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A Control-Theoretic Approach to Analysis and
Parameter Selection of Douglas–Rachford

Splitting
Jacob H. Seidman , Mahyar Fazlyab , Victor M. Preciado , and George J. Pappas

Abstract—Douglas–Rachford splitting and its equivalent
dual formulation ADMM are widely used iterative methods
in composite optimization problems arising in control and
machine learning applications. The performance of these
algorithms depends on the choice of step size parameters,
for which the optimal values are known in some specific
cases, and otherwise are set heuristically. We provide a
new unified method of convergence analysis and param-
eter selection by interpreting the algorithm as a linear
dynamical system with nonlinear feedback. This approach
allows us to derive a dimensionally independent matrix
inequality whose feasibility is sufficient for the algorithm
to converge at a specified rate. By analyzing this inequality,
we are able to give performance guarantees and parame-
ter settings of the algorithm under a variety of assumptions
regarding the convexity and smoothness of the objective
function. In particular, our framework enables us to obtain
a new and simple proof of the O(1/k ) convergence rate of
the algorithm when the objective function is not strongly
convex.

Index Terms—Optimization algorithms, Lyapunov
methods.

I. INTRODUCTION

IN THIS letter, we consider problems of the form

minimizex∈Rd {F(x) = f (x) + g(x)}, (1)

where f , g : R
d → R ∪ {+∞} are convex, closed, and proper

(c.c.p.). Douglas-Rachford splitting (DRS) solves problem (1)
with the following iterations:

yk = proxαf (xk), (2a)

zk = proxαg(2yk − xk), (2b)
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xk+1 = xk + λk(zk − yk), (2c)

where prox is the proximal operator (see Definition 1) and
α and λk are known as the proximal step size and relaxation
parameter, respectively. For a proper selection of these param-
eters, the limiting values of both yk and zk will be a solution
to (1). The goal of this letter is to provide convergence rates
for DRS over various assumptions on f and g, and optimize
these rates with respect to the algorithm parameters α and λk

using semidefinite programs (SDPs).
The algorithm was first proposed in [1], and has since found

application in general separable optimization problems [2].
Its dual formulation, ADMM, has been particularly useful
in distributed optimization problems [3]. Since the iterates
of ADMM can be written as applying DRS to the dual
problem [4], [5], convergence results for one algorithm are
valid for the other as well when strong duality holds.

The convergence of DRS has previously been analyzed
using monotone operator theory and variational inequali-
ties, see [6], [7]. These techniques have led to proofs of a
O(1/k) convergence rate for the non-strongly convex case [8],
and linear convergence when f is smooth and strongly con-
vex [9], [10]. In the most general case, a condition for con-
vergence is that λk ∈ (0, 2) with

∑∞
k=0 λk(2 − λk) = ∞ [11],

though there exist cases where the algorithm converges with
λk > 2 [12].

Recently, there has been interest in automating the analysis
and design of optimization algorithms via SDPs, [13]–[19].
In particular, through the method of integral quadratic con-
straints proposed in [14], the authors of [12] derive an SDP
for choosing the parameters of ADMM in the case of smooth
and strongly convex f . Using a similar framework, the authors
of [20] provide evidence that as the relaxation parameter
approaches 2 from below, the linear convergence rate is close
to being optimal and in [21] are able to analytically solve
the SDP to give a convergence rate. The work in [22] gives
an optimal choice for the relaxation parameter when f is
quadratic. Furthermore, [23] gives a set of assumptions in
which a bound on the linear convergence rate is minimized
by setting λk = 2.

Our Contribution: By viewing DRS as a linear system
with non-linear feedback, we derive a dimensionally
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independent matrix inequality which gives convergence guar-
antees via Lyapunov functions. Whereas such an approach was
previously applied in [12] to the case of smooth and strongly
convex f , our framework is novel in that it encompasses vary-
ing assumptions on the smoothness and convexity of f . By
changing a single term in the Lyapunov function for each
scenario, we are able to relate the satisfaction of a matrix
inequality to the convergence of the algorithm. In particular,
we give a new and simple proof of O(1/k) convergence in the
non-strongly convex case. These symbolic results can then be
used to select step sizes that optimize the derived rates.

