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Abstract—Closed-loop state estimators that track the movements
and behaviors of large-scale populations have significant potential
to benefit emergency teams during the critical early stages of
disaster response. Such population trackers could enable insight
about the population even where few direct measurements are
available. In concept, a population tracker might be realized using
a Bayesian estimation framework to fuse agent-based models of
human movement and behavior with sparse sensing, such as a
small set of cameras providing population counts at specific
locations. We describe a simple proof-of-concept for such an
estimator by applying a particle-filter to synthetic sensor data
generated from a small simulated environment. An interesting
result is that behavioral models embedded in the particle filter
make it possible to distinguish among simulated agents, even when
the only available sensor data are aggregate population counts at
specific locations.
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I. INTRODUCTION

Large-scale population simulations have demonstrated
utility for analysis and optimization of disaster response. As one
example, an agent-based simulation was implemented to prepare
for a hypothetical terrorist attack in Washington D.C. [1]-[3].
This simulation predicted the behaviors and movements of
approximately one million individual agents, roughly the
population of the affected area. Each simulated agent was
initialized using US Census and other demographic data, and
agent behaviors were evolved in time to reflect sheltering in
place, escape, attempts to reunite with family, or falling victim
to panic. The simulation enabled different first-responder
strategies to be assessed; results indicated that one of the most
effective means of saving lives would be to re-establish
communication quickly using, for instance, portable cellular-
phone towers [4]-[6].

A natural extension is to fuse a dynamic population
simulation with real-time sensing, in order to form a state
estimator that would model the movements and behaviors of an
actual population, for example, during the time immediately
following a disaster event. State estimators provide a capability
to filter sensor noise and to infer information that cannot directly
be sensed [7]. Such inferences could be leveraged to redeploy
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first-responders to areas of greatest need, to generate tailored
response strategies for specific neighborhoods depending on the
nature of the disaster, or to provide rapid testing and evaluation
of high-risk, high-reward response strategies. As compared with
existing disaster-response simulations, implemented to run in
advance of a disaster (i.e. as open-loop simulations), the state-
estimator would operate through closed-loop feedback, with
real-time sensor data steering the simulation to reflect actual
events as they unfold. Our goal is to develop closed-loop state
estimators to enable inference about the locations and behaviors
of a population during a disaster, even when direct sensing is not
possible.

A broad range of state-estimation techniques have been
developed in the research literature and deployed in practice [8].
Generally speaking, state-estimation methods can be divided
into optimization (minimum-error) and Bayesian approaches
[9]. Under certain conditions, the two approaches are equivalent
[8]. Because of the strongly nonlinear form of sensing and
dynamic models in disaster-response scenarios, we have opted
to pursue a Bayesian formulation for our application [10],
specifically a particle filter [11].

One of the most challenging aspects of working with
population counting sensors is the data-association issue. The
data association problem occurs in any multi-target tracking
application with sensors that do not uniquely identify each target
[12],[13]. Data association issues are particularly common in
primary radar and video surveillance applications [14],[15].
Data association for multi-target tracking with a Bayesian
estimator remains an open topic of research, though significant
progress has been made to date [16],[17].

An alternative to solving the data association problem is to
model population as a flow obeying conservation of mass. If
dynamic models consider the density of population at any
particular location, the resulting model is similar in form to
Eulerian models originally developed for solving fluid
mechanics problems [18]. In addition to removing the data
association problem, such flow-based models can be
implemented with great computational efficiency. As such,
Eulerian simulations have been used successfully to develop
closed-loop state estimators to infer flows in applications as
diverse as highway traffic analysis, air traffic control, and
building evacuation [19]-[21]. Despite their computational



efficiency, Eulerian models have the disadvantage that they
cannot explicitly model behavioral changes for individual
members of the population, nor can they capture population-
level emergent behaviors that result from the interaction of
simple individual behaviors [22].

Because we believe that individual behaviors are highly
significant to disaster response modeling, we have focused on
individual models (more commonly called agent-based
modeling, or ABM) rather than Eulerian flow models.

