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ABSTRACT. This paper is mainly concerned with the generalised principal eigenvalue for time-
periodic nonlocal dispersal operators. We first establish the equivalence between two different
characterisations of the generalised principal eigenvalue. We further investigate the dependence
of the generalised principal eigenvalue on the frequency, the dispersal rate and the disper-
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1. INTRODUCTION

In recent years nonlocal dispersal evolution equations have been widely used to model non-
adjacent diffusive phenomena which exhibit long range internal interactions; See [5,14,17,22,25]
and references therein. The principal eigenvalues of nonlocal dispersal operators serve as a
basic tool for the investigation of nonlocal dispersal equations. Many studies have been devoted
to the understanding of the principal eigenvalues for elliptic-type nonlocal dispersal operators
and their qualitative properties; See [3,4,9-11,15,17,20, 23,32, 34, 38,39, 41, 42] and references
therein. As far as time-periodic nonlocal dispersal operators are concerned, however, there is less
understanding for the associated principal eigenvalue, especially the dependence of the principal
eigenvalue with respect to the underlying parameters. Similar to the time-periodic random
dispersal operators [16, 26, 27], the principal eigenvalues for time-periodic nonlocal dispersal
operators are relevant when a time-periodic environment is involved.

In this paper, we are interested in the following time-periodic nonlocal dispersal operators:
(11) L;—i%mm[v] (:Ev t) = _Tvt(:Ev t) + O-im < /Q JU(:E - y)v(y, t)dy - hg(;p)v(gj, t)) —|—CL(JE, t)’U(:E, t)a

where (z,t) € QxR, Q C RY is a bounded domain, 7 > 0 is the frequency, u > 0 is the dispersal
rate, o > 0 is the dispersal spread which characterises the dispersal range, m > 0 is the cost
parameter, J,(-) = ULNJ (Z) is the scaled dispersal kernel. Throughout the paper, we will make
the following assumptions on the dispersal kernel J, a family of functions {7 },~¢ and function
a:
(J) J € C(RY) is nonnegative symmetric with compact support on the unit ball By(0),
J(0) >0 and [pn J(2)dz = 1;

(H) h? € C(%2) and there exists a constant M > 0 such that |27y < M for all o > 0;
(A) a € C1(AxR):={v € C(QAxR) | v(x,t +1) =v(x,t), (z,t) € Q xR}

Define the spaces xq, Xg, X;S+ as follows:

xo ={v € CO¥N QX R) | v(z,t + 1) = v(z,1), (z,t) € A x R},
Xo = {v € xa | v(@,t) >0, (z,t) € O x R},
Xo" = {vexa|vt) >0, (z,t) € QA x R},

where C%1(Q) x R) denotes the class of functions that are continuous in x and C! in t. The
operator L;""”™ is then considered as an unbounded linear operator on the space C1(Q x R)

with domain xq , namely,
L™ xa C Ch(Q x R) — C1(Q x R).

It may be worthwhile to point out that the time-periodic nonlocal dispersal operators of the
form (1.1) include several kinds of boundary conditions, such as Dirichlet, Neumann and mixed
type; See [7,28,29].

The principal eigenvalues for time-periodic nonlocal dispersal operators have been studied
in [2,19,29-31,33,36,40]. In this paper, we adopt the approaches as in Berestycki, Nirenberg
and Varadhan [6] and Berestycki, Coville and Vo [4] for the definition of the generalised principal

eigenvalue \p(LG""™):

Mp(LG7™) :=sup{fA € R | Jv € x" st (LGH7™ 4+ A)[v] <0 in Q x R},
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Ty[,0,1M

Another definition for the generalised principal eigenvalue of L is given by

/

A (LG 7™) :=inf{A e R | Fv e x$" st (LG + N)[v] > 0 in Q x R},

motivated by the works of Donsker and Varadhan in [13] and Berestycki, Coville and Vo in [4].
Shen and Vo proved in [36] that A\, = )\;, when ), is the principal eigenvalue and h?(z) = 1
for all o > 0. Our first main result proves that for general h?, \, = )\;, always holds, and A,

T,[,0,m

can be characterised as the infimum of the spectrum of —L; , whether ), is an eigenvalue

or not.

Theorem 1.1. Assume that (J), (H) and (A) hold. Then
(L") = Ny (LG ™) = Ar,
where Ay = inf{ReX | A € o(—L5"7™)} and o(—LG""™) is the spectrum of —LG""™.

Next, we turn to study the influences of the frequency 7, the dispersal rate 1 and the dispersal

(LGH™). The following result establishes

spread o on the generalised principal eigenvalue A,
the monotonicity and asymptotic behaviors of the generalised principal eigenvalue A, (Lg"”"™)

with respect to the frequency 7:

Theorem 1.2. Assume that (J), (H) and (A) hold. Then the following conclusions hold:

(i) The function T+ A\p(LG"™) is non-decreasing and continuous on (0,00). Moreover,
if Ap(LGH7™) is a principal eigenvalue, then the following assertions hold:
(a) If a(z,t) = a(x) + g(t), then \p(LG™™™) is constant for T > 0.
(b) Othemuz’se %(Lg“’g’m) > 0 for every T > 0;

(ii) If a € C%Y(Q x R), then there holds

lim A, (LG"™™) /)\ (N§)d

T—0t

Here, for each fized t € [0,1], \,(N§) is the generalised principal eigenvalue of the
operator N{,
K o
Nalolo) i= Lo ([ e = oy = 1 @)o(o)) + e ote);

(iii) If a € C%1(Q x R), then there holds
lim A\, (LG"7™) = Ay (Ng),

T—00
where \p(Nq) is the generalised principal eigenvalue of the operator Ng
No[v](z) := J% (/Q Jo(z —y)o(y)dy — h”(fﬂ)?f(%)) + a(z)u(z)
with

1
a(x) ::/0 a(z,t)dt, z € Q.

Theorem 1.2 is motivated by the recent work of Liu et al. [24] for time-periodic parabolic
operators; See also [18,26]. Biologically, this reflects that in a spatio-temporal heterogeneous
environment, when the temporal variability increases, it becomes harder for a single species
to persist. Part (i) also implies that if @ is a time-periodic function with period T, then the
generalised principal eigenvalue is a non-increasing function of 7.
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Now, we investigate the effects of the dispersal on the generalised principal eigenvalue. On
one hand, we study the dependence of the generalised principal eigenvalue A, on the dispersal
rate p. For this purpose, we consider the non-scaled operators Lg; 10 On the other hand,
we also intend to understand the effects of the dispersal spread and the dispersal budget on
the generalised principal eigenvalue \,. The concept of the dispersal budget was introduced by
Hutson et al. [17]. They showed that the dispersal rate is characterised by Uim under proper
conditions. From the biological point of view, the species can “choose” to disperse a few offspring
over a long distance or many offspring over a short distance or some other combinations.

Theorem 1.3. Assume that (J), (H) and (A) hold. Then the following conclusions hold:

(i) The function p— Ap(L T“’l’o) is continuous on (0,00) and there holds

1 R
lim A H(LGM0) = — max a;
u—0 Q

(ii) The function o — \p(LG""™) is continuous on (0,00) and
(a) If m > 0, then there holds

lim A, (LG"7™) = —max a;
o—00 Q

(b) If m =0 and li_>m h?(x) = ¢, then there holds

lim Ay (LG""™) = pe — max a.
o—00 Q

Remark 1.4. For the case m = 0, when the nonlocal dispersal operators take Dirichlet bound-
ary conditions, h"( ) = 1 When the nonlocal dispersal operators take Neumann boundary
conditions, i.e., h7(z) = [, Jo y)dy, we have hm h?(z) = 0. This implies that the bound-
ary conditions play an 1mportant role in the per&stence of the populations, i.e. the large spread
strategy with Neumann boundary conditions may be more advantageous for species to persist,
in comparison to Dirichlet boundary conditions [36].