In the strongly convex case, the corresponding matrix
inequality is sufficient to guarantee a linear convergence rate.
We are able to modify the matrix inequality to linearize the
dependence on λk, allowing us to numerically optimize its
value for the convergence rate directly. While previous work
derived SDP’s which can verify the performance of the algo-
rithm for a given parameter setting, to the best of our knowl-
edge this is the first time such a method immediately gives
an optimal relaxation parameter when solved numerically, as
opposed to having to search over a range of values for λk.

II. PRELIMINARIES

We denote the set of real numbers by R, the set of real
n-dimensional vectors by R

n, the set of real m×n-dimensional
matrices by R

m×n, and the n-dimensional identity matrix and
zero matrix by In and 0n, respectively. For a function f : R

d →
R, we denote by dom f = {x ∈ R

d : f (x) < ∞} the effective
domain of f . The subdifferential of a function f at a point x
is ∂f (x) := {g | f (y) − f (x) ≥ g�(y − x),∀y ∈ dom(f )}. By
abuse of notation we will also refer to a subgradient, that is an
element of the subdifferential by ∂f (x) as well. The indicator
function of a set C is given by 1C(x) = 0 if x ∈ C and 1C(x) =
∞ if x /∈ C. For two matrices A ∈ R

m×n and B ∈ R
p×q their

Kronecker product is A ⊗ B.
We say a differentiable function f : R

d → R ∪ {+∞} is
Lf -smooth on S ⊆ dom f if ‖∇f (x) − ∇f (y)‖2 ≤ Lf ‖x − y‖2
for some Lf > 0 and all x, y ∈ S. This also implies for all
x, y ∈ S, f (y) ≤ f (x) + ∇f (x)�(y − x) + (Lf /2)‖y − x‖2

2. A
differentiable function f : R

d → R is mf -strongly convex on
S ⊆ dom f if mf ‖x− y‖2

2 ≤ (x− y)�(∇f (x)−∇f (y)) for some
mf > 0 and all x, y ∈ S. The class of functions which are
Lf -smooth and mf -strongly convex is denoted by F(mf , Lf ).

Definition 1 (Proximal Operator): Given a c.c.p. function
f : R

d → R ∪ {+∞} and α > 0, the proximal operator
proxαf : R

d → R
d is defined as

proxαf (x) = argminy

{

f (y) + 1

2α
‖x − y‖2

2

}

. (3)

The point y = proxαf (x) also is given by the implicit solution
to the subgradient equation

y = x − α∂f (y). (4)

We say that a nonlinear function φ : R
d → R

d satisfies the
incremental quadratic constraint [24] (or point-wise integral
quadratic constraint [14]) defined by Q ∈ R

2n×2n if for all x, y,
[

x − y
φ(x) − φ(y)

]�
Q

[
x − y

φ(x) − φ(y)

]

≥ 0. (5)

For 0 ≤ m, L < ∞ define

Q(m, L) =
[− mL

m+L 1/2
1/2 − 1

m+L

]

⊗ Id, (6)

and define Q(m,∞) as limL→∞ Q(m, L). It was noted
in [14], [25] that a differentiable function f belongs to the
class F(mf , Lf ) on S if and only if the gradient ∇f satisfies the
incremental QC defined by Q(mf , Lf ). When Lf = ∞, the sub-
gradient ∂f satisfies the QC defined by Q(mf ,∞). If we define

Qp(m, L, α) =
[

0 Id

αId −Id

]

Q(m, L)

[
0 αId

Id −Id

]

, (7)

then the proximal operator of a function f ∈ F(m, L), proxαf ,
satisfies the incremental QC defined by Qp(m, L, α) [15].

