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Abstract—Closed-loop state estimators that track the movements 
and behaviors of large-scale populations have significant potential 
to benefit emergency teams during the critical early stages of 
disaster response. Such population trackers could enable insight 
about the population even where few direct measurements are 
available. In concept, a population tracker might be realized using 
a Bayesian estimation framework to fuse agent-based models of 
human movement and behavior with sparse sensing, such as a 
small set of cameras providing population counts at specific 
locations. We describe a simple proof-of-concept for such an 
estimator by applying a particle-filter to synthetic sensor data 
generated from a small simulated environment. An interesting 
result is that behavioral models embedded in the particle filter 
make it possible to distinguish among simulated agents, even when 
the only available sensor data are aggregate population counts at 
specific locations. 

Keywords- Bayesian Estimation, Disaster Response, Particle 
Filter, Synthetic Population  

I.  INTRODUCTION 
Large-scale population simulations have demonstrated 

utility for analysis and optimization of disaster response. As one 
example, an agent-based simulation was implemented to prepare 
for a hypothetical terrorist attack in Washington D.C. [1]-[3]. 
This simulation predicted the behaviors and movements of 
approximately one million individual agents, roughly the 
population of the affected area. Each simulated agent was 
initialized using US Census and other demographic data, and 
agent behaviors were evolved in time to reflect sheltering in 
place, escape, attempts to reunite with family, or falling victim 
to panic. The simulation enabled different first-responder 
strategies to be assessed; results indicated that one of the most 
effective means of saving lives would be to re-establish 
communication quickly using, for instance, portable cellular-
phone towers [4]-[6]. 

A natural extension is to fuse a dynamic population 
simulation with real-time sensing, in order to form a state 
estimator that would model the movements and behaviors of an 
actual population, for example, during the time immediately 
following a disaster event. State estimators provide a capability 
to filter sensor noise and to infer information that cannot directly 
be sensed [7]. Such inferences could be leveraged to redeploy 

first-responders to areas of greatest need, to generate tailored 
response strategies for specific neighborhoods depending on the 
nature of the disaster, or to provide rapid testing and evaluation 
of high-risk, high-reward response strategies. As compared with 
existing disaster-response simulations, implemented to run in 
advance of a disaster (i.e. as open-loop simulations), the state-
estimator would operate through closed-loop feedback, with 
real-time sensor data steering the simulation to reflect actual 
events as they unfold. Our goal is to develop closed-loop state 
estimators to enable inference about the locations and behaviors 
of a population during a disaster, even when direct sensing is not 
possible. 

A broad range of state-estimation techniques have been 
developed in the research literature and deployed in practice [8]. 
Generally speaking, state-estimation methods can be divided 
into optimization (minimum-error) and Bayesian approaches 
[9]. Under certain conditions, the two approaches are equivalent 
[8]. Because of the strongly nonlinear form of sensing and 
dynamic models in disaster-response scenarios, we have opted 
to pursue a Bayesian formulation for our application [10], 
specifically a particle filter [11].  

One of the most challenging aspects of working with 
population counting sensors is the data-association issue. The 
data association problem occurs in any multi-target tracking 
application with sensors that do not uniquely identify each target 
[12],[13]. Data association issues are particularly common in 
primary radar and video surveillance applications [14],[15]. 
Data association for multi-target tracking with a Bayesian 
estimator remains an open topic of research, though significant 
progress has been made to date [16],[17]. 

An alternative to solving the data association problem is to 
model population as a flow obeying conservation of mass. If 
dynamic models consider the density of population at any 
particular location, the resulting model is similar in form to 
Eulerian models originally developed for solving fluid 
mechanics problems [18]. In addition to removing the data 
association problem, such flow-based models can be 
implemented with great computational efficiency. As such, 
Eulerian simulations have been used successfully to develop 
closed-loop state estimators to infer flows in applications as 
diverse as highway traffic analysis, air traffic control, and 
building evacuation [19]-[21]. Despite their computational 



efficiency, Eulerian models have the disadvantage that they 
cannot explicitly model behavioral changes for individual 
members of the population, nor can they capture population-
level emergent behaviors that result from the interaction of 
simple individual behaviors [22]. 

Because we believe that individual behaviors are highly 
significant to disaster response modeling, we have focused on 
individual models (more commonly called agent-based 
modeling, or ABM) rather than Eulerian flow models.  

A significant research challenge remains in defining methods 
to solve large-scale data association when fusing individual 
agents in an ABM with aggregate sensor measurements 
(e.g., population counts provided by surveillance cameras). At 
first blush, the problem may even seem ill-defined, since it is 
difficult to intuit how aggregate measurements that contain no 
identity information might be used to perform Bayesian 
measurement updates for individual simulated agents. After all, 
how can a population count be used to identify a specific 
individual?  

