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THE GENERALISED PRINCIPAL EIGENVALUE OF TIME-PERIODIC

NONLOCAL DISPERSAL OPERATORS AND APPLICATIONS

YUAN-HANG SU1, WAN-TONG LI1,∗, YUAN LOU2 AND FEI-YING YANG1

Abstract. This paper is mainly concerned with the generalised principal eigenvalue for time-

periodic nonlocal dispersal operators. We first establish the equivalence between two different

characterisations of the generalised principal eigenvalue. We further investigate the dependence

of the generalised principal eigenvalue on the frequency, the dispersal rate and the disper-

sal spread. Finally, these qualitative results for time-periodic linear operators are applied to

time-periodic nonlinear KPP equations with nonlocal dispersal, focusing on the effects of the

frequency, the dispersal rate and the dispersal spread on the existence and stability of positive

time-periodic solutions to nonlinear equations.
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1. Introduction

In recent years nonlocal dispersal evolution equations have been widely used to model non-

adjacent diffusive phenomena which exhibit long range internal interactions; See [5,14,17,22,25]

and references therein. The principal eigenvalues of nonlocal dispersal operators serve as a

basic tool for the investigation of nonlocal dispersal equations. Many studies have been devoted

to the understanding of the principal eigenvalues for elliptic-type nonlocal dispersal operators

and their qualitative properties; See [3, 4, 9–11, 15, 17, 20, 23, 32, 34, 38, 39, 41, 42] and references

therein. As far as time-periodic nonlocal dispersal operators are concerned, however, there is less

understanding for the associated principal eigenvalue, especially the dependence of the principal

eigenvalue with respect to the underlying parameters. Similar to the time-periodic random

dispersal operators [16, 26, 27], the principal eigenvalues for time-periodic nonlocal dispersal

operators are relevant when a time-periodic environment is involved.

In this paper, we are interested in the following time-periodic nonlocal dispersal operators:

(1.1) Lτ,µ,σ,m
Ω [v](x, t) := −τvt(x, t)+

µ

σm

(
∫

Ω
Jσ(x−y)v(y, t)dy−hσ(x)v(x, t)

)

+a(x, t)v(x, t),

where (x, t) ∈ Ω̄×R, Ω ⊂ R
N is a bounded domain, τ > 0 is the frequency, µ > 0 is the dispersal

rate, σ > 0 is the dispersal spread which characterises the dispersal range, m ≥ 0 is the cost

parameter, Jσ(·) =
1
σN J( ·

σ
) is the scaled dispersal kernel. Throughout the paper, we will make

the following assumptions on the dispersal kernel J , a family of functions {hσ}σ>0 and function

a:

(J) J ∈ C(RN ) is nonnegative symmetric with compact support on the unit ball B1(0),

J(0) > 0 and
∫

RN J(z)dz = 1;

(H) hσ ∈ C(Ω̄) and there exists a constant M > 0 such that ‖hσ‖C(Ω̄) ≤ M for all σ > 0;

(A) a ∈ C1(Ω̄× R) := {v ∈ C(Ω̄× R) | v(x, t+ 1) = v(x, t), (x, t) ∈ Ω̄× R}.

Define the spaces χΩ, χ
+
Ω , χ

++
Ω as follows:

χΩ = {v ∈ C0,1(Ω̄× R) | v(x, t+ 1) = v(x, t), (x, t) ∈ Ω̄× R},

χ+
Ω = {v ∈ χΩ | v(x, t) ≥ 0, (x, t) ∈ Ω̄× R},

χ++
Ω = {v ∈ χΩ | v(x, t) > 0, (x, t) ∈ Ω̄× R},

where C0,1(Ω̄ × R) denotes the class of functions that are continuous in x and C1 in t. The

operator Lτ,µ,σ,m
Ω is then considered as an unbounded linear operator on the space C1(Ω̄ × R)

with domain χΩ , namely,

Lτ,µ,σ,m
Ω : χΩ ⊂ C1(Ω̄× R) → C1(Ω̄× R).

It may be worthwhile to point out that the time-periodic nonlocal dispersal operators of the

form (1.1) include several kinds of boundary conditions, such as Dirichlet, Neumann and mixed

type; See [7, 28,29].

The principal eigenvalues for time-periodic nonlocal dispersal operators have been studied

in [2, 19, 29–31, 33, 36, 40]. In this paper, we adopt the approaches as in Berestycki, Nirenberg

and Varadhan [6] and Berestycki, Coville and Vo [4] for the definition of the generalised principal

eigenvalue λp(L
τ,µ,σ,m
Ω ):

λp(L
τ,µ,σ,m
Ω ) := sup{λ ∈ R | ∃ v ∈ χ++

Ω s.t. (Lτ,µ,σ,m
Ω + λ)[v] ≤ 0 in Ω̄× R}.
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Another definition for the generalised principal eigenvalue of Lτ,µ,σ,m
Ω is given by

λ
′

p(L
τ,µ,σ,m
Ω ) := inf{λ ∈ R | ∃ v ∈ χ++

Ω s.t. (Lτ,µ,σ,m
Ω + λ)[v] ≥ 0 in Ω̄× R},

motivated by the works of Donsker and Varadhan in [13] and Berestycki, Coville and Vo in [4].

Shen and Vo proved in [36] that λp = λ
′

p when λp is the principal eigenvalue and hσ(x) ≡ 1

for all σ > 0. Our first main result proves that for general hσ, λp = λ
′

p always holds, and λp

can be characterised as the infimum of the spectrum of −Lτ,µ,σ,m
Ω , whether λp is an eigenvalue

or not.

Theorem 1.1. Assume that (J), (H) and (A) hold. Then

λp(L
τ,µ,σ,m
Ω ) = λ

′

p(L
τ,µ,σ,m
Ω ) = λ1,

where λ1 = inf{Reλ | λ ∈ σ(−Lτ,µ,σ,m
Ω )} and σ(−Lτ,µ,σ,m

Ω ) is the spectrum of −Lτ,µ,σ,m
Ω .

Next, we turn to study the influences of the frequency τ , the dispersal rate µ and the dispersal

spread σ on the generalised principal eigenvalue λp(L
τ,µ,σ,m
Ω ). The following result establishes

the monotonicity and asymptotic behaviors of the generalised principal eigenvalue λp(L
τ,µ,σ,m
Ω )

with respect to the frequency τ :

Theorem 1.2. Assume that (J), (H) and (A) hold. Then the following conclusions hold:

(i) The function τ 7→ λp(L
τ,µ,σ,m
Ω ) is non-decreasing and continuous on (0,∞). Moreover,

if λp(L
τ,µ,σ,m
Ω ) is a principal eigenvalue, then the following assertions hold:

(a) If a(x, t) = â(x) + g(t), then λp(L
τ,µ,σ,m
Ω ) is constant for τ > 0.

(b) Otherwise
∂λp

∂τ
(Lτ,µ,σ,m

Ω ) > 0 for every τ > 0;

(ii) If a ∈ C0,1(Ω̄× R), then there holds

lim
τ→0+

λp(L
τ,µ,σ,m
Ω ) =

∫ 1

0
λp(N

t
Ω)dt.

Here, for each fixed t ∈ [0, 1], λp(N
t
Ω) is the generalised principal eigenvalue of the

operator N t
Ω

N t
Ω[v](x) :=

µ

σm

(
∫

Ω
Jσ(x− y)v(y)dy − hσ(x)v(x)

)

+ a(x, t)v(x);

(iii) If a ∈ C0,1(Ω̄× R), then there holds

lim
τ→∞

λp(L
τ,µ,σ,m
Ω ) = λp(NΩ),

where λp(NΩ) is the generalised principal eigenvalue of the operator NΩ

NΩ[v](x) :=
µ

σm

(
∫

Ω
Jσ(x− y)v(y)dy − hσ(x)v(x)

)

+ â(x)v(x)

with

â(x) :=

∫ 1

0
a(x, t)dt, x ∈ Ω̄.

Theorem 1.2 is motivated by the recent work of Liu et al. [24] for time-periodic parabolic

operators; See also [18, 26]. Biologically, this reflects that in a spatio-temporal heterogeneous

environment, when the temporal variability increases, it becomes harder for a single species

to persist. Part (i) also implies that if a is a time-periodic function with period T , then the

generalised principal eigenvalue is a non-increasing function of T .
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Now, we investigate the effects of the dispersal on the generalised principal eigenvalue. On

one hand, we study the dependence of the generalised principal eigenvalue λp on the dispersal

rate µ. For this purpose, we consider the non-scaled operators Lτ,µ,1,0
Ω . On the other hand,

we also intend to understand the effects of the dispersal spread and the dispersal budget on

the generalised principal eigenvalue λp. The concept of the dispersal budget was introduced by

Hutson et al. [17]. They showed that the dispersal rate is characterised by µ
σm under proper

conditions. From the biological point of view, the species can “choose” to disperse a few offspring

over a long distance or many offspring over a short distance or some other combinations.

Theorem 1.3. Assume that (J), (H) and (A) hold. Then the following conclusions hold:

(i) The function µ 7→ λp(L
τ,µ,1,0
Ω ) is continuous on (0,∞) and there holds

lim
µ→0+

λp(L
τ,µ,1,0
Ω ) = −max

Ω̄
â;

(ii) The function σ 7→ λp(L
τ,µ,σ,m
Ω ) is continuous on (0,∞) and

(a) If m > 0, then there holds

lim
σ→∞

λp(L
τ,µ,σ,m
Ω ) = −max

Ω̄
â;

(b) If m = 0 and lim
σ→∞

hσ(x) = c, then there holds

lim
σ→∞

λp(L
τ,µ,σ,m
Ω ) = µc−max

Ω̄
â.

Remark 1.4. For the case m = 0, when the nonlocal dispersal operators take Dirichlet bound-

ary conditions, hσ(x) ≡ 1; When the nonlocal dispersal operators take Neumann boundary

conditions, i.e., hσ(x) =
∫

Ω Jσ(x− y)dy, we have lim
σ→∞

hσ(x) = 0. This implies that the bound-

ary conditions play an important role in the persistence of the populations, i.e. the large spread

strategy with Neumann boundary conditions may be more advantageous for species to persist,

in comparison to Dirichlet boundary conditions [36].

For later applications to time-periodic nonlinear KPP equations with nonlocal dispersal, we

also investigate the time-periodic nonlocal dispersal operators with Neumann boundary condi-

tions. More precisely, we have

Theorem 1.5. Assume that (J) and (A) hold. If hσ(x) =
∫

Ω Jσ(x − y)dy, then the following

conclusions hold:

(i) There exists µ1 > 0 such that λp(L
τ,µ,1,0
Ω ) is the principal eigenvalue of Lτ,µ,1,0

Ω for all

µ ≥ µ1. Moreover, there holds

lim
µ→∞

λp(L
τ,µ,1,0
Ω ) = −¯̂a,

where ¯̂a = 1
|Ω|

∫

Ω â(x)dx;

(ii) There exists σ0 > 0 such that λp(L
τ,µ,σ,m
Ω ) is the principal eigenvalue of Lτ,µ,σ,m

Ω for all

0 < σ ≤ σ0. Moreover, if J is symmetric with respect to each component and 0 ≤ m < 2,

then there holds

lim
σ→0+

λp(L
τ,µ,σ,m
Ω ) = −max

Ω̄
â.