III. ANALYSIS OF DOUGLAS-RACHFORD SPLITTING VIA

MATRIX INEQUALITIES

A. Douglas-Rachford Splitting as a Dynamical System

We can write the updates in (2) as a linear system with state
xk and feedback nonlinearity φ(xk),

xk+1 = xk + λkφ(xk), (8)

where

φ(xk) := proxαg(2proxαf (xk) − xk) − proxαg(xk). (9)

Our main technique is to describe the nonlinearity φ with
incremental QCs representing the prox operator. This allows
us to derive a matrix inequality as a sufficient condition for
closed-loop stability of the system via a Lyapunov function
argument. We perform this derivation in the following three
cases:

• Case 1: f ∈ F(0,∞) and g ∈ F(0,∞),
• Case 2: f ∈ F(0, Lf ) and g ∈ F(0,∞), with 0 <

Lf < ∞,
• Case 3: f ∈ F(mf , Lf ) and g ∈ F(0,∞), with 0 < mf ≤

Lf < ∞.
We will see that for each case only one term in the Lyapunov

function needs to be modified to obtain the convergence result.
We then use the matrix inequality condition for each case
to obtain information about optimal choices of the algorithm
parameters both symbolically and numerically.

B. Characterization of Fixed Points

From relation (4), the iterates (2) can be rewritten as

yk = xk − α∂f (yk), (10a)

zk = 2yk − xk − α∂g(zk), (10b)

xk+1 = xk + λk(zk − yk). (10c)

The fixed points of (10) satisfy

x� = y� + α∂f (y�), y� = z�, ∂f (y�) + ∂g(z�) = 0. (11)

Since y� = z�, the rightmost equality is exactly the optimality
condition for (1).
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We will also make use of the following relation, obtained
from adding the equations in (10) and the definition of φ,

φ(xk) = zk − yk = −α(∂f (yk) + ∂g(zk)). (12)

From this, we can interpret the feedback nonlinearity φ as the
optimality residual of problem (1), which is driven to zero by
the linear system in the feedback interconnection.

C. Convergence Certificates via Matrix Inequalities

1) Case 1 (Non-Strongly Convex and Non-Smooth Case):
We first assume that f , g ∈ F(0,∞). We propose the following
family of Lyapunov functions parameterized by a sequence
{θi}∞i=0 with θi > 0,

Vk = ‖xk − x�‖2
2 +

k−1∑

i=0

θi‖∂f (yi) + ∂g(zi)‖2
2, (13)

for all k > 0 and V0 = ‖x0 − x�‖2
2. For notational convenience

define the partial sums �k = ∑k−1
i=0 θi. The presence of the

running sum of subgradients is reminiscent of the Popov cri-
terion [26]. It can also be interpreted as the running weighted
sum of fixed point residuals (see (11)). The next lemma shows
how this Lyapunov function can ensure a convergence rate in
terms of the growth of �k.

Lemma 1: Consider the algorithm in (2). Suppose there
exists a sequence {θi}∞i=0 with θi > 0 such that Vk+1 ≤ Vk

for all k ≥ 0. Then

min
i=0,...,k−1

‖∂f (yi) + ∂g(zi)‖2
2 ≤ 1

�k
‖x0 − x�‖2

2. (14)

Proof: Since Vk+1 ≤ Vk for all k, in particular we have that
Vk ≤ V0, or

‖xk − x�‖2
2 +

k−1∑

i=0

θi‖∂f (yi) + ∂g(zi)‖2
2 ≤ ‖x0 − x�‖2

2. (15)

Removing the first term on the left, and dividing through by
�k gives

k−1∑

i=0

θi

�k
‖∂f (yi) + ∂g(zi)‖2

2 ≤ ‖x0 − x�‖2
2

�k
. (16)

The result follows from the fact that the left side is a weighted
average, as θi > 0 and

∑k−1
i=0 θi/�k = 1.

In the following theorem, we derive a matrix inequality in
terms of α, λ, and {θi}∞i=0 as a sufficient condition to guarantee
Vk+1 ≤ Vk, which in turn implies (14).