For later applications to time-periodic nonlinear KPP equations with nonlocal dispersal, we
also investigate the time-periodic nonlocal dispersal operators with Neumann boundary condi-

tions. More precisely, we have

Theorem 1.5. Assume that (J) and (A) hold. If h°(z) = [, Jo y)dy, then the following
conclusions hold:

i) There exists piy > 0 such that A, T“’l’o is the principal eigenvalue of om0 for all
H Q
> 1. Moreover, there holds

lim A\, (L T“’I’O) —a,
J—00

where & = ﬁ Jo a(x)de;

(ii) There exists oo > 0 such that \p(LG"™™) is the principal eigenvalue of LG"™™ for all
0 <o <og. Moreover, if J is symmetric with respect to each component and 0 < m < 2,
then there holds

lim A, (L5"7™) = —max a.
oc—0t Q

For the case m = 2, it is shown in [31] that lim Ap(LGH72) = A, where A, is the principal
o—0

eigenvalue of the corresponding time-periodic random dispersal eigenvalue problem. For the
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case m > 2, we conjecture that li>nol+ Ap(LG7™) = —a, which has been proved by [38, Theorem
1.3 (iii)] for the time—independe(;lt operators.

In the second part of this paper, we consider the applications of previous results for the gener-
alised principal eigenvalue to the nonlocal dispersal equation in spatio-temporally heterogeneous

environments

(1.2)
Tug(z,t) = L7 [ Jo (u(y,t) —u(z,t))dy + f(z, t,u(z,t)), (x,t) € Q x (0,00),
u(z,0) = ug(z), e,

and the time-periodic nonlocal dispersal KPP equation with Neumann boundary conditions

Tuy(x,t) = Jw fo Jo (u(y, t) — u(z,t))dy + f(z,t,u(z,1), (2,t) € AxR,

(1.3) -
u(z, t+1) = u(m,t), (x,t) € Q xR,

where u(zx,t) represents the population density at location x and time ¢. Since we only integrate
over (), we assume that diffusion takes place only in . The individuals may not enter or
leave the domain, which is called nonlocal Neumann boundary condition; See [1,8]. The
nonlinearity f(z,t,u) satisfies the following assumptions:
(F) f: QxR xR — R is of KPP type and satisfies:
(1) f(-,t,u) € CHQ), f(x,-,u) € O(R) and f(z,t,-) € CY(R);
(2) f(x,t,0) =0 for all (z,t) € Q x R and

fla,t+1,u) = f(z,t,u), Y(z,t,u) € A x R xR,

(3) For all (x,t) € Q x R, the function u > f(x,t,u)/u is decreasing on (0, 00);
(4) There exists M > 0 such that

flx,t,u) <0, V (x,t,u) € QxR x [M,c0).

From now on, we set
a(z,t) = fu(z,t,0), (z,t) € QA xR,
Then, L;"™, defined in (1.1), is the linear operator associated to the linearization of (1.3) at
u = 0.
Nonlocal dispersal evolution equations of the form (1.2) have attracted a lot of attentions
in recent years; See [29,31, 33,36, 40] and references therein. The case f(z,t,u) = f(x,u) in
equations (1.2) has been well studied; See [3,5,7,9,12, 20,34, 35,37-39,42]. We first recall the

following results of the existence and non-existence of positive time-periodic solutions to (1.3)
by Rawal and Shen [29] and Shen and Vo [36]:

Lemma 1.6. Assume that (J) and (F) hold. Let u(x,t;ug) be a solution of (1.2) with initial
data ug € C(Q), which is non-negative and not identically zero. The following statements hold:

(1) If Ap(LG™) <0, then (1.3) admits a unique solution u* in x4 and there holds
||U(',t;’LLO) - U*(at)Hoo —0 as t— oo,

where || - ||so 15 the sup norm on C(Q);
(ii) If Ap(LG"7™) > 0, then (1.3) admits no solution in x& \ {0} and there holds

(-, t;u0)]loo — 0 as t — oo.
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Now, we discuss the effects of the frequency on the persistence of populations. The following

conclusion is a direct corollary of Theorem 1.2 and Lemma 1.6.

Corollary 1.7. Assume that (J) and (F) hold. Then the following statements hold:

i) If fo (N)dt > 0, then (1.3) admits no solution in x&\{0} and zero solution is globally
asymptotzcally stable for all T € (0,00);
(i) If fo (N§)dt < 0, \p(Na) > 0 and \,(LGH"7™) is a principal eigenvalue of the operator
Lg”’am, then there is a constant 7 > 0 such that
(a) If 7 < 7%, then (1.3) admits a unique solution ui € x* that is globally asymptoti-
cally stable.
(b) If T > 7%, then (1.3) admits no solution in x¢, \ {0} and zero solution is globally
asymptotically stable;
(iif) If \p(Nq) < 0, then (1.3) admits a unique solution u’ € x4" that is globally asymptoti-
cally stable for all T € (0,00).

In the spatially and temporally varying environment, Corollary 1.7 (ii) suggests that increas-
ing the frequency of oscillations in the resources may be disadvantageous to the persistence
of populations. It should be pointed out that the condition of Corollary 1.7 (i)-(#ii) may be
satisfied respectively; See Theorem 3.1 for more details.

We turn to study the effects of the dispersal rate p on the persistence of populations. The
existence and asymptotic behaviors of positive time-periodic solutions associated to (1.3) in the
non-scaled case with m = 0 and o = 1 are obtained as p tends to zero or infinity.

Theorem 1.8. Assume that (J) and (F) hold. Then the following statements hold:

(i) Ifmaxqa > 0, then there exists o > 0 such that (1.3) admits a unique solution uj, € xg 't
that is globally asymptotically stable for all p € (0, ). Moreover, if ming a > 0, then
lim uZ(x,t) =v*(z,t) uniformly in (x,t) € Q x R,
u—0+
where v*(x,t) is the unique positive 1-periodic solution of the equation Tvy = f(x,t,v)
for every x € Q.
(i) If @ > 0, then there ewists uy > 0 such that (1.3) admits a unique solution uy, € X$+
that is globally asymptotically stable for all pu € (uy,00). Moreover,

lim wy,(z,t) = v*(t) uniformly in (z,t) € QO xR,

U—>00

where v*(t) is the unique positive 1-periodic solution of the equation

(1.4) ror(t) = ﬁ/ﬂf(m,t,v(t))dw

We see from Theorem 1.8 that the populations with small dispersal rate can persist while the
populations with large dispersal rate die out, provided that @ < 0 < maxq a. This shows that
the small dispersal rates are better dispersal strategies than the larger ones in proper situations.

Now, we are interested in the effects of the dispersal spread and the dispersal budget on
the persistence of populations. We establish the existence, uniqueness and stability of positive
time-periodic solutions to (1.3) when o is sufficiently small or large. Furthermore, we analyse
the asymptotic limits of the positive time-periodic solutions as ¢ tends to zero or infinity. As

n [17,36], these asymptotics for 0 < 1 or o > 1 represent two completely different dispersal
strategies: The limit o — 0" can be associated to a strategy of dispersing many offspring on a
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short range, while the limit ¢ — 400 corresponds to a strategy that disperses a few offspring
over a long distance. More precisely, we obtain

Theorem 1.9. Assume that (J) and (F) hold. Then the following statements hold:

(i) Let m > 0. If maxga > 0, then there exists o1 > 0 such that (1.3) admits a unique
solution u}, € XEJF that is globally asymptotically stable for all o € (01,00). Moreover, if
ming a > 0, then

lim u’(z,t) = v*(z,t) uniformly in (z,t) € Q x R,

T—00
where v*(x,t) is the unique positive 1-periodic solution of the equation Tvy = f(x,t,v)
for every x € §;

(il) Let 0 < m < 2. If J is symmetric with respect to each component and maxg a > 0, then
there exists o9 > 0 such that (1.3) admits a unique solution v’ € x&" that is globally
asymptotically stable for all o € (0,00). Moreover, if ming a > 0, then

lim ul(x,t) = v*(x,t) uniformly in (z,t) € Q x R,
o—0t

where v*(z,t) is the same as in (i).

