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Abstract— We present a method to perform identification of
systems with external inputs whose parameters are indexed by
a lower-dimensional latent space. We apply a variational Bayes
inference method to approximate the posterior distribution of
the system parameters and latent variables, given input and
output measurements. This approach seeks to minimize the
Kullback-Leibler divergence between the full (but intractable)
posterior distribution of the parameters and an approximating
(yet tractable) factorized distribution. The method enables
inference for systems whose parameters are subject to latent
sources of variation, and therefore constitutes a relevant tool for
modeling and control in complex domains, such as biological
systems and neuroscience.

I. INTRODUCTION

Estimation of parameters for linear time-invariant (LTI) sys-
tems is a problem with well established solutions that com-
prise, for example, subspace identification [1], Expectation-
Maximization algorithms [2], and Bayesian methods [3].
However, in many application settings, system models re-
quire the ability to incorporate mechanisms of variation in
their parameters [4], thereby demanding the consideration of
a larger class of system models and estimation algorithms.
In particular, many non-linear systems can be reformulated
to belong to specific classes of linear models with varying
parameters, such as linear time-varying (LTV) systems [5], or
linear parameter-varying (LPV) systems [6]. In this respect,
while LTV systems benefit from a mature theory for their
analysis [7], their identification is statistically challenging
due to the large number of parameters to be estimated [8].
To address such difficulty, the problem considered in this
paper explores a configuration whereby the variation in
parameter values can be described as the linear span of an
unknown, lower-dimensional latent space to be identified.
More specifically, this linear span formulation can be con-
veniently described using the formalism of LPV systems,
a variant of which we adopt in this paper. In this case,
it is commonly assumed that the parameters scheduling
the dynamic variation of the model have values that are
known or are fully observed [9], [10]. Conversely, in this
paper, this assumption is relaxed to different scenarios where
information about those parameters is considered to be noisy
or only partially available. Such scenarios can be expected in
complex systems occurring, for example, in economics [11]
and neuroscience [12], [13]), where effects from large-
scale, distributed or latent structure might restrict access to
measurements of the scheduling parameters.
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In these models, the problem of inference can benefit from
a Bayesian approach [14], where the unknown parameters
are treated as random variables associated to measurements
through conditional probability relationships. The estimation
goal is defined as that of performing inference of the
posterior distribution over model parameters, conditioned
on the available measurements. In particular, the variational
Bayesian inference framework adopted in this paper provides
a computationally efficient method to approximate posterior
distributions [15], [16] in the common case where exact
inference in intractable. This approach presents a computa-
tional cost that is comparable to (non-Bayesian) Expectation-
Maximization methods [17], [18], while yielding more de-
scriptive models (with posterior distribution over parameters)
that are also less prone to overfitting [19].
With respect to previous studies, the problem of deter-
ministic system identification for LPV models with known
parameters has been addressed, for example, using subspace
methods [20] or orthonormal base functions [21], as well as
in many recent works [22]–[26]. In the stochastic setting,
an Expectation-Maximization method has been proposed
in [27]. More recently, Bayesian methods have been applied
in [28]–[30]. In [31], the problem of LPV identification
with uncertain scheduling variables was addressed, but con-
sidering additive error models and applying a Gaussian
Processes framework. In [32], LPV identification with noise-
corrupted scheduling observations was considered, however
the treatment focused on single-input single-output systems.
In particular, the approach taken in this paper is inspired
by [3] and [33]. The former introduced the application of
variational Bayesian inference to linear time-invariant state
space systems, while the latter extended the application of
variational methods to time-varying systems without con-
sidering the effect of external inputs. In this paper, we
allow for both time-invariant and parameter-varying input-
to-state actuation (a relevant case for control applications)
and describe different parameter scheduling scenarios. For
clarity of exposition, we simplify the treatment of prior
probabilities over hyper-parameters, and provide detailed
derivations of the method, hoping to further motivate the use
of the variational inference framework in related problems
for LTV/LPV system identification.