Theorem 1: Let mf = 0, Lf = ∞, and consider the
following matrix inequality

W(0)
k + σ

(1)
k Q(1) + σ

(2)
k Q(2) � 0, (17)

where

W(0)
k =

⎡

⎢
⎢
⎣

0 −λk λk

−λk λ2
k + θk

α2 −
(
λ2

k + θk
α2

)

λk −
(
λ2

k + θk
α2

)
λ2

k + θk
α2

⎤

⎥
⎥
⎦ ⊗ Id, (18a)

Q(1) =
⎡

⎣
0 Id

αId −Id

0 0

⎤

⎦Q(mf , Lf )

[
0 αId 0
Id −Id 0

]

, (18b)

Q(2) =
⎡

⎣
0 −Id

0 2Id

αId −Id

⎤

⎦Q(0,∞)

[
0 0 αId

−Id 2Id −Id

]

. (18c)

If α, λk, θk > 0 and σ
(1)
k , σ

(2)
k ≥ 0 are chosen so that (17)

is satisfied for all k ≥ 0, then for all f ∈ F(0,∞) and g ∈
F(0,∞) the iterates in (2) satisfy

min
i=0,...,k−1

‖∂f (yi) + ∂g(zi)‖2
2 ≤ 1

�k
‖x0 − x�‖2

2. (19)

Proof: We first see that Vk+1 − Vk can be written as a
quadratic form. Define the error signal

ek := [
(xk − x�)

� (yk − y�)
� (zk − z�)

�]�
. (20)

Using the updates in (10), the fact that z� = y� (see (11)), and
the relation (12), it can be verified that

Vk+1 − Vk = e�
k W(0)

k ek, (21)

where W(0)
k is given by (18a). Next, note that

e�
k Q(1)ek =

[
xk − x�

yk − y�

]�
Qp(mf , Lf , α)

[
xk − x�

yk − y�

]

, (22)

where Qp(mf , Lf , α) is defined in (7). Since yk = proxαf (xk)

and y� = proxαf (x�), this is exactly the incremental QC
that the proxαf operator satisfies. Thus, we have for all k,
e�

k Q(1)ek ≥ 0. We also note that
[

0 0 αId

−Id 2Id −Id

]

ek =
[

0 αId

Id −Id

][
(2yk − xk) − (2y� − x�)

zk − z�

]

.

As zk = proxαg(2yk − xk) and z� = proxαg(2y� − x�), we
similarly conclude that e�

k Q(2)ek ≥ 0 is implied from the
incremental QC that proxαg satisfies. Returning to (17), if we
multiply from the left and right by e�

k and ek respectively, we
obtain

e�
k W(0)

k ek + σ
(1)
k e�

k Q(1)ek + σ
(2)
k e�

k Q(2)ek ≤ 0. (23)

Since σ
(1)
k , σ

(2)
k ≥ 0 and we have shown that e�

k Q(1)ek ≥ 0
and e�

k Q(2)ek ≥ 0, it must be that e�
k W(0)

k ek ≤ 0. Hence,
Vk+1 − Vk ≤ 0, and the result now follows from Lemma 1.

2) Case 2 (Non-Strongly Convex and Smooth f ): If f ∈
F(0, Lf ) with 0 < Lf < ∞, we may leverage the smooth-
ness of f to refine the result of the previous section. In
particular, we can use the inequality for Lf -smooth functions
(see Preliminaries) to relate the behavior of the subgradients
to the objective values, whereas in the previous section this
inequality was not available. Let

Vk = ‖xk − x�‖2
2 +

k−1∑

i=0

θi[F(zi) − F(z�)], (24)

with V0 defined as in the previous case.
This Lyapunov function leads to the following Lemma, the

proof of which is identical to that of Lemma 1.
Lemma 2: Consider the algorithm in (2). Suppose there

exists a sequence {θi}∞i=0 with θi > 0 such that Vk+1 ≤ Vk

for all k ≥ 0. Then

min
i=0,...,k−1

[F(zi) − F(z�)] ≤ 1

�k
‖x0 − x�‖2

2.
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This allows us to prove the following theorem for when f
is non-strongly convex and smooth.