For the case m = 2, it is shown in [31] that lim
σ→0+

λp(L
τ,µ,σ,2
Ω ) = λr, where λr is the principal

eigenvalue of the corresponding time-periodic random dispersal eigenvalue problem. For the
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case m > 2, we conjecture that lim
σ→0+

λp(L
τ,µ,σ,m
Ω ) = −¯̂a, which has been proved by [38, Theorem

1.3 (iii)] for the time-independent operators.

In the second part of this paper, we consider the applications of previous results for the gener-

alised principal eigenvalue to the nonlocal dispersal equation in spatio-temporally heterogeneous

environments

(1.2)






τut(x, t) =
µ
σm

∫

Ω Jσ(x− y)(u(y, t) − u(x, t))dy + f(x, t, u(x, t)), (x, t) ∈ Ω̄× (0,∞),

u(x, 0) = u0(x), x ∈ Ω̄,

and the time-periodic nonlocal dispersal KPP equation with Neumann boundary conditions

(1.3)







τut(x, t) =
µ
σm

∫

Ω Jσ(x− y)(u(y, t) − u(x, t))dy + f(x, t, u(x, t)), (x, t) ∈ Ω̄× R,

u(x, t+ 1) = u(x, t), (x, t) ∈ Ω̄× R,

where u(x, t) represents the population density at location x and time t. Since we only integrate

over Ω, we assume that diffusion takes place only in Ω. The individuals may not enter or

leave the domain, which is called nonlocal Neumann boundary condition; See [1, 8]. The

nonlinearity f(x, t, u) satisfies the following assumptions:

(F ) f : Ω̄× R× R → R is of KPP type and satisfies:

(1) f(·, t, u) ∈ C1(Ω̄), f(x, ·, u) ∈ C(R) and f(x, t, ·) ∈ C1(R);

(2) f(x, t, 0) = 0 for all (x, t) ∈ Ω̄× R and

f(x, t+ 1, u) = f(x, t, u), ∀(x, t, u) ∈ Ω̄× R× R;

(3) For all (x, t) ∈ Ω̄× R, the function u 7→ f(x, t, u)/u is decreasing on (0,∞);

(4) There exists M > 0 such that

f(x, t, u) ≤ 0, ∀ (x, t, u) ∈ Ω̄× R× [M,∞).

From now on, we set

a(x, t) = fu(x, t, 0), (x, t) ∈ Ω̄× R.

Then, Lτ,µ,σ,m
Ω , defined in (1.1), is the linear operator associated to the linearization of (1.3) at

u ≡ 0.

Nonlocal dispersal evolution equations of the form (1.2) have attracted a lot of attentions

in recent years; See [29, 31, 33, 36, 40] and references therein. The case f(x, t, u) = f(x, u) in

equations (1.2) has been well studied; See [3, 5, 7, 9, 12, 20, 34, 35, 37–39, 42]. We first recall the

following results of the existence and non-existence of positive time-periodic solutions to (1.3)

by Rawal and Shen [29] and Shen and Vo [36]:

Lemma 1.6. Assume that (J) and (F) hold. Let u(x, t;u0) be a solution of (1.2) with initial

data u0 ∈ C(Ω̄), which is non-negative and not identically zero. The following statements hold:

(i) If λp(L
τ,µ,σ,m
Ω ) < 0, then (1.3) admits a unique solution u∗ in χ++

Ω and there holds

||u(·, t;u0)− u∗(·, t)||∞ → 0 as t → ∞,

where || · ||∞ is the sup norm on C(Ω̄);

(ii) If λp(L
τ,µ,σ,m
Ω ) > 0, then (1.3) admits no solution in χ+

Ω \ {0} and there holds

||u(·, t;u0)||∞ → 0 as t → ∞.
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Now, we discuss the effects of the frequency on the persistence of populations. The following

conclusion is a direct corollary of Theorem 1.2 and Lemma 1.6.

Corollary 1.7. Assume that (J) and (F) hold. Then the following statements hold:

(i) If
∫ 1
0 λp(N

t
Ω)dt > 0, then (1.3) admits no solution in χ+

Ω \{0} and zero solution is globally

asymptotically stable for all τ ∈ (0,∞);

(ii) If
∫ 1
0 λp(N

t
Ω)dt < 0, λp(NΩ) > 0 and λp(L

τ,µ,σ,m
Ω ) is a principal eigenvalue of the operator

Lτ,µ,σ,m
Ω , then there is a constant τ∗ > 0 such that

(a) If τ < τ∗, then (1.3) admits a unique solution u∗τ ∈ χ++
Ω that is globally asymptoti-

cally stable.

(b) If τ > τ∗, then (1.3) admits no solution in χ+
Ω \ {0} and zero solution is globally

asymptotically stable;

(iii) If λp(NΩ) < 0, then (1.3) admits a unique solution u∗τ ∈ χ++
Ω that is globally asymptoti-

cally stable for all τ ∈ (0,∞).

In the spatially and temporally varying environment, Corollary 1.7 (ii) suggests that increas-

ing the frequency of oscillations in the resources may be disadvantageous to the persistence

of populations. It should be pointed out that the condition of Corollary 1.7 (i)-(iii) may be

satisfied respectively; See Theorem 3.1 for more details.

We turn to study the effects of the dispersal rate µ on the persistence of populations. The

existence and asymptotic behaviors of positive time-periodic solutions associated to (1.3) in the

non-scaled case with m = 0 and σ = 1 are obtained as µ tends to zero or infinity.

Theorem 1.8. Assume that (J) and (F) hold. Then the following statements hold:

(i) If maxΩ̄ â > 0, then there exists µ0 > 0 such that (1.3) admits a unique solution u∗µ ∈ χ++
Ω

that is globally asymptotically stable for all µ ∈ (0, µ0). Moreover, if minΩ̄ â > 0, then

lim
µ→0+

u∗µ(x, t) = v∗(x, t) uniformly in (x, t) ∈ Ω̄×R,

where v∗(x, t) is the unique positive 1-periodic solution of the equation τvt = f(x, t, v)

for every x ∈ Ω̄.

(ii) If ¯̂a > 0, then there exists µ1 > 0 such that (1.3) admits a unique solution u∗µ ∈ χ++
Ω

that is globally asymptotically stable for all µ ∈ (µ1,∞). Moreover,

lim
µ→∞

u∗µ(x, t) = v∗(t) uniformly in (x, t) ∈ Ω̄× R,

where v∗(t) is the unique positive 1-periodic solution of the equation

(1.4) τvt(t) =
1

|Ω|

∫

Ω
f(x, t, v(t))dx.

We see from Theorem 1.8 that the populations with small dispersal rate can persist while the

populations with large dispersal rate die out, provided that ¯̂a < 0 < maxΩ̄ â. This shows that

the small dispersal rates are better dispersal strategies than the larger ones in proper situations.

Now, we are interested in the effects of the dispersal spread and the dispersal budget on

the persistence of populations. We establish the existence, uniqueness and stability of positive

time-periodic solutions to (1.3) when σ is sufficiently small or large. Furthermore, we analyse

the asymptotic limits of the positive time-periodic solutions as σ tends to zero or infinity. As

in [17, 36], these asymptotics for σ ≪ 1 or σ ≫ 1 represent two completely different dispersal

strategies: The limit σ → 0+ can be associated to a strategy of dispersing many offspring on a
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short range, while the limit σ → +∞ corresponds to a strategy that disperses a few offspring

over a long distance. More precisely, we obtain

Theorem 1.9. Assume that (J) and (F) hold. Then the following statements hold:

(i) Let m ≥ 0. If maxΩ̄ â > 0, then there exists σ1 > 0 such that (1.3) admits a unique

solution u∗σ ∈ χ++
Ω that is globally asymptotically stable for all σ ∈ (σ1,∞). Moreover, if

minΩ̄ â > 0, then

lim
σ→∞

u∗σ(x, t) = v∗(x, t) uniformly in (x, t) ∈ Ω̄× R,

where v∗(x, t) is the unique positive 1-periodic solution of the equation τvt = f(x, t, v)

for every x ∈ Ω̄;

(ii) Let 0 ≤ m < 2. If J is symmetric with respect to each component and maxΩ̄ â > 0, then

there exists σ0 > 0 such that (1.3) admits a unique solution u∗σ ∈ χ++
Ω that is globally

asymptotically stable for all σ ∈ (0, σ0). Moreover, if minΩ̄ â > 0, then

lim
σ→0+

u∗σ(x, t) = v∗(x, t) uniformly in (x, t) ∈ Ω̄× R,

where v∗(x, t) is the same as in (i).

In addition, Shen and Xie proved in [31] that for the case m = 2 and λr < 0, there exists

σ0 > 0 such that (1.3) admits a unique solution u∗σ ∈ χ++
Ω that is globally asymptotically stable

for all σ ∈ (0, σ0) and

lim
σ→0+

u∗σ(x, t) = v(x, t) uniformly in (x, t) ∈ Ω̄× R,

where v is the positive 1-periodic solution of the corresponding reaction diffusion equation. For

the case m > 2, it seems reasonable to conjecture that when ¯̂a > 0, there exists σ0 > 0 such that

(1.3) admits a unique solution u∗σ ∈ χ++
Ω that is globally asymptotically stable for all σ ∈ (0, σ0)

and there holds

lim
σ→0+

u∗σ(x, t) = v∗(t) uniformly in (x, t) ∈ Ω̄× R,

where v∗(t) is the unique positive 1-periodic solution of (1.4). We refer interested readers

to [38, Theorem 1.8 (iii)] for the time-independent case.

The rest of the paper is organised as follows. In Section 2, we first establish the equivalence of

different definitions of the generalised principal eigenvalue and a characterisation of the gener-

alised principal eigenvalue by the infimum of the spectrum. Then we study the influences of the

frequency, the dispersal rate and the dispersal spread on the generalised principal eigenvalue.

Section 3 is devoted to investigating the effects of the frequency, the dispersal rate and the

dispersal spread on persistence criteria of populations.

2. Time-periodic nonlocal dispersal operators

In this section we consider the eigenvalue problem

(2.1)







Lτ,µ,σ,m
Ω [v](x, t) + λv(x, t) = 0, (x, t) ∈ Ω̄×R,

v(x, t+ 1) = v(x, t), (x, t) ∈ Ω̄×R.

