)MA + h2u2(e)MJ
C

+ e2u2(e)
MJ

1 + h1u1(e)MA + h2u2(e)MJ
C, (A.54)

dMA

dt
= bMJ − δ1M

2
A − u1(e)

MA

1 + h1u1(e)MA + h2u2(e)MJ
C, (A.55)

dMJ

dt
= a(e)MA − bMJ − u2(e)

MJ

1 + h1u1(e)MA + h2u2(e)MJ
C, (A.56)

de

dt
= b1e

#
1− e

k1MA + k2

$
. (A.57)
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where

u1(e) =
K − e
K

, u2(e) =
e

K
, a(e) = a

#
K − e

2

K

$
, K = k1MA + k2, (A.58)

with positive initial conditions C(0) = C0,MA(0) =MA0,MJ(0) =MJ0, e(0) = e0.
These responses are for the range 0 ≤ e ≤ K.

The only change here to crab–mussel system (A.54)–(A.57) is that we assume
the carrying capacity of the epibiont is density dependent, and depends primarily
on the adult mussel density that is K = K = k1MA + k2. Here, k2 represents
alternate substrate that the epibiont can grow on.

The four-dimensional system has 11 parameters with four dependent variables.
The following parameters are used in numerical simulations:

e1 = 0.8, e2 = 0.5, d1 = 0.4, a = 4, b1 = 2, b = 0.5,

h1 = 2, h2 = 1, δ1 = 0.2, k1 = 0.1, k2 = 0.3.
(A.59)

The system evolve the stable limit cycles for parameter set (A.59). Time series
for all species is shown in Fig. A.1(a), while limit cycles in 2D phase space are
shown in Figs. A.1(b), A.2(a) and A.2(b). To observe more qualitative behavior of
the model, one-parameter bifurcation diagram is drawn with respect to parame-
ter d1 and parameter a in the figures. A supercritical Hopf bifurcation occurs at
d1 = 0.3567 which emanates stable limit cycles. There is another supercritical hopf
bifurcation at d1 = 0.444. Between these two Hopf bifurcations, the model has peri-
odic solutions. After second Hopf bifurcation point model has stable solutions, crab
populations are going to extinct. The dynamics is shown in one-parameter bifur-
cation diagram in Fig. A.3(a). The qualitative dynamics has been also obtained
for the range of parameter a drawn in the Fig. A.3(b). Initially, for low parame-
ter value a < 1.265, the crab population is too low but as parameter a increases,

(a) The biomasses of all species exhibited the
periodic coexistence against the time series is
shown for parameter set (A.59).

(b) A stable limit cycle in the two-dimensional
phase space MA and MJ for parameter
set (A.59).

Fig. A.1. Time-series and limit cycle in the 2D phase space plot.
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(a) A stable limit cycle in the two-dimensional
phase space C and MJ for parameter
set (A.59).

(b) A stable limit cycle in the two-dimensional
phase space E and Mj for parameter set (A.59).

Fig. A.2. Stable limit cycle in the 2D phase space plot.

(a) One-parameter bifurcation diagram with
respect to parameter d1.

(b) One-parameter bifurcation diagram with
respect to parameter a.

Fig. A.3. One-parameter bifurcation diagrams to depict stablilty, Hopf bifurcation point and
periodic solutions with respect to parameter set (A.59).

model exhibits stable coexistence. Further, it undergoes through supercritical Hopf
bifurcation at parameter a = 3.386 which emanates stable limit cycles (green filled
circle).

The parameter region has been obtained by drawing two-parameter (a, d1) bifur-
cation diagram in Fig. A.4(a). The parameter region for which one species goes
extinct is shown in shaded region (extreme left), the region for which stable coex-
istence is possible is shown in red and the region for which periodic solution is
possible is shown in blue color in Fig. A.4(a). Another two-parameter (d1, δ) bifur-
cation diagram is drawn in Fig. A.4(b). The parameter region for which stable
coexistence occurs and region for which periodic solution is possible is depicted in
Fig. A.4(b).
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(a) Two-parameters (a, d1) bifurcation dia-
gram with respect to parameter set (A.59).

(b) Two-parameters (d1, δ) bifurcation dia-
gram with respect to parameter set (A.59).

Fig. A.4. Two-parameter bifurcation diagrams to depict parameter region for the stable coexis-
tence and periodic coexistence with respect to parameter set (A.59).

As shown by these bifurcation graphs, model has periodic solutions for biologi-
cally feasible choice of parameters and one can find the Hopf bifurctaion point for
each of the parameters used in the model.

These results show that a Hopf bifurcation is possible, if one considers a density-
dependent carrying capacity for the epibiont. These results are robust in nature as
different sets of parameters will yield the same qualitative behavior. The periodicity
in the system is beneficial for harvesting and coexistence of all the species involved.
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