II. PROBLEM FORMULATION

We consider a discrete-time linear parameter-varying model
evolving according to the set of equations

x(k + 1) = A(k)x(k) + B(k)u(k) + v(k), (1)

for k = 1, 2, . . ., where xk ≡ x(k) ∈ Rn is the dynamic
state, uk ≡ u(k) ∈ Rm are external inputs, and vk ≡ v(k) ∈
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Rn accounts for additive noise. The parameter-varying matri-
ces Ak ≡ A(k) ∈ Rn×n and Bk ≡ B(k) ∈ Rn×m present a
time-varying behavior induced by the scheduling parameters
{zs(k) ∈ R}`s=0 and {ws(k) ∈ R}ds=0, through the linear
parametrization

Ak =
∑̀
s=0

zs(k)As, Bk =

d∑
s=0

ws(k)Bs,

which is defined in terms of the set of parameters A =
{As}`s=0 and B = {Bs}ds=0. In particular, an affine
parametrization having Ak = A0 +

∑`
s=1 zs(k)As or Bk =

B0 +
∑d
s=1 ws(k)Bs can be recovered by setting z0(k) = 1

or w0(k) = 1 for all k.
To develop our probabilistic treatment in the Bayesian ap-
proach, we consider that the parameters in A and B are ran-
dom variables associated with probability distributions p(A)
and p(B). Their distributions are assumed to be component-
wise zero-mean normally distributed over each element of As
and Bs, with variances α−1 and β−1, respectively. Therefore,

p(A) =
∏̀
s=0

p(As) with p(As) =

n∏
r=1

n∏
j=1

N ([As]r,j |0, α−1),

p(B) =

d∏
s=0

p(Bs) with p(Bs) =

n∏
r=1

m∏
h=1

N ([Bs]r,h|0, β−1).

Further, we note that (1) induces a Markovian-dependence
between successive states, which describes the joint proba-
bility over the set X = {xk}N+1

k=1 (conditioned on parameters
and latent variables) as

p(X|U,Z,W,A,B)=p(x1)

N∏
k=1

p(xk+1|xk, uk, zk, wk, A,B),

where we have defined the sets U = {uk}Nk=1 and Z =
{zk}Nk=1, with zk ∈ R` with zk = [z0(k), . . . , zl(k)]T (and
W = {wk}Nk=1, accordingly).
We now assign a probability distribution to v(k), which
we assume to be a zero-mean Gaussian distribution with
diagonal covariance, i.e.,

vk ∼ N (vk|0,diag(η)), (2)

where η ∈ Rn++, η = [η1, . . . , ηr]
T . This allows us to write,

conditioned on the parameters and latent variables, the state
transition probability

p(xk+1|xk, uk, zk, wk, A,B) =

N
(
xk+1

∣∣∣ ∑̀
s=0

zs(k)Asxk +

d∑
s=0

ws(k)Bsuk, diag(η)
)
.

For a more compact treatment, we refer to a
(s)
r as the

r-th row of As and define the matrix parameter A(r) ∈
Rn×(`+1) where A(r) = [a

(0)T
r | · · · |a(`)Tr ]. Likewise, we

define B(r) ∈ Rm×(d+1), having B(r) = [b
(0)T
r | · · · |b(d)Tr ]

with b(s)r containing the entries of the r-th row of Bs. This

allows (1) to be written, for the r-th component of x(k+ 1),
as

xr,k+1 = (A(r)zk)Txk + (B(r)wk)Tuk + vr,k. (3)

The corresponding state transition conditional probability,
given the parameters and latent variables, can be written as

p(xk+1|xk, uk, zk, wk, A,B)

=

n∏
r=1

p(xr,k+1|xk, uk, zk, wk, A,B)

=

n∏
r=1

N (xr,k+1|(A(r)zk)Txk + (B(r)wk)Tuk, ηr),

which, together with p(x1), assumed to follow x1 ∼
N (x1|µ1, P1), fully specifies (2).
Next, we examine the probability of the scheduling parame-
ters Z in three different scenarios:
a) Gaussian i.i.d: In this basic case, we consider the
scheduling parameters to be sequentially independent, sub-
ject to a parameter controlling their variance. The prob-
ability distribution is simply p(Z) =

∏N
k=1 p(zk) =∏N

k=1N (zk|0, τ−1I`+1).
b) Information Profile: We consider that prior information
about the scheduling variables is available in the form of a
set Z = {z̄k, τk}N+1

k=1 representing a per-sample component-
wise belief (mean) z̄k ∈ R`+1 and confidence (precision)
τk ∈ R`+1

++ over the value of the scheduling parameter.
Hence, the distribution of the scheduling parameters is given
by p(Z) =

∏N
k=1 p(zk) =

∏N
k=1N (zk|z̄k,diag (τk)

−1
).

