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Abstract— We present an approach for the stabilization of
an unknown nonlinear dynamical system when only data
samples from its dynamics are available. Our approach is based
on approximating the system dynamics with an ensemble of
regression trees. As a result of our approximation, we obtain a
model that is a piecewise-affine dynamical system defined over
a partition of the state space. In general, the stabilization of the
resulting piece-wise affine system requires, in the worst case,
solving an exponential number of linear matrix inequalities
(with respect to the state dimension). To overcome this compu-
tational limitation, we propose a stabilization procedure having
a complexity that grows linearly with the number of partitions.
This stabilization procedure explicitly exploits the fact that
our model is described via an ensemble of regression trees.
In addition, we derive probabilistic conditions under which the
stabilization of the model implies that the original nonlinear
system is also stabilized. Finally, we validate our approach
by performing numerical simulations over trajectories of two
coupled Van der Pol oscillators.

I. INTRODUCTION

Standard model-based control techniques rely on the devel-
opment of an explicit mathematical model of the dynamical
system under consideration [1]. When dealing with complex
phenomena, such as turbulent flows or biological processes,
building such a model from first principles can be a cum-
bersome —sometimes impossible— task. On the other hand,
in recent years, technological developments in sensors and
data collection are making high-fidelity measurements more
accessible to a wide variety of systems. In this setting, data-
driven control techniques seek to design controllers using
data obtained from system measurements in the absence of
an explicit system model. One possible approach towards that
goal is to use tools from statistical learning theory to obtain
a model from data (as well as an uncertainty estimate), and
design a controller using tools from robust control theory. In
this direction, the work in [2] studies a data-driven linear-
quadratic regulator (LQR) control problem for an unknown
linear system, where both a nominal model and uncertainty
bounds are estimated from a finite number of samples. In [3],
a data-driven model predictive control (MPC) approach is
proposed using information from repetitive trials to improve
system performance while guaranteeing recursive feasibility.
The work in [4] presents an MPC framework able to provide
safety guarantees by exploiting the regularity assumptions on
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the dynamics in terms of a Gaussian process. In addition,
recent approaches have also focused on extending system
representations to include non-parametric models based on
Gaussian processes [5], [6] and Dirichlet process mixtures
of linear models [7].

A particularly relevant class of models for our work is the
one of piecewise-affine systems [8]. In these models, the state
space if partitioned into different regions and the dynamics in
each region is modeled by an affine function. For example,
using regression trees to model the dynamics of a system
from data naturally results in a piece-wise constant dynam-
ical system [9], [10]. Regression trees can be generalized to
also consider affine, even polynomial functions, at each par-
tition. Some examples of particular learning algorithms for
regression trees are M5 [11], GUIDE [12], and model-based
recursive partitioning [13]. Moreover, a powerful extension
of regression trees can be obtained by considering ensembles
of regression trees [14], [15], [16]. When compared to a
single regression tree, ensembles of regression trees tend
to dramatically reduce the approximation error [17]. In the
control systems literature, ensembles of regression trees have
been used in predictive control problems using switched
affine models using historical data [18], [19].

We can find significant amount of work in the control
community regarding the analysis and control of piecewise-
affine systems. The reader is referred to [20] for a survey on
discrete-time piece-wise affine systems, and to the seminal
paper [21] for the continuous-time case. Some results in this
direction have focused on checking stability using impact
maps [22], non-monotonic Lyapunov functions [23], and
sampling based methods [24]. Moreover, piecewise-linear
controller design for piecewise-affine systems has also been
well-studied in the literature. For the discrete-time case, a
good overview can be found in [25]. For the continuous-
time case, two approaches are given in [26] and [27]. In both
cases, the problem of designing a linear feedback controller
can be expressed via linear matrix inequalities (LMI’s).

In this work, we consider the problem of designing con-
trollers for nonlinear systems when an explicit model is not
available. Instead, we have access to multiple samples of the
system dynamics, from which we can build a data-driven
model. In particular, we build our model using a regression
tree ensemble [28], and propose a data-driven controller
design framework to stabilize the system. First, we learn
the system dynamics as an ensemble of regression trees,
using the algorithm presented in [16]. Then, we propose a
stabilization procedure that explicitly exploits the fact that
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our model is described via an ensemble of regression trees.
The main advantage of our approach is that it requires the
solution of a system of LMI’s that grows linearly with the
number of partitions. Secondly, we perform a probabilistic
analysis to characterize conditions under which the controller
designed with the tree-ensemble model can be used to
stabilize the original nonlinear system with high probability.