In addition, Shen and Xie proved in [31] that for the case m = 2 and A, < 0, there exists
oo > 0 such that (1.3) admits a unique solution u} € XEJF that is globally asymptotically stable
for all o € (0,0¢) and

lim wul(x,t) =v(x,t) uniformly in (7,t) € Q x R,
o—0t
where v is the positive 1-periodic solution of the corresponding reaction diffusion equation. For
the case m > 2, it seems reasonable to conjecture that when a > 0, there exists o9 > 0 such that
(1.3) admits a unique solution u} € XEJF that is globally asymptotically stable for all o € (0, 0¢)
and there holds
lim w)(x,t) =v"(¢t) uniformly in (z,t) € Q x R,
o—0t

where v*(t) is the unique positive 1-periodic solution of (1.4). We refer interested readers
to [38, Theorem 1.8 (iii)] for the time-independent case.

The rest of the paper is organised as follows. In Section 2, we first establish the equivalence of
different definitions of the generalised principal eigenvalue and a characterisation of the gener-
alised principal eigenvalue by the infimum of the spectrum. Then we study the influences of the
frequency, the dispersal rate and the dispersal spread on the generalised principal eigenvalue.
Section 3 is devoted to investigating the effects of the frequency, the dispersal rate and the
dispersal spread on persistence criteria of populations.

2. TIME-PERIODIC NONLOCAL DISPERSAL OPERATORS
In this section we consider the eigenvalue problem

LG (2, t) + Mo(z,t) =0, (2,t) € Q xR,

(2.1) _
vz, t+1) = v(x,t), (x,t) € QA x R.

As shown in [9,29,34,36], the operator L;"”"™ may not have any principal eigenvalue. However,
the generalised principal eigenvalue A, (L5"”"™) can become the surrogate of the principal eigen-
T,[,0,Mm

value. Here, we establish the equivalent definitions of A\, (L, ) and study the dependence of
Ap(LgH7™) on the frequency, the dispersal rate and the dispersal spread.
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2.1. The equivalence of the generalised principal eigenvalue.
We consider the following general form of nonlocal dispersal operators

Maq(b)[v](z,t) := —Tv(2,t) + ,u/Q J(x —y)v(y,t)dy + b(x, t)v(z,t), (z,t) € Q@ xR,
where b € C1(Q x R). We define
A1 = inf{ReX | A € o(—Mq(b))}.
Firstly, we recall two lemmas in [36, Theorem 3.3 and Proposition 6.1 (iii)].

Lemma 2.1. Assume that (J) holds and b € C1(2 x R). For any € > 0, there exists b, €
C1(Q x R) such that the following conclusions hold:

(i) There holds max|b — b.| < €;
QxR
(ii) A§ is the principal eigenvalue of Mq(be), where X{ = inf{ReX | A € o(—Mq(bc))};
(iii) There holds |\ — \1| < e.

Lemma 2.2. Assume that (J) holds and b € C1(Q x R). Then \,(Mgq(b)) is a Lipschitz con-
tinuous function with respect to b. More precisely, for every by, b € C1(Q x R), we have

[Ap(Ma(b1)) — Ap(Ma(b2))| < sup [|bi(-,t) = b2(+,1)|oo-

te[0,1]
Next, we prove the following two results, from which Theorem 1.1 follows as a consequence.
Theorem 2.3. Assume that (J) holds and b € C1(Q x R). Then there holds
Mp(Ma (b)) = Ar.

Proof. The proof is divided into two cases.
Case 1. We prove the result under the additional assumption that \; is the principal eigen-
value. By the definition of the principal eigenvalue, there is ¢ € XEJF such that

Mo(®)[p1] + M1 =0 in QxR.

Thanks to the definition of A,(Mq(b)), we have A\; < \,(Mq(b)). It remains to establish the
inequality A,(Mq(b)) < A1, which is similar to the proof of [36, Theorem 2.3]. Here, we omit it.
Thus, we get A\,(Mq(b)) = A1.

Case 2. If )\ is not the principal eigenvalue, we can use an approximation argument. More
precisely, applying Lemma 2.1, we find that for each € > 0, there exists b, € C1(€ x R) such
that

(2.2) max |be — b <€, |A1 —Af| <e€

QxR
and A{ is the principal eigenvalue of Mq(be). Then, we apply Case 1 to conclude
(2.3) Mp(Ma(be)) = XS.

Since A\,(Mq(b)) is Lipschitz continuous with respect to b in Lemma 2.2 and the inequalities
(2.2), setting € — 0 in (2.3) yields A\, (Mq(b)) = A1. O

Theorem 2.4. Assume that (J) holds and b € C1(Q2 x R). Then there holds

Ap(Ma(b)) = A, (Ma(b)).
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Proof. We first show that \,(Mq(b)) < )\;)(Mﬂ(b)). Let us assume by contradiction that
Ao(Ma (b)) < Ap(Ma(b)).

Pick now A € (A,(Mq(b)), \p(Mq(b))), then, by the definition of A,(Mq(b)) and X,(Mq(b)),

there exist ¢ € XEJF and ) € X§+ such that

(2.4) Mo(b)[p](x,t) + Ap(z, 1) <

(2.5) Mo(b)[](z, ) + Mp(z,t) =

By taking A bigger if necessary, we assume that 1) satisfies

in Q xR,
in QxR.

(2.6) Mo () [Y)(x,t) + Mp(z,t) >0  in QxR
Set w := % € XEJF- Using (2.4), a direct computation yields
Ma(b)[)] =Ma(b)[we)

= — T(wp): + ,U/Q J(x —y)w(y, t)p(y, t)dy + b(z, t)we
= — Twp + pu /Q J(@ —y)e(y,t)(wly,t) — w(z,t))dy — Awep
+w(=Ter + M/Q J(z —y)e(y, t)dy + b(x, 1) + Ap)

< — Twp + /Q J(@ —y)e(y, ) (wy,t) —w(z,t))dy — M.

By (2.6), we find

(2.7) 0 < —Twp + u/ J(@ —y)e(y,t)(wy,t) —w(z,t))dy in QxR
Q
Since w € x4, there exists (zo,to) € Q x [0,1] such that

’LU(IIZ’(),t()) = max w, wt(x07t0) = 0.
QxR
Hence, setting (x,t) = (xg,t0) in (2.7) yields
0 < ~rwn(eo, to)(aosto) + 1 [~ 1)y to) it to) — (e to))dy < 0

which is a contradiction. Therefore, \,(Mq(b)) < )\;)(Mﬂ(b)).

To complete the proof, it suffices to establish
(2.8) Ay (Mo (b)) < Ap(Mq(b)) +25  for all & > 0.

We claim that for any 6 > 0, there exists @5 € XEJF such that

Mq(b)[ps] + (M\p(Ma(b)) +28)ps >0 in Q xR.
Indeed, thanks to Lemma 2.1 and Theorem 2.3, there is bs € C1(2 x R) such that
(2.9 max [b5 = bl < 6, p(Ma(5)) = Ay (Ma(bs)] < 5
and A, (Mq(bs)) is the principal eigenvalue of Mq(bs). Thus, there exists @5 € x¢," such that
(2.10) Maq(bs)[ps] + Ap(Ma(bs))ps =0 in QxR.
Owing to (2.9) and (2.10), we get
Mo (0)[ips] + (Ap(Ma(b)) + 20)p5
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=Maq(bs)[ps] + (b(x, 1) = bs(x,t))p5 + (Ap(Ma(b)) + 26)ps
=(Ap(Mq(b)) — Ap(Ma(bs)))ps + (b(x,t) = bs(x,1))ps + 2005
> — 05 — s + 205 = 0

The proof of the claim is complete.
Moreover, it follows from this claim and the definition of )\;,(Mg(b)) that (2.8) holds. In

conclusion, we obtain A, (Mq(b)) = )\;)(Mg(b)). O
2.2. Influences of the frequency.
This subsection concerns the dependence of A,(Lg"”™) on 7. Consider

M v](x,t) = —1v(, t) + /L/Q J(xz —y)v(y, t)dy + b(x, t)v(z,t), (z,t) € A xR,

where b € C1 (2 x R). Our goal is to prove the following two results, from which the conclusions
of Theorem 1.2 follow:

Theorem 2.5. Assume that (J) holds and b € C1(Q x R). Then the function T + \,(M;) is
continuous non-decreasing on (0,00). Moreover, if \p(M;) is a principal eigenvalue, then the
following assertions hold:

(i) If b(x,t) = b(z) + g(t), then A\,(M,) is constant for T > 0;
(ii) Otherwise %f’(MT) > 0 for every T > 0.

