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\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we develop a unified framework capable of certifying both exponential
and subexponential convergence rates for a wide range of iterative first-order optimization algorithms.
To this end, we construct a family of parameter-dependent nonquadratic Lyapunov functions that can
generate convergence rates in addition to proving asymptotic convergence. Using integral quadratic
constraints (IQCs) from robust control theory, we propose a linear matrix inequality (LMI) to guide
the search for the parameters of the Lyapunov function in order to establish a rate bound. Based on
this result, we develop a semidefinite programming (SDP) framework whose solution yields the best
convergence rate that can be certified by the class of Lyapunov functions under consideration. We
illustrate the utility of our results by analyzing the gradient method, proximal algorithms, and their
accelerated variants for (strongly) convex problems. We also develop the continuous-time counter-
part, whereby we analyze the gradient flow and the continuous-time limit of Nesterov's accelerated
method.
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1. Introduction. The analysis and design of iterative optimization algorithms
is a well-established research area in optimization theory. Due to their computational
efficiency and global convergence properties, first-order methods are of particular
interest, especially in large-scale optimization arising in current machine learning
applications. However, these algorithms can be very slow, even for moderately well-
conditioned problems. In this direction, accelerated variants of first-order algorithms,
such as Polyak's heavy-ball algorithm [25] or Nesterov's accelerated method [22], have
been developed to speed up the convergence in ill-conditioned and nonstrongly convex
problems.

In numerical optimization, convergence analysis is an integral part of algorithm
tuning and design. This task, however, is often pursued on a case-by-case basis, and
the analysis techniques heavily depend on the particular algorithm under study as
well as the underlying assumptions. However, by interpreting iterative algorithms as
feedback dynamical systems, it is possible to incorporate tools from control theory to
analyze and design these algorithms in a more systematic and unified manner [15, 31,
12, 30]. Moreover, control techniques can be exploited to address more complex tasks,
such as analyzing robustness against uncertainties, deriving nonconservative worst-
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case bounds, and providing convergence guarantees under less restrictive assumptions
[6, 15, 19].

A universal approach to analyzing the stability of dynamical systems is to con-
struct a Lyapunov function that decreases along the trajectories of the system, proving
asymptotic convergence. In the context of iterative optimization algorithms, it is of
particular importance to certify a nonconservative rate bound in addition to proving
asymptotic convergence. Construction of Lyapunov functions that can achieve this
goal is not straightforward, especially for nonstrongly convex problems, in which the
convergence rate is subexponential. It is important to note that in a considerable
number of applications in machine learning, the underlying optimization problem is
not strongly convex [3].

The goal of the present work is to develop a semidefinite programming (SDP)
framework for the construction of Lyapunov functions that can characterize both ex-
ponential and subexponential convergence rates for iterative first-order optimization
algorithms. The main pillars of our framework are time-varying Lyapunov functions,
originally proposed in [27] for analyzing gradient-based momentum methods [32, 33],
and integral quadratic constraints (IQCs) from robust control theory [34, 20], which
have recently been adapted by Lessard, Recht, and Packard [19] in the context of
optimization algorithms. Specifically, we propose a family of nonquadratic Lyapunov
functions equipped with time-dependent parameters that can establish both exponen-
tial and subexponential convergence rates. We then develop a linear matrix inequality
(LMI) to guide the search for the parameters of the Lyapunov function in order to
generate analytical/numerical convergence rates. Based on this result, we formulate
a semidefinite program to compute the fastest convergence rate that can be certified
by the class of Lyapunov functions under consideration. In this semidefinite program,
the properties of the objective function (e.g., convexity, Lipschitz continuity, etc.) can
be systematically encoded into the program, providing a modular approach to obtain-
ing convergence rates under various regularity assumptions, such as quasi-convexity
[14], weak quasi-convexity [13], quasi-strong convexity [21], quadratic growth [21],
and the Polyak--\Lojasiewicz condition [17]. Furthermore, we extend our framework to
continuous-time settings, in which we analyze the continuous-time limits (by taking
infinitesimal stepsizes) of relevant iterative optimization algorithms. We will illus-
trate the generality of our framework by analyzing several first-order optimization
algorithms, namely, unconstrained (accelerated) gradient methods, gradient methods
with projection, and (accelerated) proximal methods.