II. PROBLEM FORMULATION

Consider an input-affine, continuous-time nonlinear system
with dynamics described by

ẋ = g(x, u) := f(x) +Bu, (1)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector,
and B ∈ Rn×m models the linear effect of the input on the
state. Here, the function f : Rn → Rn, which determines
the autonomous dynamics of the state x, is assumed to be
unknown. We seek to approximate f by an ensemble of T
regression trees [9], where each tree represents a piecewise
affine function over a partition of the state space. More
precisely, the approximation f̂ can be written as

f̂(x) :=
1

T

T∑
k=1

ĥk(x), (2)

with ĥk being the piecewise affine function represented by
the k-th regression tree. We denote the set of τk regions in
the partition of the state space induced by the k-th regression
tree by {Rki }

τk
i=1. Inside each region Rki , we have an affine

system ẋ = Aki x + aki , where Aki ∈ Rn×n and aki ∈ Rn.
With these elements, the function defined by a regression
tree ĥk can be described as

ĥk(x) :=

τk∑
i=1

(Aki x+ aki )1(x ∈ Rki ),

where 1(·) denotes the indicator function. Notice that in the
case of regression trees, each region Rki is a polytope (more
precisely, a hyper-rectangle). Without loss of generality, we
represent each region as Rki = {x : Eki x ≥ eki }. For a
more compact representation of our model, we introduce the
variables νk :=

∑k
j=1 τj−1 with τ0 = 0, as well as Rνk+i :=

Rki , Aνk+i := Aki , and aνk+i := aki . Therefore, since there
are ν ≡ νT+1 regions in the ensemble, we can re-write (2)
as

f̂(x) =
1

T

ν∑
i=1

(Aix+ ai)1(x ∈ Ri). (3)

Using the representation in (3), we propose to approximate
the original nonlinear system in (1) by

ĝ(x, u) := f̂(x) + B̂u, (4)

where the parameters of the function f̂ proposed in (3)
can be estimated by existing regression tree boosting algo-
rithms [16].

Broadly speaking, boosting algorithms train an ensemble of
trees of increasing size by sequentially fitting each additional
tree on the residuals of the previously trained ensemble. In

particular, because of the higher approximation capability of
ensemble models, we set the constant terms1 ai = 0 for i =
1, . . . , ν. Hence, we can use the algorithm in [16] to obtain a
set {(Ai,Ri)}νi=1 representing f̂ . More precisely, we assume
that we have r samples taken from autonomous trajectories of
the system’s dynamics in the form {(xj , yj)}rj=1, where xj
are samples of the system state, and yj is an estimate of the
corresponding derivative f(xj). For simplicity, we assume
that xj ∈ S for all j, where S := [−a, a]n. Given f̂ , we
can obtain an approximation of the input-to-state matrix B̂
by performing standard least-squares regression on a set of
samples taken from actuated trajectories.

Next, equipped with the regression tree ensemble represen-
tation ĝ of the original system g, we are ready to state the
main problems we address in this paper.

Problem 1 (Stabilization of a regression tree ensemble).
Find a linear state-feedback policy expressed in the form
u = K̂ix for x ∈ Ri (i.e., having a specific feedback gain
K̂i ∈ Rm×n for each region Ri), such that the approximated
system ĝ is stabilized in closed-loop. The resulting controller
is thus described by a set of pairs Kĝ := {(K̂i,Ri)}νi=1.

Provided with a solution to Problem 1, we can examine the
probabilistic relation between g and the ĝ to address the ad-
ditional problem of finding a controller Kg := {(Ki,Ri)}νi=1

that stabilizes the original system, in the following sense:

Problem 2 (Probabilistic stabilization of the original system).
Given a ball X0 := {x : ‖x‖2 ≤ η0}, find a controller of the
form Kg such that the following two conditions are satisfied
with high probability for any x(0) ∈ X0:

(i) the trajectories of the system converge to a compact set
D := {x : x>Px ≤ η∞} ⊂ S, where P � 0;

(ii) the trajectories of the system do not leave the hyper-
cube S, i.e., x(t) ∈ S for all t ≥ 0.