This formulation can also be understood as addressing the
case with noise or corruption in the measurement of param-
eters.
c) Random walk: This case introduces a dependence be-
tween successive scheduling parameters, whereby the current
value of the scheduling parameter conditions the expected
value of its subsequent value, i.e., E[zk+1] = zk, with devia-
tions normally distributed. The joint probability distribution
presents a Markovian relationship, and can be written as

p(Z) = p(z1)

N−1∏
k=1

p(zk+1|zk) =

N−1∏
k=1

N (zk+1|zk,diag(τ)−1).

Finally, we note that the scenarios described for the schedul-
ing variables in Z equally apply to the scheduling variables
in W , and, therefore the description for the latter is not
repeated, for conciseness. Provided with the description of
the probability distributions for the LPV model that we
address, we can now state our problem.
Problem Statement: Given a set of system measurements
D = {X,U}, a probabilistic description of the system dy-
namics p(X|U,Z,W,A,B), and prior distributions for the
system and scheduling parameters p(A), p(B) and p(Z),
we seek a (possibly approximate) estimate of the poste-
rior distributions for the system and scheduling parameters
θ = {A,B,Z,W} when conditioned by D, i.e. p(θ|D) =
p(A,B,Z,W |X,U).
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III. ESTIMATION OF PARAMETERS THROUGH BAYESIAN
VARIATIONAL INFERENCE

In this section, we first summarize the general variational
inference approach, and then, apply it on the LPV model,
arriving at computational expressions for its posterior distri-
bution approximations.

A. Bayesian Variational Inference

Consider a generating model p(D, θ) of measurements D,
described by a set of parameters (and latent variables) θ =
{θj}Pj=1. We seek an estimate of the posterior distribution
p(θ|D), obtained by the application of Bayes’ rule. Because
exact inference of the posterior is intractable (see [3, p.167]),
we look for an approximating solution q?(θ) such that

q?(θ) = arg minq(θ) KL(q(θ)||p(θ|D)), (4)

where KL(p1||p2) :=
∫
p1(x) log(p1(x)/p2(x))dx denotes

the Kullback-Leibler divergence between both densities. If
a density q(θ) =

∏P
j=1 qj(θj) is posited as a factorized

approximating distribution, the following known result holds.
Theorem 1 (Mean-field Variational Inference): A solution
q?(θ) =

∏P
j=1 q

?
j (θj) to (4) satisfies

log q?j (θj) = Eθ\θj∼q?(θ\θj)[log p(D, θ)] , (5)

where q?(θ\θj) =
∏P
i=1,i6=j q

?
i (θi).

Proof: Please refer to [19, Section 10.1.1].
The identity in (5) can be further specified by taking in con-
sideration the conditional dependencies between the variables
in the model, to yield

log q?j (θj) ∝ Eθ\θj∼q(θ\θj)
[

log p(θj |pa[θj ])

+
∑

θk∈ch[θj ]

log p(θk|pa[θk])
]
,

(6)

where pa[θj ] denotes the set of ‘parents’ of θj (i.e., the
variables that θj is conditioned on), and ch[θj ] denotes
the set of ‘children’ of θj (i.e., the variables which are
conditioned on θj). Further, if the probability distributions on
the right-hand side of (6) are conditionally conjugate (i.e.,
have the same functional form), we have that q?(θj) will
preserve the functional form of the corresponding conditional
probabilities appearing in (6). The optimal approximating
density q?j (θj) can then be recovered from its log-density
in (6) by identifying its moments and reinstating its nor-
malization constant, as we will see in the next section.
Finally, we note that the expectations in (6), taken with
respect to the approximating distributions q?(θ\θj), depend,
in general, on the optimal values of q?i (θi) for i 6= j.
Therefore, an iterative procedure consisting of sequentially
updating log qj(θj), j = 1, . . . , P , is typically employed,
with guaranteed convergence [19].