Proof. The proof is divided into two cases.

Case 1. We prove the result under the additional assumption that \,(M;) is a principal
eigenvalue for all 7 > 0. By the definition of the principal eigenvalue, there exists ¢, € XEJF
(2.11)

M p-](x,t) = —TOor + qu J(z —y)er(y,t)dy + b(z, t)or = =Ap(M:)er in Q% [0,1],
or(z,1) = o (2,0) in Q.
Note that there is ¢, € XEJF such that v, satisfies the adjoint problem of (2.11)
(2.12)
M) (2, t) i= 1Opr + 1 [o J(x — y)or (y, t)dy + b(m, )by = —Xp(M7)hr  in Q% [0,1],
Yr(z,1) = 7 (,0) in Q.
For convenience, we denote C := Q2 x (0,1). We normalize ¢, and 1, such that fc @2 = fc Yrhy =
1 for any 7 > 0.
A family of closed operators { M}~ is a holomorphic family by [21, Charpter 7, Section 2.1].
As Ap(M;) is an isolated eigenvalue, the continuous differentiability of 7 +— (A, (M), ;) follows

from the classical perturbation theory in [21, Charpter 7, Section 6.2]. We can differentiate the
equation (2.11) with respect to 7 to find

—Oypr + Mylpl] = 2 o\ (M)l i Qx [0,1],
@ (x,1) = ¢/ (x,0) in Q.

Multiplying the above equation by %, and integrating the resulting equation over C, we obtain

/ brlir + / Ml = -2 /c orthr — Mp(My) /C oL
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By the adjoint problem (2.12) and the normalization fc wr, = 1, we find that

ONp(M7)
“or —/eratcpr-

Due to the definition of M, and M*, we derive
1 .
w'ratﬁp'r = 2_ 1/}7' (M'r [907] - M‘F [907'])
C T Jc
1

= 2_ (SDTMTW)T] - ¢TMT[(IDT])
T Je

! (K}(zm - KT«oT)),

T oor

where functional K is defined by

k0= [ (2D, cengr

We claim that

Claim 2.6. For any ¢ € X§+7 we have
K:(¢) — K+ (¢r) = 0.

Assume for the moment that the claim holds true, then it implies that
ONp (M) 1

(2.13) — 9. — 3 <KT(1,Z)T) - KT(goT)> >0 forall 7>0.

It remains to prove parts (i) and (i). When b(z,t) = b(z) + g(t) for some 1-periodic function
t
g(t), we set ¢, (z,t) := e=7 Jo 9(5)ds ,_(,t), which satisfies

—TObr + 1t [ J(z — y)o-(y, t)dy + B(x)@ = —Ap(M: )7 in Qx [0,1],

¢T($, 1) - (bT(‘Ta 0) in Q.
It is clear that A,(M;) is constant for 7 > 0. This proves part ().
Finally, we show that % > 0 for every 7 > 0 if b(x,t) does not take the form of
b(z,t) = b(x) + g(t). Suppose that there is some 79 > 0 such that % = 0. According to

the formula (2.18) and J(0) > 0, we obtain

Pro (2, 1) ) Yro (Y, 1)

Uy (@,1) o (y,0)
Thus, we have ¢, = c(t)y5, for some 1-periodic function ¢(¢t) > 0. Substituting ¢, = c(t)1r,
into M, [¢r] = =Ap(My,y) 7, and using M [1hr)] = =X, (My,)tbr,, we deduce that

A (t)ry + 2¢(t)Optpr, = 0.

It then follows that Ouniy,, = —%((?) in C, which depends only on ¢. Hence, 15, is of the form
sy = X (2)Tr, (t) with some 1-periodic function 77, (¢) > 0 in [0, 1] and function X, (z) > 0 in

Q. By M} [thr,] = —Ap(Mx,), we have

T () pfoJ(x—y) X (y)dy
T (t) Xy (@)

=1 foreach z,y € Q, t€[0,1].

+b(z,t) = —Ap(My).

Thus, it is necessary that b has the form of b(z,t) = b(z) 4 g(t), which contradicts the previous
assumption. This completes the proof of part (7).
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Case 2. If A\,(M;) is not the principal eigenvalue for some 7 > 0, then we can use an
approximation argument. More precisely, applying Lemma 2.1 and Theorem 2.3, we find that
for each € > 0, there exists b, € C1(Q x R) such that

max |be — b <€, |Ap(M7(be)) — A\p(M7(be))| < €
QxR

and \,(M-(be)) is the principal eigenvalue for all 7 > 0, where M (b) is M, (b) with b being
replaced by b.. We then apply Case 1 to conclude that for each ¢ > 0, the function 7 —
Ap(M(be)) is continuous non-decreasing on (0,00), i.e., for every 79 > 0, there exists dg > 0
such that for all |7 — 79| < dg, we have

|)\p(M7-(bE)) - )‘p(M'ro (bE))| < €.
By Lemma 2.2, \,(M-(b)) is Lipschitz continuous with respect to b, i.e.,

|)‘P(M7(b)) - )‘P(MT(bE))‘ < til[épl} Hb(vt) - be('vt)Hoo <e.

Hence, for every given constant ¢ > 0, there exist o > 0 and b, € C1(Q x R) such that for all
|7 — 70| < 0o, we have

[ Ap (M, (b)) — Ap(M(D))|
<[Ap (M (b)) = Ap(My (be))| + [Ap(Mry (be)) — Ap(Mr(be))| + [Ap(Mr (b)) — Ap(M7(be))|
<e+e+e=3e,

which implies that A, (M- (b)) is continuous with respect to 7. Thus, the function 7 — A, (M, (b))
is continuous non-decreasing on (0,00). The proof is complete. ([l

Proof of Claim 2.6. First, we claim that o, is a critical point of K, in the sense that
(2.14) DK (p;)n=0 for all n € xq,

where DK (¢;) is the Fréchet derivative of K at the point ¢, € X;rz+'
For any n € xq, we have

MT MT T
DK (oo = [ o (220 - 2l
c Pr Pr
On one hand, it follows from M;[p,] = =Xy, and M*[t;] = —A\p), that
MT T ZZ)T
DR (er)n =/ (%MT[U] - M)
c ©Or
e\’ or
=0.
On the other hand, a simple calculation yields
DK (¢r)n
_ M; [77] M [907]77
(2.16) - /C ¢T¢T< o — (7072—
_ / or) —7(nepr — (or)in) + 1 Jo I (@ = y) [0y, )r (2, t) — ey, )n(x, )] dy
. VT (1072— '

A direct calculation shows that

KT(C) - KT((IDT)
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:/¢T¢T<M2[C] Mf[cpf]>
c 0
Z/CcpT%( zg >+u/sofwr/ z—y <€ x’tg - i:gig)dy

Taking n = ngn((p—i) in (2.16), we obtain

DK~ (¢-)n
(2'17) . TCt N ,t) C(yvt)SDT($vt)
= flomtn (g T ) o foeu [ -0 B (G
By formulas (2.15) and (2.17), we have
(2.18)
KT(() - KT((IDT)
B er(y,t) [C(y, t)er(2,) C(y,t)pr (2, 1)
=D+ [ eete [ e - E R 1 - (G )
B o) [ er(2t) Gy er(@, )
R e R | e e R W e
Define
f(z) =2z—1—Inz, ze€(0,00).
As f(z) > 0 and f(z) = 0 if and only if z = 1, thus we obtain K,({) — K,(¢;) > 0. O

Theorem 2.7. Assume that (J) holds and b € C’?’l(Q x R). Then the followings hold:
(i) There holds

lim \,(M,) = /01 Ap(NG)dt.