We seek to provide explicit conditions for the parameters η0,
η∞, and P to satisfy Conditions (i) and (ii) from Problem 2.
In particular, our results aim to find the ‘smallest’ set D for
a given η0.

III. CONTROLLER DESIGN FOR THE REGRESSION
ENSEMBLE

In this section, we propose a method to address Problem 1
using a stabilization method based on Lyapunov functions.
To that end, one could consider a direct approach to find
a Lyapunov function using available methods in the litera-
ture [21], which would be applicable, in principle, for single-
tree models. However, applying this method to an ensemble-
tree model requires us to consider all the possible intersec-
tions over all the partitions defined by all the regression trees
in the ensemble. Such an approach would involve a massive
number of resulting intersections; more precisely, if each
regression tree in the ensemble had τ̄ partitions (τk = τ̄),

1Notice that, under this assumption, the origin of the approximation
dynamics f̂ is always an equilibrium point.
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the resulting combined piecewise-affine system model could
have up to (τ̄)n partitions, resulting in a scalability issue.

To avoid this computational issue, we propose a method to
stabilize the piecewise-affine dynamical model that avoids
dealing with an exponential number of partitions. First, for
each tree in the ensemble, we assign a controller gain matrix
to each of the regions in the tree. In other words, we design a
piece-wise linear controller for each tree in the ensemble by
solving a collection of ν LMI’s of size n. Then, we combine
all these T controllers into a single controller by computing
the average of all the T piece-wise linear controllers. As
shown in Theorem 1, the resulting controller stabilizes the
dynamics of the tree-ensemble model.

Theorem 1. Consider the piecewise linear system:

ẋ = ĝ(x, u) =
1

T

ν∑
i=1

(Aix)1(x ∈ Ri) + B̂u. (5)

If there exist scalars α, β, κ > 0, matrices {Yi}νi=1 ∈ Rm×n
and Q ∈ Rn×n with αIn � Q � βIn such that, for all
i = 1, . . . , ν

AiQ+QA>i + B̂Yi + Y >i B̂
> + κQ � 0, (6)

then, the piecewise linear state-feedback control law

u =
1

T

ν∑
i=1

K̂i1(x ∈ Ri)x, (7)

with K̂i = YiQ
−1, stabilizes every trajectory2 x(t) ∈ S for

all t ≥ 0.

Proof. With the change of variables Q = P−1, each LMI

(Ai + B̂K̂i)
>P + P (Ai + B̂K̂i) + κP � 0, (8)

is equivalent to Q(Ai + B̂K̂i)
> + (Ai + B̂K̂i)Q+ κQ � 0.

Then, defining Yi = K̂iQ it follows that

QA>i +AiQ+ B̂Yi + Y >i B̂
> + κQ � 0.

Now, consider a Lyapunov function of the form V (x) =
x>Px. Using u from (7), the dynamics induced by (5) can
be written as

ẋ =
1

T

ν∑
i=1

Ai1(x ∈ Ri)x+
1

T
B̂

ν∑
i=1

K̂i1(x ∈ Ri)x.

Further, the derivative of V (x) can be written as

V̇ (x) =

(
φ(x) +

1

T
B̂

ν∑
i=1

K̂i1(x ∈ Ri)x
)>

Px

+ x>P

(
φ(x) +

1

T
B̂

ν∑
i=1

K̂i1(x ∈ Ri)x
)
,

(9)

where φ(x) := 1
T

∑ν
i=1Ai1(x ∈ Ri)x. Hence, (9) can be

rewritten as

V̇ (x) =
1

T

∑
i∈Z

[(Ai + B̂K̂i)x]>Px+ x>P [(Ai + B̂K̂i)x],

(10)

2In this theorem, we adopt the definition of continuous piecewise C1

trajectories and solutions presented in [27].

where Z := {k : 1(x ∈ Rk) = 1}. Observing that the sum
in (10) ranges over T elements for all x, we can combine
(8) and (10) to obtain

V̇ (x) ≤ −κx>Px. (11)

Since the derivative of V (x) is strictly negative for all x 6= 0,
it follows that the proposed control strategy (7) stabilizes
ĝ(x, u), as desired.