As shown in [9,29,34,36], the operator Lτ,µ,σ,m
Ω may not have any principal eigenvalue. However,

the generalised principal eigenvalue λp(L
τ,µ,σ,m
Ω ) can become the surrogate of the principal eigen-

value. Here, we establish the equivalent definitions of λp(L
τ,µ,σ,m
Ω ) and study the dependence of

λp(L
τ,µ,σ,m
Ω ) on the frequency, the dispersal rate and the dispersal spread.
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2.1. The equivalence of the generalised principal eigenvalue.

We consider the following general form of nonlocal dispersal operators

MΩ(b)[v](x, t) := −τvt(x, t) + µ

∫

Ω
J(x− y)v(y, t)dy + b(x, t)v(x, t), (x, t) ∈ Ω̄× R,

where b ∈ C1(Ω̄× R). We define

λ1 = inf{Reλ | λ ∈ σ(−MΩ(b))}.

Firstly, we recall two lemmas in [36, Theorem 3.3 and Proposition 6.1 (iii)].

Lemma 2.1. Assume that (J) holds and b ∈ C1(Ω̄ × R). For any ǫ > 0, there exists bǫ ∈

C1(Ω̄× R) such that the following conclusions hold:

(i) There holds max
Ω̄×R

|b− bǫ| < ǫ;

(ii) λǫ
1 is the principal eigenvalue of MΩ(bǫ), where λǫ

1 = inf{Reλ | λ ∈ σ(−MΩ(bǫ))};

(iii) There holds |λǫ
1 − λ1| < ǫ.

Lemma 2.2. Assume that (J) holds and b ∈ C1(Ω̄ × R). Then λp(MΩ(b)) is a Lipschitz con-

tinuous function with respect to b. More precisely, for every b1, b2 ∈ C1(Ω̄× R), we have

|λp(MΩ(b1))− λp(MΩ(b2))| ≤ sup
t∈[0,1]

‖b1(·, t)− b2(·, t)‖∞.

Next, we prove the following two results, from which Theorem 1.1 follows as a consequence.

Theorem 2.3. Assume that (J) holds and b ∈ C1(Ω̄× R). Then there holds

λp(MΩ(b)) = λ1.

Proof. The proof is divided into two cases.

Case 1. We prove the result under the additional assumption that λ1 is the principal eigen-

value. By the definition of the principal eigenvalue, there is ϕ1 ∈ χ++
Ω such that

MΩ(b)[ϕ1] + λ1ϕ1 = 0 in Ω̄× R.

Thanks to the definition of λp(MΩ(b)), we have λ1 ≤ λp(MΩ(b)). It remains to establish the

inequality λp(MΩ(b)) ≤ λ1, which is similar to the proof of [36, Theorem 2.3]. Here, we omit it.

Thus, we get λp(MΩ(b)) = λ1.

Case 2. If λ1 is not the principal eigenvalue, we can use an approximation argument. More

precisely, applying Lemma 2.1, we find that for each ǫ > 0, there exists bǫ ∈ C1(Ω̄ × R) such

that

(2.2) max
Ω̄×R

|bǫ − b| < ǫ, |λ1 − λǫ
1| < ǫ

and λǫ
1 is the principal eigenvalue of MΩ(bǫ). Then, we apply Case 1 to conclude

(2.3) λp(MΩ(bǫ)) = λǫ
1.

Since λp(MΩ(b)) is Lipschitz continuous with respect to b in Lemma 2.2 and the inequalities

(2.2), setting ǫ → 0 in (2.3) yields λp(MΩ(b)) = λ1. �

Theorem 2.4. Assume that (J) holds and b ∈ C1(Ω̄× R). Then there holds

λp(MΩ(b)) = λ
′

p(MΩ(b)).
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Proof. We first show that λp(MΩ(b)) ≤ λ
′

p(MΩ(b)). Let us assume by contradiction that

λ
′

p(MΩ(b)) < λp(MΩ(b)).

Pick now λ ∈ (λ
′

p(MΩ(b)), λp(MΩ(b))), then, by the definition of λp(MΩ(b)) and λ
′

p(MΩ(b)),

there exist ϕ ∈ χ++
Ω and ψ ∈ χ++

Ω such that

MΩ(b)[ϕ](x, t) + λϕ(x, t) ≤ 0 in Ω̄× R,(2.4)

MΩ(b)[ψ](x, t) + λψ(x, t) ≥ 0 in Ω̄× R.(2.5)

By taking λ bigger if necessary, we assume that ψ satisfies

(2.6) MΩ(b)[ψ](x, t) + λψ(x, t) > 0 in Ω̄× R.

Set w := ψ
ϕ
∈ χ++

Ω . Using (2.4), a direct computation yields

MΩ(b)[ψ] =MΩ(b)[wϕ]

=− τ(wϕ)t + µ

∫

Ω
J(x− y)w(y, t)ϕ(y, t)dy + b(x, t)wϕ

=− τwtϕ+ µ

∫

Ω
J(x− y)ϕ(y, t)(w(y, t) − w(x, t))dy − λwϕ

+ w(−τϕt + µ

∫

Ω
J(x− y)ϕ(y, t)dy + b(x, t)ϕ + λϕ)

≤− τwtϕ+ µ

∫

Ω
J(x− y)ϕ(y, t)(w(y, t) − w(x, t))dy − λψ.

By (2.6), we find

(2.7) 0 < −τwtϕ+ µ

∫

Ω
J(x− y)ϕ(y, t)(w(y, t) − w(x, t))dy in Ω̄× R.

Since w ∈ χ++
Ω , there exists (x0, t0) ∈ Ω̄× [0, 1] such that

w(x0, t0) = max
Ω̄×R

w, wt(x0, t0) = 0.

Hence, setting (x, t) = (x0, t0) in (2.7) yields

0 < −τwt(x0, t0)ϕ(x0, t0) + µ

∫

Ω
J(x0 − y)ϕ(y, t0)(w(y, t0)− w(x0, t0))dy ≤ 0,

which is a contradiction. Therefore, λp(MΩ(b)) ≤ λ
′

p(MΩ(b)).

To complete the proof, it suffices to establish

(2.8) λ
′

p(MΩ(b)) ≤ λp(MΩ(b)) + 2δ for all δ > 0.

We claim that for any δ > 0, there exists ϕδ ∈ χ++
Ω such that

MΩ(b)[ϕδ ] + (λp(MΩ(b)) + 2δ)ϕδ ≥ 0 in Ω̄× R.

Indeed, thanks to Lemma 2.1 and Theorem 2.3, there is bδ ∈ C1(Ω̄× R) such that

(2.9) max
Ω̄×R

|bδ − b| < δ, |λp(MΩ(b))− λp(MΩ(bδ))| < δ

and λp(MΩ(bδ)) is the principal eigenvalue of MΩ(bδ). Thus, there exists ϕδ ∈ χ++
Ω such that

(2.10) MΩ(bδ)[ϕδ ] + λp(MΩ(bδ))ϕδ = 0 in Ω̄× R.

Owing to (2.9) and (2.10), we get

MΩ(b)[ϕδ ] + (λp(MΩ(b)) + 2δ)ϕδ
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=MΩ(bδ)[ϕδ ] + (b(x, t)− bδ(x, t))ϕδ + (λp(MΩ(b)) + 2δ)ϕδ

=(λp(MΩ(b)) − λp(MΩ(bδ)))ϕδ + (b(x, t)− bδ(x, t))ϕδ + 2δϕδ

≥− δϕδ − δϕδ + 2δϕδ = 0

The proof of the claim is complete.

Moreover, it follows from this claim and the definition of λ
′

p(MΩ(b)) that (2.8) holds. In

conclusion, we obtain λp(MΩ(b)) = λ
′

p(MΩ(b)). �

2.2. Influences of the frequency.

This subsection concerns the dependence of λp(L
τ,µ,σ,m
Ω ) on τ . Consider

Mτ [v](x, t) := −τvt(x, t) + µ

∫

Ω
J(x− y)v(y, t)dy + b(x, t)v(x, t), (x, t) ∈ Ω̄× R,

where b ∈ C1(Ω̄×R). Our goal is to prove the following two results, from which the conclusions

of Theorem 1.2 follow:

Theorem 2.5. Assume that (J) holds and b ∈ C1(Ω̄ × R). Then the function τ 7→ λp(Mτ ) is

continuous non-decreasing on (0,∞). Moreover, if λp(Mτ ) is a principal eigenvalue, then the

following assertions hold:

(i) If b(x, t) = b̂(x) + g(t), then λp(Mτ ) is constant for τ > 0;

(ii) Otherwise
∂λp

∂τ
(Mτ ) > 0 for every τ > 0.

Proof. The proof is divided into two cases.

Case 1. We prove the result under the additional assumption that λp(Mτ ) is a principal

eigenvalue for all τ > 0. By the definition of the principal eigenvalue, there exists ϕτ ∈ χ++
Ω s.t.

(2.11)






Mτ [ϕτ ](x, t) = −τ∂tϕτ + µ
∫

Ω J(x− y)ϕτ (y, t)dy + b(x, t)ϕτ = −λp(Mτ )ϕτ in Ω̄× [0, 1],

ϕτ (x, 1) = ϕτ (x, 0) in Ω̄.

Note that there is ψτ ∈ χ++
Ω such that ψτ satisfies the adjoint problem of (2.11)

(2.12)






M∗
τ [ψτ ](x, t) := τ∂tψτ + µ

∫

Ω J(x− y)ψτ (y, t)dy + b(x, t)ψτ = −λp(Mτ )ψτ in Ω̄× [0, 1],

ψτ (x, 1) = ψτ (x, 0) in Ω̄.

For convenience, we denote C := Ω×(0, 1). We normalize ϕτ and ψτ such that
∫

C ϕ
2
τ =

∫

C ϕτψτ =

1 for any τ > 0.

A family of closed operators {Mτ}τ>0 is a holomorphic family by [21, Charpter 7, Section 2.1].

As λp(Mτ ) is an isolated eigenvalue, the continuous differentiability of τ 7→
(

λp(Mτ ), ϕτ

)

follows

from the classical perturbation theory in [21, Charpter 7, Section 6.2]. We can differentiate the

equation (2.11) with respect to τ to find






−∂tϕτ +Mτ [ϕ
′
τ ] = −

∂λp(Mτ )
∂τ

ϕτ − λp(Mτ )ϕ
′
τ in Ω̄× [0, 1],

ϕ′
τ (x, 1) = ϕ′

τ (x, 0) in Ω̄.

Multiplying the above equation by ψτ and integrating the resulting equation over C, we obtain

−

∫

C
ψτ∂tϕτ +

∫

C
Mτ [ϕ

′
τ ]ψτ = −

∂λp(Mτ )

∂τ

∫

C
ϕτψτ − λp(Mτ )

∫

C
ϕ′
τψτ .
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By the adjoint problem (2.12) and the normalization
∫

C ϕτψτ = 1, we find that

∂λp(Mτ )

∂τ
=

∫

C
ψτ∂tϕτ .

