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Abstract

This work is concerned with the large time behavior of the solutions of a parabolic-
ODE hybrid system, modeling the competition of two populations which are identical
except their movement behaviors: one species moves by random dispersal while the other
does not diffuse. We show that the non-diffusing population will always drive the diffusing
one to extinction in environments with sinks. In contract, the non-diffusing and diffusing
populations can coexist in environments without sinks.
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1 Introduction

In this work we investigate the asymptotic behaviors of classical solutions of the following
parabolic-ODE competition system:























ut = d∆u+ u(a(x)− u− v) x ∈ Ω, t > 0,

vt = v(a(x)− u− v) x ∈ Ω, t > 0,
∂u
∂n

= 0 x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) and v(x, 0) = v0(x) x ∈ Ω,

(1.1)

where d > 0 is a constant, a(·) ∈ Cα(Ω) for some α ∈ (0, 1), and Ω is a bounded domain
in R

N with smooth boundary ∂Ω, N ≥ 1. The functions u(x, t) and v(x, t) denote the
density functions of two populations residing in the same habitat Ω and competing for a
common limited resource. Hence, the initial conditions u0(x) and v0(x) are assumed to
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be non-negative, not identically zero and continuous functions on Ω. The function a(x)
represents their common intrinsic growth rate, and throughout this paper it is assumed to be
non-constant and positive somewhere in Ω, reflecting that the environment is heterogeneous
in space. The region {x ∈ Ω̄ : a(x) < 0} is referred to as the sink (low quality habitat), where
the growth rate of the population is negative. n denotes the outward unit normal vector on
∂Ω, and the boundary condition for u means that no individuals cross the boundary.
We note that system (1.1) is a Lotka-Volterra competition model, in which the species v(x, t)
has zero diffusion rate, while u(x, t) has a positive diffusion rate. In the recent years there has
been increasing interest in the dynamics of two-species Lotka–Volterra competition models in
heterogeneous environments; see [2, 3, 4, 7, 8, 9, 10, 11, 12, 13] and the references therein. To
motivate our work, consider the following fully-parabolic Lotka-Volterra competition system:























ut = d∆u+ u(a(x)− u− v) x ∈ Ω, t > 0,

vt = ε∆v + v(a(x) − u− v) x ∈ Ω, t > 0,
∂u
∂n

= 0 x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) and v(x, 0) = v0(x) x ∈ Ω,

(1.2)

where ε, d > 0 are constant positive numbers. When ε = 0, system (1.2) reduces to system
(1.1). Hence the system studied in this work can be regarded as the limiting case of (1.2)
by formally letting ε → 0. Concerning the large time behavior of the solutions of (1.2), it is
well known that the relationship between d and ε plays an important role. For our interest,
we suppose that 0 < ε < d. In [5], Dockery et. al. showed that the species with the smaller
diffusion rate is always favored by the competition, provided that a(x) is non-constant. More
precisely, if we assume that a(x) is non-constant and that in the absence of competition,
there exist two semi-trivial steady states of (1.2), denoted as (u∗d(x), 0) and (0, v∗ε (x)), with
0 < min{u∗d(x), v

∗
ε (x)} < max{u∗d(x), v

∗
ε (x)} < ∞, then (0, v∗ε (x)) is globally asymptotically

stable. This conclusion is often referred to as the evolution of slow dispersal [6]. It is thus
natural to inquire about the dynamics of (1.2) when ε = 0, in particular, whether the non-
diffusing population is still able to drive the diffusing one to extinction, as in the case of
ǫ ∈ (0, d).
To state our main result on system (1.1), we first introduce a few notations. Let C(Ω) denote
the Banach space of uniformly continuous functions on Ω endowed with the usual sup-norm,
and [C(Ω)]+ denotes the closed subspace of C(Ω) consisting of non-negative functions.

Definition 1.1. For given u0, v0 ∈ C(Ω) with u0(x) ≥ 0 and v0(x) ≥ 0 and T ∈ (0,∞],
we say that (u(x, t;u0, v0), v(x, t;u0, v0)) is a classical solution of (1.1) on [0, T ) × Ω with

(u(x, 0;u0, v0), v(x, 0;u0, v0)) = (u0(x), v0(x)) if the followings hold:

1) for every p > N ,

u ∈ C([0, T ) : [C(Ω)]+) ∩C1((0, T ) : C(Ω)) ∩ C((0, T ) : W 2,p(Ω)), (1.3)

2)
v ∈ C([0,∞) : [C(Ω)]+) ∩C1((0,∞) : C(Ω)), (1.4)
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3)
lim
t→0

[‖u(·, t;u0, v0)− u0‖∞ + ‖v(·, t;u0, v0)− v0‖∞] = 0, (1.5)

4) (v(x, t;u0, v0)) satisfies the second equation of (1.1) in classical sense,

5) u(x, t;u,v0) is a solution of the first equation of (1.1) as an abstract evolution equation

in C(Ω).