Finally, we consider algorithm design. Specifically, we develop a robust counter-
part of the developed LMI whose feasibility provides the algorithm with an additional
stability margin in the sense of Lyapunov. As a design experiment, we use the LMI to
tune the stepsize and momentum coefficient of Nesterov's accelerated method applied
to strongly convex functions, considering robustness as a design criterion.

1.1. Related work. There is a host of results in the literature using semidefi-
nite programs to analyze the convergence of first-order optimization algorithms [10,
29, 28, 18]. The first among them is [10], in which Drori and Teboulle developed a
semidefinite program to derive analytical/numerical bounds on the worst-case perfor-
mance of the unconstrained gradient method and its accelerated variant. An extension
of this framework to the proximal gradient method---for the case of strongly convex
problems---has been recently proposed in [28]. These SDP formulations, despite being
able to yield new performance bounds, are highly algorithm dependent. Departing
from classical algorithmic view, Lessard, Recht, and Packard [19] developed an SDP
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framework based on quadratic Lyapunov functions and IQCs to derive sufficient condi-
tions for exponential stability of an algorithm when the objective function is strongly
convex [19, Theorem 4]. Specifically, they formulate a small semidefinite program
whose feasibility verifies exponential convergence at a specified rate. It is important
to note that Lessard's framework is specifically tailored to analyze strongly convex
problems with exponential convergence [19, 24], and subexponential rates cannot be
captured. Finally, another related work is that of Hu and Lessard [16], in which they
proposed an LMI framework based on quadratic Lyapunov functions and dissipativ-
ity theory to analyze Nesterov's accelerated method. In contrast, the present work,
inspired by [19], develops (1) an IQC framework using time-dependent nonquadratic
Lyapunov functions for the analysis of a broader family of functionals, and (2) algo-
rithms involving projections and proximal operators, including the proximal variant
of Nesterov's method.

1.2. Notation and preliminaries. We denote the set of real numbers by \BbbR ,
the set of real n-dimensional vectors by \BbbR n, the set of m\times n-dimensional matrices by
\BbbR m\times n, and the n-dimensional identity matrix by In. We denote by \BbbS n, \BbbS n+, and \BbbS n++

the sets of n-by-n symmetric, positive semidefinite, and positive definite matrices,
respectively. For M \in \BbbR n\times n and x \in \BbbR n, we have that x\top Mx = 1

2x
\top (M + M\top )x.

The p-norm (p \geq 1) is displayed by \| \cdot \| p : \BbbR n \rightarrow \BbbR +. For two matrices A \in \BbbR m\times n

and B \in \BbbR p\times q of arbitrary dimensions, their Kronecker product is given by

A\otimes B =

\left[ 
  
A11B \cdot \cdot \cdot A1nB

...
. . .

...
Am1B . . . AmnB

\right] 
  .

Further, we have that (A \otimes B)\top = A\top \otimes B\top and (AC) \otimes (BD) = (A \otimes B)(C \otimes D)
for matrices of appropriate dimensions. Let f : \BbbR n \rightarrow \BbbR \cup \{ +\infty \} be a closed proper
function. The effective domain of f is denoted by dom f = \{ x \in \BbbR n : f(x) < \infty \} .
The indicator function \BbbI \scrX : \BbbR n \rightarrow \BbbR \cup \{ +\infty \} of a closed nonempty convex set \scrX \subset \BbbR n
is defined as \BbbI \scrX (x) = 0 if x \in \scrX and as \BbbI \scrX (x) = +\infty otherwise. The Euclidean
projection of x \in \BbbR n onto a set \scrX is denoted by [x]\scrX = argminy\in \scrX \| y  - x\| 2.