T—0t

Here, for each fized t € [0,1], \,(N§) is the generalised principal eigenvalue of the
operator Nf)

N (x) = /Q Jo(z — yo(y)dy + bz, (o)

(ii) There holds
lim \,(M;) = A\ (Na),

T—00

where \p(Nq) is the generalised principal eigenvalue of the operator Ng

Nalvl(@) = u /Q Jo(z — y)o(y)dy + b(z)u(z).

Proof. (i) The proof is divided into two cases.

Case 1. We prove the result under the additional assumption that \,(N§) is a principal
eigenvalue for all ¢ € [0, 1]. For fixed ¢ € [0,1], there is v(-,t) € C(Q) and v(-,t) > 0 in Q s.t.
(2.19) NE (2, t) + Ap(N)v(z,t) =0 in Q.

It follows from the perturbation theory [21, Charpter 7, Section 6.2] that v € C1([0,1]; C(2))
and v(z,t + 1) = v(z, ).

Define p(z,t) = p(t)v(z,t) for 1-periodic function

p(t) = e% [t f()1 AP(NSS))dS—fg Ap(Né)dS] .
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Given arbitrary ey > 0, there is sufficiently small 7y > 0 such that 7|0,v| < egv for all 7 < 7.
Moreover, a direct calculation yields

M. lp (/ Ap( Ng)dt—eo><p< —T + Nb[p </ Ap( NQ)dt—eo><p<0

By the definition of A,(M;), we know that
(2.20) / Ap(NG)dt — €9 < \p(M)  for all 7 < 7.
0

In a similar manner, we obtain

By the definition of )\’ o (M), we know that

1
(2.21) Ay (M) < / Mp(NG)dt + €9 for all T < 7.
0

Combining Theorem 2.4 and inequalities (2.20), (2.21), we obtain
1
lim A, (M) :/ (NG dt.
T—07F 0
Case 2. If \,(Ny) is not a principal eigenvalue for some ¢ € [0,1], then we can use similar

approximation argument as in Case 2 in the proof of Theorem 2.5 to deduce the result.

(ii) The proof is also divided into two cases.

Case 1. We prove the result under the additional assumption that \,(M;) is a principal
eigenvalue for all 7 > 0. Choose a sequence of {r,}7°, such that 7, — 400 and let the
eigenpairs (A, (M5, ), ¢, ) be defined by
(2.22)

_Tnat(p’f'n + N fQ J( )@Tn( )dy + b(x7 t)(p'f'n + )\p(MTn)SOTn = O in Q X [07 1]7
e, €Xa s enllizxoy) = 1-
Multiplying equation (2.22) by ¢, and integrating over 2 x (0,1), we get

///Jx— Y)pr, (Y, )cpmxtdydxdt—i—// a:tcpT (x,t)dzdt

< p|QmaxJ + max |b|.
RN Qx[0,1]

Owing to the monotone non-decreasing of A,(M;) on 7 > 0, one gets

lim A\, (M-,) = \)°.

n— o0

Multiplying equation (2.22) by 0,¢,, and integrating over Q x (0,1) yield

1 1
n / / |Ovpr,, [Pdadt = p / / / (@ = y)pr, (y,t)Orpr, (. t)dydzdt
0 Q 0 QJQ

1
+/0 /Q[b(x’t)+)‘p(MTn)]SDTn(ﬂf,t)@tsﬁrn(:n,t)dazdt

1 1
= —/ /&b(x,t)gpzn(:n,t)dxdt
2Jo Ja

— max |0:b|,
2Qx[0ﬁ}’ 1o
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which implies that
||5t90m||L2(Qx(0,1)) —+0 as n — oo.

Due to the above result and ||, ||72 = 1, up to extraction, there exists w € W1H2((0,1); L?(Q2))
such that

07, —w and O, — Ow.

Moreover, we have ||0w||2(x(0,1)) < lim i&f 10t 7, | £2(02x(0,1)) = 0 and thus w does not depend
K T 0 9
on t.

Passing to the limit n — oo in (2.22), we find that w is a weak solution of the equation
,u/ J(z — y)w(y)dy + b(z, t)w(x) + Afw(z) =0 in Qx [0,1].
Q

Integrating the above equation over (0, 1) yields

,u/ J(x — y)w(y)dy + b(x)w(z) + Aw(r) =0 in Q.
Q

So w € C(Q2) and w > 0 in Q, which implies that A, is the principal eigenvalue of the operator
Ngq. It is easy to know that A\;° = \,(Nq). Thus, we have
lim \,(M;) = A\p(Naq).

T—00

Case 2. If )\, (M;) is not a principal eigenvalue for some 7 > 0, then we can use the
approximation argument as in Case 2 in the proof of Theorem 2.5 to deduce the result. ]

2.3. Influences of the dispersal rate and the dispersal spread.

In this subsection, we investigate the influences of the dispersal rate  and the dispersal spread
Ty[,0,1M

o on the generalised principal eigenvalue A,(Lg; ). Firstly, we establish the upper bound of

the generalised principal eigenvalue A, (LG "™).

Lemma 2.8. Assume that (J), (H) and (A) hold. Then

T, [0, . Ho e A

Proof. Fix A < A\p(Lg""™). By the definition of \,(LG;"”™), there exists ¢ € x4 such that
LG o)z, t) + Ap(z, t) <0 in Q x R.
It is easy to check that
HGT" o) (z,t) + Ap(x,t) <0 in Q xR,
where H,"7" (o] = =1y — Lh7 ()¢ + a(z,t)¢. This implies that A < X\, (H,™”™). Thus
)\p(Lg“7a—7m) S Ap(H;;“u’o’m).

It follows from [29, Propositions 3.4-3.5] that

Ap(HZ7™) = mind £ he () — a(x) b
(1) = minf 1)~ (o)}
This completes the proof. ]

Now, we present the proof of Theorem 1.3.
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Proof of Theorem 1.3. (i) For any pg € (0, 00), applying Lemma 2.1, we find that for each € > 0,
there exists b, € C1(Q x R) such that max [b. — b| < €, |\1 — A{| < € and A{ is an isolated
QxR

principal eigenvalue with finite multiplicity of Lg“o’l’o(ae), where b(z,t) = a(z,t) — poh'(z),

ac(z,t) = be(x,t) + poh' (x). In fact, we rewrite Lg’“’l’o(aﬁ) as

Lgu,l,o(ae) — Lguo,l,o(as) + Uu,uoa
where
U o le)(@) = (1 — o) ( [ 5= vetwas - h1<:c><,o<x>> |

Note that U, ,, is a linear bounded operator and U, ,, — 0 in norm as p — po. It follows
from the classical perturbation theory of isolated eigenvalues [21, Charpter 4, Section 3.5], there

exists dg > 0 such that for all | — ug| < dp, we have
IAL(LG 0 (ae)) — M(LG 0 (ae))| < .
Thanks to Theorem 1.1, we obtain
(LG (ae)) = Ap(LG"(ae))| < e
By Lemma 2.2, )\p(Lg”’l’o(a)) is Lipschitz continuous with respect to a, i.e.,
(LG (@) = Ap(LG" ()| < [la = ael | (@) < e

In a word, for every given constant € > 0, there exist dp > 0 and a. € C1(Q x R) such that
for all |u — pol < do, we have

(LG (@) = Ap(LG ()]
T,u,1,0 T,u,1,0 T,,1,0 T,10,1,0
§|>‘p(LQ (a)) — AP(LQ (ae))| + |)‘p(LQ (ac)) — )‘p(LQ (ae))l
+ A (LG ae)) = Ap(LGH 0 (a)))
<e+ e+ e=3e.