In recent work, we have proposed a new data association 
approach that considers likely combinations of agents at any 
particular sensor location; sampling these combinations allows 
for sensor updates without requiring definitive association [10]. 
Given that this sampling approach correlates agent movements 
over time, the approach effectively infers some information 
about specific individuals. Furthermore, as we explore in this 
paper, agents can be distinguished by agent-specific behavior 
models, integrated by the estimator. This result has important 
consequences for practical applications, consequences that may 
be beneficial (tailoring disaster response to individual needs) but 
that may also be concerning (invading privacy through 
individualized tracking). 

The main focus of this paper is to characterize the 
mechanism by which our state estimator distinguishes among 
simulated agents given only aggregate sensor data, which is 
nominally de-identified. To this end, we take a simulation-based 
approach, generating and analyzing synthetic measurements to 
evaluate the limits of Bayesian inference under ideal conditions. 
The remainder of the paper is organized as follows. Next, we 
briefly summarize our Bayesian-estimator approach and our 
simulation setup. Subsequently, simulation results are described 
and analyzed, in order to explore the mechanisms by which 
behavior-based models can sift the aggregate data to classify 
subgroups within the agent population. A brief summary 
concludes the paper. 

II. METHODOLOGY 

A. Simulation Setup 
For the purposes of exploring the identifiability of individual 

agents, we implemented a relatively simple simulation which 
represented the physical environment as a network consisting of 
100 nodes. Each node represents a physical location (such as a 
home, workplace, or intersection). Nodes were randomly placed 
in the plane and connected to their four nearest neighbors. 
Within this network were placed 100 agents, initially scattered 
with uniform probability across the location network. Of these 
agents, 50 were singletons with no affiliation to other simulated 

agents, 20 were pairs affiliated to one other simulated agent, 18 
were members of groups of three, and 12 were members of 
groups of four.  

A ground truth simulation was generated by allowing the 100 
agents to move within the location network. All singleton agents 
exhibited the same behavior, which was to move toward the 
nearest exit, transitioning one node per time step. Occasionally, 
agents would pause for a time step to rest. When agents arrived 
at an exit node, they would remain at that location. Groups 
exhibited a slightly different behavior. Each group began by 
meeting at a specific rendezvous location. Once all members of 
the group reached the rendezvous site, the group proceeded 
together to the nearest exit node. Across the network of all 100 
nodes, only 3 nodes were specified as allowable rendezvous 
points, and only 2 nodes as exits. 

Synthetic sensor measurements (aggregate population 
counts at specific nodes) were generated from the ground truth 
simulation. The sensor noise model did not allow for false 
alarms; however, missed detections were modeled with a 
binomial distribution, assuming a 10% missed-detection 
probability per individual present at the sensor location. 
Altogether, eight sensors were considered, all placed at distinct 
locations (nodes) within the simulated environment. 

Synthetic sensor data were used to steer the Bayesian state 
estimator. The Bayesian estimator was implemented as a particle 
filter with 50 particles per agent, totaling 5000 particles in all. 
Particle distributions were propagated in time through an ABM, 
as described in the next section, and corrected at each time step 
using the synthetic sensor data. 

B. Bayesian Estimation Methodology 
As with any Bayesian estimator, the primary steps of the 

algorithm are predication and correction. The prediction step 
propagates the state estimate 𝐱𝐱� from one time step to the next. 

𝑝𝑝(𝒙𝒙�𝑘𝑘)���
prior

= ∭ 𝑝𝑝(𝐱𝐱�𝑘𝑘|𝐱𝐱�𝑘𝑘−1)�������
process noise

𝑝𝑝(𝐱𝐱�𝑘𝑘−1|𝐲𝐲𝑘𝑘−1)���������
posterior

𝑑𝑑𝑑𝑑 (1) 

At each time step k, the correction step weights the output of the 
prediction according to the likelihood of generating the observed 
measurement vector yk. The result is an updated (posterior) 
estimate of the state vector 𝐱𝐱�𝑘𝑘 that reflects the sensor data. 

𝑝𝑝(𝐱𝐱�𝑘𝑘|𝐲𝐲𝑘𝑘)�������
posterior

= 𝐶𝐶 𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱�𝑘𝑘)�������
sensor noise

𝑝𝑝(𝐱𝐱�𝑘𝑘)���
prior

 (2) 

In our estimator, the vector of estimated states 𝐱𝐱�𝑘𝑘 describes the 
positions and behaviors of all agents.  