A significant research challenge remains in defining methods
to solve large-scale data association when fusing individual
agents in an ABM with aggregate sensor measurements
(e.g., population counts provided by surveillance cameras). At
first blush, the problem may even seem ill-defined, since it is
difficult to intuit how aggregate measurements that contain no
identity information might be used to perform Bayesian
measurement updates for individual simulated agents. After all,
how can a population count be used to identify a specific
individual?

In recent work, we have proposed a new data association
approach that considers likely combinations of agents at any
particular sensor location; sampling these combinations allows
for sensor updates without requiring definitive association [10].
Given that this sampling approach correlates agent movements
over time, the approach effectively infers some information
about specific individuals. Furthermore, as we explore in this
paper, agents can be distinguished by agent-specific behavior
models, integrated by the estimator. This result has important
consequences for practical applications, consequences that may
be beneficial (tailoring disaster response to individual needs) but
that may also be concerning (invading privacy through
individualized tracking).

The main focus of this paper is to characterize the
mechanism by which our state estimator distinguishes among
simulated agents given only aggregate sensor data, which is
nominally de-identified. To this end, we take a simulation-based
approach, generating and analyzing synthetic measurements to
evaluate the limits of Bayesian inference under ideal conditions.
The remainder of the paper is organized as follows. Next, we
briefly summarize our Bayesian-estimator approach and our
simulation setup. Subsequently, simulation results are described
and analyzed, in order to explore the mechanisms by which
behavior-based models can sift the aggregate data to classify
subgroups within the agent population. A brief summary
concludes the paper.

I. METHODOLOGY

A. Simulation Setup

For the purposes of exploring the identifiability of individual
agents, we implemented a relatively simple simulation which
represented the physical environment as a network consisting of
100 nodes. Each node represents a physical location (such as a
home, workplace, or intersection). Nodes were randomly placed
in the plane and connected to their four nearest neighbors.
Within this network were placed 100 agents, initially scattered
with uniform probability across the location network. Of these
agents, 50 were singletons with no affiliation to other simulated

agents, 20 were pairs affiliated to one other simulated agent, 18
were members of groups of three, and 12 were members of
groups of four.

A ground truth simulation was generated by allowing the 100
agents to move within the location network. All singleton agents
exhibited the same behavior, which was to move toward the
nearest exit, transitioning one node per time step. Occasionally,
agents would pause for a time step to rest. When agents arrived
at an exit node, they would remain at that location. Groups
exhibited a slightly different behavior. Each group began by
meeting at a specific rendezvous location. Once all members of
the group reached the rendezvous site, the group proceeded
together to the nearest exit node. Across the network of all 100
nodes, only 3 nodes were specified as allowable rendezvous
points, and only 2 nodes as exits.

Synthetic sensor measurements (aggregate population
counts at specific nodes) were generated from the ground truth
simulation. The sensor noise model did not allow for false
alarms; however, missed detections were modeled with a
binomial distribution, assuming a 10% missed-detection
probability per individual present at the sensor location.
Altogether, eight sensors were considered, all placed at distinct
locations (nodes) within the simulated environment.

Synthetic sensor data were used to steer the Bayesian state
estimator. The Bayesian estimator was implemented as a particle
filter with 50 particles per agent, totaling 5000 particles in all.
Particle distributions were propagated in time through an ABM,
as described in the next section, and corrected at each time step
using the synthetic sensor data.

B. Bayesian Estimation Methodology

As with any Bayesian estimator, the primary steps of the
algorithm are predication and correction. The prediction step
propagates the state estimate & from one time step to the next.
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At each time step k, the correction step weights the output of the
prediction according to the likelihood of generating the observed
measurement vector yi. The result is an updated (posterior)
estimate of the state vector X,, that reflects the sensor data.
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In our estimator, the vector of estimated states X;, describes the
positions and behaviors of all agents.

The unique aspect of our implementation involves the
correction step (2). The correction was implemented by first
transforming to the correspondence domain, where the state
distribution is mapped to a correspondence vector ¢ € ZV, with
N equal to the number of simulated agents. Each entry of the
correspondence vector is associated with an agent and indicates
whether the agent is not associated with a sensor (in which case
the entry is zero) or associated (in which case the entry is equal
to the positive index of that sensor). The correspondence vector



thus represents a hypothesis of possible associations between
aggregate sensors and individual agents. Our algorithm
mitigates combinatorial complexity by sampling a set of
correspondence vectors from all possibilities. In all, the number
M of sampled correspondence vectors is equal to the number of
particles for each agent (M = N = 50 in this paper).