Due to the definition of Mτ and M∗
τ , we derive

∫

C
ψτ∂tϕτ =

1

2τ

∫

C
ψτ

(

M∗
τ [ϕτ ]−Mτ [ϕτ ]

)

=
1

2τ

∫

C

(

ϕτMτ [ψτ ]− ψτMτ [ϕτ ]
)

=
1

2τ

(

Kτ (ψτ )−Kτ (ϕτ )

)

,

where functional Kτ is defined by

Kτ (ζ) :=

∫

C
ϕτψτ

(

Mτ [ζ]

ζ

)

, ζ ∈ χ++
Ω .

We claim that

Claim 2.6. For any ζ ∈ χ++
Ω , we have

Kτ (ζ)−Kτ (ϕτ ) ≥ 0.

Assume for the moment that the claim holds true, then it implies that

(2.13)
∂λp(Mτ )

∂τ
=

1

2τ

(

Kτ (ψτ )−Kτ (ϕτ )

)

≥ 0 for all τ > 0.

It remains to prove parts (i) and (ii). When b(x, t) = b̂(x)+ g(t) for some 1-periodic function

g(t), we set φτ (x, t) := e−
1

τ

∫ t

0
g(s)dsϕτ (x, t), which satisfies







−τ∂tφτ + µ
∫

Ω J(x− y)φτ (y, t)dy + b̂(x)φτ = −λp(Mτ )ϕτ in Ω̄× [0, 1],

φτ (x, 1) = φτ (x, 0) in Ω̄.

It is clear that λp(Mτ ) is constant for τ > 0. This proves part (i).

Finally, we show that
∂λp(Mτ )

∂τ
> 0 for every τ > 0 if b(x, t) does not take the form of

b(x, t) = b̂(x) + g(t). Suppose that there is some τ0 > 0 such that
∂λp(Mτ0

)
∂τ

= 0. According to

the formula (2.18) and J(0) > 0, we obtain

ϕτ0(x, t)

ψτ0(x, t)
·
ψτ0(y, t)

ϕτ0(y, t)
≡ 1 for each x, y ∈ Ω̄, t ∈ [0, 1].

Thus, we have ϕτ0 = c(t)ψτ0 for some 1-periodic function c(t) > 0. Substituting ϕτ0 = c(t)ψτ0

into Mτ0 [ϕτ0 ] = −λp(Mτ0)ϕτ0 and using M∗
τ0
[ψτ0 ] = −λp(Mτ0)ψτ0 , we deduce that

c′(t)ψτ0 + 2c(t)∂tψτ0 = 0.

It then follows that ∂tlnψτ0 = − c′(t)
2c(t) in C, which depends only on t. Hence, ψτ0 is of the form

ψτ0 = Xτ0(x)Tτ0(t) with some 1-periodic function Tτ0(t) > 0 in [0, 1] and function Xτ0(x) > 0 in

Ω̄. By M∗
τ0
[ψτ0 ] = −λp(Mτ0), we have

τ0
T ′
τ0
(t)

Tτ0(t)
+

µ
∫

Ω J(x− y)Xτ0(y)dy

Xτ0(x)
+ b(x, t) = −λp(Mτ0).

Thus, it is necessary that b has the form of b(x, t) = b̂(x) + g(t), which contradicts the previous

assumption. This completes the proof of part (ii).
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Case 2. If λp(Mτ ) is not the principal eigenvalue for some τ > 0, then we can use an

approximation argument. More precisely, applying Lemma 2.1 and Theorem 2.3, we find that

for each ǫ > 0, there exists bǫ ∈ C1(Ω̄× R) such that

max
Ω̄×R

|bǫ − b| < ǫ, |λp(Mτ (bǫ))− λp(Mτ (bǫ))| < ǫ

and λp(Mτ (bǫ)) is the principal eigenvalue for all τ > 0, where Mτ (bǫ) is Mτ (b) with b being

replaced by bǫ. We then apply Case 1 to conclude that for each ǫ > 0, the function τ 7→

λp(Mτ (bǫ)) is continuous non-decreasing on (0,∞), i.e., for every τ0 > 0, there exists δ0 > 0

such that for all |τ − τ0| < δ0, we have
∣

∣λp(Mτ (bǫ))− λp(Mτ0(bǫ))
∣

∣ < ǫ.

By Lemma 2.2, λp(Mτ (b)) is Lipschitz continuous with respect to b, i.e.,
∣

∣λp(Mτ (b))− λp(Mτ (bǫ))
∣

∣ ≤ sup
t∈[0,1]

‖b(·, t) − bǫ(·, t)‖∞ < ǫ.

Hence, for every given constant ǫ > 0, there exist δ0 > 0 and bǫ ∈ C1(Ω̄×R) such that for all

|τ − τ0| < δ0, we have

|λp(Mτ0(b)) − λp(Mτ (b))|

≤|λp(Mτ0(b)) − λp(Mτ0(bǫ))|+ |λp(Mτ0(bǫ))− λp(Mτ (bǫ))|+ |λp(Mτ (b))− λp(Mτ (bǫ))|

<ǫ+ ǫ+ ǫ = 3ǫ,

which implies that λp(Mτ (b)) is continuous with respect to τ . Thus, the function τ 7→ λp(Mτ (b))

is continuous non-decreasing on (0,∞). The proof is complete. �

Proof of Claim 2.6. First, we claim that ϕτ is a critical point of Kτ in the sense that

(2.14) DKτ (ϕτ )η = 0 for all η ∈ χΩ,

where DKτ (ϕτ ) is the Fréchet derivative of Kτ at the point ϕτ ∈ χ++
Ω .

For any η ∈ χΩ, we have

DKτ (ϕτ )η =

∫

C
ϕτψτ

(

Mτ [η]

ϕτ
−

Mτ [ϕτ ]η

ϕ2
τ

)

.

On one hand, it follows from Mτ [ϕτ ] = −λpϕτ and M∗
τ [ψτ ] = −λpψτ that

DKτ (ϕτ )η =

∫

C

(

ψτMτ [η] −
Mτ [ϕτ ]ψτη

ϕτ

)

=

∫

C

(

M∗
τ [ψτ ]η −

Mτ [ϕτ ]ψτη

ϕτ

)

= 0.

(2.15)

On the other hand, a simple calculation yields

DKτ (ϕτ )η

=

∫

C
ϕτψτ

(

Mτ [η]

ϕτ
−

Mτ [ϕτ ]η

ϕ2
τ

)

=

∫

C
ϕτψτ

−τ
(

ηtϕτ − (ϕτ )tη
)

+ µ
∫

Ω J(x− y)
[

η(y, t)ϕτ (x, t)− ϕτ (y, t)η(x, t)
]

dy

ϕ2
τ

.

(2.16)

A direct calculation shows that

Kτ (ζ)−Kτ (ϕτ )
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=

∫

C
ϕτψτ

(

Mτ [ζ]

ζ
−

Mτ [ϕτ ]

ϕτ

)

=

∫

C
ϕτψτ

(

−τζt
ζ

+
τ(ϕτ )t
ϕτ

)

+ µ

∫

C
ϕτψτ

∫

Ω
J(x− y)

(

ζ(y, t)

ζ(x, t)
−

ϕτ (y, t)

ϕτ (x, t)

)

dy.

Taking η = ϕτ ln
(

ζ
ϕτ

)

in (2.16), we obtain

DKτ (ϕτ )η

=

∫

C
ϕτψτ

(

−τζt
ζ

+
τ(ϕτ )t
ϕτ

)

+ µ

∫

C
ϕτψτ

∫

Ω
J(x− y)

ϕτ (y, t)

ϕτ (x, t)
ln

(

ζ(y, t)ϕτ (x, t)

ζ(x, t)ϕτ (y, t)

)

dy.
(2.17)

By formulas (2.15) and (2.17), we have

Kτ (ζ)−Kτ (ϕτ )

=DKτ (ϕτ )η + µ

∫

C
ϕτψτ

∫

Ω
J(x− y)

ϕτ (y, t)

ϕτ (x, t)

[

ζ(y, t)ϕτ (x, t)

ζ(x, t)ϕτ (y, t)
− 1− ln

(

ζ(y, t)ϕτ (x, t)

ζ(x, t)ϕτ (y, t)

)]

dy

=µ

∫

C
ϕτψτ

∫

Ω
J(x− y)

ϕτ (y, t)

ϕτ (x, t)

[

ζ(y, t)ϕτ (x, t)

ζ(x, t)ϕτ (y, t)
− 1− ln

(

ζ(y, t)ϕτ (x, t)

ζ(x, t)ϕτ (y, t)

)]

dy.

(2.18)

Define

f(z) = z − 1− lnz, z ∈ (0,∞).

As f(z) ≥ 0 and f(z) = 0 if and only if z = 1, thus we obtain Kτ (ζ)−Kτ (ϕτ ) ≥ 0. �

Theorem 2.7. Assume that (J) holds and b ∈ C0,1
1 (Ω̄ × R). Then the followings hold:

(i) There holds

lim
τ→0+

λp(Mτ ) =

∫ 1

0
λp(N

t
Ω)dt.

Here, for each fixed t ∈ [0, 1], λp(N
t
Ω) is the generalised principal eigenvalue of the

operator N t
Ω

N t
Ω[v](x) := µ

∫

Ω
Jσ(x− y)v(y)dy + b(x, t)v(x);

(ii) There holds

lim
τ→∞

λp(Mτ ) = λp(NΩ),

where λp(NΩ) is the generalised principal eigenvalue of the operator NΩ

NΩ[v](x) := µ

∫

Ω
Jσ(x− y)v(y)dy + b̂(x)v(x).

Proof. (i) The proof is divided into two cases.

Case 1. We prove the result under the additional assumption that λp(N
t
Ω) is a principal

eigenvalue for all t ∈ [0, 1]. For fixed t ∈ [0, 1], there is v(·, t) ∈ C(Ω̄) and v(·, t) > 0 in Ω̄ s.t.

(2.19) N t
Ω[v](x, t) + λp(N

t
Ω)v(x, t) = 0 in Ω̄.

It follows from the perturbation theory [21, Charpter 7, Section 6.2] that v ∈ C1([0, 1];C(Ω̄))

and v(x, t+ 1) = v(x, t).

Define ϕ(x, t) = ρ(t)v(x, t) for 1-periodic function

ρ(t) = e
1

τ

[

t
∫
1

0
λp(Ns

Ω
)ds−

∫ t

0
λp(Ns

Ω
)ds

]

.
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Given arbitrary ǫ0 > 0, there is sufficiently small τ0 > 0 such that τ |∂tv| ≤ ǫ0v for all τ ≤ τ0.

Moreover, a direct calculation yields

Mτ [ϕ] +

(
∫ 1

0
λp(N

t
Ω)dt− ǫ0

)

ϕ ≤ −τϕt +N t
Ω[ϕ] +

(
∫ 1

0
λp(N

t
Ω)dt− ǫ0

)

ϕ ≤ 0

By the definition of λp(Mτ ), we know that

(2.20)

∫ 1

0
λp(N

t
Ω)dt− ǫ0 ≤ λp(Mτ ) for all τ ≤ τ0.