The unique aspect of our implementation involves the 
correction step (2). The correction was implemented by first 
transforming to the correspondence domain, where the state 
distribution is mapped to a correspondence vector 𝐜̂𝐜 ∈ ℤ𝑁𝑁, with 
N equal to the number of simulated agents. Each entry of the 
correspondence vector is associated with an agent and indicates 
whether the agent is not associated with a sensor (in which case 
the entry is zero) or associated (in which case the entry is equal 
to the positive index of that sensor). The correspondence vector 



thus represents a hypothesis of possible associations between 
aggregate sensors and individual agents. Our algorithm 
mitigates combinatorial complexity by sampling a set of 
correspondence vectors from all possibilities. In all, the number 
M of sampled correspondence vectors is equal to the number of 
particles for each agent (𝑀𝑀 = 𝑁𝑁 = 50 in this paper). 

To transition from the prior (predicted) set of 
correspondence vectors to the posterior (corrected) set of 
correspondence vectors, a Metropolis-Hastings resampling step 
is introduced, a standard step in Markov Chain Monte Carlo 
(MCMC) estimation [23]. The uniqueness of our algorithm is 
that the Metropolis-Hasting step occurs in the correspondence 
domain [10]. The Metropolis-Hastings step involves 
sequentially selecting one of the sampled correspondence 
vectors 𝐜̂𝐜  and comparing it to a proposed alternative 𝐜𝐜′ . The 
alternative is created by a proposal process that must be 
reversible, but that is otherwise at the discretion of the algorithm 
designer; in our case, we selected a proposal process that created 
the alternative 𝐜𝐜′  by randomly perturbing one entry of the 
original 𝐜̂𝐜  candidate, choosing the entry with uniform 
probability and “flipping” it from being associated with a sensor 
to unassociated (or vice versa). The original candidate and 
proposed alternative are then compared to compute an 
acceptance ratio a. 

a= min �1, 𝑝𝑝�𝐲𝐲𝑘𝑘|𝐜𝐜′�𝑝𝑝(𝐜𝐜′)
𝑝𝑝(𝐲𝐲𝑘𝑘|𝐜̂𝐜)𝑝𝑝(𝐜̂𝐜)

� (3) 

Note here that the proposal process is symmetric and thus the 
proposal distribution does not appear in (3). 

Our Bayesian update step substitutes the proposed 
alternative 𝐜𝐜′ for the original candidate 𝐜̂𝐜 with probability a. The 
process is then repeated with the goal of converging to a 
consistent posterior distribution. In MCMC algorithms, the 
number of substitutions is frequently chosen to be a fixed 
number M+B. In our case, M is the number of correspondence 
vectors and where B is an additional number of iterations that 
accounts for the transient or burn-in period. We set 𝐵𝐵 =  20. 
Once convergence is achieved, the correspondence vectors are 
converted back to the state domain (location and behaviors) so 
that the prediction step (1) can be repeated. 

III. RESULTS  
This section investigates individual-agent tracking 

performance for the Bayesian Estimation algorithm described 
above. Prior work has shown that tracking is quite good at the 
population level (when counting the total number of estimated 
agents at any one node) [10], but we have not previously 
investigated tracking at the individual-agent level (to see how 
well estimated agent states correspond to the associated member 
of the true population).  

As a general statement, our estimator performed better 
tracking agents belonging to a group than tracking singleton 
agents. For instance, Fig. 2 below shows the distance error, or 
DE, for singleton agents (blue) is much higher than for grouped 
agents (green). The DE was evaluated as the distance of each 
particle’s median location from the true location of the 
associated agent. For the purposes of visualization, a mean-

absolute-deviation of DE was computed over the set of all 
particles associated with each agent. The mean-absolute-
deviation score over all agents is shown in the figure. The shaded 
region represents the middle 40% of the agents, 20% above and 
below the median.  

The network diameter for our location map is 14, meaning 
the shortest path between any two notes contains at most 14 
edges. It is useful to normalize DE by network diameter; for 
instance, we might interpret “good” estimation as obtaining the 
answer within 20% of the network diameter.  By this criterion, a 
“good” result would entail DE smaller than 2.8. 

Applying this tracking-quality criterion to Fig. 2 reveals that 
the mean DE is high (above 2.8) at all times for singleton agents. 
This result confirms that the estimator cannot meaningfully 
distinguish among singleton agents. By contrast, Fig. 2 reveals 
that after time step 5 the mean DE is low (below 2.8) for agents 
belonging to groups. The early time steps represent an initial 
transient needed for the estimator to converge; after the transient 
is complete, “good” tracking ensues, meaning that grouped 
agents are distinguished based on their behaviors (e.g. to which 
rendezvous node they proceed). Even when confidence bounds 
(shaded regions) are considered to account for variability, it is 
clear that group performance is consistently better than singleton 
performance across the population of simulated agents. 

It is interesting to note that DE does not decrease 
monotonically for the grouped agents, as seen by an increase in 
DE near time step 12. This increased DE is a result of mis-
modeling. Whereas, in the ground-truth simulation, grouped 
agents transition deterministically from a rendezvous behavior 
to an evacuation behavior when all members of the group are 
reunited, the prediction step implements a simplified criterion 
that transitions randomly [10].  The consequence is some error 
in the timing of the behavior transition between the prediction 
and the ground truth. Once most group-member particles have 
transitioned (after time step 12), DE again decreases. 

