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ABSTRACT

We present a method to apply simulations to the tracking of a live event such as an evacuation. We assume
only a limited amount of information is available as the event is ongoing, through population-counting
sensors such as surveillance cameras. In this context, agent-based models provide a useful ability to
simulate individual behaviors and relationships among members of a population; however, agent-based
models also introduce a significant data-association challenge when used with population-counting sensors
that do not specifically identify agents. The main contribution of this paper is to develop an efficient
method for managing the combinatorial complexity of data association. The key to our approach is to map
from the state-space to an alternative correspondence-vector domain, where the measurement update can
be implemented efficiently. We present a simulation study involving an evacuation over a road network
and show that our method allows close tracking of the population over time.

1 INTRODUCTION

Microsimulations and agent-based simulations are increasingly being used to model complex social phe-
nomena, including disaster planning (Barrett et al. 2013), crime (Rosés et al. 2018), environmental effects
on health (Yang et al. 2018), infectious disease epidemics (Halloran et al. 2008), and more (e.g., Zhang
et al. 2015; Rai and Henry 2016; Rammer and Seidl 2015). These simulations integrate data from multiple
sources and model large numbers of agents. The focus of this type of work tends to be on explanation,
forecasting, and evaluating possible interventions. In situations where the phenomena to be modeled are
dynamic and of short duration, such as disaster response, this limits the application of simulations to
preparedness and planning beforehand, and explanation and analysis after the fact.

In the present work, we discuss how the use of agent-based simulations can be extended to live tracking
of an ongoing event. This would enable the use of simulation-based technology in real-time situations, such
as an ongoing disaster response. A crucial problem in such situations is state estimation, i.e., understanding
what is happening on the ground, where people are, and how conditions are evolving. A detailed agent-based
simulation in principle offers a method for modeling conditions in real-time, insofar as it allows a natural
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representation of individuals, behaviors, infrastructure, etc., as opposed to more stylized models that might
use systems of differential equations or other mathematical formalisms. In practice, however, the discrete
nature of the agent-based representation makes it a challenge to use simple filtering approaches other than
to track means and variances of numbers of agents (e.g., Ward et al. 2016).

We envision a scenario where an agent-based simulation is used for live tracking of an event by
continual updates to the simulation through limited sensing of the real world. We take a particle filtering
approach, where states are estimated for a number of agents roughly equal to the number of individuals
in the population of interest. The main challenge here is a data association problem, i.e., determining
which observation should be associated with which agent in the simulation. If an observation were to
uniquely identify an agent, this problem would be trivial, but unique identification is not generally possible
for population counting sensors, like video surveillance cameras, that would likely be used to support
evacuation and disaster-response applications. Although data association methods have been developed
for radar applications where target identity is ambiguous (Avitzour 1992), such strategies tend to rely on
probabilistic data association (Schoenecker, Willett, and Bar-Shalom 2014) methods that scale poorly for
large numbers of targets (hundreds, thousands, or even millions of targets), as is relevant for evacuation
applications. Our solution is to introduce a novel correspondence vector (c-domain) representation, where
we perform the measurement update in a way that correlates estimated agent states efficiently, but that
otherwise allows agents states to evolve independently to ensure both robust state-space exploration and
computational efficiency.

For the purpose of developing our method, we rely on a simulated “ground truth”. Our eventual goal
is to substitute a real population for this simulated ground truth; however, the use of simulated ground
truth aids in exploring the space of possible environments, agent distributions, agent behaviors and sensor
distributions, important in the initial phases of algorithm development. The particle-filter estimator is a
second simulation that runs in parallel with the ground-truth simulation. The only interfaces between the
ground truth and the particle filter are the modeled sensors, which provide a noisy count of population at
specific locations.

The paper is organized as follows. After we briefly describe our ground truth model, we present our
estimation method in detail. This is followed by experiments to show the performance of our approach
and a discussion of the challenges, limitations, and future directions of this work.

2 GROUND TRUTH AND SIMULATION

We first describe the “ground truth” simulation. This represents a simplified evacuation scenario. We
represent a road network as a graph, where two special “exit” nodes are marked. A population of agents
moves over this graph, attempting to reach the exit nodes. Some agents are parts of groups (such as
families), and first try to meet up with their group members before heading towards exit nodes. This is
not meant to be a realistic evacuation simulation. It is a toy test-bed, but with enough complexity that we
can demonstrate the efficacy and generalizability of our method.