By a global classical solution of (1.1), we mean a classical solution on [0,∞) × Ω.

We first note from the continuous embedding results ofW 2,p(Ω) in C1+β(Ω) for 0 < β ≪ 1 and
p > N , that for any solution (u(x, t;u0, v0), v(x, t;u0, v0)) of (1.1) in the sense of Definition
1.1 that both ∂tu(x, t;u0, v0) and ∂xu(x, t;u0, v0) exist in classical sense and are continuous.
When ‖u0‖∞ > 0, it follows from the comparison principle for parabolic equations that
u(x, t;u0, v0) > 0 for all t > 0 and x ∈ Ω and that v(x, t;u0, v0) > 0 for every t > 0 and
x 6∈ {y ∈ Ω : v0(y) = 0}. The following result addresses the existence of global classical
solution of (1.1):

Proposition 1.2. Given any u0, v0 ∈ [C(Ω)]+, system (1.1) has a unique global classical

solution on [0,∞) ×Ω. Moreover, it holds that

lim sup
t→∞

max{‖u(·, t;u0, v0)‖∞, ‖v(·, t;u0, v0)‖∞} ≤ ‖a‖∞. (1.6)

When a(x) changes sign in Ω, the following result provides a rather complete feature of the
behavior of solutions for large time:

Theorem 1.3. Suppose that

{x ∈ Ω : a(x) ≤ 0} 6= ∅. (1.7)

For every non-negative initial u0, v0 ∈ C(Ω) satisfying

{x ∈ Ω : v0(x) = 0} ⊂ {x ∈ Ω : a(x) ≤ 0}, (1.8)

we have that

lim
t→∞

(u(x, t;u0, v0), v(x, t;u0, v0)) = (0, a+(x)), ∀x ∈ Ω. (1.9)

Moreover the convergence u(x, t;u0, v0) → 0 as t → ∞ is uniform in x ∈ Ω.

Biologically, Theorem 1.3 implies that the non-diffusing population will always drive the
diffusing one to extinction in environments with sink. When (1.7) fails to hold, i.e. if a(x) is
strictly positive, Theorems 5.1, 5.3, and 5.5 provide some partial answers on the large time
behaviors of solutions, which illustrate that the non-diffusing and diffusing populations can
coexist in environments without sinks. We also note that Theorem 1.3 can not hold without
the condition (1.8).
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2 Preliminaries

In this section we recall a few results from the literature on the single species model that will
be needed for our discussion and prove Theorem 2.2 (see below). It turns out that Theorem
2.2 will be essential for our proof of Theorem 1.3.
We first consider the single species equation











ut = d∆u+ u(a(x) − u) x ∈ Ω, t > 0,
∂u
∂n

= 0 x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) x ∈ Ω.

(2.1)

We denote by u(x, t;u0) the classical solution of (2.1). Next, we let u∗(x) denotes the unique
non-negative steady solution of (2.1) attracting all positive solutions of (2.1). The existence
of u∗(x) is well known; see [2]. Throughout this section we shall suppose that u∗(x) > 0.
Hence, u∗(x) is the only solution of the elliptic equation











0 = d∆u∗ + u∗(a(x)− u∗) x ∈ Ω,

u∗(x) > 0 x ∈ Ω,
∂u∗

∂n
= 0 x ∈ ∂Ω.

(2.2)

Hence, for every non-negative and not identically zero initial function u0 ∈ C(Ω), it holds
that

lim
t→∞

‖u(t, ·;u0)− u∗(·)‖∞ = 0. (2.3)

Note that a sufficient condition to ensure that u∗(x) > 0 is to require that
∫

Ω a(x)dx > 0.
Note also that u(x, t;u∗) = u∗(x) for every x ∈ Ω, t ≥ 0. It is important to note that u∗(x) is
not a constant function. Indeed, otherwise, by (2.2), we would have that a(x) = u∗(x) for all
x ∈ Ω. So, a(x) must also be a constant function, which contradicts our standing assumption
on a(x). We note that the constant solution u(x, t) := ‖a‖∞, is a super-solution of (2.1),
hence by (2.3), the fact that u∗(x) is not a constant function, and the comparison principle
for scalar parabolic equations, we must have that

u∗(x) = inf
t>0

u(t, x; ‖a‖∞) < ‖a‖∞, x ∈ Ω.