In a similar manner, we obtain

Mτ [ϕ] +

(
∫ 1

0
λp(N

t
Ω)dt+ ǫ0

)

ϕ ≥ −τϕt +N t
Ω[ϕ] +

(
∫ 1

0
λp(N

t
Ω)dt+ ǫ0

)

ϕ ≥ 0.

By the definition of λ′
p(Mτ ), we know that

(2.21) λ′
p(Mτ ) ≤

∫ 1

0
λp(N

t
Ω)dt+ ǫ0 for all τ ≤ τ0.

Combining Theorem 2.4 and inequalities (2.20), (2.21), we obtain

lim
τ→0+

λp(Mτ ) =

∫ 1

0
λp(N

t
Ω)dt.

Case 2. If λp(N
t
Ω) is not a principal eigenvalue for some t ∈ [0, 1], then we can use similar

approximation argument as in Case 2 in the proof of Theorem 2.5 to deduce the result.

(ii) The proof is also divided into two cases.

Case 1. We prove the result under the additional assumption that λp(Mτ ) is a principal

eigenvalue for all τ > 0. Choose a sequence of {τn}
∞
n=1 such that τn → +∞ and let the

eigenpairs (λp(Mτn), ϕτn) be defined by

(2.22)






−τn∂tϕτn + µ
∫

Ω J(x− y)ϕτn(y, t)dy + b(x, t)ϕτn + λp(Mτn)ϕτn = 0 in Ω̄× [0, 1],

ϕτn ∈ χ++
Ω , ||ϕτn ||L2(Ω×(0,1)) = 1.

Multiplying equation (2.22) by ϕτn and integrating over Ω× (0, 1), we get

λp(Mτn) = µ

∫ 1

0

∫

Ω

∫

Ω
J(x− y)ϕτn(y, t)ϕτn(x, t)dydxdt +

∫ 1

0

∫

Ω
b(x, t)ϕ2

τn(x, t)dxdt

≤ µ|Ω|max
RN

J + max
Ω̄×[0,1]

|b|.

Owing to the monotone non-decreasing of λp(Mτ ) on τ > 0, one gets

lim
n→∞

λp(Mτn) = λ∞
p .

Multiplying equation (2.22) by ∂tϕτn and integrating over Ω× (0, 1) yield

τn

∫ 1

0

∫

Ω
|∂tϕτn |

2dxdt = µ

∫ 1

0

∫

Ω

∫

Ω
J(x− y)ϕτn(y, t)∂tϕτn(x, t)dydxdt

+

∫ 1

0

∫

Ω

[

b(x, t) + λp(Mτn)
]

ϕτn(x, t)∂tϕτn(x, t)dxdt

=
1

2

∫ 1

0

∫

Ω
∂tb(x, t)ϕ

2
τn(x, t)dxdt

≤
1

2
max
Ω̄×[0,1]

|∂tb|,
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which implies that

||∂tϕτn ||L2(Ω×(0,1)) → 0 as n → ∞.

Due to the above result and ||ϕτn ||L2 = 1, up to extraction, there exists w ∈ W 1,2((0, 1);L2(Ω))

such that

ϕτn ⇀ w and ∂tϕτn ⇀ ∂tw.

Moreover, we have ||∂tw||L2(Ω×(0,1)) ≤ lim inf
τ→0+

||∂tϕτn ||L2(Ω×(0,1)) = 0 and thus w does not depend

on t.

Passing to the limit n → ∞ in (2.22), we find that w is a weak solution of the equation

µ

∫

Ω
J(x− y)w(y)dy + b(x, t)w(x) + λ∞

p w(x) = 0 in Ω̄× [0, 1].

Integrating the above equation over (0, 1) yields

µ

∫

Ω
J(x− y)w(y)dy + b̂(x)w(x) + λ∞

p w(x) = 0 in Ω̄.

So w ∈ C(Ω̄) and w > 0 in Ω̄, which implies that λ∞
p is the principal eigenvalue of the operator

NΩ. It is easy to know that λ∞
p = λp(NΩ). Thus, we have

lim
τ→∞

λp(Mτ ) = λp(NΩ).

Case 2. If λp(Mτ ) is not a principal eigenvalue for some τ > 0, then we can use the

approximation argument as in Case 2 in the proof of Theorem 2.5 to deduce the result. �

2.3. Influences of the dispersal rate and the dispersal spread.

In this subsection, we investigate the influences of the dispersal rate µ and the dispersal spread

σ on the generalised principal eigenvalue λp(L
τ,µ,σ,m
Ω ). Firstly, we establish the upper bound of

the generalised principal eigenvalue λp(L
τ,µ,σ,m
Ω ).

Lemma 2.8. Assume that (J), (H) and (A) hold. Then

λp(L
τ,µ,σ,m
Ω ) ≤ min

x∈Ω̄

{

µ

σm
hσ(x)− â(x)

}

.

Proof. Fix λ < λp(L
τ,µ,σ,m
Ω ). By the definition of λp(L

τ,µ,σ,m
Ω ), there exists ϕ ∈ χ++

Ω such that

Lτ,µ,σ,m
Ω [ϕ](x, t) + λϕ(x, t) ≤ 0 in Ω̄× R.

It is easy to check that

Hτ,µ,σ,m
Ω [ϕ](x, t) + λϕ(x, t) ≤ 0 in Ω̄× R,

where Hτ,µ,σ,m
Ω [ϕ] = −τϕt −

µ
σmhσ(x)ϕ+ a(x, t)ϕ. This implies that λ ≤ λp(H

τ,µ,σ,m
Ω ). Thus

λp(L
τ,µ,σ,m
Ω ) ≤ λp(H

τ,µ,σ,m
Ω ).

It follows from [29, Propositions 3.4-3.5] that

λp(H
τ,µ,σ,m
Ω ) = min

x∈Ω̄

{

µ

σm
hσ(x)− â(x)

}

.

This completes the proof. �

Now, we present the proof of Theorem 1.3.
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Proof of Theorem 1.3. (i) For any µ0 ∈ (0,∞), applying Lemma 2.1, we find that for each ǫ > 0,

there exists bǫ ∈ C1(Ω̄ × R) such that max
Ω̄×R

|bǫ − b| < ǫ, |λ1 − λǫ
1| < ǫ and λǫ

1 is an isolated

principal eigenvalue with finite multiplicity of Lτ,µ0,1,0
Ω (aǫ), where b(x, t) = a(x, t) − µ0h

1(x),

aǫ(x, t) = bǫ(x, t) + µ0h
1(x). In fact, we rewrite Lτ,µ,1,0

Ω (aǫ) as

Lτ,µ,1,0
Ω (aǫ) = Lτ,µ0,1,0

Ω (aǫ) + Uµ,µ0
,

where

Uµ,µ0
[ϕ](x) = (µ− µ0)

(
∫

Ω
J(x− y)ϕ(y)dy − h1(x)ϕ(x)

)

.

Note that Uµ,µ0
is a linear bounded operator and Uµ,µ0

→ 0 in norm as µ → µ0. It follows

from the classical perturbation theory of isolated eigenvalues [21, Charpter 4, Section 3.5], there

exists δ0 > 0 such that for all |µ− µ0| < δ0, we have
∣

∣λ1(L
τ,µ,1,0
Ω (aǫ))− λ1(L

τ,µ0,1,0
Ω (aǫ))

∣

∣ < ǫ.

Thanks to Theorem 1.1, we obtain
∣

∣λp(L
τ,µ,1,0
Ω (aǫ))− λp(L

τ,µ0,1,0
Ω (aǫ))

∣

∣ < ǫ.

By Lemma 2.2, λp(L
τ,µ,1,0
Ω (a)) is Lipschitz continuous with respect to a, i.e.,

∣

∣λp(L
τ,µ,1,0
Ω (aǫ))− λp(L

τ,µ,1,0
Ω (a))

∣

∣ ≤ ||a− aǫ||L∞(Ω) < ǫ.

In a word, for every given constant ǫ > 0, there exist δ0 > 0 and aǫ ∈ C1(Ω × R) such that

for all |µ− µ0| < δ0, we have

|λp(L
τ,µ,1,0
Ω (a))− λp(L

τ,µ0,1,0
Ω (a))|

≤|λp(L
τ,µ,1,0
Ω (a))− λp(L

τ,µ,1,0
Ω (aǫ))| + |λp(L

τ,µ,1,0
Ω (aǫ))− λp(L

τ,µ0,1,0
Ω (aǫ))|

+ |λp(L
τ,µ0,1,0
Ω (aǫ))− λp(L

τ,µ0,1,0
Ω (a))|

<ǫ+ ǫ+ ǫ = 3ǫ.

So λp(L
τ,µ,1,0
Ω ) is continuous with respect to µ.

Now, we prove the asymptotic behavior of λp(L
τ,µ,1,0
Ω ) as µ → 0+. For simplicity, we write

λµ
p := λp(L

τ,µ,1,0
Ω ). We first claim that for each ǫ > 0, there is µǫ > 0 such that

(2.23) λmax
ǫ ≤ λµ

p ≤ λmin
ǫ for all µ ∈ (0, µǫ),

where λmax
ǫ = −maxΩ̄ â− ǫ, λmin

ǫ = −minΩ̄ â+ ǫ. In fact, it is easy to check that the function

φ(x, t) := e
∫ t

0
[a(x,s)−â(x)]ds is a positive 1-periodic solution of φt = a(x, t)φ − â(x)φ for (x, t) ∈

Ω̄× R. In particular, φ ∈ χ++
Ω . A simple computation yields

(Lτ,µ,1,0
Ω + λmax

ǫ )[φ](x, t) =µ

(
∫

Ω
J(x− y)φ(y, t)dy − h1(x)φ(x, t)

)

+

(

â(x)−max
Ω̄

â− ǫ

)

φ(x, t),

(Lτ,µ,1,0
Ω + λmin

ǫ )[φ](x, t) =µ

(
∫

Ω
J(x− y)φ(y, t)dy − h1(x)φ(x, t)

)

+

(

â(x)−min
Ω̄

â+ ǫ

)

φ(x, t).

Thus, there exists µǫ > 0 such that

(Lτ,µ,1,0
Ω + λmax

ǫ )[φ] ≤ 0 and (Lτ,µ,1,0
Ω + λmin

ǫ )[φ] ≥ 0 for all µ ∈ (0, µǫ).



TIME PERIODIC NONLOCAL DISPERSAL OPERATORS AND APPLICATIONS 17

Moreover, by Theorem 1.1 and the definitions of λp(L
τ,µ,1,0
Ω ) and λ

′

p(L
τ,µ,1,0
Ω ), there holds (2.23)

for all µ ∈ (0, µǫ).