Theorem 2: Let 0 = mf < Lf < ∞ and consider the
following matrix inequality

W(1)
k + σ

(1)
k Q(1) + σ

(2)
k Q(2) � 0, (25)

where

W(1)
k =

⎡

⎢
⎢
⎣

0 −λk λk

−λk
θkLf

2 + λ2
k

θk
2

(
1
α

− Lf

)
− λ2

k

λk
θk
2

(
1
α

− Lf

)
− λ2

k θk

(
Lf
2 − 1

α

)
+ λ2

k

⎤

⎥
⎥
⎦ ⊗ Id, (26)

and Q(1) and Q(2) are defined in (18). If α, λk, θk > 0 and
σ

(1)
k , σ

(2)
k ≥ 0 are chosen so that (25) is satisfied for all k ≥ 0,

then for all f ∈ F(0, Lf ) with 0 < Lf < ∞ and g ∈ F(0,∞)

the iterates in (2) satisfy

min
i=0,...,k−1

[F(zi) − F(z�)] ≤ 1

�k
‖x0 − x�‖2

2. (27)

Proof: We begin by bounding the difference of the
Lyapunov function defined in (24), Vk+1 − Vk, by a quadratic
form in the error signal ek (see (20)). From the convexity and
smoothness of f , we can write

f (zk) − f (yk) ≤ ∇f (yk)
�(zk − yk) + Lf

2
‖zk − yk‖2

2, (28)

f (yk) − f (z�) ≤ ∇f (yk)
�(yk − y�), (29)

where we have used that z� = y�. From the convexity of g

g(zk) − g(z�) ≤ ∂g(zk)
�(zk − z�). (30)

Adding these three inequalities together and using the rela-
tion (12) allows us to conclude

F(zk) − F(z�) ≤ Lf

2
‖yk − y�‖2

2 +
(

Lf

2
− 1

α

)

‖zk − z�‖2
2

+
(

1

α
− Lf

)

(yk − y�)
�(zk − z�). (31)

Using the recursion for xk+1, we then find that

Vk+1 − Vk ≤ e�
k W(1)

k ek. (32)

The proof now proceeds identically as in the proof of
Theorem 1 up to the statement that (25) implies e�

k W(1)
k ek ≤ 0.

Then by (32), we have that Vk+1 − Vk ≤ 0, and the result
follows from Lemma 2.

3) Case 3 (Strongly Convex and Smooth f ): We now assume
that f ∈ F(mf , Lf ) and g ∈ F(0,∞), with 0 < mf ≤ Lf < ∞.
For this scenario let

Vk = ‖xk − x∗‖2
2. (33)

The following lemma characterizes when we can extract a
linear convergence rate from this Lyapunov function.

Lemma 3: Consider the algorithm in (2). Suppose there
exists ρ ∈ (0, 1) such the Lyapunov function Vk defined
by (33) satisfies Vk+1 ≤ ρ2Vk for all k ≥ 0. Then

‖xk − x∗‖2
2 ≤ ρ2k‖x0 − x∗‖2

2. (34)

Proof: The proof follows immediately Vk+1 ≤ ρ2Vk, the
definition (33) of Vk, and induction.

We again see that the difference Vk+1 −ρ2Vk can be written
as a quadratic form acting on the error signal ek as defined
in (20). Using the definition for xk+1 in terms of the previous
iterates, we can write

Vk+1 − ρ2Vk = e�
k Qkek, (35)

where Qk is given by

Qk =
⎡

⎣
1 − ρ2 −λk λk

−λk λ2
k −λ2

k
λk −λ2

k λ2
k

⎤

⎦ ⊗ Id. (36)

From (35), we can use the same reasoning developed in the
non-strongly convex case to arrive at the following theorem.

Theorem 3: Let 0 < mf ≤ Lf < ∞ and consider the
following matrix inequality

Qk + σ
(1)
k Q(1) + σ

(2)
k Q(2) � 0, (37)

where Qk is given in (36) and Q(1) and Q(2) are given in (18).
If α, λk > 0, σ

(1)
k , σ

(2)
k ≥ 0, and ρ ∈ (0, 1) are chosen so

that (37) is satisfied for all k ≥ 0, then for all f ∈ F(mf , Lf )

and g ∈ F(0,∞) with 0 < mf ≤ Lf < ∞, the iterates in (2)
satisfy the following linear convergence rate

‖xk − x∗‖2
2 ≤ ρ2k‖x0 − x∗‖2

2. (38)

Proof: We proceed identically as in the proof of
Theorems 1 and 2. If (37) is satisfied, then e�

k Qkek ≤ 0 for
all k. This is equivalent to Vk+1 − ρ2Vk ≤ 0, by which (38)
follows from Lemma 3.