Thus, since u(x) := ‖a‖∞ is a super-solution of (2.2), it follows by Hopf boundary lemma
that

max
x∈Ω

u∗(x) < ‖a‖∞. (2.4)

The following result holds.

Lemma 2.1. There holds that
∫

Ω
u∗(x)(a(x) − u∗(x))dx = 0, (2.5)

and

Ω∗ := {x ∈ Ω : a(x)− u∗(x) > 0} 6= ∅. (2.6)

4



Proof. Integrating the first equation in (2.2), then use integration by part formula yields
(2.5). Observe that (2.6) easily follows from (2.4).

Next, we consider the sequence {u∗k}k≥0 with u∗0(x) = u∗(x) defined as follows. Suppose
that u∗k(x) is being defined, we let u∗k+1(x) denotes the unique non-negative attracting set of
solutions of the PDE

{

ut = d∆u+ u(a(x)− [a(x)− u∗k(x)]+ − u), x ∈ Ω, t > 0,
∂u
∂n

= 0 x ∈ ∂Ω, t > 0,
(2.7)

where we adopt the conventional notation [a(x)−u∗k(x)]+ = max{0, a(x)−u∗k(x)}. Note that
u∗k+1(x) is a non-negative steady state solution of (2.7) for every k ≥ 0. Let uk+1(t, x;w)
denotes the solution of (2.7) with uk+1(0, x) = w(x). We prove the following result.

Theorem 2.2. Let {u∗k}k≥0 be defined as above.

(i) u∗k+1(x) ≤ u∗k(x) for every x ∈ Ω and k ≥ 0.

(ii) It holds that

lim
k→∞

‖u∗k − [amin]+‖∞ = 0, (2.8)

where amin := minx∈Ω a(x) and [amin]+ = max{0, amin}.

Proof. (i) We prove this by induction. We first note u∗0(x) = u∗(x) is super-solution of (2.7)
with k = 0 and initial condition u∗(x). Hence, by the comparison principle for parabolic
equations, we obtain that

u∗1(x) = lim
t→∞

u1(t, x;u
∗
0) ≤ u1(1, x;u

∗
0) ≤ u∗0(x), ∀ x ∈ Ω.

Suppose by induction hypothesis that (i) holds for k = 1, · · · ,m, with m ≥ 1. As in the
previous case we note that u∗m(x) is also a super-solution of (2.7) with k = m− 1 and initial
condition u∗m(x) because a(x) − (a(x) − u∗m(x))+ ≤ a(x) − (a(x) − u∗m−1(x))+ by induction
hypothesis. Therefore similar arguments yields that the result also holds for k = m+ 1.

(ii) By (i), we have that u∗k(x) → U∗(x) as k → ∞ for some U∗ ∈ L∞(Ω). Moreover, since
supk≥0 ‖u

∗
k‖ ≤ ‖a‖∞, by estimates for elliptic equations, we have that u∗k(x) → U∗(x) ∈

W 2,p(Ω) for every p > N , and U∗(x) satisfies

{

0 = d∆U∗ + U∗(a(x)− [a(x)− U∗(x)]+ − U∗) x ∈ Ω,
∂U∗

∂n
= 0 x ∈ ∂Ω.

(2.9)

Observe that a(x) − [a(x)− U∗(x)]+ − U∗ = − [a(x)− U∗(x)]− and integrating the first
equation of (2.9) yields that

∫

Ω
U∗ [a(x)− U∗(x)]− dx = 0,

5



which implies that
U∗(x) [a(x)− U∗(x)]− = 0, (2.10)

since x 7→ U∗(x) [a(x)− U∗(x)]− is continuous. Thus, since U∗(x) ≥ 0, we conclude that

0 ≤ U∗(x) ≤ max{0, a(x)} ∀ x ∈ Ω.

Hence, by (2.9), we conclude that U∗(x) = c∗ for some non-negative constant c∗. So, by
(2.10), we obtain that c∗ ≤ [amin]+. Hence if [amin]+ = 0, the result follows. So, it remains
to consider the case [amin]+ > 0. That is, [amin]+ = amin > 0. In this case, it is clear that
u(t, x) = amin is a sub-solution of (2.7) with initial condition amin. Hence, we have

amin ≤ lim
t→∞

uk(x, t; amin) = u+k (x) ∀x ∈ Ω, k ≥ 0.