Next, thanks to Lemma 2.8 and the inequality (2.23), for each ǫ > 0 there is µǫ > 0 such that

−max
Ω̄

â− ǫ ≤ λµ
p ≤ min

x∈Ω̄

[

µh1(x)− â(x)

]

for all µ ∈ (0, µǫ).

Passing µ → 0+, we find

−max
Ω̄

â− ǫ ≤ lim inf
µ→0+

λµ
p ≤ lim sup

µ→0+
λµ
p ≤ −max

Ω̄
â ∀ ǫ > 0,

which leads to

λµ
p → −max

Ω̄
â as µ → 0+.

(ii) The proof of continuity is similar to (i). Hence, we omit it. It remains to prove parts (a)

and (b).

(a) By Lemma 2.8, we have

λp(L
τ,µ,σ,m
Ω ) ≤ min

x∈Ω̄

{

µ

σm
hσ(x)− â(x)

}

.

As m > 0 and σ → ∞, there holds

µ

σm
hσ(x) → 0 for all x ∈ Ω̄,

which implies that

lim sup
σ→∞

λp(L
τ,µ,σ,m
Ω ) ≤ −max

Ω̄
â.

To complete our proof, it remains to show

−max
Ω̄

â ≤ lim inf
σ→∞

λp(L
τ,µ,σ,m
Ω ).

For fixed constant φ0 > 0, it is easy to check that for every x ∈ Ω̄, the function

(2.24) φ(x, t) = e
∫ t

0
(a(x,s)−â(x))dsφ0, t ∈ R,

is a positive 1-periodic solution of the ordinary differential equation vt = a(x, t)v − â(x)v with

the initial condition v(x, 0) = φ0. In particular, φ ∈ χ++
Ω and we can choose φ0 such that

supΩ̄×R
φ = 1. For every ǫ > 0, we have

(Lτ,µ,σ,m
Ω −max

Ω̄
â− ǫ)[φ](x, t)

=− τφt(x, t) +

(

a(x, t) −max
Ω̄

â− ǫ

)

φ(x, t)

+
µ

σm

(
∫

Ω
Jσ(x− y)φ(y, t)dy − hσ(x)φ(x, t)

)

≤
µ

σm

(
∫

Ω
Jσ(x− y)φ(y, t)dy − hσ(x)φ(x, t)

)

− ǫφ(x, t).

Using supΩ̄×R
φ = 1, there holds

∥

∥

∥

∥

µ

σm

(
∫

Ω
Jσ(x− y)φ(y, t)dy − hσ(x)φ(x, t)

)
∥

∥

∥

∥

∞

≤

∥

∥

∥

∥

µ

σm

∫

Ω
Jσ(x− y)dy

∥

∥

∥

∥

∞

+
µM

σm
→ 0 as σ → ∞,
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which implies that there is σǫ > 0 such that

(Lτ,µ,σ,m
Ω −max

Ω̄
â− ǫ)[φ] ≤ 0 for all σ ≥ σǫ.

Thanks to the definition of λp(L
τ,µ,σ,m
Ω ), there holds

λp(L
τ,µ,σ,m
Ω ) ≥ −max

Ω̄
â− ǫ for all σ ≥ σǫ.

Since ǫ is an arbitrary constant, we have

lim inf
σ→∞

λp(L
τ,µ,σ,m
Ω ) ≥ −max

Ω̄
â.

Thus, we get

lim
σ→∞

λp(L
τ,µ,σ,m
Ω ) = −max

Ω̄
â.

(b) Again, following from Lemma 2.8, we have

λp(L
τ,µ,σ,0
Ω ) ≤ min

x∈Ω̄

{

µhσ(x)− â(x)

}

.

Owing to lim
σ→∞

hσ(x) = c, this implies that

lim sup
σ→∞

λp(L
τ,µ,σ,0
Ω ) ≤ µc−max

Ω̄
â.

To complete our proof, it remains to obtain

µc−max
Ω̄

â ≤ lim inf
σ→∞

λp(L
τ,µ,σ,0
Ω ).

For fixed constant φ0 > 0, it is easy to check that for every x ∈ Ω̄, the function

(2.25) φ(x, t) = e
∫ t

0
(a(x,s)−â(x))dsφ0, t ∈ R,

is a positive 1-periodic solution of the ordinary differential equation vt = a(x, t)v − â(x)v with

the initial condition v(x, 0) = φ0. In particular, φ ∈ χ++
Ω and we can choose φ0 such that

supΩ̄×R
φ = 1. For every ǫ > 0, we have

(Lτ,µ,σ,0
Ω −max

Ω̄
â+ µc− ǫ)[φ](x, t)

=− τφt(x, t) +

(

a(x, t)−max
Ω̄

â− ǫ

)

φ(x, t)

+ µ

(
∫

Ω
Jσ(x− y)φ(y, t)dy − hσ(x)φ(x, t) + cφ(x, t)

)

≤µ

(
∫

Ω
Jσ(x− y)φ(y, t)dy − hσ(x)φ(x, t) + cφ(x, t)

)

− ǫφ(x, t).

Using supΩ̄×R
φ = 1, there holds

∥

∥

∥

∥

µ

(
∫

Ω
Jσ(x− y)φ(y, t)dy − hσ(x)φ(x, t) + cφ(x, t)

)
∥

∥

∥

∥

∞

≤

∥

∥

∥

∥

µ

∫

Ω
Jσ(x− y)dy

∥

∥

∥

∥

∞

+ ‖c− hσ‖∞ → 0 as σ → ∞,

which implies that there is σǫ > 0 such that

(Lτ,µ,σ,0
Ω −max

Ω̄
â+ µc− ǫ)[φ] ≤ 0 for all σ ≥ σǫ.

Thanks to the definition of λp(L
τ,µ,σ,0
Ω ), there holds

λp(L
τ,µ,σ,0
Ω ) ≥ µc−max

Ω̄
â− ǫ for all σ ≥ σǫ.



TIME PERIODIC NONLOCAL DISPERSAL OPERATORS AND APPLICATIONS 19

Since ǫ is an arbitrary constant, we have

lim inf
σ→∞

λp(L
τ,µ,σ,0
Ω ) ≥ µc−max

Ω̄
â.

Thus, we get

lim
σ→∞

λp(L
τ,µ,σ,0
Ω ) = µc−max

Ω̄
â.

This completes the proof of Theorem 1.3. �

Next, we recall the following lemma in [29, Corollary D].

Lemma 2.9. Assume that (J) and (A) hold. Let Nµ,σ,m
Ω [ϕ](x) := µ

σm

∫

Ω Jσ(x − y)(ϕ(y) −

ϕ(x))dy + â(x)ϕ(x). If λp(N
µ,σ,m
Ω ) is the principal eigenvalue of Nµ,σ,m

Ω and hσ(x) =
∫

Ω Jσ(x−

y)dy, then λp(L
τ,µ,σ,m
Ω ) is the principal eigenvalue of Lτ,µ,σ,m

Ω .

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. (i) By [32, Theorem 2.2 (3)], there exists µ1 > 0 such that λp(N
µ,1,0
Ω ) is

the principal eigenvalue of Nµ,1,0
Ω for all µ ≥ µ1. It follows from Lemma 2.9 that λp(L

τ,µ,1,0
Ω ) is

the principal eigenvalue of Lτ,µ,1,0
Ω for all µ ≥ µ1.

Since λµ
p is the principal eigenvalue of Lτ,µ,1,0

Ω for all µ ≥ µ1, there exists ϕ ∈ χ++
Ω with

∫ 1
0

∫

Ω ϕ2(x, t)dxdt = 1 such that

(2.26) − τϕt(x, t) + µ

∫

Ω
J(x− y)(ϕ(y, t) − ϕ(x, t))dy + (a(x, t) + λµ

p )ϕ(x, t) = 0 in Ω̄× R.

On one hand, divide (2.26) by ϕ and integrate over Ω× (0, 1) to obtain
∫ 1

0

∫

Ω
λµ
pdxdt =τ

∫ 1

0

∫

Ω

ϕt(x, t)

ϕ(x, t)
dxdt−

∫ 1

0

∫

Ω
a(x, t)dxdt

− µ

∫ 1

0

∫

Ω

∫

Ω
J(x− y)

ϕ(y, t) − ϕ(x, t)

ϕ(x, t)
dydxdt.

Owing to
∫ 1

0

∫

Ω

ϕt(x, t)

ϕ(x, t)
dxdt =

∫

Ω

∫ 1

0

ϕt(x, t)

ϕ(x, t)
dtdx = 0

and

µ

∫ 1

0

∫

Ω

∫

Ω
J(x− y)

ϕ(y, t) − ϕ(x, t)

ϕ(x, t)
dydxdt

=
µ

2

∫ 1

0

∫

Ω

∫

Ω
J(x− y)

(ϕ(y, t) − ϕ(x, t))2

ϕ(x, t)ϕ(y, t)
dydxdt,

we get
∫ 1

0

∫

Ω
λµ
pdxdt

=−

∫ 1

0

∫

Ω
a(x, t)dxdt −

µ

2

∫ 1

0

∫

Ω

∫

Ω
J(x− y)

(ϕ(y, t) − ϕ(x, t))2

ϕ(x, t)ϕ(y, t)
dydxdt.

This implies that

(2.27) λµ
p ≤ −¯̂a.

On the other hand, multiplying (2.26) by ϕ and integrating over Ω× (0, 1) yield
∫ 1

0

∫

Ω
λµ
pϕ

2(x, t)dxdt =τ

∫ 1

0

∫

Ω
ϕt(x, t)ϕ(x, t)dxdt −

∫ 1

0

∫

Ω
a(x, t)ϕ2(x, t)dxdt
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− µ

∫ 1

0

∫

Ω

∫

Ω
J(x− y)(ϕ(y, t) − ϕ(x, t))ϕ(x, t)dydxdt.

In view of ϕ ∈ χ++
Ω and the symmetry of J , we have

λµ
p =

µ

2

∫ 1

0

∫

Ω

∫

Ω
J(x− y)(ϕ(y, t) − ϕ(x, t))2dydxdt−

∫ 1

0

∫

Ω
a(x, t)ϕ2(x, t)dxdt,(2.28)

which implies that

(2.29) λµ
p ≥ −

∫ 1

0

∫

Ω
a(x, t)ϕ2(x, t)dxdt ≥ − max

Ω̄×[0,1]
a.

By combining (2.27) and (2.29), we obtain

(2.30) − max
Ω̄×[0,1]

a ≤ λµ
p ≤ −¯̂a.

Rewriting (2.28) as
∫ 1

0

∫

Ω

∫

Ω
J(x− y)(ϕ(y, t) − ϕ(x, t))2dydxdt

=
2

µ

∫ 1

0

∫

Ω
(λµ

p + a(x, t))ϕ2(x, t)dxdt,

it follows from (2.30) that
∫ 1

0

∫

Ω

∫

Ω
J(x− y)(ϕ(y, t) − ϕ(x, t))2dydxdt

≤
2

µ

(

max
Ω̄×[0,1]

a− ¯̂a

)

.