The main components of the simulation are:

• A population of agents,
• A road network, and
• A behavior model.

We describe each of these next, as well as the format of the resulting outputs.

2.1 Population

The agent population is organized into groups of different sizes, from 1 to 4. Groups of size 1 are referred
to as individuals, and the rest are referred to as group agents. Each agent is assigned an age that is relevant
to behavior, as we describe further below.
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Figure 1: Map of the simulated environment, consisting of 100 nodes.

Groups correspond to families and are assigned appropriate ages and genders. In particular, children
(i.e., agents with age less than 18) are always group agents.

A distribution over group sizes governs the relative numbers of individuals and group agents that are
generated. In the experiments in this paper, we generated a population of 100 agents, of whom 50 were
individual agents and 50 were group agents. The latter were divided into 10 groups of size 2, 6 groups of
size 3, and 3 groups of size 4.

2.2 Road Network

The evacuation is assumed to be taking place over a road network. We model this as a graph embedded
in two dimensions. To construct the graph, we generate a collection of random points in a square area
and connect each point to its k nearest neighbors. The points correspond to the nodes in the network and,
thus, each node has a corresponding (x,y) location. The road network used in the simulations presented
in the following sections is shown in Figure 1. Two nodes were randomly selected as exit nodes. These
are marked in light blue in Figure 1.

In our simple model, agents are assumed to be at the nodes (corresponding to intersections), and to
move exactly one hop in a time step (if they choose to move at all). In reality, of course, both these
assumptions are unrealistic, but they suffice for a toy model to test our method.

In the simulation, we also precompute the shortest path from each node to the closest exit node. This
is helpful in implementing some of the behaviors efficiently, as described next. In the simulations used in
this paper, we generated a road network with 100 nodes, where each node is connected to its four nearest
neighbors.

2.3 Behavior

We implement four different behaviors:

• Rendezvous: In this behavior, agents belonging to a group move towards a pre-defined rendezvous
location, which represents an agreed meeting point where the group will convene, even in the
absence of communication. Rendezvous nodes are shown in green in Figure 1. Once agents arrive
at the rendezvous, they transition to the stay behavior.
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Figure 2: Block diagram showing key elements of particle filter including domain conversion.

• Stay: In this behavior, agents belonging to a group stay at the rendezvous node and do not move.
This behavior is executed until all group members arrive at the rendezvous. Thereafter agents switch
to the evacuation behavior.

• Evacuation: This is the behavior where an agent heads towards the closest exit node. The behavior
is implemented efficiently by using precomputed shortest paths from all nodes to the closest exit
node. Individual agents begin with this behavior.

• Exited: Once an agent exhibiting the evacuation behavior reaches an exit node, it transitions to
the exited behavior, and remains at the exit node for the rest of the simulation.

In addition to these four behaviors, we also implement a “do-nothing” behavior, where, with a small
probability, an agent in the evacuation or rendezvous behavior stays at its current node for one time step.
This behavior is introduced as process noise, so that the estimator model does not perfectly predict the
ground truth.

2.4 Sensing

Sensors are assumed to be deployed at a specific subset of nodes (marked in yellow in Figure 1), where
they count the total population of agents at those nodes. Noisy population counts for those nodes are passed
to the state estimator at each time step. The particle-filter estimator then infers agent states that cannot
be directly sensed, including agent behaviors and the locations of agents not collocated with a sensor.
The sensors are the only interface between the ground-truth simulation and state-estimation simulation, as
shown in Figure 2. The sensor data are critical for steering the state-estimator (described in the following
section), so that the state estimates do not diverge from the ground truth due to unknown initial conditions,
sensor noise, and modeling errors.

3 STATE ESTIMATION AND C-DOMAIN CONVERSION

This section provides a mathematical model of the state estimator, including sensor modeling and data
association. Data association is critical since the population-counting sensors provide only aggregate
measurements and not specific information about the identity of individual agents in the true population.
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3.1 State definition

In our current simulations, it is assumed the total number of agents N is known. Each agent n is described
by a position state (n)zk and a behavior state (n)bk, so that the agent’s state vector is:

(n)xk =

[
(n)zk
(n)bk

]
(1)

The joint state for all agents is Xk = {(n)xk|n ∈ [1,N]}. Note that both the location state and behavior state
are integers, with the location state referring to the index of a node in the graph and the behavior state
referring to one of the set of behaviors defined in Section 2.3.