As a result, we have that amin ≤ U∗(x) = c∗ ≤ amin. This completes the proof.

3 Proof of Proposition 1.2

In this section we present the proof of Proposition 1.2. We start with the local existence of
classical solutions.

Lemma 3.1. For every u0, v0 ∈ [C(Ω)]+, there is a unique Tmax > 0 such that (1.1) has a

unique classical solution (u(x, t;u0, v0), v(x, t;u0, v0)) satisfying (u(x, 0;u0, v0), v(x, 0;u0, v0)) =
(u0(x), v0(x)) on [0, Tmax)× Ω. Moreover, if Tmax < ∞, then

lim
t→T−

max

‖u(·, t;u0, v0)‖∞ = +∞. (3.1)

Proof. We first note that if (1.1) has a local classical solution on some [0, T )×Ω, the unique-
ness and extension criterion (3.1) follows from classical extension argument in the literature.
Therefore, we will only show that (1.1) has a local classical solution. We used fixed point
arguments to prove the result. Let R > ‖u0‖∞ and T > 0 be given, and define

SR,T := {u ∈ C([0, T ] : C(Ω)) : u(x, 0) = u0(x) and ‖u‖∞ ≤ R}

endowed with sup-norm. Next, for every λ > ‖a‖∞ + R and u ∈ SR,T , define the integral
operator

T (u)(t) = Tλ,d(t)[u0] +

∫ t

0
Tλ,d(t− s)[(λ+ a− u(s)− V(u)(s))u(s)]ds (3.2)

where

V(u)(s) =
v0(x)e

∫ t

0
(a(x)−u(x,s))ds

1 + v0(x)
∫ t

0

[

e
∫ s

0
(a(x)−u(x,τ))dτ

]

ds
(3.3)
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and Tλ,d(t) denotes the analytic c0−semigroup generated by Apu = d∆u− λu on Lp(Ω) with
Dom(Ap) = {w ∈ W 2,p(Ω) : ∂w

∂n
= 0 on ∂Ω}. It is clear from (3.3) that

V(u) ∈ C([0,∞) : [C(Ω)]+) ∩ C1((0,∞) : C(Ω)) ∀u ∈ SR,T , (3.4)

with
∂tV(u) = (a− u− V(u))V(u), (3.5)

and
lim
t→∞

‖V(u)(t) − v0‖C(Ω) = 0. (3.6)

We note that by considering

Dom(A) := {u ∈ W 2,p(Ω), p > N, ∂u
∂n

= 0 on ∂Ω, Au ∈ C(Ω)}

where Au = d∆u − λu, it is well known (see [14, Theorem 2]) that A generates an analytic
semigroup on C(Ω), given by Tλ,p(t). Thus it follows from (3.2) that T (u) ∈ C([0, T ] : C(Ω))
for every u ∈ SR,T . Note from the choice of λ that u(x, t) ≥ 0. Hence, the maximum principle
implies that T (u) ∈ C([0, T ] : [C(Ω)]+) for every u ∈ SR,T .
Next, we show that for 0 < T ≪ 1, the map T maps SR,T into itself. Indeed, this easily
follows from the continuity of the maps T at t = 0, since limt→0 T (u)(t) = u0 uniformly in
u ∈ SR,T and ‖u0‖C(Ω) < R.
Finally, we claim that the map T is a contraction for 0 < T ≪ 1. To this end, observe that
it is enough to show that the map t 7→ V(u)(t) is Lipschitz continuous. This in turn follows
from the fact that

∣

∣

∣
e
∫ t

0
(a(x)−u1(x,s))ds − e

∫ t

0
(a(x)−u2(x,s))ds

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

0
(u1(x, s)− u2(x, s))ds

∣

∣

∣

∣

sup
θ∈[0,1]

e
∫ t

0
[θu1(x,s)+(1−θ)u2(x,s)]ds

≤TeRT ‖u1 − u2‖SR,T
, (3.7)

for every u1, u2 ∈ SR,T , where we have used the mean-value theorem. Therefore, for 0 < T ≪
1, it follows from the contraction mapping theorem that the map SR,T ∋ u 7→ T (u) ∈ SR,T

has a unique fixed point.
To complete the proof of the regularity of the function [0, T ] ∋ t 7→ u(·, t) ∈ C([0, T ] : C(Ω))
we set

f(t) = (λ+ a− u(t)− v(t))u(t)

where v(t) = V(u)(t) and show that the function (0, T ) ∋ t 7→ f(t) ∈ C(Ω) is locally Hölder
continuous. Hence, the regularity follows by [1, Theorem 1.2.1, Page 43]. Again by the
regularity of v(t), to show that f(t) is locally Hölder continuous, it is enough to show that
the function

t 7→ u(t) ∈ C(Ω) (3.8)
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is locally Hölder continuous. Let 0 < α < 1 and let Xα denotes the fractional power space of
−Ap. By Lp − Lq estimates, there exist constants cα > 0 and ω > 0 such that