Definition 1.1 (smoothness). A differentiable function f : \BbbR d \rightarrow \BbbR is Lf -smooth
on \scrS \subseteq dom f if

\| \nabla f(x) - \nabla f(y)\| 2 \leq Lf\| x - y\| 2 for all x, y \in \scrS .(1.1)

Lipschitz continuity implies that

f(y) \leq f(x) +\nabla f(x)\top (y  - x) +
Lf
2
\| y  - x\| 22 for all x, y \in \scrS .(1.2)

Definition 1.2 (strong convexity). A differentiable function f : \BbbR d \rightarrow \BbbR is mf -
strongly convex on \scrS \subseteq dom f if

mf\| x - y\| 22 \leq (x - y)\top (\nabla f(x) - \nabla f(y)) for all x, y \in \scrS .(1.3)

An equivalent definition is that

f(x) +\nabla f(x)\top (y  - x) +
mf

2
\| y  - x\| 22 \leq f(y) for all x, y \in \scrS .(1.4)

We denote the class of Lf -smooth andmf -strongly convex functions by \scrF (mf , Lf ).
Note that, by setting mf = 0, we recover convex functions. For the class \scrF (mf , Lf ),
we denote the condition number by \kappa f = Lf/mf \geq 1.
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2. Algorithm representation. Iterative algorithms can be represented as lin-
ear dynamical systems interacting with one or more static nonlinearities [19]. The
linear part describes the algorithm itself, while the nonlinear components depend ex-
clusively on the first-order oracle of the objective function. In this paper, we consider
first-order algorithms that have the state-space representation

\xi k+1 = Ak\xi k +Bkuk,(2.1)

yk = Ck\xi k,

uk = \phi (yk),

xk = Ek\xi k,

where at each iteration index k, \xi k \in \BbbR n is the state, uk \in \BbbR d is the input (d \leq n),
yk \in \BbbR d is the feedback output that is transformed by the nonlinear map \phi : \BbbR d \rightarrow \BbbR d
to generate uk, and xk \in \BbbR d is the output at which the suboptimality will be evaluated
for convergence analysis. See Figure 1 for a block diagram representation.1


A B
C 0

�

�

x

yu

1

Fig. 1. Block diagram representation of a first-order algorithm in state-space form.

A broad family of first-order algorithms can be represented in the canonical form
(2.1), where the matrices (Ak, Bk, Ck, Ek) differ for each algorithm. In this represen-
tation, the nonlinear feedback component \phi depends on the oracle of the objective
function. For instance, in unconstrained smooth minimization problems, we have that
\phi = \nabla f , where f is the objective function. In composite optimization problems, \phi is
the generalized gradient mapping of the composite function, which we will describe
in section 5. As an illustration, consider the following recursion defined on the two
sequences \{ xk\} and \{ yk\} :

xk+1 = xk + \beta k(xk  - xk - 1) - hk\nabla f(yk),(2.2)

yk = xk + \gamma k(xk  - xk - 1),

where hk, \beta k, and \gamma k are nonnegative scalars, \{ xk\} is the primary sequence, and
\{ yk\} is the sequence at which the gradient is evaluated. By defining the state vector
\xi k = [x\top k - 1 x

\top 
k ]\top \in \BbbR 2d, we can represent (2.2) in the canonical form (2.1), where the

matrices (Ak, Bk, Ck) are given by

\biggl[ 
Ak Bk
Ck 0

\biggr] 
=

\left[ 
 

0 Id
 - \beta kId (\beta k + 1)Id

0
 - hkId

 - \gamma kId (\gamma k + 1)Id 0

\right] 
 .(2.3)

1Since the input u = \phi (y) is an explicit function of the output, we set the feedforward matrix D
to zero in the representation of the linear dynamics to ensure the explicit dependence of the feedback
input on the output; i.e., the feedback system is well-posed.
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Notice that, depending on the selection of \beta k and \gamma k, (2.2) describes various existing
algorithms. For example, the gradient method corresponds to the case \beta k = \gamma k = 0.
In Nesterov's accelerated method, we have \beta k = \gamma k. Finally, we recover the heavy-ball
method by setting \gamma k = 0.