B. Inference for LPV Parameters and Scheduling variables

We now derive the specific expressions for the approximating
distributions for the LPV model considered in this paper,
for which θ = {A,B,Z,W} and D = {X,U}. Because all
prior and conditional distributions in the model are Gaussian-
conjugate, the means and covariances of the approximating
distributions can be extracted by identifying the quadratic
and linear terms in the resulting expressions for their log
densities, obtained from (6). For compactness, we denote
Ēθj [h(θ)] ≡ Eθj∼q(θj)[h(θ)] and Ē[θj ] ≡ Eθj∼q(θj)[θj ].
1) Parameter A: We denote by a

(s)
r ∈ Rn the r-th row of

As, and let a(r) = vec(A(r)). The joint prior probability
of A can then be written as p(A) =

∏`
s=0 p(As) =∏`

s=0

∏n
r=1N (a

(s)
r | α−1In), having log-density

log p(A) =
n2(`+ 1)

2
(logα− log(2π))− α

2

∑̀
s=0

n∑
r=1

(a(s)r )T a(s)r ,

such that log p(A) ∝ −α2
∑n
r=1(a

(s)
r )Ta

(s)
r . By applying (6),

with pa[A] = ∅ and ch[A] = {X}, (with X observed, i.e.
Ē[xk] = xk and Ē[xkx

T
k ] = xkx

T
k ), we have that

log q?(A) = log p(A) + ĒZ,W,B [log p(X|U,Z,W,A,B)]

∝ −α
2

∑̀
s=0

n∑
r=1

(a(s)r )T a(s)r

− 1

2
ĒZ,W,B

[
N∑
k=1

‖xk+1−(A(r)zk)Txk−(B(r)wk)Tuk‖2diag(η)−1

]

∝ −α
2

∑̀
s=0

n∑
r=1

(a(s)r )T a(s)r

− 1

2
ĒZ,W,B

[
N∑
k=1

n∑
r=1

tr
(
ηr(zkz

T
k )A(r)T (xkx

T
k )A(r)

)
−2ηr(xr,k+1 − (B(r)wk)Tuk)xTkA

(r)zk

]

∝ −1

2
ĒZ,W,B

[
n∑
r=1

a(r)T
(
αI(`+1)n+

N∑
k=1

ηrxkx
T
k ⊗ zkzTk

)
a(r)

−2

n∑
r=1

ηr

N∑
k=1

(xr,k+1 − (B(r)wk)Tuk)(zTk ⊗ xTk )a(r)
]
,

where we used the cyclic property of the trace, the vectorized
variable a(r) = vec(A(r)), and the identity vec(LY R) =
(RT ⊗ L) vec(Y ). By identifying quadratic and linear
terms, the approximating distribution for A can be ex-
pressed as q?(A) =

∏n
r=1N (a(r)|µ(r)

a ,Σ
(r)
a ), where Σ

(r)
a =(

αI(`+1)n +
∑N
k=1 ηrxkx

T
k ⊗ Ē

[
zkz

T
k

])−1
and

µ(r)
a = Σ(r)

a ηr

N∑
k=1

ĒZ,W,B
[
(xr,k+1−(B(r)wk)Tuk) vec(zkx

T
k )
]

= Σ(r)
a ηr

N∑
k=1

vec(Ē[zk]xr,k+1x
T
k )

− (Ē[B(r)]Ē[wk])Tuk vec(Ē[zk]xTk ),

yielding moments Ē[a(r)] = µa(r) and Ē[a(r)a(r)
T

] =
µa(r)µ

T
a(r)

+ Σa(r) .
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2) Parameter B: Because of their practical relevance, we
consider two sub-cases for the set of parameters B: the time-
invariant case (B-TI), and the parameter-variant case (B-PV).
a) B-TI: In this case, with some abuse of notation, we
redefine B to be a single input-to-state matrix, i.e., B ∈
Rn×m. We then define br ∈ Rm to be the r-th row of B,
and write the log-density

log p(B) = −nm
2

log(2π) +
nm

2
log β − β

2

n∑
r=1

br
T br

By applying (6) with pa[B] = ∅ and ch[A] = {X} (with X
being observed), we have

log q?(B) = log p(B) + ĒZ,A[log p(X|U,Z,A,B)]