‖(Tλ,p(h)− I)Tλ,p(t)w‖C(Ω) ≤ cαh
αt−αe−ωt‖w‖C(Ω) ∀w ∈ C(Ω).

Therefore, for every 0 < t < t+ h < T , we have

‖u(t+ h)− u(t)‖C(Ω)

≤‖(Tλ,d(h)− I)Tλ,d(t)u0‖C(Ω) +

∫ t

0
‖(T (h) − I)T (t− s)f(s)‖C(Ω)ds

+

∫ t+h

t

‖T (t+ h− s)f(s)‖C(Ω)ds

≤M (hα + hα + h) ,

whereM is a constant depending on R,α, p and T . As a result, we have the desired result.

Next, we complete the proof of Proposition 1.2.

Proof of Proposition 1.2. Let u0, v0 ∈ [C(Ω)]+ be given and let (u(x, t;u0, v0), v(x, t;u0, v0))
denotes the classical solution given by Lemma 3.1. Since v(x, t;u0, v0) ≥ 0, we have that

ut ≤ d∆u+ u(a(x)− u), ∀x ∈ Ω, t ∈ (0, Tmax). (3.9)

Hence, the comparison principle implies that u(x, t;u0, v0) ≤ max{‖u0‖∞, ‖a‖∞} for all x ∈ Ω
and t ∈ (0, Tmax). So, by (3.1), we conclude that Tmax = +∞. Again by (3.9) and the
comparison principle for parabolic equations, we have that lim supt→∞ ‖u(·, t;u0, v0)‖∞ ≤
‖a‖∞. Similar arguments yield that lim supt→∞ ‖v(·, t;u0, v0)‖∞ ≤ ‖a‖∞.

4 Proof of Theorem 1.3

In this section, we present the proof of Theorem 1.3. Throughout this section we suppose
u0(x) and v0(x) are chosen fixed and satisfy the assumption of Theorem 1.3. We first prove
a few preliminary results.

Lemma 4.1. It holds that

lim inf
t→∞

v(x, t;u0, v0) ≥ [a(x)− u∗(x)]+, ∀ x ∈ Ω, (4.1)

where u∗(x) is given by (2.2). In particular, the first species can not drive the second species

to extinction.
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Proof. Since v(x, t;u0, v0) ≥ 0 for every x ∈ Ω and t ≥ 0, it follows that u(x, t;u0, v0) ≤
u(x, t;u0) for all x ∈ Ω and t ≥ 0, where u(x, t;u0) denotes the unique classical solution of
(2.1). Thus, by (2.3), it holds that

lim sup
t→∞

sup
x∈Ω

[u(x, t;u0, v0)− u∗(x)] ≤ lim sup
t→∞

sup
x∈Ω

[u(x, t;u0)− u∗(x)] = 0.

So, for every ε > 0 there is tε ≫ 1 such that u(x, t;u0, v0) < u∗(x) + ε for all x ∈ Ω and
t ≥ tε. Whence, from the second equation in (1.1), we deduce that

vt ≥ v(a(x) − u∗(x)− ε− v), ∀t ≥ tε, x ∈ Ω. (4.2)

The comparison principle for ODEs thus implies that

lim inf
t→∞

v(x, t;u0, v0) ≥ [a(x)− u∗(x)− ε]+ , x ∈ Ω.

Letting ε → 0+ in the last inequality leads to (4.1). The last statement of Lemma 4.1 follows
from Lemma 2.1 and inequality (4.1).

Next, we improve the previous Lemma to

Lemma 4.2. Suppose that u∗(x) > 0. For every x0 ∈ Ω∗, it holds that

lim inf
t→∞

v(x, t;u0, v0) > a(x0)− u∗(x0) > 0.

Furthermore, there exist 0 < ε0 ≪ 1 and T0 ≫ 1 such that

u(x, t;u0, v0) ≤ (1− ε0)u
∗(x), ∀t ≥ T0, x ∈ Ω. (4.3)

Proof. Let x0 ∈ Ω∗ and set

v(x0) := lim inf
t→∞

v(x0, t;u0, v0).