For an algorithm represented in the canonical form (2.1), its fixed points (if they
exist) are characterized by

\xi  \star = Ak\xi  \star +Bku \star , y \star = Ck\xi  \star , u \star = \phi (y \star ), x \star = Ek\xi  \star for all k.(2.4)

For well-designed algorithms, the fixed-point equation must coincide with the opti-
mality conditions of the underlying optimization problem.

3. Main results. In this paper, we are concerned with the convergence analysis
of first-order algorithms designed to solve optimization problems of the form

\scrX  \star = argminx\in \BbbR d\{ F (x) = f(x) + g(x)\} ,(3.1)

where f : \BbbR d \rightarrow \BbbR is closed, proper, and differentiable, while g : \BbbR d \rightarrow \BbbR \cup \{ +\infty \} 
is closed convex proper (CCP) and possibly nondifferentiable. Depending on the
choice of f and g, (3.1) describes various specialized optimization problems. For
instance, when g(x) = \BbbI \scrX (x) is the indicator function of a nonempty, closed, convex
set \scrX \subseteq \BbbR d, (3.1) is equivalent to constrained smooth programming; when g(x) \equiv 0,
we obtain unconstrained smooth programming; and, when f(x) \equiv 0, (3.1) simplifies
to an unconstrained nonsmooth optimization problem. In all cases, we assume that
the optimal solution set \scrX  \star is nonempty and closed, and the optimal value F \star =
infx\in \BbbR d F (x) is finite.

Consider an iterative first-order algorithm represented in the state-space form
(2.1) that, under appropriate initialization, solves (3.1) asymptotically; that is, the
sequence of outputs \{ xk\} satisfies limk\rightarrow \infty F (xk) = F (x \star ), where x \star \in \scrX  \star . We assume
that the fixed point y \star of the sequence \{ yk\} , defined in (2.4), satisfies y \star = x \star . In other
words, both \{ xk\} and \{ yk\} are convergent to the same optimal point x \star . To establish
a rate bound for the algorithm under study, we propose the Lyapunov function

Vk(x, \xi ) = ak(F (x) - F (x \star )) + (\xi  - \xi  \star )\top Pk(\xi  - \xi  \star ),(3.2)

where ak \geq 0, Pk \in \BbbS n+ for all k, and are to be determined. The first term is the
suboptimality of x scaled by ak, and the second term quantifies the suboptimality of
the state \xi with respect to the optimal state \xi  \star . Notice that by this definition, we
have that Vk(x, \xi ) \geq 0 for all k, and Vk(x \star , \xi  \star ) = 0; i.e., the Lyapunov function is
nonnegative everywhere and zero at optimality. Suppose we select \{ ak\} and \{ Pk\} such
that the Lyapunov function becomes nonincreasing along the trajectories of (2.1); i.e.,
the following condition holds:

Vk+1(xk+1, \xi k+1) \leq Vk(xk, \xi k) for all k.(3.3)

Then, we can conclude that ak(F (xk)  - F (x \star )) \leq Vk(xk, \xi k) \leq V0(x0, \xi 0) or, equiva-
lently,

0 \leq F (xk) - F (x \star ) \leq 
V0(x0, \xi 0)

ak
= \scrO 

\biggl( 
1

ak

\biggr) 
for all k.(3.4)

In other words, the sequence \{ ak\} generates an upper bound on the suboptimality or,
equivalently, a lower bound on the convergence rate. As a result, the task of certifying
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a convergence rate for the algorithm translates into finding sufficient conditions to
guarantee (3.3). In the following theorem, we develop an LMI whose feasibility is
sufficient for (3.3) to hold.

Theorem 3.1 (main result). Let x \star \in argminx\in \BbbR d F (x) be a minimizer of
F : \BbbR d \rightarrow \BbbR \cup \{ +\infty \} with a finite optimal value F (x \star ). Consider an iterative first-
order algorithm in the state-space form (2.1).