 

Fig. 1. Absolute Distance Error (DE) as a function of time. The interquartile 
range over all singleton agents (blue field) is significantly different than the 
interquartile range over all grouped agents (green field). Median values over 
singleton agents and grouped agents are shown as solid lines. 
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To provide another view of the statistics, it is also useful to 
analyze the number of agents that meet the criterion for “good” 
tracking (with DE smaller than 20% of network diameter). These 
results are shown in Fig. 3. At first glance, the trends in this 
figure may appear opposite those in Fig. 2, but they are in fact 
consistent when the axis definitions are considered. In in Fig. 3, 
the vertical axis is the number of “good” particles for a given 
agent; this number should be high when DE is low. As expected, 
when average DE is low, then the number of particles below the 
DE cutoff (20% of network diameter) is high, as is the case for 
the group particles shown in the green regions in each figure. By 
contrast, when the average DE is high, then the number of 
particles that meet the DE cutoff is low, as is the case for the 
singleton particles shown in the blue regions of each figure. 

It is clear from Fig. 3 that the number of “good” singleton 
particles (blue) converges quickly to approximately 25 particles 
(half of the total particle count N = 50). This result can be 
explained by noting the simulation includes two exits. 
Apparently, half of the singleton particles proceed to each exit. 
Once exited, the particle distribution does not significantly 
change. The exits are 8 edges apart, so if half the agents are at 
each exit, we would expect the average error to converge to a 
value of 4. (A DE of 4 is the weighted average with half the 
population at a DE of 0 and half at a DE of 8). Indeed, this 
hypothesis is consistent with the mean DE results, which 
converge to a DE of approximately 4, as shown in Fig. 2. 

Tracking is better for the grouped agents because they 
proceed to known rendezvous points; this behavioral constraint 
provides important information leveraged by the estimator to 
improve tracking performance. The nearest exit to each 
rendezvous point is also known, so the estimator correctly 
predicts the exit node for nearly all grouped agents, as evidenced 
by the number of “good” group particles (green) in Fig. 3. The 
figure shows that, by the end of the simulation, nearly all 
particles (a mean of 49 out of 50) meet the criterion for “good” 
tracking. 

 

Fig. 2. Number of “good” (low DE) particles over time. The interquartile 
range of low-error particles over all singleton agents is shown in blue and over 
all grouped agents is shown in green. Median values are shown as solid lines. 

Although they are well tracked, group agents still cannot 
easily be distinguished within their group (or even within the set 
of all groups meeting at a particular rendezvous point). The 
behavioral information available to the estimator is very much 
tied to knowledge about the destination (rendezvous point or 
exit) of each agent. In other words, all agents with the same 
destination are effectively equivalent from the point of view of 
the estimator as implemented. 

IV. DISCUSSION 
Although the example here considers a relatively small “toy” 

simulation, the results strongly suggest that some identifying 
information can be extracted from aggregate sensors given an 
appropriately specific behavioral model. For instance, if home 
location, work location, and family relationships are known for 
a real individual, it is reasonable to assume that the individual’s 
identity might be extracted by a real-world implementation of 
the Bayesian estimator described in this paper, even when the 
estimator fuses only aggregate sensor measurements. In the 
future, it will be informative to investigate the degree to which 
better directory information (e.g. census knowledge that could 
enable better inference of initial conditions) or more refined 
behavioral models might contribute to the identifiability of 
individual agents or of small subsets of agents. Also, it will be 
relevant to characterize how other types of sensor data (e.g. 
limited GPS position data transmitted by cell phones) might 
impact identifiability across the whole agent population. 

V. SUMMARY 
This paper describes a Bayesian state estimator designed to 

fuse agent-based models with aggregate sensor data, such as 
sparse population counter measurements obtained by placing 
cameras throughout a physical space, such as a city. Results 
indicate that bulk population movements can be inferred. 
Inferences provide potential insight about population locations 
and behavior, even where no sensors are present. This 
information has significant potential utility for first responders 
addressing an unfolding disaster.  

Perhaps surprisingly, our population tracker can also 
distinguish among agents, even when provided with sensor data 
that is inherently de-identified, such as aggregated population 
counts obtained over time. Individuals are identifiable, at least 
in simulation, through the fusion of integrated behavioral 
dynamics with the aggregate sensor data. Results from a simple 
simulation were presented that showed significant differences in 
tracking accuracy as a function of behavior. The capability to 
parse aggregate data to distinguish among individuals provides 
both potential benefits, to tailor disaster response to individual 
needs, but also some concern, as such a capability might 
compromise individual privacy. 
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