By Lemma 4.1 and the comparison principle for ODEs, it holds that

a(x0) ≥ v(x0) ≥ a(x0)− u∗(x0) > 0. (4.4)

Let µ > 0 so that
mµ := min{a(x)− u∗(x), |x− x0| ≤ µ} > 0.

By (4.2), for every β > 1, there is tβ ≫ 1 so that

v(x, t;u0, v0) ≥
1

β
mµ, ∀ t ≥ tβ, |x− x0| ≤ µ.
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So we can perturb a(x) around x0 and get a function aβ(x) satisfying























a(x)− v(x, t;u0, v0) ≤ aβ(x), ∀x ∈ Ω, t ≥ tβ;

aβ(x) ≤ a(x), ∀x ∈ Ω;

aβ(x) = a(x), |x− x0| ≥ µ;

aβ(x0) < a(x0).

Let u∗β denote the unique positive solution of (2.2) with a(x) being replaced by aβ(x). Hence,
it holds that

u(x, t;u0, v0) ≤ uβ(x, t;u(·, tβ , u0, v0)), ∀ t ≥ tβ, (4.5)

where uβ(x, t;u(·, tβ , u0, v0)) denotes the classical solution of (2.1), with a(x) being replaced
by aβ , satisfying uβ(x, tβ ;u(·, tβ , u0, v0)) = u(x, tβ , u0, v0). Similarly, as in the proof of Lemma
4.1, we have that

lim inf
t→∞

v(x, t;u0, v0) ≥ [a(x)− u∗β(x)]+, ∀ x ∈ Ω.

But since u∗β(x) is a sub-solution of (2.2), by the comparison principle, it holds that

u∗β(x) < u∗(x), ∀ x ∈ Ω. (4.6)

Hence
v(x0) ≥ a(x0)− u∗β(x0) > a(x0)− u∗(x0).

Now, observe from (4.5) that

lim sup
t→∞

sup
x∈Ω

[u(x, t;u0, v0)− u∗β(x)] ≤ 0.

This together with (4.6) yield the last assertion of the Lemma.

Theorem 4.3. Suppose that u∗(x) > 0. Let ε0 > 0 be given by Lemma 4.2. It holds that

lim inf
t→∞

v(x, t;u0, v0) ≥ [a(x)− (1− ε)u∗(x)]+, uniformly in x ∈ Ω (4.7)

for every 0 ≤ ε < ε0.

Proof. Let 0 ≤ ε < ε0 be fixed. Note that it is enough to show that (4.7) holds on the set
Ωε := {x ∈ Ω : a(x) ≥ (1− ε)u∗(x)}. For, by Lemma 4.2, we have that

vt ≥ v(a(x) − (1− ε0)u
∗ − v), ∀ t ≥ T0, x ∈ Ω.

Hence, by the comparison principle for ODEs, we conclude that
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v(x, t;u0, v0) ≥

1

e−(a(x)−(1−ε0)u∗(x))(t−T0)
[

1
v(x,T0;u0,v0)

− 1
(a(x)−(1−ε0)u∗(x))

]

+ 1
a(x)−(1−ε0)u∗(x)

(4.8)

for every x ∈ Ωε and t ≥ T0. Observe that

sup
x∈Ωε

∣

∣

∣

∣

1

v(x, T0;u0, v0)
−

1

(a(x)− (1− ε0)u∗(x))

∣

∣

∣

∣

< ∞

and

sup
x∈Ωε

e−(a(x)−(1−ε0)u∗(x))(t−T0) ≤ sup
x∈Ωε

e−(ε0−ε)u∗(x)(t−T0)

≤e−(ε0−ε)u∗
inf

(t−T0) → 0 as t → ∞.

Hence, we conclude that the expression at the right hand side of the inequality (4.8) converges
to a(x) − (1 − ε0)u

∗(x) uniformly on Ωε, which combined with inequality (4.8) and the fact
that ε0 > ε lead to (4.7).

Lemma 4.4. Let {u∗k}k≥0 be the sequence of Theorem 2.2. Then for every k ≥ 0 such

that u∗k(x) > 0 there is εk > 0 such that lim inft→∞ v(t, x;u0, v0) ≥ [a(x) − (1 − εk)u
∗
k(x)]+

uniformly in x ∈ Ω.