The evolution of the joint state-space is modeled with a particle filter (Thrun, Burgard, and Fox 2005),
whose structure is illustrated in Figure 2. The filter estimates the density function for the joint state
distribution at each time step k as:

Ppop(Xk) = ∏
n∈[1,N]

Pag
(
(n)xk

)
(2)

Here the subscript pop refers to the joint state for the entire synthetic population, while the subscript ag
refers to the state for each individual agent. In order to reduce the dimension of the state space and make
computations efficient, correlations between agents are not modeled explicitly in the estimated distribution
(2); instead, we introduce correlations through Metropolis-Hastings (M-H) resampling, as has previously
been proposed for efficient multi-agent tracking, for instance by (Khan, Balch, and Dellaert 2004). In (2),
the probability distribution for each agent is a mixture of distributions over a set of M particles, where
each particle represents a kernel with limited local support. The mixture distribution is

Pag
(
(n)xk

)
=

1
M ∑

m∈[1,M]

Ppa
(
(n)xk; (m,n)x̂k

)
(3)

Each vector (m,n)x̂k is a parameter vector describing the m-th particle for the n-th agent. Each such vector
consists of three parameters: (m,n)µ̂k, (m,n)α̂k, and (m,n)b̂k. The first two parameters describe the local support
for the location distribution, with µ indicating the distribution mode and α representing a distance roll-off
factor. The behavior state is assigned a specific value, with no local support. Each particle’s contribution
to the mixture distribution is

Ppa
(
(n)xk; (m,n)x̂k

)
=

1
(m,n)Qk

e−
1
2

(
(m,n)α̂k dist[(m,n) µ̂k,

(n)zk]
)2

δ

((m,n)
b̂k−(n) bk

)
(4)

The exponential term describes a quasi-Gaussian distribution over the location graph, with the dist function
measuring graph distance and with probability decaying as the square of graph distance. The scalar Qk
normalizes the exponential so that the location distribution integrates to unity. The δ term represents a unit
indicator function, which concentrates all probability on a particular behavior state.

3.2 Prediction

Our estimator uses a conventional Bayesian prediction step, where the prediction is evaluated as an integral
over the space X of all possible states:

P(Xk+1|Yk) =
∫

Xk∈X
P(Xk+1|Xk)P(Xk|Yk)dXk (5)

In our implementation, we assume that the process noise is negligible, such that the model dynamics
given by P(Xk+1|Xk) are deterministic. Though deterministic, dynamics depend on agent behavior, so
there is potential for bifurcation of the state distribution in cases where behavior is uncertain. To keep
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our implementation as simple as possible, we assume that the prediction step can change mode location
µ and behavior b, but not the inverse-length scale α . In general terms, the previous corrected parameters
(indicated by a “+” superscript) are mapped through a nonlinear function g to obtain the predicted parameters
(indicated by a “−” superscript) at the next time step. The nonlinear mapping includes g1, a behavior-gated
model of particle motion, and g3, a behavior-change model.

(m,n)x̂−k+1 = g
(
(m,n)x̂+k

)
=


g1
(
(m,n)µ̂+

k , (m,n)b̂+k
)

(m,n)α̂+
k

g3
(
(m,n)b̂+k

)

 (6)

The location-change model g1 advances each agent along one edge of the graph towards its target node
when the behavior is rendezvous or evacuation; otherwise the agent remains at the same node. The
behavior-change model g3 is implemented as a finite state machine that cascades through a sequence of
four behaviors: rendezvous, stay, evacuation, and exited. All agents that are members of a group begin in
the rendezvous behavioral state; all singleton agents begin in the evacuation state. State transition occur
for a given particle when the agent reaches its target and its behavior is rendezvous or evacuation. A
particle transitions from stay to evacuation only after passing a transition test, in which a uniformly sampled
probability is compared to a transition threshold Ptr(k) = Ptr(k−1)∗ (1−P0)+P0.