To transition from the prior (predicted) set of
correspondence vectors to the posterior (corrected) set of
correspondence vectors, a Metropolis-Hastings resampling step
is introduced, a standard step in Markov Chain Monte Carlo
(MCMC) estimation [23]. The uniqueness of our algorithm is
that the Metropolis-Hasting step occurs in the correspondence
domain [10]. The Metropolis-Hastings step involves
sequentially selecting one of the sampled correspondence
vectors € and comparing it to a proposed alternative c’. The
alternative is created by a proposal process that must be
reversible, but that is otherwise at the discretion of the algorithm
designer; in our case, we selected a proposal process that created
the alternative ¢’ by randomly perturbing one entry of the
original € candidate, choosing the entry with uniform
probability and “flipping” it from being associated with a sensor
to unassociated (or vice versa). The original candidate and
proposed alternative are then compared to compute an
acceptance ratio a.
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Note here that the proposal process is symmetric and thus the
proposal distribution does not appear in (3).

Our Bayesian update step substitutes the proposed
alternative ¢’ for the original candidate ¢ with probability a. The
process is then repeated with the goal of converging to a
consistent posterior distribution. In MCMC algorithms, the
number of substitutions is frequently chosen to be a fixed
number M+B. In our case, M is the number of correspondence
vectors and where B is an additional number of iterations that
accounts for the transient or burn-in period. We set B = 20.
Once convergence is achieved, the correspondence vectors are
converted back to the state domain (location and behaviors) so
that the prediction step (1) can be repeated.

III. RESULTS

This section investigates individual-agent tracking
performance for the Bayesian Estimation algorithm described
above. Prior work has shown that tracking is quite good at the
population level (when counting the total number of estimated
agents at any one node) [10], but we have not previously
investigated tracking at the individual-agent level (to see how
well estimated agent states correspond to the associated member
of the true population).

As a general statement, our estimator performed better
tracking agents belonging to a group than tracking singleton
agents. For instance, Fig. 2 below shows the distance error, or
DE, for singleton agents (blue) is much higher than for grouped
agents (green). The DE was evaluated as the distance of each
particle’s median location from the true location of the
associated agent. For the purposes of visualization, a mean-

absolute-deviation of DE was computed over the set of all
particles associated with each agent. The mean-absolute-
deviation score over all agents is shown in the figure. The shaded
region represents the middle 40% of the agents, 20% above and
below the median.

The network diameter for our location map is 14, meaning
the shortest path between any two notes contains at most 14
edges. It is useful to normalize DE by network diameter; for
instance, we might interpret “good” estimation as obtaining the
answer within 20% of the network diameter. By this criterion, a
“good” result would entail DE smaller than 2.8.

Applying this tracking-quality criterion to Fig. 2 reveals that
the mean DE is high (above 2.8) at all times for singleton agents.
This result confirms that the estimator cannot meaningfully
distinguish among singleton agents. By contrast, Fig. 2 reveals
that after time step 5 the mean DE is low (below 2.8) for agents
belonging to groups. The early time steps represent an initial
transient needed for the estimator to converge; after the transient
is complete, “good” tracking ensues, meaning that grouped
agents are distinguished based on their behaviors (e.g. to which
rendezvous node they proceed). Even when confidence bounds
(shaded regions) are considered to account for variability, it is
clear that group performance is consistently better than singleton
performance across the population of simulated agents.

It is interesting to note that DE does not decrease
monotonically for the grouped agents, as seen by an increase in
DE near time step 12. This increased DE is a result of mis-
modeling. Whereas, in the ground-truth simulation, grouped
agents transition deterministically from a rendezvous behavior
to an evacuation behavior when all members of the group are
reunited, the prediction step implements a simplified criterion
that transitions randomly [10]. The consequence is some error
in the timing of the behavior transition between the prediction
and the ground truth. Once most group-member particles have
transitioned (after time step 12), DE again decreases.

Fig. 1. Absolute Distance Error (DE) as a function of time. The interquartile
range over all singleton agents (blue field) is significantly different than the

interquartile range over all grouped agents (green field). Median values over
singleton agents and grouped agents are shown as solid lines.