IV. OPTIMIZING THE BOUND AND

RELAXATION PARAMETER

For each of the cases presented in the previous section we
use the associated matrix inequality to optimize our bounds on
the convergence rate. In the case of non-strongly convex f we
provide analytic convergence rates, while for strongly convex
f we optimize our bounds numerically.

A. Case 1: Non-Strongly Convex and Non-Smooth Case

We now select algorithm parameters that satisfy the matrix
inequality in (17). In doing so, we arrive at a new and simple
proof of the O(1/k) convergence of DRS in the non-strongly
convex and non-smooth case.

Theorem 4: If f ∈ F(0,∞) and g ∈ F(0,∞), then for any
choice of λk = λ ∈ (0, 2) and α > 0, if we set σ

(1)
k = σ

(2)
k =

σk, with

σk := 2λk/α, θk := α2λk(2 − λk), (39)

then σ
(1)
k , σ

(2)
k , α, λk, and θk satisfy the matrix inequality (17).

Proof: Making these substitutions gives W(0)
k + σ

(1)
k Q(1) +

σ
(2)
k Q(2) = 0n � 0.

Remark 1: The convergence rate bound provided by the
parameter choices in Theorem 4 guarantees convergence only
if limk→∞ �k = ∞, which in this case means

∑∞
i=0 λk(2 −

λk) = ∞. This is consistent with the conditions on the
relaxation parameter found in [11].
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Remark 2: After setting θk as in (39), we can maximize �k

by setting λk = 1 which results in �k = α2k and the following
result

min
i=0,...,k−1

‖∂f (yi) + ∂g(zi)‖2
2 ≤ 1

α2k
‖x0 − x�‖2

2. (40)

Remark 3: Using the relation (12) we can rewrite (40) as

min
i=0,...,k−1

‖zi − yi‖2
2 ≤ 1

k
‖x0 − x�‖2

2. (41)

Thus we see that Theorem 4 also gives a O(1/k) rate toward
the iterates being a fixed point of the algorithm.

B. Case 2: Non-Strongly Convex and Smooth Case

When f ∈ F(0, Lf ), g ∈ F(0,∞) with 0 < Lf < ∞,
we have the following result on feasibility of the matrix
inequality (25).

Theorem 5: For any α > 0 and λk = λ with 0 < λ < 2, if
we set σ

(1)
k = σ

(2)
k = σk,

σk := 2λk

α

⎛

⎝

√(
2 − λk

αLf

)2

+ 1 −
(

2 − λk

αLf

)
⎞

⎠, (42a)

θk := 2λkα

⎛

⎝1 +
(

2 − λk

αLf

)

−
√(

2 − λk

αLf

)2

+ 1

⎞

⎠. (42b)

Then σ
(1)
k , σ

(2)
k , α, λk, and θk satisfy the matrix inequality (25).

Proof: This can be verified by substituting the expres-
sions for σ

(1)
k , σ

(2)
k , and θk into the minors of W(1)

k +
σ

(1)
k Q(2) + σ

(2)
k Q(2) and seeing that Sylverster’s criterion is

satisfied [27].
Remark 4: Note that for a constant selection of θk = θ ,

�k = θk. If (25) holds then

min
i=0,...,k−1

[F(zi) − F(z�)] ≤ 1

θk
‖x0 − x�‖2

2. (43)

Remark 5: For moderate values of αLf , we can take a sec-
ond order Taylor expansion of the rightmost term in (42b)
and maximize the resulting expression with respect to λk. This
suggests that we should set λk to

λk = 2

3

(
2 − αLf +

√
1 − αLf + α2L2

f

)
. (44)

C. Case 3: Strongly Convex and Smooth Case

When f ∈ F(mf , Lf ), g ∈ F(0,∞), with 0 < mf ≤ Lf <

∞, we can modify the matrix inequality (37) to get a linear
dependence on the relaxation parameter. If we define �k :=[
0 − λk λk