With the exceptions of omitting do-nothing and simplifying the transition to stay, the behavioral
dynamics modeled for particles are identical to the true behavioral dynamics. In the case of the stay
behavior, the particle model was simplified to keep the behavior update g3 independent of other particles.
Interactions between particles would otherwise be needed to implement the true transition behavior, since
the true agents only transition from stay after their full group has reunified at a designated rendezvous
node. Behavior transitions involving interactions between multiple particles and multiple agents will be
left to future work. Note: the approximate transition model was tuned to provide a reasonable predictive
estimate of the rate of agents exiting, a process which set Ptr(1) = 0 and P0 = 0.2.

3.3 Correction

The primary novelty of our proposed Bayesian estimation scheme is in the correction (aka measurement
update) step. We assume that sensor data are acquired from cameras that each measure the total population
count at a given location. Such sensors are challenging in that they do not identify specific agents, which
creates a data association problem similar to that found in common radar applications (Bar-Shalom, Willett,
and Tian 2011) but on a larger scale. Managing data association in large scale agent-based simulations
remains an unsolved problem (Long 2016).

To address this challenge, our approach is to map from the x-domain, which describes the joint state
xk, to the c-domain, which describes the data observed by cameras using a compact correspondence vector
representation ck. A correspondence vector represents a hypothesized association of each agent with a
specific sensor, where the sensors are identified by an integer index and where the index 0 indicates that
no sensor is present. Accordingly, a correspondence vector ck ∈ ZN is constructed with an integer element
(sensor ID or 0) for each agent n.

The noisy sensor measurement yk is related to the correspondence vector by a sensor noise model:
P(yk|ck). The vector yk ∈ ZL consists of L population-count measurements, one for each sensor l ∈ [1,L].
We assume the sensor is designed to always produce a positive measurement. A representative sensor noise
distribution is the binomial distribution, which is used to model the distribution of a set of Tl random trials
each with a success probability of Pd . In our implementation, we assume the performance of all sensors is
identical and further assume that Pd represents the probability of detecting any one individual given that the
individual is present at a location. Since we expect the detection probability to be relatively high, we set
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Pd = 0.9. The number of trials Tl for a given sensor l is set to the sum of correspondence-vector elements
equal to l.

Tl(ck) = ∑
n

δ

(
(n)ck− l

)
(7)

This model captures missed-detection events, when a target is present but not recorded by the population
counter. The model does not capture false-alarm events, when spurious signals artificially increment the
counter. As such, the noisy measurement is biased to be always less than or equal to the actual number
of agents present at a given location. (However, in future work, we will extend our models to include the
effects of false alarms.) Assuming that the sensor noise distributions are independent, the probability of
the set of all sensor measurements, given a particular hypothesized data-association vector, is the product
of binomial distributions pbino over all L sensor measurements:

P(yk|ck) = ∏
l∈[1,L]

Pbino(yl;Tl(ck),Pb) (8)

To leverage this sensor model for Bayesian correction, it is first necessary to convert from the x-
domain to the c-domain, as illustrated in Figure 2. This conversion can be accomplished by defining the
correspondence-vector distribution given prior sensing information Yk−1. The set Yk−1 concatenates all
measurements through the prior step k−1. In our Bayesian filter, the set Yk−1 is reflected in the current
parameters (n)x̂k obtained for each agent n via prediction:

P(ck|Yk−1) = ∏
n∈[1,N]

Pca
(
(n)ck; (n)x̂k

)
(9)

This product of independent distributions is derived from the joint distribution (2), and depends on the
scalar distribution (Pca) of the probability that the agent is at the location of the sensor identified by the
correspondence vector:

Pca
(
l; (n)x̂k

)
=

{
P̃ag(sl), l > 0

1−∑i∈[1,L] P̃ag(si), l = 0
(10)

The distribution Pca is either the probability that an agent is located sl , the location of the l-th sensor, or
that the agent is not co-located with any sensor, when l = 0. In (10), the agent-location distribution P̃ag is
the marginal distribution obtained by integrating (3) over all values of the behavior state (n)b̂k:

P̃ag

(
(n)zk

)
=
∫

b
Pag

(
(n)xk

)
dbk (11)

Once the state distribution is mapped from the x-domain to the c-domain, the Bayesian measurement
update equation can be written:

P(ck|Yk) =
P(yk|ck)P(ck|Yk−1)

P(yk)
(12)

The right side of this equation is constructed by computing the first term in the numerator as the sensor
noise model, given by (8), and the second as the mapping of the predicted states to the c-domain, given
by (9). The denominator P(yk) is a simple scale factor, which ensures the left-hand side integrates to one.