A few comments are in order with respect to Theorem 1. The
first is related to some possible conservatism of the controller
design, arising from its lower complexity when compared
to the combined-region case. In this latter case, if there
exists controller gains {K̂i}νi=1 satisfying the conditions
in Theorem 1, then we can always find matrices {K̄i}hi=1

that stabilize the combined system. On the other hand, if
{K̄i}hi=1 exist for which the combined system is stable,
this fact does not imply the existence of {K̂i}νi=1 such
that (8) holds. Secondly, it can be seen from (6) that the
required number of LMI’s grows linearly with the number
of partitions, as intended. Lastly, we see from (11) that the
derivative V̇ (x) is upper bounded by −κx>Px. Hence, the
parameter κ can be interpreted as a margin in the decay
rate available to guarantee stabilization. In this regard, such
a margin might be used to absorb occasional perturbations
on the Lyapunov function that may be caused by differences
in the approximated dynamics. Therefore, if we consider the
modeling error between the approximation ĝ and the original
system g as the cause of such perturbations, we might seek
to quantify how much modeling error can be tolerated as
a function of κ. In the next section, we characterize this
relationship.

IV. STABILIZATION WITH PROBABILISTIC GUARANTEES

In this section, we perform a Lyapunov perturbation analysis
to find a stabilization design criterion addressing Problem 2.
Such a criterion is specified as a function of a parameter
describing the difference between the original and approxi-
mated systems, which we estimate using probabilistic argu-
ments. Then, using a controller designed with respect to such
an estimate, we propose a validation strategy that produces a
lower bound on the probability of achieving both conditions
in Problem 2 with respect to the original system.

Considering a piecewise-linear controller designed according
to Theorem 1, we now determine the set to which closed-
loop trajectories converge.

Theorem 2. Given a scalar γ ≥ 0 and a locally Lipschitz
f(x) in S, assume there exists a

θ? ∈ {θ ∈ R+ : ‖f(x)− f̂(x)‖2 < θ‖x‖2 + γ, ∀x ∈ S},

as well as an approximation B̂ of B such that
‖B̂ −B‖2 ≤ εB . Further, assume there exist κ, α, β > 0
that satisfy the conditions in Theorem 1 such that

∆ = −κβ−1 + 2α−1(θ? + εBζ) < 0,
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with ζ := maxi ‖K̂i‖2. Let us also define the sets

G :=
{
x ∈ Rn : ‖x‖2 ≤ −2γα−1∆−1

}
,

X0 =
{
x ∈ Rn : ‖x‖2 ≤ a

√
α/β

}
.

Then, the following two results hold:

(i) If G ⊂ X0

(
i.e., a

√
α/β+2γα−1∆−1 > 0

)
and the initial

condition x(0) lies inside the ball X0, then the trajectory x(t)
stays inside S for all t ≥ 0.

(ii) If G ⊂ D ⊂ S (e.g., when −2γα−1∆−1 <
√
ωβ−1 ≤√

ωα−1 < a), then Vo(x) = x>Q−1x, with Q satisfying the
conditions in Theorem 1, is such that

(a) Vo(x) > 0 for any x 6= 0 with Vo(0) = 0, and

(b) V̇o(x) < 0 for any x ∈ S \ G,

when the input to the system in (1) is given by

u =
1

T

ν∑
i=1

K̂i1(x ∈ Ri)x.

Furthermore, for any x0 ∈ X0, the trajectory3 of the closed-
loop system converges to the ellipsoid D = {xTPx ≤ ω}.