So Ay (LG"MY) is continuous with respect to .
Now, we prove the asymptotic behavior of /\p(L?z’“ ’1’0) as u — 0%. For simplicity, we write
Ap = )\p(L?z’“’l’O). We first claim that for each € > 0, there is p. > 0 such that

(2.23) ACE SN KA for all p€ (0, pe),

where A% = —maxq a — €, A" = —ming a + €. In fact, it is easy to check that the function
o(x,t) = elolal@s)—a(@)ds ig 5 positive 1-periodic solution of ¢y = a(x,t)¢ — a(x)¢ for (x,t) €
Q1 x R. In particular, ¢ € X;S+- A simple computation yields

(LG + A (g (2, 1) =u< /Q J(z — )y, t)dy — h'(x)é(x, t))
+ (&(:17) — max a— e> o(x,t),
(LG + Ay @) (x, ) =u< /Q J(z — )y, t)dy — h'(x)é(x, t))

+ (&(:17) — min a + e) o(z, ).
Q
Thus, there exists pe > 0 such that
(LG + Amem) 6] <0 and (LGHY0 + XM [g] > 0 for all p € (0, ).
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Moreover, by Theorem 1.1 and the definitions of \,(LgG""") and )\;,(Lg”’l’o), there holds (2.23)

for all € (0, pe).
Next, thanks to Lemma 2.8 and the inequality (2.23), for each € > 0 there is pe > 0 such that

—maxa — e < A\ < min [uhl(m) - d(m)] for all p € (0, pe).
Q z€f)

Passing p — 07, we find

—maxa — € < liminfA! <limsup\; < —maxa Ve >0,
Q u—0t pu—0+ Q

which leads to
A — —maxa  as pw—0t.

2

Hence, we omit it. It remains to prove parts (a)

~—

(ii) The proof of continuity is similar to (i).
and (b).
(a) By Lemma 2.8, we have

Ap(LGH7™) < min {th(az) — d(az)}.
As m > 0 and ¢ — o0, there holds

Lmha(a;) — 0 forall z €,
o

which implies that

limsup Ap(LG""™) < —max a.
o—00 Q

To complete our proof, it remains to show

—max a < liminf \,(L5H7™).
Q — o—>00 p( Q )

For fixed constant ¢y > 0, it is easy to check that for every = € €, the function
(2.24) d(z,t) = eo@@)—a@)ds g 4 e R

is a positive 1-periodic solution of the ordinary differential equation vy = a(x,t)v — a(x)v with
the initial condition v(z,0) = ¢¢. In particular, ¢ € XEJF and we can choose ¢g such that

supgyr ¢ = 1. For every € > 0, we have

(L — max = o](a. )

= — 1¢¢(x,t) + <a(a:, t) —max a — 6) o(z,1)

Q
+ L ( /Q Jo(z —y)d(y, t)dy — h? (z)¢(x, t)>
| e = ot 1y = 17 @)ota.n)) ~ o)

Using supg, g ¢ = 1, there holds

M (/Q Jo(x — )y, t)dy — b (z)o(x, 75)>

HOO

M
—/Ja(az—y)dyH —i—u—m—)O as o — 00,
Q 00 o
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which implies that there is o, > 0 such that

(LG7™ —max a—e€)[¢] <0 for all 0 > o.
Q

Thanks to the definition of A,(L"”"™), there holds

Ap(LGH7™) > —max a—e€ forall o> o

Since € is an arbitrary constant, we have

liminf X\, (LgH""™) > —max a.

o—00 Q
Thus, we get

lim A\, (LEH7™) = —max a.

o—00 p( Q ) Q

(b) Again, following from Lemma 2.8, we have

Owing to lim h7(z) = ¢, this implies that
T—00
limsup A, (Lg"7") < pe — max a.
T—00 Q
To complete our proof, it remains to obtain
_ A < 3 3 7—7/*’/70-70 X

pe — max a < hgnigf Ap(LGH7)
For fixed constant ¢g > 0, it is easy to check that for every = € ), the function
(2.25) d(z,t) = eo@@s)-a@Ndsy 4 o R

is a positive 1-periodic solution of the ordinary differential equation v; = a(z,t)v — a(z)v with
the initial condition v(z,0) = ¢¢. In particular, ¢ € XEJF and we can choose ¢g such that
supgyr @ = 1. For every € > 0, we have

(LG — max @+ pe = €)[¢)(x, )
=—T1¢¢(x,t) + (a(az, t) — m{_zzix a— e> o(z,t)
([ ot = )0t 0y — 1 @)ota.0) + co(e.))

§u</ﬂ Jo(x —y)p(y, t)dy — h° (z)p(z,t) + co(x, t)) — ed(x,1).

Using supg g ¢ = 1, there holds
Hu( /Q Jo(x = y)dy, t)dy — h (x)$(, 1) + c¢(a;,t)> H

:

,u/ Jo(x—y)dyH +llc = h7||c >0 as o — oo,
Q 00
which implies that there is o, > 0 such that

(L5M70 —max a+ pc—€)[¢] <0 for all 0 > 0.
Q

Thanks to the definition of A,(Lg"”"), there holds

)\p(LS”’J’O) > e — max a—e forall o> o..



TIME PERIODIC NONLOCAL DISPERSAL OPERATORS AND APPLICATIONS 19

Since € is an arbitrary constant, we have

liminf A\, (LG"7°) > pe — maxa.
Q

T—00
Thus, we get
Jh_)n(f)lo Ap(L T“’UO) pe — max a.
This completes the proof of Theorem 1.3. O

Next, we recall the following lemma in [29, Corollary D].

Lemma 2.9. Assume that (J) and (A) hold. Let N5”™[¢](x) = L7 [ Jo(z — y)(o(y) —
o(x))dy + a(x)e(x). If \y(N§T™) is the principal eigenvalue of Ny™™ and h%(x) = [ Jo(x —
y)dy, then \,(L5"7™) is the principal eigenvalue of Ly ™.
Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. (i) By [32, Theorem 2.2 (3)], there exists 1 > 0 such that A (N“’l’o) is

the principal eigenvalue of N, PO for all p > pq. It follows from Lemma 2.9 that A,(Lg, LM ’1’0) is

the principal eigenvalue of Lg;" L0 for all > .

7,01,

Since A} is the principal eigenvalue of L O for all 1 > pp, there exists ¢ € X5+ with

fol fQ 902($, t)dxdt = 1 such that

(2.26) — Tpi(z,t) + ,u/ﬂ J(@ —y)(p(y,t) — p(z,t)dy + (a(z,t) + Ay)p(z,t) =0 in Q@ x R.

On one hand, divide (2.26) by ¢ and integrate over Q2 x (0,1) to obtain

//A“dmdt //Q(’Z;ttddt—// (z,t)dadt
—,u/o /Q/QJ(a:—y)(py’Z(;f)(x’ )dyda:dt.

Owing to )
T Lt [ e
,u/l/ / J(w—y)(p(‘y’g(; f)(x’t)dyda;dt
5 e e
we get

/0 1 /Q N dadt
- /0 1 /Q ae, t)ddt ~ & /0 1 /Q /Q Iz —y) Qp(gég;@i(yf;;)ydydmdt.

This implies that

(2.27) Al

IA
@H

On the other hand, multiplying (2.26) by ¢ and integrating over Q x (0,1) yield

///\1’;90 (x,t)dxdt = //gptznt :Etdl‘dt—// (z,t)*(x, t)dxdt
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1
- u/o /Q/QJ(HJ = y)(e(y,t) — oz, 1)p(z, t)dydudt.