An important implementation detail is that the space of possible correspondence vectors ck, is large,
so computing the full distribution (9) is combinatorially complex. With a nod to efficiency, our approach
to representing (9) is to model it with a set of c-space particles ( j)ĉk, where each c-space particle has an
index j and where total number of correspondence-vector particles is M, chosen arbitrarily to be equal
to the number of particles used to represent the state of each agent. The c-space particles are chosen by
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building a table of the probability P̃ag for all N agents over all L sensor locations and augmenting with the
complementary probability for the l = 0 case. Each c-space particle is constructed by sampling a location
for each agent n from the table.

(m,n)zsamp = sample
(

P̃ag
(
(n)zk

))
(13)

Now define lsamp to be the sensor index which has position slsamp =
(m,n)zsamp or zero if there is no sensor at

(m,n)zsamp. The entry of the m-th correspondence vector for the n-th agent is (m,n)c = lsamp. As a byproduct
of sampling, a new set of particle parameters is also generated.

(m,n)c =⇒ (m,n)x̂+k =


(m,n)zsamp

(m,n)αsamp

(m,n)b̂−k

 (14)

In the above equation, αsamp is the inverse-length scale of the particle, which is unchanged if there is no
sensor association

(
(m,n)αsamp =

(m,n)α̂−k if (m,n)c= 0
)

or which becomes a spike if the particle is associated
with a specific sensor

(
(m,n)αsamp = αspike if (m,n)c 6= 0

)
. For our implementation, we set αspike = 10.

3.4 Resampling in c-domain

Resampling guides the particle population toward the sensors and reduces the risk of particle deprivation,
a phenomenon in which the estimate depends only on a small number of “good” particles. In our
implementation, resampling also helps to manage the combinatorial complexity of modeling possible
associations in the c-space. To this end, resampling is implemented at every time step using a Metropolis-
Hastings (M-H) formulation.

Our M-H formulation operates by iteratively selecting correspondence vectors as candidates for re-
placement. At each M-H iteration, the candidate m∗ is chosen from the set of all M correspondence
vectors with uniform probability. Then a proposal vector is generated from the candidate. The proposal
vector is generated by selecting one agent n∗ in the candidate vector and “flipping” its correspondence,
meaning that an association with a given sensor is removed (m∗,n∗)c := 0 or, if unassociated, an association
is established (m∗,n∗)c : 6= 0, selecting the new sensor association with uniform probability over all sensors.
The proposal c′ is then compared to the original candidate c∗ to determine the relative likelihood of the
posterior distribution for either vector. This ratio is called the acceptance ratio a:

a = min

(
1,

P(yk+1|c′)P−k+1(c
′)

P(yk+1|c∗)P−k+1(c∗)

)
(15)

The sensor noise distribution above is evaluated using (8); the prior distribution (9). Because it is symmetric,
the proposal distribution is omitted from (15). Proposal vectors are accepted if a standard uniform-distribution
sample is less than the acceptance ratio a. If the proposal is accepted, then the x-domain particle (14) is
updated to the appropriate µ and α; otherwise, the original candidate vector is preserved. Specifically,
if a proposal is accepted that associates an agent with a specific sensor, then the inverse-distance metric
(m∗,n∗)αsamp is set to αspike, and if a propoasl is accepted that causes an agent to move to a location not
associated with a sensor, then (m∗,n∗)αsamp becomes equal to the baseline value used to initialize all α .

The proposal process is repeated for a number of iterations B+M where B is a burn-in period (20
iterations in our implementation). Finally, the mapping from the c-domain to the x-domain is accomplished
by aggregating the pool of values (14) for all surviving c-vectors at the conclusion of M-H iterations. This
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pool becomes the new set of x-domain particles input to the prediction algorithm at the next time step.
Accordingly, the particle population is completely regenerated at each time step.

Importantly, M-H resampling ensures that particle behaviors are correlated since particles are chosen
to conform to a given correspondence-vector. In other words, the correlation in the sensor model of (15)
is the key step that inserts correlation into the joint distribution (2). Though the product of distributions
in (2) suggests independence of the agent states, in fact they are correlated because of the relationships of
the median-location values µk.