1. Suppose the fixed points (\xi  \star , u \star , y \star , x \star ) of (2.1) satisfy

\xi  \star = Ak\xi  \star +Bku \star , y \star = Ck\xi  \star , u \star = \phi (y \star ), x \star = Ek\xi  \star = y \star for all k.
(3.5)

2. Suppose there exist symmetric matrices M1
k ,M

2
k ,M

3
k such that the following

inequalities hold for all k:

F (xk+1) - F (xk) \leq e\top kM1
kek,(3.6a)

F (xk+1) - F (x \star ) \leq e\top kM2
kek,(3.6b)

0 \leq e\top kM3
kek,(3.6c)

where ek = [(\xi k - \xi  \star )\top (uk - u \star )\top ]\top \in \BbbR n+d andM3
k is either zero or indefinite.

3. Suppose there exist a nonnegative and nondecreasing sequence of reals \{ ak\} , a
sequence of nonnegative reals \{ \sigma k\} , and a sequence of n\times n positive semidefinite
matrices \{ Pk\} satisfying

M0
k + akM

1
k + (ak+1  - ak)M2

k + \sigma kM
3
k \preceq 0 for all k,(3.7)

where

M0
k =

\biggl[ 
A\top 
k Pk+1Ak  - Pk A\top 

k Pk+1Bk
B\top 
k Pk+1Ak B\top 

k Pk+1Bk

\biggr] 
.(3.8)

Then the sequence \{ xk\} satisfies

F (xk) - F (x \star ) \leq 
a0(F (x0) - F (x \star )) + (\xi 0 - \xi  \star )\top P0(\xi 0 - \xi  \star )

ak
for all k.(3.9)

Before proving Theorem 3.1, we briefly discuss the assumptions made in the state-
ment of the theorem. The first inequality in (3.6) bounds the difference between two
consecutive iterates. In particular, if M1

k is negative semidefinite for all k, then the
sequence \{ F (xk)\} is monotone. The second inequality in (3.6) bounds the subop-
timality, and finally, the third inequality in (3.6) is a quadratic constraint on the
input-output pairs (\xi k, uk) that are related via the rule uk = \phi (Ck\xi k). These bounds
are required to satisfy condition (3.3) and will feature heavily throughout the paper.
Note that the matrices (M1

k ,M
2
k ,M

3
k ) in (3.6) depend on the algorithm parameters,

i.e., the matrices (Ak, Bk, Ck, Ek) that define the algorithm (see (2.1)), as well as on
the assumptions about the objective function F .

Proof of Theorem 3.1. First, by (2.1) and (3.5), we can write

\xi k+1  - \xi  \star = Ak(\xi k  - \xi  \star ) +Bk(uk  - u \star ).

Using the above identity, we can write

(\xi k+1  - \xi  \star )\top Pk+1(\xi k+1  - \xi  \star ) - (\xi k  - \xi  \star )\top Pk(\xi k  - \xi  \star ) = e\top kM
0
kek.(3.10a)
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Multiply (3.6a) by ak and (3.6b) by (ak+1  - ak) and add both sides of the resulting
inequalities to obtain

ak+1(F (xk+1) - F (x \star )) - ak(F (xk) - F (x \star )) \leq 0.(3.10b)

By adding both sides of the inequalities in (3.10) and recalling the definition of
Vk(xk, \xi k) in (3.2), we can write

Vk+1(xk+1, \xi k+1) - Vk(xk, \xi k) \leq e\top k
\bigl( 
M0
k + akM

1
k + (ak+1  - ak)M2

k

\bigr) 
ek.(3.11)

Suppose the matrix inequality in (3.7) holds. By multiplying this inequality from the
left and right by e\top k and ek, respectively, we obtain

e\top k
\bigl( 
M0
k + akM

1
k + (ak+1  - ak)M2

k + \sigma kM
3
k

\bigr) 
ek \leq 0.(3.12)

Finally, adding both sides of (3.11) and (3.12) yields

Vk+1(xk+1, \xi k+1) - Vk(xk, \xi k) \leq  - \sigma ke\top kM3
kek \leq 0,(3.13)

where the second inequality follows from (3.6c). Hence, the sequence \{ Vk(xk, \xi k)\} 
is nonincreasing, implying ak(F (xk)  - F (x \star )) \leq Vk(xk, \xi k) \leq V0(x0, \xi 0). The proof
becomes complete by dividing both sides of the last inequality by ak.