∝ −β
2

n∑
r=1

bTr br−
1

2
ĒZ,A

[
N∑
k=1

‖xk+1−Akxk −Buk‖2diag(η)−1

]

∝ −1

2

n∑
r=1

br
T

(
βIm + ηr

N∑
k=1

uku
T
k

)
br

+

[
N∑
k=1

n∑
r=1

bTr ηruk
(
xr,k+1 − (Ē[A(r)]Ē[zk])Txk

)]
.

From the quadratic and linear terms above, we have that
the approximating distribution q?(B) =

∏n
r=1N (µ

(r)
b |Σ

(r)
b ),

has parameters Σbr =
(
βIm + ηr

∑N
k=1 uku

T
k

)−1
and

µbr = Σbr

N∑
k=1

ηruk

(
xr,k+1 − (Ē[A(r)]Ē[zk])Txk

)
, (7)

yielding moments Ē[br] = µbr and Ē[brb
T
r ] = µrµ

T
r + Σbr .

b) B-PV: Now, we denote by b
(s)
r ∈ Rm the r-th row of

Bs, and let b(r) = vec(B(r)). The joint prior probability
of B can then be written as p(B) =

∏d
s=0 p(Bs) =∏d

s=0

∏n
r=1N (b

(s)
r | β−1Im), having log-density

log p(B) =
nm(d+ 1)

2
(log β − log(2π))− β

2

d∑
s=0

n∑
r=1

(b(s)r )T b(s)r ,

such that log p(B) ∝ −β2
∑d
s=0

∑n
r=1(b

(s)
r )T b

(s)
r . By ap-

plying (6), with pa[B] = ∅ and ch[B] = {X}, (with X
observed), we have that

log q?(B) = log p(B) + ĒZ,W,A[log p(X|U,Z,W,A,B)]

∝ −β
2

d∑
s=0

n∑
r=1

(b(s)r )T b(s)r

− 1

2
ĒZ,W,A

[
N∑
k=1

‖xk+1− (A(r)zk)Txk−(B(r)wk)Tuk‖2diag(η)−1

]

∝ −1

2
ĒZ,W,A

[
n∑
r=1

b(r)T
(
βI(d+1)m+

N∑
k=1

ηruku
T
k ⊗ wkwTk

)
b(r)

−2

n∑
r=1

ηr

N∑
k=1

(xr,k+1 − (A(r)zk)Txk)(wTk ⊗ uTk )b(r)
]
.

By identifying the quadratic and linear terms, the approxi-
mating distribution for B can then be expressed as q?(B) =∏n
r=1N (b(r)|µ(r)

b ,Σ
(r)
b ), where

Σ
(r)
b =

(
βI(d+1)m +

N∑
k=1

ηruku
T
k ⊗ Ē

[
wkw

T
k

])−1
and

µ
(r)
b = Σ

(r)
b ηr

N∑
k=1

(xr,k+1−(Ē[A(r)]Ē[zk])Txk)vec(Ē[wk]uTk ),

yielding moments Ē[b(r)] = µb(r) and Ē[b(r)b(r)
T

] =
µb(r)µ

T
b(r)

+ Σb(r) .
3) Parameter Z: As discussed, we consider different cases
for the latent scheduling variables Z. We begin by noting that
the approximating distribution will have the general form

log q?(Z) = log p(Z) + ĒA,B,W [log p(X|U,Z,W,A,B)]

∝ log p(Z)

− 1

2
ĒA,B,W

[
N∑
k=1

n∑
r=1

ηr
(
xr,k+1−(A(r)zk)Txk−(B(r)wk)Tuk

)2]
,

(8)

differing only in the additive term log p(Z). We examine
each case in detail, next.
a) Gaussian i.i.d: In this case, we have log p(Z) ∝
− τ2