To provide another view of the statistics, it is also useful to
analyze the number of agents that meet the criterion for “good”
tracking (with DE smaller than 20% of network diameter). These
results are shown in Fig. 3. At first glance, the trends in this
figure may appear opposite those in Fig. 2, but they are in fact
consistent when the axis definitions are considered. In in Fig. 3,
the vertical axis is the number of “good” particles for a given
agent; this number should be high when DE is low. As expected,
when average DE is low, then the number of particles below the
DE cutoff (20% of network diameter) is high, as is the case for
the group particles shown in the green regions in each figure. By
contrast, when the average DE is high, then the number of
particles that meet the DE cutoff is low, as is the case for the
singleton particles shown in the blue regions of each figure.

It is clear from Fig. 3 that the number of “good” singleton
particles (blue) converges quickly to approximately 25 particles
(half of the total particle count N =150). This result can be
explained by noting the simulation includes two exits.
Apparently, half of the singleton particles proceed to each exit.
Once exited, the particle distribution does not significantly
change. The exits are 8 edges apart, so if half the agents are at
each exit, we would expect the average error to converge to a
value of 4. (A DE of 4 is the weighted average with half the
population at a DE of 0 and half at a DE of 8). Indeed, this
hypothesis is consistent with the mean DEFE results, which
converge to a DE of approximately 4, as shown in Fig. 2.

Tracking is better for the grouped agents because they
proceed to known rendezvous points; this behavioral constraint
provides important information leveraged by the estimator to
improve tracking performance. The nearest exit to each
rendezvous point is also known, so the estimator correctly
predicts the exit node for nearly all grouped agents, as evidenced
by the number of “good” group particles (green) in Fig. 3. The
figure shows that, by the end of the simulation, nearly all
particles (a mean of 49 out of 50) meet the criterion for “good”
tracking.

Fig. 2. Number of “good” (low DE) particles over time. The interquartile
range of low-error particles over all singleton agents is shown in blue and over
all grouped agents is shown in green. Median values are shown as solid lines.

Although they are well tracked, group agents still cannot
easily be distinguished within their group (or even within the set
of all groups meeting at a particular rendezvous point). The
behavioral information available to the estimator is very much
tied to knowledge about the destination (rendezvous point or
exit) of each agent. In other words, all agents with the same
destination are effectively equivalent from the point of view of
the estimator as implemented.

IV. DISCUSSION

Although the example here considers a relatively small “toy”
simulation, the results strongly suggest that some identifying
information can be extracted from aggregate sensors given an
appropriately specific behavioral model. For instance, if home
location, work location, and family relationships are known for
a real individual, it is reasonable to assume that the individual’s
identity might be extracted by a real-world implementation of
the Bayesian estimator described in this paper, even when the
estimator fuses only aggregate sensor measurements. In the
future, it will be informative to investigate the degree to which
better directory information (e.g. census knowledge that could
enable better inference of initial conditions) or more refined
behavioral models might contribute to the identifiability of
individual agents or of small subsets of agents. Also, it will be
relevant to characterize how other types of sensor data (e.g.
limited GPS position data transmitted by cell phones) might
impact identifiability across the whole agent population.

V. SUMMARY

This paper describes a Bayesian state estimator designed to
fuse agent-based models with aggregate sensor data, such as
sparse population counter measurements obtained by placing
cameras throughout a physical space, such as a city. Results
indicate that bulk population movements can be inferred.
Inferences provide potential insight about population locations
and behavior, even where no sensors are present. This
information has significant potential utility for first responders
addressing an unfolding disaster.

Perhaps surprisingly, our population tracker can also
distinguish among agents, even when provided with sensor data
that is inherently de-identified, such as aggregated population
counts obtained over time. Individuals are identifiable, at least
in simulation, through the fusion of integrated behavioral
dynamics with the aggregate sensor data. Results from a simple
simulation were presented that showed significant differences in
tracking accuracy as a function of behavior. The capability to
parse aggregate data to distinguish among individuals provides
both potential benefits, to tailor disaster response to individual
needs, but also some concern, as such a capability might
compromise individual privacy.
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