Proof. To prove (ii), we write the dynamics g of the original
system as

ẋ = f̂(x) + B̂u+ z(x, u), (12)

where z(x, u) := f(x) + Bu − f̂(x) − B̂u. Consider the
Lyapunov function Vo(x) = x>Px. It follows from (12),
that

V̇o(x) = Ψ(x) + z(x, u)>Px+ x>Pz(x, u),

where Ψ(x) is as in (9). This is equivalent to V̇o(x) =
Ψ(x) + 2x>Pz(x, u). From (11), it also holds that Ψ(x) ≤
−κx>Px. Using the fact that x>Px ≥ λmin(P )‖x‖22, and
knowing that λmin(P ) ≥ β−1 holds by construction from
Theorem 1, it follows that Ψ(x) ≤ −κβ−1‖x‖22. Now, we
can write V̇o(x) as

V̇o(x) ≤ −κβ−1‖x‖22 + 2x>Pz(x, u), (13)

whence it follows that

‖z(x, u)‖2 ≤ ‖f(x)− f̂(x)‖2 + ‖B − B̂‖2‖u‖2
≤ θ?‖x‖2 + γ + εBζ‖x‖2.

Since λmax(P ) ≤ α−1, we have from (13) that

V̇o(x) ≤ −κβ−1‖x‖22 + 2α−1‖x‖2
[
(θ? + εBζ)‖x‖2 + γ

]
.

Then, the above leads to V̇o(x) ≤ ∆‖x‖22 + 2α−1γ‖x‖2.
Since ∆ < 0, it is the case that

∆‖x‖22 + 2α−1γ‖x‖2 < 0 if ‖x‖2 >
−2α−1γ

∆
,

thus, it follows that V̇o(x) < 0 for all x ∈ S \ G. Hence,
the trajectories converge to the smallest sub-level set of the
Lyapunov function that contains G.

3We recall the definition of continuous piecewise C1 trajectories and
solutions as presented in [27].

To prove (i), we simply note that, since G ⊂ X0, the
trajectories starting from x0 ∈ X0 \ G stay inside the set
E := {x : x>Px ≤ x>0 Px0}. Therefore, it follows that
E ⊆ {x : ‖x‖22β−1 ≤ ‖x0‖22α−1}, and thus the trajectories
are contained in the set E ⊆ {x : ‖x‖2 ≤

√
β/α‖x0‖2}.

We conclude by noting that if
√
β/α‖x0‖2 ≤ a, then the

trajectories stay in S.

From Theorem 2, we see that the stabilization condition
relies on the negativity of ∆, which favors smaller θ? values.
In addition, we observe that the parameter θ? in Theorem 2
also requires

‖f(x)− f̂(x)‖2 < θ?‖x‖2 + γ (14)

to hold for all x ∈ S. However, verifying such a condition
exhaustively requires an impractical amount of samples due
to the curse of dimensionality, even if the original system f
was known. Alternatively, we propose to adopt a specific
sampling mechanism in order to estimate a lower bound on
the probability that any sampled point in S fulfills (14).
Following a strategy similar to the one presented in [2],
we assume that we obtain r independently and identically
distributed (i.i.d) samples of pairs M := {(xj , yj)}rj=1,
where xj is a random sample of the state, following a
distribution σx, and yj is a noisy sample of the derivative
of the state. In other words, we have that

yj = f(xj) + wj , (15)

where we assume wj ∈ W := {w : ‖w‖2 ≤ γ} for
all j = 1, . . . , r. We partition the set of samples M into
a training set Ms with rs samples and a testing set Mt

with rt samples. Then, we apply a method similar to [29]
using concentration inequalities [30] to obtain the following
probabilistic relationship.

Theorem 3. Define the set T (θ), for θ ≥ 0, as

T (θ) := {x ∈ Rn : ‖f(x)− f̂(x)‖2 < θ‖x‖2 + γ}.

Further, consider the empirical average

µ̂T (θ) := (1/rt)
∑

(xj ,yj)∈Mt

1(xj ∈ T (θ)). (16)

Also, define

T̃ (θ) := {x : ∃w, ‖w‖2 ≤ γ, ‖f(x) + w − f̂(x)‖2 < θ‖x‖2}.

Then, with probability at least 1− δ, for all ε > 0 and any
new random sample xl ∼ σx, we have

P{1(xl ∈ T (θ)) = 1} ≥ µ̂T̃ (θ)− ε, (17)

for δ := 2 exp(−2rtε
2), µ̂T̃ (θ) := 1

rt

∑
(xj ,yj)∈Mt

1(xj ∈ T̃ (θ)).