∑N
k=1 z

T
k zk. Applying (6) yields

log q?(Z) = −τ
2

N∑
k=1

zTk zk

− 1

2
ĒA,B,W

[
N∑
k=1

n∑
r=1

ηr
(
xr,k+1−(A(r)zk)Txk−(B(r)wk)Tuk

)2]

= −1

2

N∑
k=1

zTk

(
τI`+1 +

n∑
r=1

ηrĒA
[
(A(r))Txkx

T
kA

(r)
])

zk

+

N∑
k=1

n∑
r=1

ηr
(
xr,k+1 − (Ē[B(r)]Ē[wz])

Tuk
)
xTk Ē[A(r)]zk.

We note that the quadratic term in zk depends on a transfor-
mation of the second moments of A(r), i.e.,

ĒA
[
(A(r))Txkx

T
kA

(r)
]

=: Υ
(r)
k ,

which can be obtained in terms of its second moments as

[Υ
(r)
k ]i,j =

n∑
s=1

n∑
t=1

[xkx
T
k ]t,sĒ[a(r)a(r)

T
]ξ(i,t),ξ(j,s), (9)

with ξ(i, t) = (i−1)n+t. Hence, the approximating posterior
distribution is given by q?(Z) =

∏N
k=1N (zk|µ(k)

z ,Σ
(k)
z )

with

Σ(k)
z =

(
τI`+1 +

n∑
r=1

ηrΥ
(r)
k

)−1
,

µ(k)
z = Σ(k)

z

n∑
r=1

ηr

(
xr,k+1−(Ē[B(r)]Ē[wk])Tuk

)
xTk Ē[A(r)].

b) Information Profile: In this case, we have log-density

log p(Z) ∝ −1

2

N∑
k=1

‖zk − z̄k‖2diag (τk)
−1 .
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Using (9), the approximating posterior distribution is given
by q?(Z) =

∏N
k=1N (zk|µ(k)

z ,Σ
(k)
z ), with

Σ(k)
z =

(
diag(τk) +

n∑
r=1

ηrΥ
(r)
k

)−1

,

µ(k)
z = Σ(k)

z

(
z̄k+

n∑
r=1

ηr
(
xr,k+1−(Ē[B(r)]Ē[wk])Tuk

)
xTk Ē[A(r)]

)
.

c) Random walk: In this case, the joint log-density over the
variables in Z is given by

log p(Z) ∝ −1

2
zT1 diag(τ)z1 −

τ

2

N−1∑
k=1

‖zk+1 − zk‖22 (10)

and presents a dependency between successive variables zk.
By combining the terms depending on zk in (8) and (10), the
joint log-likelihood can be written as an (`+1)N×(`+1)N
block-quadratic form, yielding a posterior distribution that
is also jointly Gaussian. Letting Υk =

∑n
r=1 Υ

(r)
k , P =

diag(τ), and z ∈ R(`+1)N with z = [zT1 · · · zTN ]T , the
posterior distribution can be written as

p(Z) = N (z|µz,Σz) (11)

with (inverse) covariance matrix

Σ−1z =


Q1 + Υ1 + P −P · · · 0

−P Υ2 + 2P
...

...
. . . −P

0 · · · −P ΥN + P


(12)

and mean vector

µz = Σzλz, (13)

where

λz=


∑n
r=1 ηr(xr,2 − (Ē[B(r)]Ē[wk])Tu1)xT1 Ē[A(r)]∑n
r=1 ηr(xr,3 − (Ē[B(r)]Ē[wk])Tu2)xT2 Ē[A(r)]

...∑n
r=1 ηr(xr,N+1 − (Ē[B(r)]Ē[wk])TuN )xTN Ē[A(r)]

.
We note that Σz is block tri-diagonal, a structure for which
there exist efficient inversion algorithms (i.e., scaling linearly
with N ) [34, Sec. 4.5]. Subsequently, the required moments
Ē[zk] and Eq[zkzTk ] can be recovered from the corresponding
blocks in (13) and (12), respectively.
4) Parameter W: The scheduling parameters W exhibit a
structure that mirrors the one presented for the scheduling
parameters Z. Because their posterior distributions follow
accordingly, the derivations are omitted for the sake of space.