3.5 Scalability

Most steps in the proposed algorithm scale as the total number of particles MN, where N is the number
of agents and M is the number of particles per agent. For instance, the prediction operation must run MN
times, to update the location and behavior states of each particle.

Only one operation has higher computational complexity: the conversion from the x-domain to the
c-domain. If efficiently implemented, the conversion requires MNL operations, since the probabilities
of all MN particles must be evaluated at each of L sensor locations. Although domain conversion is
the algorithm’s most computationally expensive operation, it nonetheless provides massive computational
savings over evaluating the sensor model in the x-domain, which would require managing combinatorial
complexity involving

( N
∑l yl

)
possible agent combinations for each possible sensor noise vector.

It is reasonable to conclude that the algorithm would scale well to larger simulations, involving more
agents N and more sensors L, since the computational costs are linear in both variables. Moreover, algorithm
refinements might even further reduce computational costs. For instance, sublinear scaling in N might be
possible using multi-resolution particles, for instance by clustering a set of agents together and representing
the entire cluster with only M particles (instead of representing each individual agent with M particles).

We also note that scalability of particle filtering is an active area of research, through the development
of efficient resampling algorithms and parallelization (Murray et al. 2016).

4 EXPERIMENTS AND RESULTS

We applied Monte Carlo simulations to validate our methods. In the validation study, we considered a single
set of truth data, which was generated for a case with 100 agents moving in an environment consisting of
100 nodes. Of the 100 nodes, two nodes were randomly selected as exits (nodes 15 and 32) and three nodes
as rendezvous points (nodes 44, 85, and 87), as illustrated in Figure 1. Half the agents were clustered into
groups, including 10 groups of two agents, 6 groups of three agents, and 3 groups of four agents. Each
group was assigned a rendezvous point. Group members initially proceeded to the rendezvous and then
waited there until all group members were present before proceeding toward the nearest exit node. The
truth simulation ran for a total of 20 time steps, with agent positions updating at each time step.

Synthetic sensor measurements were generated from the truth data assuming population-counters were
placed at eight distinct nodes. For each time step, a set of eight noisy sensor values was obtained by
sampling (8). Because algorithm performance was sensitive to sensor placement, we considered four sensor
configurations which featured: unstructured sensing (eight randomly placed sensors), exit sensing (six
randomly placed sensors plus two at the exit nodes), rendezvous sensing (five randomly placed sensors
plus three at the rendezvous nodes), and exit + rendezvous sensing (three randomly placed sensors plus
two at the exits and three at the rendezvous nodes). To account for random sensor placement, random
sensor measurement noise, and randomized initial particle placement, 101 trials were generated for each
of the four configurations.

Results from the simulation indicated that tracking error steadily decreased over time, as shown in
Figure 3a. The figure shows the four sensor configurations, with unstructured sensing shown in gray, exit
sensing in blue, rendezvous sensing in green, and exit + rendezvous sensing in red. Absolute error is
calculated at each time step as the absolute difference between the particle count (normalized by total



Lueck, Rife, Swarup, and Uddin

(a)

0

50

100

R
a
n
d
o
m

 S
e
n
s
o
r

Population Count by Region (Median)

R
a
n
d
o
m

 +
 E

x
it

5 10 15 20

Time

0

50

100

R
a
n
d
o
m

 +
 R

V

5 10 15 20

Time

R
a
n
d
o
m

 +
 E

x
it
 +

 R
V

Est @ Exit

Est @ other

Est @ RV

Truth @ Exit

Truth @ RV

(b)

Figure 3: Monte Carlo simulation results for four sensor configurations: unstructured, exit, rendezvous,
and exit+rendezvous sensing. Left: Absolute error integrated over all locations vs. time. Right: Estimated
agent populations at rendezvous nodes (red field), exit nodes (blue field), and other nodes (green field) vs.
time, as compared to true counts (triangle and circle markers, for rendezvous and exit nodes respectively).

particles, M = 50) and the true count, summed over all nodes. For each of the four sensor configurations,
a trace of median error is shown as a function of time step, with shading indicating a 50% confidence
interval (one quartile on either side of the median).