(2.31)

Let ψ(x, t) := ϕ(x, t) − ϕ̄(t), where ϕ̄(t) = 1
|Ω|

∫

Ω ϕ(x, t)dx. Then we have
∫

Ω ψ(x, t)dx = 0.

Observe that

(2.32)

∫

Ω

∫

Ω
J(x− y)(ϕ(y, t) − ϕ(x, t))2dydx =

∫

Ω

∫

Ω
J(x− y)(ψ(y, t) − ψ(x, t))2dydx.

By [32, Page 1688, Formula (5.6)], there exists C > 0 such that

(2.33)

∫

Ω
ψ2(x, t)dx ≤

1

2C

∫

Ω

∫

Ω
J(x− y)(ψ(y, t) − ψ(x, t))2dydx for all µ ≫ 1.

It deduces from (2.31), (2.32) and (2.33) that
∫ 1

0

∫

Ω
ψ2(x, t)dxdt ≤

1

2C

∫ 1

0

∫

Ω

∫

Ω
J(x− y)(ψ(y, t) − ψ(x, t))2dydxdt

≤
1

Cµ

(

max
Ω̄×[0,1]

a− ¯̂a

)

.

(2.34)

Now, integrating (2.26) over Ω and substituting ψ = ϕ− ϕ̄ yield

(2.35) τϕ̄t =
1

|Ω|

∫

Ω
(λµ

p + a(x, t))dxϕ̄ +
1

|Ω|

∫

Ω
(λµ

p + a(x, t))ψ(x, t)dx.

In view of (2.34), we have
∫ 1

0

∫

Ω
(λµ

p + a(x, t))ψ(x, t)dxdt = O(µ− 1

2 ) as µ → ∞.

Using the integrating form in this first order differential equation, we find that

(2.36) ϕ̄(t) = ϕ̄(0)e
1

τ |Ω|

∫ t

0

∫
Ω
(λµ

p+a(x,t))dxdt
+O(µ− 1

2 ) as µ → ∞.
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Since ϕ̄(1) = ϕ̄(0), we get

∫ 1

0

∫

Ω
(λµ

p + a(x, t))dxdt → 0 or ϕ̄(0) → 0 as µ → ∞.

If ϕ̄(0) → 0, then, by (2.36), also ϕ̄(t) → 0 uniformly in t ∈ [0, 1] as µ → ∞. Thanks to (2.31)

and the symmetry of J , we get

∫ 1

0

∫

Ω
ϕ2(x, t)dxdt

≤C0

∫ 1

0

∫

Ω

∫

Ω
J(x− y)ϕ2(x, t)dydxdt

=C0

∫ 1

0

∫

Ω

∫

Ω
J(x− y)(ϕ2(x, t)− ϕ(y, t)ϕ(x, t))dydxdt

+ C0

∫ 1

0

∫

Ω

∫

Ω
J(x− y)ϕ(y, t)ϕ(x, t)dydxdt

≤
C0

2

∫ 1

0

∫

Ω

∫

Ω
J(x− y)(ϕ(y, t) − ϕ(x, t))2dydxdt

+ |Ω|2C0M

∫ 1

0
ϕ̄2(t)dt

≤
C0

µ

(

max
Ω̄×[0,1]

a− ¯̂a

)

+ |Ω|2C0M

∫ 1

0
ϕ̄2(t)dt,

where C0 =

(

min
x∈Ω̄

∫

Ω J(x− y)dy

)−1

and M = max
(x,y)∈Ω̄×Ω̄

J(x− y). This implies that

∫ 1

0

∫

Ω
ϕ2(x, t)dxdt → 0 as µ → ∞,

in contradiction to the normalization of ϕ. Thus, we have

∫ 1

0

∫

Ω
(λµ

p + a(x, t))dxdt → 0 as µ → ∞,

that is,

λµ
p → −¯̂a as µ → ∞.

(ii) By [38, Theorem 1.2], there exists σ0 > 0 such that λp(N
µ,σ,m
Ω ) is the principal eigenvalue

of Nµ,σ,m
Ω for all σ ≤ σ0. It follows from Lemma 2.9 that λp(L

τ,µ,σ,m
Ω ) is the principal eigenvalue

of Lτ,µ,σ,m
Ω for all σ ≤ σ0.

Let φ be as in (2.24). Without loss of generality, we assume that a ∈ C2,1
1 (Ω̄×R). Then there

holds φ ∈ C2,1
1 (Ω̄ ×R) ∩ χ++

Ω . For every ǫ > 0, we have

(Lτ,µ,σ,m
Ω −max

Ω̄
â− ǫ)[φ](x, t)

≤
µ

σm

∫

Ω
Jσ(x− y)(φ(y, t)− φ(x, t))dy − ǫφ(x, t)

≤
µ

σm

∫

Ω−x
σ

J(z)(φ(x + σz, t)− φ(x, t))dz − ǫφ(x, t).

(2.37)
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For σ small enough, say σ ≤ σ1, we obtain B(0, 1) ⊂ Ω−x
σ

for all x ∈ Ω. Thus, by Taylor’s

expansion and the symmetric of J , there holds

µ

σm

∫

Ω−x
σ

J(z)(φ(x + σz, t) − φ(x, t))dz

=
µ

σm

∫

RN

J(z)(φ(x + σz, t)− φ(x, t))dz

=
µ

σm

∫

RN

J(z)

(

Dφ(x, t)(σz) +
1

2
(σz)TD2φ(x, t)(σz) + o(σ2)

)

dz

=
µσ2−m

2

∫

RN

J(z)zTD2φ(x, t)zdz + o(σ2−m).

(2.38)

By combining (2.37) with (2.38), there exists 0 < σǫ < σ1 such that

(Lτ,µ,σ,m
Ω −max

Ω̄
â− ǫ)[φ] ≤ 0 for all σ ≤ σǫ.

Using the definition of λp(L
τ,µ,σ,m
Ω ), there holds

λp(L
τ,µ,σ,m
Ω ) ≥ −max

Ω̄
â− ǫ for all σ ≤ σǫ.

Therefore, we obtain

lim inf
σ→0+

λp(L
τ,µ,σ,m
Ω ) ≥ −max

Ω̄
â.

It remains to show that

lim sup
σ→0+

λp(L
τ,µ,σ,m
Ω ) ≤ −max

Ω̄
â.

By Theorem 1.1 and [29, Theorem C], it follows that

(2.39) λp(L
τ,µ,σ,m
Ω ) ≤ λp(N

µ,σ,m
Ω ).

Using [38, Theorem 1.2], there holds

(2.40) lim
σ→0+

λp(N
µ,σ,m
Ω ) = −max

Ω̄
â.

In view of (2.39) and (2.40), we have

lim sup
σ→0+

λp(L
τ,µ,σ,m
Ω ) ≤ −max

Ω̄
â.

The proof is complete. �

3. Time-periodic nonlocal dispersal KPP equations

In this section we apply the results for the generalised principal eigenvalues to the time-

periodic nonlocal dispersal KPP equation with Neumann boundary conditions. Firstly, we

study the effects of the frequency on the persistence of populations. Next, we discuss the

effects of the dispersal rate and the dispersal spread on the positive time-periodic solutions

to the equation. More precisely, we obtain the existence, uniqueness and stability of positive

time-periodic solutions when µ or σ is sufficiently small or large. Furthermore, we analyse the

asymptotic limits of the positive time-periodic solutions as µ or σ tends to zero or infinity.
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3.1. Effects of the frequency.

The following result provides some sufficient conditions such that Corollary 1.7 holds.

Theorem 3.1. Assume that (J) and (F) hold. Then the following statements hold:

(i) If
∫ 1
0 max

x∈Ω̄
{a(x, t)}dt < 0, then (1.3) admits no solution in χ+

Ω \ {0} and zero solution is

globally asymptotically stable for all τ ∈ (0,∞);

(ii) If
∫ 1
0 max

x∈Ω̄
{a(x, t)}dt− µ

σm > 0, max
x∈Ω̄

{â(x)} < 0 and λp(L
τ,µ,σ,m
Ω ) is a principal eigenvalue

of the operator Lτ,µ,σ,m
Ω , then there is some constant τ∗ > 0 such that

(a) If τ < τ∗, then (1.3) admits a unique solution u∗τ ∈ χ++
Ω that is globally asymptoti-

cally stable.

(b) If τ > τ∗, then (1.3) admits no solution in χ+
Ω \ {0} and zero solution is globally

asymptotically stable;

(iii) If max
x∈Ω̄

{â(x)} − µ
σm > 0, then (1.3) admits a unique solution u∗τ ∈ χ++

Ω that is globally

asymptotically stable for all τ ∈ (0,∞).

Proof. (i) By the definition of λp(N
t
Ω), it is easy to deduce

(3.1) −max
x∈Ω̄

{a(x, t)} ≤ λp(N
t
Ω) ≤ −max

x∈Ω̄

{

a(x, t)−
µ

σm

∫

Ω
Jσ(x− y)dy

}

.

Thus, we have
∫ 1

0
λp(N

t
Ω)dt ≥

∫ 1

0
−max

x∈Ω̄
{a(x, t)} > 0.

By Corollary 1.7, we deduce the conclusion of part (i).

(ii) Owing to the inequality (3.1), we have
∫ 1

0
λp(N

t
Ω)dt ≤

∫ 1

0
−max

x∈Ω̄

{

a(x, t)−
µ

σm

∫

Ω
Jσ(x− y)dy

}

dt ≤ −

∫ 1

0
max
x∈Ω̄

{a(x, t)}dt +
µ

σm
< 0.

By the definition of λp(NΩ), we obtain

(3.2) −max
x∈Ω̄

{â(x)} ≤ λp(NΩ) ≤ −max
x∈Ω̄

{

â(x)−
µ

σm

∫

Ω
Jσ(x− y)dy

}

,

which implies that

λp(NΩ) ≥ −max
x∈Ω̄

{â(x)} > 0.

The conclusion of part (ii) thus follows from Corollary 1.7.

(iii) By the inequality (3.2), it implies that

λp(NΩ) ≤ −max
x∈Ω̄

{

â(x)−
µ

σm

∫

Ω
Jσ(x− y)dy

}

≤ −max
x∈Ω̄

{â(x)} +
µ

σm
< 0.

The conclusion of part (iii) thus follows from Corollary 1.7. �

3.2. Effects of the dispersal rate.

This subsection is devoted to the proof of Theorem 1.8. We recall the following result in [36]:

Lemma 3.2. Assume that f satisfies (F). If minΩ̄ â > 0, then for each x ∈ Ω̄, the equation

τvt = f(x, t, v)

has a unique positive 1-periodic solution, denoted by v∗(x, t), which is continuous in x.
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Although the proof of Theorem 1.8 (i) is similar to [36, Theorem C], we still present the proof

for the convenience of the reader.