Some remarks are in order regarding Theorem 3.1.
1. We do not make the assumption that the algorithm under consideration is

a descent method. In other words, the sequence \{ F (xk)\} of function values
is not necessarily monotone, which is a hallmark of accelerated algorithms
[23]. In contrast, we require the sequence \{ Vk(xk, \xi k)\} of ``energy"" values to
be monotonically decreasing. From this perspective, the LMI (3.7) provides a
guideline for the construction energy functions with this property.

2. There is no restriction on the sequence \{ ak\} other than nonnegativity and
monotonicity. Hence, we can characterize both exponential (ak = \rho  - k, 0 \leq 
\rho < 1) and subexponential (ak = kp, p > 0, for example) convergence rates.

3. We have made no explicit assumptions about the objective function in Theorem
3.1 other than the quadratic bounds in (3.6). In fact, the matrices M1

k ,M
2
k ,M

3
k

that characterize these bounds depend on the parameters of the algorithm
(e.g., stepsize, momentum coefficient, etc.) and on the assumptions about F .
In sections 4 and 5, we will describe a general procedure for deriving these
matrices for a wide range of algorithms and assumptions.

3.1. Time-invariant algorithms with exponential convergence. In this
subsection, we specialize the results of Theorem 3.1 to time-invariant algorithms with
exponential convergence. Under these assumptions, we can precondition ak and Pk
to simplify the LMI in (3.7). Explicitly, suppose the matrices (Ak, Bk, Ck, Ek) that
define the algorithm do not change with k. By the particular selection

ak = \rho  - 2ka0, a0 > 0, Pk = \rho  - 2kP0, P0 \succeq 0, 0 < \rho \leq 1 for all k,(3.14)

the Lyapunov function in (3.2) reads

Vk(\xi ) = \rho  - 2k
\bigl( 
a0(F (x) - F (x \star )) + (\xi  - \xi  \star )\top P0(\xi  - \xi  \star )

\bigr) 
.(3.15)

The unknown parameters of the Lyapunov function are now a0 > 0, P0 \succeq 0, and
0 < \rho \leq 1. With this parameter selection, the LMI in (3.7) simplifies greatly. The
following result is a special case of Theorem 3.1 for the selection (3.14).
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Theorem 3.2 (exponential convergence of time-invariant algorithms). In The-
orem 3.1, assume that the algorithm parameters as well as the matrices M1

k ,M
2
k ,M

3
k

in (3.6) do not change with k. In other words,

(Ak, Bk, Ck, Ek,M
1
k ,M

2
k ,M

3
k ) = (A0, B0, C0, E0,M

1
0 ,M

2
0 ,M

3
0 ) for all k.

Suppose there exists a0 > 0, P0 \in \BbbS n+, and \lambda 0 \geq 0 that satisfy
\biggl[ 
A\top 

0 P0A0  - \rho 2P0 A\top 
0 P0B0

B\top 
0 P0A0 B\top 

0 P0B0

\biggr] 
+ a0\rho 

2M1
0 + a0(1 - \rho 2)M2

0 + \lambda 0M
3
0 \preceq 0(3.16)

for some 0 < \rho \leq 1. Then the sequence \{ xk\} satisfies

F (xk) - F (x \star ) \leq 
a0(F (x0) - F (x \star )) + (\xi 0  - \xi  \star )\top P0(\xi 0  - \xi  \star )

a0
\rho 2k.(3.17)

Proof. By substituting the parameter selection (3.14) in (3.7) and factoring out
the positive term \rho  - 2k - 2 from the resulting LMI, we obtain (3.16), which no longer
depends on k. Utilizing Theorem 3.1, the feasibility of (3.16) ensures (3.3), which in
turn implies (3.17). The proof is complete.