As expected, the error is highest when sensor placement is fully unstructured. Likewise, the error is lowest
when the sensor placement is most structured, namely, in the case when a subset of sensors is consistently
placed at both the exit and rendezvous nodes. Because the sensor placement in the unstructured configuration
is sparse, the sensors provide little if any useful data; in other words, the unstructured configuration is
essentially an open-loop simulation using the dynamic model. At the end of the simulation, Figure 3a
shows that the absolute error for the unstructured configuration is nearly 40, implying 20 misplaced agents
out of 100 (with the the absolute error double counting misplaced agents, with one error for each surplus
agent at one node and one error for each deficit agent at another). By comparison, the structured sensor
placement results in an absolute error of about 8, implying only 4 misplaced agents out of 100.

Interestingly, the information content is richest for the rendezvous-node sensors. In other words, for
this case, the simulation does best at inferring where agents are located, even when they are not collocated
with a sensor. As indicated by Figure 3a, the error curve for rendezvous sensing (green) is nearly as low as
that for combined rendezvous+exit sensing (red). By contrast, the error of the exit sensing configuration
(blue) tracks the error of the unstructured sensing configuration (black) until the very end of the simulation,
when most of the agent population has arrived at the exit nodes. Also, the rendezvous node population
appears to be very sensitive to sensor configuration, as shown in Figure 3b. The figure tracks the estimated
number of agents at all exit nodes (blue field), rendezvous nodes (red field), and other nodes (green field).
The true counts are shown with markers: blue circles for the exit-node population and red triangles for
the rendezvous-node population. The figure shows that the exit-node population is well modeled in all
cases, except in the case of unstructured sensing, where the exit-node population is mis-modeled at the
very end of the simulation. The figure shows the rendezvous-node population is poorly modeled in cases
with unstructured and exit-only sensing. However, when rendezvous sensing is added, the estimate of the
rendezvous-node population is significantly better, which implies the rendezvous sensors are important for
capturing the subtle internal dynamics of the system.
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Figure 4: In future work, we propose to validate our algorithms with lab-based experiments.

5 DISCUSSION

Recent work on building complex, data-driven, high-fidelity simulations has brought to the fore several
new challenges including data assimilation (Ward et al. 2016; Lloyd et al. 2016), agent-based model
calibration (Lamperti et al. 2018; Singh et al. 2018), simulation analytics (Swarup et al. 2019), etc. The
main impetus of this line of research is to increase the range of applicability of simulation-based methods.

The advent of the Internet of Things and the broad availability of streaming data from various kinds
of sensors has made it possible to conceive of simulations that are continually updated and are able to
track ongoing phenomena in real-time (Wang and Hu 2015, e.g.). This conception raises new challenges
as well. There is a trade-off between fidelity and realism of the simulation on the one hand, and the data
rate and computational scalability of tracking on the other hand.

In the work presented here, we are taking the first step towards addressing the application of agent-based
simulations to real-time scenarios, specifically from the perspective of using a population and behavior
model as a basis of tracking. Other recent approaches only model population statistics, such as the number
of people in an area (Ward et al. 2016). Using our novel correspondence-vector domain representation,
however, we are able to do the tracking at the individual agent level.

5.1 Extensions

A number of extensions to the current work are possible. In order to develop this approach further in the
direction of real-world application, we intend to work on both theoretical and practical advancements.

On the theoretical front, we need to extend our models to include agent demographics, richer behaviors,
and different sensors (e.g., GPS in cell phones). We also will consider fusing multiple types of sensors,
making the approach robust to errors in the agent-based model, and extending the approach to active sensing
case (where we can actively relocate sensors, e.g., using drones). Sensitivity studies are also required, to
evaluate how results depend, for instance, on the number and size of groups, the total number of agents
in the simulation, and the connectivity of the location graph.

On the practical front, we intend to demonstrate the method in increasingly complex situations. Before
attempting tests in real-world settings, we will first consider complex simulations, such as (Barrett et al.
2013), and also experiments in a controlled, lab-based environment. For the lab environment setting, which
is already constructed, a number of static cameras will be positioned to obtain population counts. Drone
cameras will affix themselves to indoor or outdoor walls using a perching mechanism. This will allow
population counting in hallways or at exits of a building, as illustrated in Figure 4.
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