In view of ¢ € X++ and the symmetry of J, we have

(2.28) = / //J z—y)(p(y,t) —e(x,t)) dyda:dt—/ / a(x,t)?(z, t)dzdt,

which implies that

(2.29) Ay > — / / a(x,t)p”(z,t)dedt > — max a.
Qx[0,1]
By combining (2.27) and (2.29), we obtain
(2.30) — max a <\ < —a.
Qx[0,1]

Rewriting (2.28) as

1
/ / / J(x - y)((p(y7 t) - 90(33, t))2dyd$dt
o JaJa
p/o /Q(Aéfﬂ%(w,t))so (z,t)dzdt,

it follows from (2.30) that
1
L[ 96 = wetwt) - el Pdydod
0 JQJQ

9 ~
<-— <max a— &).

o \2x[0,1]
Let 9(x,t) := p(x,t) — @(t), where p(t) = ‘—1|fQ @(x,t)dz. Then we have [, (x,t)dz = 0.
Observe that

(2.32) / / J(& — )9y, 1) — p(z, 1)) dydz = / / (@ — ) ($(y.t) — (e, 1)) dyde.

By [32, Page 1688, Formula (5.6)], there exists C' > 0 such that

(2.33) / V2 (x, t)dx < —/ / (x — y,t) —p(z,t)2dyde  for all > 1.

It deduces from (2.31), (2.32) and (2.33) that

//wzxtdxdt<—///Jx_ U t) — (o, 1)) dydadt

< — =
2 (e a3

Now, integrating (2.26) over ) and substituting ¢ = ¢ — ¢ yield

(2.31)

(2.34)

1
(2.35) o= T / (4 + alw0)dsg + g | O +ale. ). e
In view of (2.34), we have
/ / (A5 +a(x, 1)y (x, t)dedt = O(p 5) as fL — 00.

Using the integrating form in this first order differential equation, we find that

(2.36) o(t) = @(O)eﬁ Jo SO atat))dedt + O(,u_%) as fL — 00.
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Since ¢(1) = @(0), we get

1
/ /()\1‘; +a(x,t))dzdt — 0 or @(0) -0 as pu— oo.
0o JQ

If $(0) — 0, then, by (2.36), also @(¢) — 0 uniformly in ¢ € [0,1] as 4 — oco. Thanks to (2.31)
and the symmetry of J, we get

/ 1 / ©?(x, t)dxdt

<CO/ //Ja;— (z, t)dydwdt

=0y [ [ [ - 00 - cltipte, )dyoat
+ o / / / v — )y )ola, ) dydadt

e /0 [ [ 3 =)ol 0) = (o, 0Pyt

1
- \QPCOM/ @2 (t)dt
0

1
§@<_max a—é) +|Q|200M/ @2 (t)dt
o \Qx[0,1] 0

-1
where Cy = <mi]_a Jo J(x— y)dy> and M = max J(x—y). This implies that
zefd (z,9)eQxQ

1
/ / O*(x, t)dedt — 0 as p — oo,
0o JQ

in contradiction to the normalization of p. Thus, we have

1
/ /(Ag +a(z,t))dxdt - 0  as p — oo,
0 Jo

that is,

Ay — —a  as g — oo.
(ii) By [38, Theorem 1.2], there exists oy > 0 such that A\,(N{7™) is the principal eigenvalue
of N§ 7™ for all o < 0. It follows from Lemma 2.9 that A,(L5"”"™) is the principal eigenvalue
of Lg“’om for all o < oy.
Let ¢ be as in (2.24). Without loss of generality, we assume that a € 012 ’1(Q x R). Then there
holds ¢ € 012’1(5_) x R) N x4t For every e > 0, we have

(L™ — max a—€)[@](z,t)

| A

(2.37) Y, ) (;5(1', t))dy - 6¢($, t)

e
£,

| A

d(x +oz,t) — P(x,t))dz — ep(x, t).
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For ¢ small enough, say o < o1, we obtain B(0,1) C % for all x € Q. Thus, by Taylor’s

expansion and the symmetric of J, there holds

aim o J(2)(p(x 4+ oz,t) — p(x,t))dz
zaim J(2)(b(x + 02,t) — ¢(x,1))dz
(2.38) Y .
:Uim J(2) <D¢(az, t)(oz) + g(az)Tquﬁ(x, t)(oz) + 0(02)> dz
RN
:MJZ_m J(2)zE D2¢(x,t)zdz + o(c®™™).
RN

By combining (2.37) with (2.38), there exists 0 < o, < o7 such that

(L5 —max a —[¢] <0 for all 0 < o,
Q

Using the definition of A\, (L5"™), there holds

Ap (LG 7™) > —max a — e for all o < o.
)

Therefore, we obtain

liminf A, (LG"7™) > —max a.
o—0t Q

It remains to show that

limsup A, (LG""™) < —max a.
oc—0t Q

By Theorem 1.1 and [29, Theorem C], it follows that

(2.39) Ap(Lg" ™) < Ap(NG™™™).
Using [38, Theorem 1.2], there holds

(2.40) Uli)%l+ Ap(NET™) = —max a.
In view of (2.39) and (2.40), we have

lim sup Ap(LG""™) < —max a.
o—0t Q

The proof is complete. U

3. TIME-PERIODIC NONLOCAL DISPERSAL KPP EQUATIONS

In this section we apply the results for the generalised principal eigenvalues to the time-
periodic nonlocal dispersal KPP equation with Neumann boundary conditions. Firstly, we
study the effects of the frequency on the persistence of populations. Next, we discuss the
effects of the dispersal rate and the dispersal spread on the positive time-periodic solutions
to the equation. More precisely, we obtain the existence, uniqueness and stability of positive
time-periodic solutions when p or ¢ is sufficiently small or large. Furthermore, we analyse the
asymptotic limits of the positive time-periodic solutions as u or o tends to zero or infinity.
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3.1. Effects of the frequency.
The following result provides some sufficient conditions such that Corollary 1.7 holds.

Theorem 3.1. Assume that (J) and (F) hold. Then the following statements hold:
i) If fol Iileag{a(x,t)}dt <0, then (1.3) admits no solution in x¢, \ {0} and zero solution is
globally asymptotically stable for all T € (0,00);
(ii) If fol max{a(x,t)}dt— £ >0, meax{a( z)} <0 and X\, (LG""™) is a principal eigenvalue

T,u,crm

of the opemtor L then there is some constant * > 0 such that

(a) If T < 7%, then (1.3) admits a unique solution ur € X;S+ that is globally asymptoti-
cally stable.
(b) If 7 > 7, then (1.3) admits no solution in x4 \ {0} and zero solution is globally
asymptotically stable;
(i) If mgé{{d(:n) — £ >0, then (1.3) admits a unique solution ui € x&" that is globally
x

asymptotically stable for all T € (0,00).

Proof. (i) By the definition of \,(Ng,), it is easy to deduce
(3.1) —max{a(z,t)} <\ (NG) < max{ (x,t) — Lm/ Jo(x — y)dy}
z€Q €S (o} Q

Thus, we have

/ Nth>/ —max{a(z,t)} > 0.

z€)

By Corollary 1.7, we deduce the conclusion of part (i).

(ii) Owing to the inequality (3.1), we have

1 1 1 1 M
/ Ap(NG)dt < / —magi{a(x,t) - —m/ Jo(x — y)dy}dt < — | max{a(x,t)}dt —|— — <0.

0 0 z€Q g Q 0 z€f
By the definition of \,(Ng), we obtain
(3.2) —max{a(z)} < A\p(Ng) < max{a(az) — im/ Jo(x — y)dy},

z€Q P (o} Q
which implies that
Ap(Nq) > max{a( )} > 0.

e
The conclusion of part (ii) thus follows from Corollary 1.7.

(iii) By the inequality (3.2), it implies that

Ap(Ng) < max{a(x) - /Q Ty (2 — y)dy} < —max{a()} + Uim <.

z€Q o™

The conclusion of part (iii) thus follows from Corollary 1.7. O

3.2. Effects of the dispersal rate.
This subsection is devoted to the proof of Theorem 1.8. We recall the following result in [36]:

Lemma 3.2. Assume that f satisfies (F). If ming a > 0, then for each x € Q, the equation
Tur = f(x,t,0)

has a unique positive 1-periodic solution, denoted by v*(x,t), which is continuous in x.
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Although the proof of Theorem 1.8 (i) is similar to [36, Theorem C], we still present the proof
for the convenience of the reader.