Proof. We note that because the {xj} are i.i.d., then 1(xj ∈
T ) are also i.i.d. random variables4. Since 0 ≤ 1(xj ∈ T ) ≤
1, we can apply Hoeffding’s inequality [31] to obtain,

P{|µ̂T − µT | ≥ ε} ≤ 2 exp(−2rtε
2),

4The set T can be shown to be measurable, since it corresponds to a sub-
level set of a measurable function. Then it follows that the indicator function
1(x ∈ T ) is a measurable function; hence the variables 1(xj ∈ T ) are
also i.i.d. random variables [30].
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where µT := P{xl ∈ T }. With probability of at least 1− δ
we have

P{xl ∈ T } = µT ≥ µ̂T − ε. (18)

Now, observe that for any x̃ ∈ T̃ there exists w such that
‖w‖2 ≤ γ for which

‖f(x̃) + w − f̂(x̃)‖2 < θ‖x̃‖2. (19)

Using (19), it follows from the triangle inequality that
‖f(x̃) − f̂(x̃)‖2 − ‖w‖2 < θ‖x̃‖2. Then, using ‖w‖2 ≤ γ,
we have ‖f(x̃)− f̂(x̃)‖2 < θ‖x̃‖2 + γ. From the above, we
have

x ∈ T̃ ⇒ x ∈ T , ∀x, (20)

whence we have that T̃ ⊆ T . It follows from (20) that
µ̂T (θ) > µ̂T̃ (θ). Using (18), we find that with probability
1− δ, P{xl ∈ T } = µT ≥ µ̂T − ε ≥ µ̂T̃ − ε.

Observing that µ̂T̃ (θ) increases monotonically with θ, The-
orem 3 establishes a relationship between θ and a lower
bound µl := µ̂T̃ (θ) − ε on the probability that a sampled
point satisfies condition (14), required for Theorem 2. Then,
for a desired lower bound µ̄l on µl, we can pick θ̄ such that
µ̄l = µ̂T̃ (θ̄) − ε holds. Finally, considering this θ̄, the next
proposition provides a lower bound on the probability for
Conditions (i) and (ii) from Problem 2 to be satisfied.

Proposition 1. For given θ̄ and εB , consider a con-
troller Kp := {Ki,Ri}νi=1 satisfying the conditions in
Theorem 1 with ∆ < 0. Assume that the solution Φ(t, x(0))
of the closed-loop system (1) at time t with initial condition
x(0) is measurable in x(0) for every t ≥ 0. Define the set

Xk :=
{
x(t), t ∈ {0, . . . , t̃} : x(0) = xk ∈ X0, ẋ = g(x, u)

}
including discrete samples of the closed-loop dynamics start-
ing from random i.i.d. initial points xk ∼ σx. Also, define the
set Q1 of trajectories satisfying Condition (i) in Problem 2,
as follows:

Q1 :=
{
Xk : t ∈ {t̄, . . . , t̃}, min

x∗∈D
‖x(t)− x∗‖ = 0

}
,

where we pick t̄ as the time when the trajectory enters D, and
choose t̃ as large as desired. Further, introduce the set Q2

of trajectories that satisfy Condition (ii) in Problem 2, i.e.,

Q2 :=
{
Xk : t ∈ {0, . . . , t̃}, x(t) ∈ S

}
.

Consider the empirical mean µ̂Q := 1
rq

∑
xj∈Mq

1(Xj ∈
Q), whereMq is a set containing rq i.i.d. samples xj ∼ σx,
and Q := Q1 ∩ Q2. Then, with probability at least 1 − δQ,
for any εQ > 0 and any new random sample xb ∼ σx, we
have P{Xb ∈ Q} ≥ µ̂Q − εQ, where δQ := 2 exp(−2rqε

2
Q).

Proof. Since {xk} are sampled i.i.d., it follows that {Xk}
are i.i.d. random variables5 and 1(Xk ∈ Q) are also i.i.d.
random variables6. Since 0 ≤ 1(Xk ∈ Q) ≤ 1, we can
apply Hoeffding’s inequality [31] to obtain the result.