Remark 1. Regarding the parameter selection in (3.14), if we instead select ak \equiv 
0, Pk = \rho  - 2kP0 with P0 \succ 0, and 0 < \rho \leq 1, the Lyapunov function (3.2) simplifies
to the quadratic function

Vk(\xi ) = \rho  - 2k(\xi  - \xi  \star )\top P0(\xi  - \xi  \star ), P0 \succ 0.(3.18)

Correspondingly, the LMI (3.16) in Theorem 3.2 reduces to
\biggl[ 
A\top 

0 P0A0  - \rho 2P0 A\top 
0 P0B0

B\top 
0 P0A0 B\top 

0 P0B0

\biggr] 
+ \lambda 0M

3
0 \preceq 0.(3.19)

By Theorem 3.1, if (3.19) is feasible for some P0 \succ 0, \lambda 0 \geq 0, and 0 < \rho \leq 1, then the
Lyapunov function in (3.18) satisfies Vk+1(\xi k+1) \leq Vk(\xi k), which translates to

(\xi k+1  - \xi  \star )\top P0(\xi k+1  - \xi  \star ) \leq \rho 2(\xi k  - \xi  \star )\top P0(\xi k  - \xi  \star )
or, equivalently,

\| \xi k  - \xi  \star \| 22 \leq \rho 2kcond(P0)\| \xi 0  - \xi  \star \| 22.(3.20)

The matrix inequality (3.19) is precisely the condition derived in [19, Theorem 4] for
the case of strongly convex objective functions, time-invariant first-order algorithms,
and pointwise IQCs.

Having established the main result, it now remains to determine the matrices
M i
k, i \in \{ 0, 1, 2, 3\} , that construct the LMI in (3.7). To this end, we first need to

introduce IQCs in the context of optimization algorithms.

3.2. IQCs for optimization algorithms. In control theory, there are various
approaches and criteria for stability of linear dynamical systems in feedback intercon-
nection with a memoryless and possibly time-varying nonlinearity. In this context,
IQCs, originally proposed by Megretski and Rantzer [20], are a powerful tool for de-
scribing various classes of nonlinearities, and are particularly useful for LMI-based
stability analysis. Lessard, Recht, and Packard [19] have recently adapted the theory
of IQCs for use in optimization algorithms. Specifically, they translate the first-order
defining properties of convex functions into various forms of IQCs for their gradient
mappings. In the following, we briefly describe the notion of pointwise IQCs (or
quadratic constraints) that will be essential for subsequent developments.
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3.2.1. Pointwise IQCs. Consider a mapping \phi :\BbbR d \rightarrow \BbbR d and a chosen ``refer-
ence"" input-output pair2 (x \star , \phi (x \star )), x \star \in dom\phi . We say that \phi satisfies the pointwise
IQC defined by (Q\phi , x \star , \phi (x \star )) on \scrS \subseteq dom\phi if for all x \in \scrS , the following inequality
holds [19]:

\biggl[ 
x - x \star 

\phi (x) - \phi (x \star )

\biggr] \top 
Q\phi 

\biggl[ 
x - x \star 

\phi (x) - \phi (x \star )

\biggr] 
\geq 0,(3.21)

where Q\phi \in \BbbS 2d is a symmetric, indefinite matrix.3 Many inequalities in optimization
can be represented as IQCs of the form (3.21). For instance, suppose \phi (x) is L\phi -
Lipschitz continuous on \scrS \subseteq dom\phi for some positive and finite L\phi , i.e., \| \phi (x)  - 
\phi (x \star )\| 2 \leq L\phi \| x - x \star \| 2 for all (x, x \star ) \in \scrS \times \scrS . By squaring both sides and rearranging
terms, we obtain

\biggl[ 
x - x \star 

\phi (x) - \phi (x \star )

\biggr] \top \biggl[ 
L2
\phi Id 0

0  - Id

\biggr] \biggl[ 
x - x \star 

\phi (x) - \phi (x \star )

\biggr] 
\geq 0,(3.22)

which equivalently describes Lipschitz continuity. As another example, assume \phi is
a firmly nonexpansive mapping on \scrS . That is, for all (x, x \star ) \in \scrS \times \scrS , we have that
\| \phi (x) - \phi (x \star )\| 22 \leq (x - x \star )\top (\phi (x) - \phi (x \star )). This inequality can be rewritten as