Proof of Theorem 1.8. (i) By Theorem 1.3 (ii), there exists µ0 > 0 such that λp(L
τ,µ,1,0
Ω ) ≤

−maxΩ̄ â/2 < 0 for all µ ∈ (0, µ0). Thus, it follows from Lemma 1.6 that (1.3) admits a unique

solution u∗µ ∈ χ++
Ω which is globally asymptotically stable for all µ ∈ (0, µ0).

We claim that for each 0 < ǫ ≪ 1, there exists µǫ > 0 such that for each µ ∈ (0, µǫ),

v∗(x, t)− ǫ ≤ u∗µ(x, t) ≤ v∗(x, t) + ǫ, (x, t) ∈ Ω̄× R.

Let us prove the lower bound only as the upper bound follows from similar arguments. Let

0 < ǫ ≪ 1. By minΩ̄×R
v∗ > 0, there exists δ = δ(ǫ) > 0 such that

v(x, t) := (1− δ)v∗(x, t) ≥ v∗(x, t) − ǫ > 0, (x, t) ∈ Ω̄×R.

Note that for each (x, t) ∈ Ω̄× R,

− τvt(x, t) + µ

∫

Ω
J(x− y)(v(y, t) − v(x, t))dy + f(x, t, v(x, t))

=− (1− δ)τv∗t (x, t) + (1− δ)µ

∫

Ω
J(x− y)(v∗(y, t)− v∗(x, t))dy + f(x, t, v(x, t))

=(1− δ)µ

∫

Ω
J(x− y)(v∗(y, t)− v∗(x, t))dy + f(x, t, v(x, t)) − (1− δ)f(x, t, v∗(x, t)).

We see that as µ → 0+,

(3.3) (1− δ)µ

∫

Ω
J(x− y)(v∗(y, t)− v∗(x, t))dy → 0 uniformly in (x, t) ∈ Ω̄× R.

By (F)-(3), there holds for each (x, t) ∈ Ω̄× R,

f(x, t, v(x, t)) − (1− δ)f(x, t, v∗(x, t)) = v(x, t)

[

f(x, t, v(x, t))

v(x, t)
−

f(x, t, v∗(x, t))

v∗(x, t)

]

> 0.

Thus, there exists µǫ > 0 such that for each µ ∈ (0, µǫ),

(3.4) τvt(x, t) ≤ µ

∫

Ω
J(x− y)(v(y, t) − v(x, t))dy + f(x, t, v(x, t)) for all (x, t) ∈ Ω̄×R.

It remains to show that for each µ ∈ (0, µǫ), there holds v(x, t) ≤ u∗µ(x, t) for all (x, t) ∈ Ω̄×R.

To do so, let us fix any µ ∈ (0, µǫ) and define

α∗ = inf{α > 0 | v(x, t) ≤ αu∗µ(x, t) for all (x, t) ∈ Ω̄× R}.

Since u∗µ ∈ χ++
Ω and v is bounded, α∗ is well-defined and positive. Thanks to the continuity of

u∗µ and v, there holds v(x, t) ≤ α∗u
∗
µ(x, t) and there exists (x0, t0) ∈ Ω̄×R such that v(x0, t0) =

α∗u
∗
µ(x0, t0).

If α∗ ≤ 1, then we are done. Therefore, let us assume α∗ > 1. By the inequality (3.4) and

(F)-(3), we see that w(x, t) := v(x, t) − α∗u
∗
µ(x, t) satisfies

τwt(x, t) ≤ µ

∫

Ω
J(x− y)(w(y, t) − w(x, t))dy + f(x, t, v(x, t)) − α∗f(x, t, u

∗
µ(x, t))

< µ

∫

Ω
J(x− y)(w(y, t) − w(x, t))dy + f(x, t, v(x, t)) − f(x, t, α∗u

∗
µ(x, t)).

(3.5)

Hence, setting (x, t) = (x0, t0) in (3.5) yields

0 = τwt(x0, t0) <µ

∫

Ω
J(x0 − y)(w(y, t0)− w(x0, t0))dy
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+ f(x0, t0, v(x0, t0))− f(x0, t0, α∗u
∗
µ(x0, t0)) ≤ 0,

which is a contradiction. Hence, α∗ ≤ 1 and the proof is complete.

(ii) By Theorem 1.5(i), there exists µ1 > 0 such that λp(L
τ,µ,1,0
Ω ) ≤ −¯̂a/2 < 0 for all µ ∈

(µ1,∞). Thus, it follows from Lemma 1.6 that (1.3) admits a unique solution u∗µ ∈ χ++
Ω that is

globally asymptotically stable for all µ ∈ (µ1,∞). Thus, we have

(3.6) τ(u∗µ)t(x, t) = µ

∫

Ω
J(x− y)(u∗µ(y, t)− u∗µ(x, t))dy + f(x, t, u∗µ(x, t)), (x, t) ∈ Ω̄× R.

It is easy to check that there holds

sup
t∈[0,1]

‖f(·, t, u∗µ(·, t))‖L∞(Ω) ≤ sup
t∈[0,1]

‖a(·, t)u∗µ(·, t)‖L∞(Ω) ≤ M max
(x,t)∈Ω̄×[0,1]

|a(x, t)| := MA.

Multiplying (3.6) by u∗µ and integrating over Ω× (0, 1) yield

τ

∫ 1

0

∫

Ω
(u∗µ)tu

∗
µdxdt =

∫ 1

0

∫

Ω
f(x, t, u∗µ(x, t))u

∗
µ(x, t)dxdt

+ µ

∫ 1

0

∫

Ω

∫

Ω
J(x− y)(u∗µ(y, t)− u∗µ(x, t))u

∗
µ(x, t)dydxdt.

In view of u∗µ ∈ χ++
Ω and the symmetry of J , we have

µ

2

∫ 1

0

∫

Ω

∫

Ω
J(x− y)(u∗µ(y, t)− u∗µ(x, t))

2dydxdt =

∫ 1

0

∫

Ω
f(x, t, u∗µ(x, t))u

∗
µ(x, t)dxdt,

which implies that
∫ 1

0

∫

Ω

∫

Ω
J(x− y)(u∗µ(y, t)− u∗µ(x, t))

2dydxdt

=
2

µ

∫ 1

0

∫

Ω
f(x, t, u∗µ(x, t))u

∗
µ(x, t)dxdt

≤
2M2A|Ω|

µ
.

(3.7)

Let us assume U(x, t) = u∗µ(x, t)− ū(t), where ū(t) = 1
|Ω|

∫

Ω u∗µ(x, t)dx. We get
∫

Ω U(x, t)dx = 0.

Integrating (3.6) over Ω and substituting U(x, t) = u∗µ(x, t)− ū(t) yield

τ ūt(t) =
1

|Ω|

∫

Ω
f(x, t, U(x, t) + ū(t))dx

=
1

|Ω|

∫

Ω
f(x, t, ū(t))dx +

1

|Ω|

∫

Ω

(

f(x, t, U(x, t) + ū(t)) − f(x, t, ū(t))
)

dx.

Owing to assumption (F), we have
∣

∣

∣

∣

∫

Ω

(

f(x, t, U(x, t) + ū(t))− f(x, t, ū(t))
)

dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ω
a(x, t)U(x, t)dx

∣

∣

∣

∣

≤A|Ω|
1

2

(
∫

Ω
U2(x, t)dx

)
1

2

By [32, Page 1688, Formula (5.6)], there exists C > 0 such that

(3.8)

∫

Ω
U2(x, t)dx ≤

1

2C

∫

Ω

∫

Ω
J(x− y)(U(y, t)− U(x, t))2dydx for all µ ≫ 1.
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By (3.7) and (3.8), there holds
∫ 1

0

∫

Ω
U2(x, t)dxdt ≤

M2A|Ω|

Cµ
,

which implies that
∫ 1

0

∣

∣

∣

∣

∫

Ω

(

f(x, t, U(x, t) + ū(t))− f(x, t, ū(t))
)

dx

∣

∣

∣

∣

dt = O(µ− 1

2 ) as µ ≫ 1.

Thus, we have

lim
µ→∞

u∗µ(x, t) = v∗(t) uniformly in (x, t) ∈ Ω̄× R,

where v∗(t) is the unique positive 1-periodic solution or zero solution of the equation

τvt(t) =
1

|Ω|

∫

Ω
f(x, t, v(t))dx.

Finally, we exclude that v∗(t) is zero solution. Divide (3.6) by u∗µ and integrate over Ω× (0, 1)

to obtain

τ

∫ 1

0

∫

Ω

(u∗µ)t(x, t)

u∗µ(x, t)
dxdt =µ

∫ 1

0

∫

Ω

∫

Ω
J(x− y)

u∗µ(y, t)− u∗µ(x, t)

u∗µ(x, t)
dydxdt

+

∫ 1

0

∫

Ω

f(x, t, u∗µ(x, t))

u∗µ(x, t)
dxdt for all µ ∈ (µ1,∞).

Owing to u∗µ ∈ χ++
Ω and the symmetry of J , we get

∫ 1

0

∫

Ω

f(x, t, u∗µ(x, t))

u∗µ(x, t)
dxdt = −

µ

2

∫ 1

0

∫

Ω

∫

Ω
J(x− y)

(u∗µ(y, t)− u∗µ(x, t))
2

u∗µ(x, t)u
∗
µ(y, t)

dydxdt

for all µ ∈ (µ1,∞). This implies that
∫ 1

0

∫

Ω

f(x, t, u∗µ(x, t))

u∗µ(x, t)
dxdt ≤ 0 for all µ ∈ (µ1,∞).

If v∗(t) ≡ 0, then it follows from the above inequality and assumption (F) that
∫ 1

0

∫

Ω
a(x, t)dxdt ≤ 0,

which contradicts ¯̂a > 0. Therefore, v∗ is non-zero and the proof is complete. �

3.3. Effects of the dispersal spread.

This subsection is devoted to the proof of Theorem 1.9.

Proof of Theorem 1.9. (i) It follows from Theorem 1.3 and Lemma 1.6 that there exists σ1 > 0

such that (1.3) admits a unique solution u∗σ ∈ χ++
Ω that is globally asymptotically stable for all

σ ∈ (σ1,∞). Similar to the proof of Theorem 1.8 (i), we have

lim
σ→∞

u∗σ(x, t) = v∗(x, t) uniformly in (x, t) ∈ Ω̄× R.

(ii) It follows from Theorem 1.5 and Lemma 1.6 that there exists σ0 > 0 such that (1.3)

admits a unique solution u∗σ ∈ χ++
Ω that is globally asymptotically stable for all σ ∈ (0, σ0). By

the same proof of Theorem 1.8 (i), we can also obtain that

lim
σ→0+

u∗σ(x, t) = v∗(x, t) uniformly in (x, t) ∈ Ω̄×R.

The proof is complete. �
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