Proof. Let k ≥ 0 such that u∗k(x) > 0. If k = 0, the result follows from Theorem 4.3. So, we
may suppose that k ≥ 1. Let

K = max{j : 0 ≤ j ≤ k such that the lemma holds}.

We will show that K = k. Suppose not. Hence 0 ≤ K ≤ k − 1. Since k > K, by Theorem
2.2(i) we note that minx∈Ω u∗K ≥ minx∈Ω u∗k > 0. Now, by induction hypothesis, for every
0 ≤ ε < εK , there is Tε ≫ 1 such that

ut ≤ d∆u+ u(a− [a(x)− (1− ε)u∗K(x)]+ − u), ∀ t ≥ Tε.

Let u∗K+1,ε(x) denotes the unique non-negative attracting solution of

{

ut = d∆u+ u(a(x) − [a(x)− (1− ε)u∗K(x)]+ − u), x ∈ Ω, t > 0,
∂u
∂n

= 0, x ∈ ∂Ω, t > 0.
(4.9)

Note that u∗K+1,ε(x) is a non-negative steady state solution of (4.9). Since u(x, t;u0, v0) is a
sub-solution of (4.9) for t ≥ Tε, we then conclude that

lim sup
t→∞

sup
x∈Ω

[u(x, t;u0, v0)− u∗K+1,ε(x)] ≤ 0. (4.10)
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It is clear that u∗K+1,ε(x) < u∗K+1(x) for every x ∈ Ω. Hence, by (4.10), there exist ε̃K+1 > 0
and TK+1 ≫ 1 such that

u(x, t;u0, v0) ≤ (1− ε̃K+1)u
∗
K+1(x), ∀t ≥ TK+1, x ∈ Ω. (4.11)

Observe that inequality (4.11) is equivalent to inequality (4.3). Therefore, by the arguments
of the proof of Theorem 4.3, we can show that there is 0 < εK+1 ≪ 1 such that

lim inf
t→∞

v(x, t;u0, v0) ≥ [a(x)− (1− ε)u∗K+1(x)]+

uniformly in x ∈ Ω for all 0 ≤ ε < εK+1. Hence we must have that K ≥ K + 1, which is
absurd. Therefore K = k.

Now, we present the proof of Theorem 1.3.

Proof of Theorem 1.3. We suppose a(x) satisfies hypothesis (1.7). We first note that when
u∗ ≡ 0, then the result easily follows from Lemma 4.1. So, we may suppose that u∗ > 0.
Hence by Theorem 2.2 (ii), we have that ‖u∗k‖∞ → 0 as k → ∞. Thus, by Lemma 4.4, we
conclude that lim inft→∞ v(x, t;u0, v0) ≥ a+(x) for every x ∈ Ω. On the other hand, since
u(x, t;u0, v0) ≥ 0 for every x ∈ Ω and t ≥ 0, it follows from the comparison principle for ODEs
that lim supt→∞ v(x, t;u0, v0) ≤ a+(x) for every x ∈ Ω. Hence, limt→∞ v(x, t;u0, v0) = a+(x)
uniformly in x and accordingly, limt→∞ ‖u(·, t;u0, v0)‖∞ = 0 uniformly in x.

5 Dynamics of solutions of (1.1) when a(x) is strictly positive

This section is devoted to the study of dynamics of system (1.1) when a(x) is strictly positive,
i.e. amin > 0. Thanks to Theorem 2.2 and Lemma 4.4, we have the following a priori estimate
on the solutions of (1.1):

Theorem 5.1. Suppose that amin > 0. Then for every non-negative and not identically zero

initial condition u0(x), v0(x) ∈ C(Ω) satisfying

{x ∈ Ω : v0(x) = 0} ⊂ {x ∈ Ω : a(x) = amin}, (5.1)

we have that

lim sup
t→∞

sup
x∈Ω

u(x, t;u0, v0) ≤ amin, (5.2)

and

lim inf
t→∞

v(x, t;u0, v0) ≥ [a(x)− amin]+ uniformly in x ∈ Ω. (5.3)

Note that (5.1) automatically holds if v0(x) > 0 for all x ∈ Ω̄. In particular, Theorem 5.1
applies when u0 is non-negative and v0 > 0 in Ω̄.
Next, we find a sufficient condition on (u0, v0) to ensure that the equality holds for (5.2). We
start with the following lemma.
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Lemma 5.2. Suppose that 0 < min{u0min, v0min}. Let (u, v)(x, t;u0, v0) be the classical

solution of (1.1) and define

M(t) :=

∫

Ω
ln(

v

u
)dx. (5.4)