IV. COMPUTATIONAL EXPERIMENTS

To illustrate the Variational Bayesian Inference method for
an LPV system, we examine the estimates obtained for an
example with scheduling parameters subject to a random
walk. The system considered (with n = 5 and m = 2) is
composed of two parameter-varying state transition matrices,
A0 and A1, and one time-invariant input-to-state matrix B.

1 50 100

-1

0

1

1 250 500

0

0.5

1

1 50 100

-10

-5

0

5

1 250 500
-1

0

1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

0

2

(a)

(b)

(c)

(d)

(e)

Fig. 1. Variational Bayesian Inference for a simulated LPV system latent
parameters z(k) following a random walk. In (a), the inputs u(k) applied
on the system are displayed (m = 2). In (b), the sample paths of the
scheduling parameters are shown, illustrating the effects of low and high
variance components. In (c), we show the original and inferred states for
the first two components. In (d), we display the entries of the first row
(r = 1, n = 5) of the the original and inferred parameter-varying state
transition matrices, with their behavior induced by the time variation of the
scheduling parameters z(k). Finally, in (e), we compare the original and
inferred values for the entries of the input-to-state matrix B.

Matrix A0 is associated with a scheduling parameter z0(k)
presenting a comparatively stable behavior (i.e., low vari-
ance τ0−1 = 1/5000), while matrix A1 is associated with
a scheduling parameter z1(k) presenting a higher variance
value (τ−11 = 1/150). The state transition matrices parame-
ters were set as

A0 =

[ 0.5 −0.2 0 1 −1
−0.2 0.3 0.7 2 −0.1
0 0.2 0.6 0 0.2
0.1 0 −0.3 −0.3 0
0.2 0 0.4 −0.33 −0.33

]
, A1 =

[
0 0 0 0 0
0 0.2 −0.3 0 0
0 0.4 0.2 0 0
0 0 0 0 0
0 0 0 0. 0

]
.

Further, the entries of the input-to-state matrix B were
sampled individually from N ([B]ij |0, β−1), for i = 1, . . . , n
and j = 1, . . . ,m, with β = 1. In addition, the state noise
precision values were set to η = [5 10 2.5 1 0.5]T . The
inputs were defined as a random sequence of piece-wise
linear segments, as displayed in Figure 1 (a). The system
was simulated to generate a sample path for a random walk
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of the scheduling parameters, as presented in Figure 1 (b).
Together with the inputs and state noise samples, it produced
a sequence of states as presented in Figure 1 (c) (only first
two components shown, for clarity).
To perform the inference, we defined the initial values of the
first moments of the scheduling parameters as Ē[z0(k)](1) =
1 and Ē[z1(k)](1) = 0, for all k. The initial values for
the first moments of the system parameters were defined
by letting A

(1)
1 = 0n×n, and making {A(1)

0 , B(1)} =
arg minA0,B

∑N−1
k=1 ‖x(k + 1) − A0x(k) − Bu(k)‖22 (i.e.,

simple linear regression). The initial values for the second
moments of all variables were set as the outer product of
their first moments. The results can be seen in Figure 1 (c)-
(e). In (c), we present the reconstructed state values using
the inferred mean system parameters and the inferred mean
scheduling parameters, together with the system inputs (for
all k) and the first state measurement (k = 1). In (d), we
present the estimated first moments of the time varying en-
tries of the first row of the parameter-varying state transition
matrix, i.e, [Ak]1,∗ = A(1)z(k). Finally, in (e), we compare
the original and inferred values for the entries of the input-
to-state matrix B. Overall, it can be argued that the inferred
mean value of the posterior distribution of the parameters
present a good correspondence with their ground truth values,
even the presence of variation of the scheduling variables.

V. CONCLUSION

In this paper, we introduced a Bayesian Variational Inference
approach to the estimation of LPV systems with latent
scheduling parameters. We derived an algorithmic procedure
to generate estimates of the first and second moments of the
posterior distribution of system and scheduling parameters,
conditioned on measurements of the inputs and state. Further,
we specified three different configurations for the behavior
of the scheduling parameters, describing the corresponding
moment estimation equations.
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