5Since Φ(t, x) is a measurable function in x for every t, it follows that
every corresponding element in different Xk’s, sampled at time t, are i.i.d.;
hence {Xk} are also i.i.d..

6Q is measurable since it is an intersection of sub-level sets of measurable
functions; so it follows that 1(Xk ∈ Q) are also i.i.d..

Therefore, Proposition 1 can be used to validate a con-
troller Kp designed as a function of the estimate θ̄. For that,
one generates trajectories from random initial points xk and
computes a lower bound on the probability that a trajectory
starting from a new initial point satisfies Conditions (i) and
(ii) from Problem 2.

V. COMPUTATIONAL EXPERIMENTS

In this section, we present numerical simulations illustrating
the use of the results developed in the previous sections to
produce a stabilizing controller for an unstable dynamical
system learned and represented as a regression tree ensemble.
To that end, we consider a modified version of the coupled
Van der Pol oscillators model [32]:

g(x, u) =


ẋ1 = x2 − k1x3 + u1
ẋ2 = k2(1− x21)x2 − k3x1 + u2
ẋ3 = x4 − k4x31 − k5x1
ẋ4 = k6(1− x23)x4 − k7x3 + u3,

(21)

where we set k1 = 1, k2 = k4 = k6 = 0.1, k3 = 15,
k5 = 20, and k7 = 5. Here, a1, k4 and k5 are the weights
of the coupling terms. We generate r = 2 ·105 i.i.d. samples
of (21) from the set S = [−a, a]n with a = 20, according to
(15), where each entry j of the disturbance vector (wi) has
uniform distribution, i.e., [wi]j ∼ U [−0.5, 0.5]. Then, we
use the Adaboost.MRT algorithm [16] to create a regression
tree ensemble with T = 10 regression trees, each having
τk = τ̄ = 1, 024 partitions, to generate the set of coefficients
{Ai}νi=1 for ν = T τ̄ = 10, 240. In particular, we assume the
matrix B to be known exactly.

To design our stabilizing controller, we choose ε = 0.01,
θ̄ = 3, and apply Theorem 3 using the samples {(xj , yj)}rtj=1

where rt = 0.5r. We get P{|µ̂T − µT | ≥ ε} ≤ δ from
(17), with δ = 4 · 10−9. Then, it follows that with prob-
ability 1− δ, we have P{1(xl ∈ T ) = 1} ≥ µ̂T̃ − ε, where
µ̂T̃ (θ)− ε = 0.91. Next, we design a controller solving the
LMI conditions presented in (6) from Theorem 1, for which
we pick κ = 20 and obtain α = 1, β = 3, as well as the
controller gains {Ki}νi=1 associated with partitions {Ri}νi=1,
achieving ∆ = −0.67. Then, from Theorem 2, we obtain the
set of initial conditions that will stay inside S as X0 = {x :
‖x‖2 < 11.55}, and the set that the trajectories converge
to as D = {x :

√
xTPx ≤ 5.2}. In Figure 1, we present

the envelope for trajectories generated from the rq = 105

different initial points when the controller gains computed
in this section are applied in closed-loop. It can be seen
that all trajectories starting within X0 converge to D, as
desired. After that, we use the validation approach described
in Proposition 1, as follows. We pick εQ = 0.01 and obtain
that with probability 1−δQ, we have P{Xj ∈ Q} ≥ µ̂Q−εQ,
where δQ = 4 · 10−9 and µ̂Q − εQ = 0.99. Thus, we
can conclude that the proposed controller design method is
successful with high probability for the coupled Van der Pol
oscillator dynamics.
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Fig. 1. Samples and envelopes of closed-loop trajectories obtained by
applying the proposed controller design over rq = 105 different initial
points of a model of coupled Van der Pol oscillators.

VI. CONCLUSION

In this paper, we developed a method to stabilize nonlinear
systems modeled via ensembles of regression trees. We pro-
posed an input design based on Lyapunov function analysis
to provide a stabilization procedure having a number of
LMI’s that grows linearly with the number of partitions
and does not depend on the state dimension. Finally, we
developed probabilistic guarantees relating the controller
designed for the ensemble model to its performance on the
original system.
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