Proof of Theorem 1.8. (i) By Theorem 1.3 (ii), there exists g > 0 such that )\p(LS“’l’O) <
—maxg a/2 < 0 for all p € (0, up). Thus, it follows from Lemma 1.6 that (1.3) admits a unique
solution u,, € X;SJF which is globally asymptotically stable for all u € (0, uo).

We claim that for each 0 < € < 1, there exists p. > 0 such that for each pu € (0, p.),

v (x,t) — e <uj(x,t) <v(xt) 4, (x,t) € QxR

Let us prove the lower bound only as the upper bound follows from similar arguments. Let
0 < € < 1. By ming, v* > 0, there exists 6 = d(e) > 0 such that

v(x,t) == (1 =9)v*(x,t) > v*(z,t) —e >0, (z,t) € QxR.

Note that for each (z,t) € Q x R,
— 1ue(z, t) + ,u/ J(x—y)(v(y,t) —v(x,t)dy + f(z,t,v(z,t))
Q
=—(1=d0)rvi(z,t)+(1- 5)M/QJ(1’ —y) (W (y,t) = v*(x,1))dy + f(x,t,v(z,1))

=(1—0)p /Q J(z—y) (W (y, ) —v*(z,1))dy + f (2, t,0(x, 1) — (1 = 0) f (. t,0" (z,1)).

We see that as u — 07,

(3.3) (1- 5)N/Q J(x —y)(v*(y,t) —v*(x,t))dy — 0 uniformly in (z,t) € Q x R.

By (F)-(3), there holds for each (z,t) € Q x R,

f(z,t,v(z,t) — (1= 0)f(z,t,v"(z,1)) = v(z,t) f(w;}?;ix)’t)) - f(x,vi,&*ia):,t)) > 0.

Thus, there exists p. > 0 such that for each p € (0, p.),
(3.4)  Ty(z,t) < ,u/ J(x —y)(v(y,t) —v(z,t))dy + f(z,t,0(x,t)) for all (z,t) € Q x R.
Q
It remains to show that for each p € (0, yi¢), there holds v(z,t) < uj,(z,t) for all (z,1) € OxR.
To do so, let us fix any p € (0, 1) and define

a, = inf{a >0 | v(z,t) < auj,(z,t) forall (z,t) € Q@ x R}

Since uy, € X$+ and v is bounded, a, is well-defined and positive. Thanks to the continuity of
u}, and v, there holds v(x,t) < anu,(z,t) and there exists (xo,%) € Q x R such that v(zo, to) =
ey, (o, to).

If @, < 1, then we are done. Therefore, let us assume a, > 1. By the inequality (3.4) and

(F)-(3), we see that w(z,t) := v(x,t) — auuj,(z,t) satisfies

th(l‘,t) < IU/Q J(:E - y)(w(y7t) - w($7t))dy + f(l‘,t,’[)(:l?,t)) - oz*f(:n,t,u;(x,t))

(3.5)
< IU/Q J(‘T - y)(w(y7 t) - w(‘rv t))dy + f(*% t, U(‘Tv t)) - f(xv t a*u;(m7 t))
Hence, setting (x,t) = (xg,t0) in (3.5) yields

0 = (a0, to) <p /Q J(xo — y)(w(y, to) — wlzo, to))dy



TIME PERIODIC NONLOCAL DISPERSAL OPERATORS AND APPLICATIONS 25

+ f(x07t07v(x07t0)) - f(‘r()?tOu C}f*U;(mO,tO)) S 07

which is a contradiction. Hence, o, < 1 and the proof is complete.

(ii) By Theorem 1.5(i), there exists p; > 0 such that \,(L T“’l’o) < —a/2 < 0 for all pu €
(p1,00). Thus, it follows from Lemma 1.6 that (1.3) admits a unique solution uj, € xg ' that is
globally asymptotically stable for all © € (1, 00). Thus, we have

(3.6)  T(uy)i(z,t) = M/QJ(fv = y)(uy(y,t) — up(z, 1) dy + f(x,t,u,(z,1)), (2,t) € QxR
It is easy to check that there holds

sup || (-t uh (1)l ey < sup lla(, H)uy, (-, 8)][pe) <M max  a(x,t)] ;= MA,
te[0,1] te[0,1] (2,6)€Qx[0,1]

Multiplying (3.6) by uy, and integrating over € x (0,1) yield

/ / Jeuydrdt = / /f z,t, uy, (2, t))uy, (z,t)drdt
+u/0 /Q/QJ(:n—y)(u;(y,t)—u (z,t))us, (2, t)dydadt.

In view of uj, € X$+ and the symmetry of J, we have

g/ol/ﬂ/gj(g;—y)(u; t) —uh (2, 1)) dydadt = / /f x,t,uy, (2, t))uy, (z,t)drdt,

which implies that
1
[ e = w06 = a0y

(3.7) / / St (2 ) (£ vl
2M2A|Q|
<27 A
i
Let us assume U(z,t) = uj,(z,t) — a(t), where u(t) = %\fﬂ uy, (z, t)dx. We get [ U(z,t)dx = 0.

|
Integrating (3.6) over 2 and substituting U(z,t) = uy,(z,t) — u(t) yield
() = ﬁ / Fleat, U, t) + a(t))de
=T / f(x Ndz + — 9] / (z,t,U(z,t) + u(t) — f(z,t,a(t)))de.

Owing to assumption (F), we have

‘/ (z,t,U(x,t) + u(t)) — f(z,t,u(t)))de

g‘ /Q o, U (2, £)dz
gAymé</ U?(x,t)dxf

By [32, Page 1688, Formula (5.6)], there exists C' > 0 such that

(3.8) / U(x,t)dx < —/ / x — y,t) — Uz, t)?dydz  for all pu>> 1.
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By (3.7) and (3.8), there holds

! M?A|Q|
U?(z, t)dadt < ——1
/0 /Q (%) Cu

which implies that

’

Thus, we have

dt = O(,u_%) as p> 1.

lﬂﬂ%tUWJMHw»—fuJum»@

hm uy (x,t) = v*(t) uniformly in (z,t) € @ x R,

where v*(t) is the unique positive 1-periodic solution or zero solution of the equation

1
roll) = 4 / ot 0(t))dz
€2 Jo
Finally, we exclude that v*(t) is zero solution. Divide (3.6) by uj, and integrate over Q2 x (0,1)

/ / et M/ //J ,i)(x t)(x,t)dydg;dt
/ /fx by, ))dxdt for all p € (p1,00).

Owing to uj, € X++ and the symmetry of J, we get

//fﬂu d“‘“///J (>y33%mw

for all p € (p1,00). This implies that
t,
/ /f:E o ))d dt <0 forall pe (u,00).

If v*(¢t) = 0, then it follows from the above inequality and assumption (F) that

1
//a(m,t)da;dtSO,
0 Jo

which contradicts @ > 0. Therefore, v* is non-zero and the proof is complete. O

to obtain

3.3. Effects of the dispersal spread.
This subsection is devoted to the proof of Theorem 1.9.

Proof of Theorem 1.9. (i) It follows from Theorem 1.3 and Lemma 1.6 that there exists o1 > 0
such that (1.3) admits a unique solution u}. € X$+ that is globally asymptotically stable for all
o € (01,00). Similar to the proof of Theorem 1.8 (i), we have

lim u’(z,t) = v*(z,t) uniformly in (z,t) € Q x R.

T—00

(ii) It follows from Theorem 1.5 and Lemma 1.6 that there exists op > 0 such that (1.3)
admits a unique solution u), € X§+ that is globally asymptotically stable for all o € (0,0¢). By
the same proof of Theorem 1.8 (i), we can also obtain that

lim w(z,t) = v*(z,t) uniformly in (z,t) € Q x R.

o—0t

The proof is complete. O
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