Then
d

dt
M(t) = −d‖|∇ lnu(·, t;u0, v0)|‖

2
L2(Ω). (5.5)

Hence,

M(t) = M(0)− d

∫ t

0
‖|∇ ln u(·, s;u0, v0)|‖

2
L2(Ω)ds, ∀t ≥ 0. (5.6)

Proof. Notice form (1.1) that

∂t ln(
v

u
) =

vt

v
−

ut

u
= −d

∆u

u

Hence, integrating with respect to the space variable yields

d

dt

∫

Ω
ln(

v

u
)dx = −d

∫

Ω

∆u

u
dx = d

∫

Ω
< ∇(

1

u
),∇u > dx = −d

∫

Ω

|∇u|2

u2
dx.

Hence the lemma holds.

We introduce the following definition:

M# =
{

∫

Ω ln(
a(x)−amin

amin
)dx if ln(

a(x)−amin

amin
)dx ∈ L1(Ω; cr −∞ otherwise. (5.7)

Theorem 5.3. Suppose that 0 < min{u0min, v0min}. If

M(0) =

∫

Ω
ln(

v0(x)

u0(x)
)dx ≤ M#, (5.8)

then

lim sup
t→∞

sup
x∈Ω

u(x, t;u0, v0) = amin. (5.9)

Proof. Suppose to the contrary that (5.9) is false. Then by Theorem 5.1, there exist ǫ ∈
(0, amin) and Tε ≫ 1 such that

u(x, t;u0, v0) < amin − ε and v(x, t;u0, v0) ≥ a(x)− amin + ε ∀ x ∈ Ω, t ≥ Tε.

Hence
∫

Ω
ln(

a(x)− amin + ε

amin − ε
)dx ≤ M(t), ∀ t ≥ Tε,
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which combined with (5.6) yield that, for t ≥ Tε,

∫

Ω
ln(

a(x)− amin + ε

amin − ε
)dx ≤ M(t) = M(0) − d

∫ t

0
‖|∇ lnu(·, s;u0, v0)|‖

2
L2(Ω)ds. (5.10)

Observe that

a(x)− amin + ε

amin − ε
<

a(x)− amin + ε̃

amin − ε̃
, ∀x ∈ Ω, ε < ε̃ < amin.

Hence, it follows from (5.10) that M# < M(0), contradicting (5.8). Thus we must have that
(5.9) holds.

Remark 5.4. We note the collection of functions (Uc(x), Vc(x)) = (c, a(x)− c) with 0 < c <

amin, forms a continuum of positive steady states of (1.1). In particular, for (u0(x), v0(x)) =
(amin, a(x) − amin), we have that M(0) = M# and u(x, t;u0, v0) = amin for all t ≥ 0 and

x ∈ Ω.

For (xi, yi) ∈ R
2 we define the partial order

(u1, v1) - (u2, v2) ⇔ u1 ≤ u2 and v1 ≥ v2.

As a consequence of Remark 5.4 and Theorem 5.1, we obtain the following result.

Theorem 5.5. Suppose that (u0, v0) satisfy (5.1). If in addition, (u0(x), v0(x)) satisfy

(amin, a(x)− amin) - (u0(x), v0(x)), ∀ x ∈ Ω, (5.11)

then

lim
t→∞

(u(x, t;u0, v0), v(x, t;u0, v0)) = (amin, a(x)− amin), ∀x ∈ Ω. (5.12)

Proof. By the comparison principle for competitive systems, it holds that

(amin, a(x)− amin) - (u(x, t;u0, v0), v(x, t;u0, v0)), ∀ t ≥ 0, x ∈ Ω.

Thus, the result follows from Theorem 5.1.

We conclude with some comments on Theorems 5.3 and 5.5. We first note that the hypotheses
of Theorem 5.5 implies that {x ∈ Ω : v0(x) = 0} = {x ∈ Ω : a(x) = amin}. In Theorem 5.3,
the hypothesis that 0 < min{u0min, v0min} was essential to justify that M(t) is well defined
by noticing that 0 < min{umin(t), vmin(t)} for every t ≥ 0. Note that the right hand side of
equation (5.6) clearly suggests that M(t) might be well defined under a more general weaker
assumption. Now, if M(0) is well defined, then (5.11) implies that M(0) ≤ M#. Thus, we
clearly see that these two theorems only complement each other and one does not imply the
other. Moreover, they both provide sufficient conditions for the first species u(x, t) to reach
its possible maximum state at infinity when (5.1) holds.
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