]� ⊗ Id and

Mk := (Qk − �k�
�
k ) + σ

(1)
k Q(1) + σ

(2)
k Q(2), (45)

then (37) is equivalent to

Mk − �k[ − 1]��
k � 0. (46)

As �k�
�
k � 0, if (46) is satisfied then it must be the case

that Mk � 0. We now recognize that Mk − �k[ − 1]��
k is the

Schur Complement of the bottom right entry in the matrix

�k :=
[

Mk �k

��
k −1

]

. (47)

Fig. 1. Optimal upper bound to linear convergence rate ρ over
f ∈ F(mf , Lf ), g ∈ F(0, ∞) as a function of step size α and condition
number κf = Lf /mf .

By the properties of the Schur complement [28], we can con-
clude that (37) is satisfied if and only if �k � 0. The advantage
of using �k � 0 instead of (37), is that now both the conver-
gence rate ρ2 and the relaxation parameter λk appear linearly.
If we set σ

(1)
k = σ (1), σ

(2)
k = σ (2), and λk = λ for all k, the

corresponding bound in (38) can be optimized by solving the
following SDP, where λ is now a decision variable,

minimize ρ2, subject to �k � 0, (48)

where the decision variables are ρ2, λ > 0 and σ (1), σ (2) ≥ 0.
The optimal ρ2 from solving this program over a range of
step sizes α and condition numbers κf = Lf /mf is shown in
Figure 1. We see that with increasing κf , the optimal choice
of α decreases. Across the range of values of κf and α, the
SDP (48) returns λ = 2 as the optimal relaxation parameter.

Remark 6: We may repeat the same derivation for the
inequalities (17) and (25) to linearize their dependence on λk

as well.

V. NUMERICAL EXPERIMENTS

We investigate how our theoretical results compare with
the experimental performance of DRS in the three scenarios
described above. For the non-smooth and non-strongly convex
case, we consider a basis pursuit problem (see [3]),

minimize
x,z∈Rn

1{y∈Rn|Ay=b}(x) + ‖z‖1

subject to x − z = 0,

with data A ∈ R
300×10000 and b ∈ R

300. We run DRS on
the dual of this problem (ADMM) which is non-smooth and
non-strongly convex. We test the convergence over a range of
values of λk = λ, including λ� = 1 (see Remark 2), and fixed
α = 1.

For the smooth cases we consider a LASSO problem,

minimizex
1

2
‖Ax − b‖2

2 + γ ‖x‖1.

with A ∈ R
300×200, b ∈ R

300 and γ = 0.1. For the non-
strongly convex case we set A to be rank deficient and plot the
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Fig. 2. From left to right: convergence of DRS on basis pursuit problem with α = 1 and varying λ, convergence of DRS on LASSO problem with
row-rank deficient A with λ = 1 and varying α, convergence of DRS on LASSO problem with full row-rank A with fixed λ = 2 and varying α.

convergence of DRS over a range of α with λk = 1 fixed. The
value α� is found by performing a grid search over possible
values and choosing that which maximizes the rate given by
Theorem 2. For the strongly convex case A is set to be full
rank and plot the convergence of DRS over a range of α with
λk = 2 fixed. Again, α� is the value of α which gives the best
rate as provided by Theorem 3. The results are presented in
Figure 2.

VI. CONCLUSION

We presented a unified framework for deriving convergence
bounds for DRS and parameter settings that optimize these
bounds. Our framework encompasses different assumptions on
the smoothness and convexity of f . We are able to give sim-
ple proofs of convergence and find optimal choices for the
relaxation parameter by solving a small convex program for
a fixed α. It is important to note that the parameter selec-
tions optimize our bounds in the sense of the best worst-case
convergence rate over the entire class of objective functions
with f ∈ F(mf , Lf ). While there are scenarios where addi-
tional structure in the problem might make alternate parameter
settings more effective, the settings we see here bound the
worst-case performance agnostic of any additional problem
structure. For future work, this framework will be extended
to encompass accelerated variants of DRS, as well as three or
more operator splitting and multi-block ADMM.
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