\biggl[ 
x - x \star 

\phi (x) - \phi (x \star )

\biggr] \top \biggl[ 
0 1

2Id
1
2Id  - Id

\biggr] \biggl[ 
x - x \star 

\phi (x) - \phi (x \star )

\biggr] 
\geq 0.(3.23)

Note that by the Cauchy--Schwarz inequality, firm nonexpansiveness implies Lipschitz
continuity with Lipschitz parameter equal to one; i.e., (3.23) implies (3.22) with L\phi =
1. There are many other interesting properties such as monotonicity (also known as
incremental passivity), one-sided Lipschitz continuity, cocoercivity, etc., that could
be represented by quadratic constraints.

In the next subsection, we will focus on the gradient mapping of a convex function
from an IQC perspective.

3.2.2. IQCs for (strongly) convex functions. Consider the gradient map-
ping \phi = \nabla f , where f \in \scrF (mf , Lf ). It directly follows from the definition of (strong)
convexity in (1.3) that \nabla f satisfies the quadratic constraint

\biggl[ 
x - y

\nabla f(x) - \nabla f(y)

\biggr] \top \biggl[ 
 - mfId

1
2Id

1
2Id 0

\biggr] \biggl[ 
x - y

\nabla f(x) - \nabla f(y)

\biggr] 
\geq 0.(3.24)

Similarly, the Lipschitz inequality in (1.1) can be represented as

\biggl[ 
x - y

\nabla f(x) - \nabla f(y)

\biggr] \top \biggl[ 
L2
fId 0

0  - 1

\biggr] \biggl[ 
x - y

\nabla f(x) - \nabla f(y)

\biggr] 
\geq 0.(3.25)

To combine strong convexity and Lipschitz continuity in a single inequality, we note
that \nabla f also satisfies [23]

mfLf
mf+Lf

\| y - x\| 22+
1

mf+Lf
\| \nabla f(y) - \nabla f(x)\| 22 \leq (\nabla f(y) - \nabla f(x))\top (y - x).(3.26)

2As we will see later, the reference point is chosen as the fixed point of the interconnected system
we wish to analyze.

3If Q\phi is positive (semi)definite, the quadratic constraint holds trivially and is not informative
regarding \phi .
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The above inequality can be represented by the following quadratic constraint [19]:

\biggl[ 
x - y

\nabla f(x) - \nabla f(y)

\biggr] \top 
Qf

\biggl[ 
x - y

\nabla f(x) - \nabla f(y)

\biggr] 
\geq 0, Qf =

\Biggl[  - mfLf

mf+Lf
Id

1
2Id

1
2Id

 - 1
mf+Lf

Id

\Biggr] 
.(3.27)

In the language of IQCs, we can say that the map \phi = \nabla f satisfies the pointwise IQC
defined by (Qf , x \star ,\nabla f(x \star )), where the reference point x \star = y \in \scrS is arbitrary. Note
that (3.27) encapsulates both (strong) convexity and Lipschitz continuity in a single
IQC. It turns out that this quadratic constraint is both necessary and sufficient for
the inclusion f \in \scrF (mf , Lf ).

3.2.3. Nondifferentiable convex functions. The above analysis can be ex-
tended to nondifferentiable convex functions. Formally, the subdifferential \partial f of a
convex function f : \BbbR d \rightarrow \BbbR \cup \{ +\infty \} is defined as

\partial f(x) = \{ \gamma : \gamma \top (y  - x) + f(x) \leq f(y) for all y \in dom f\} ,(3.28)

where \gamma is any subgradient of f , which we denote by Tf (x). Adding the inequality in
(3.28) to the same inequality but with x and y interchanged, we obtain

(Tf (x) - Tf (y))\top (x - y) \geq 0,

which is equivalent to monotonicity of the subdifferential operator. Therefore, any
subgradient of f satisfies (3.27) with Lf = \infty . Note that this property holds even
when f is not convex.

4. Performance results for unconstrained smooth programming. In this
section, we consider first-order algorithms designed to solve problems of the form

x \star \in argminx\in \BbbR d f(x) where f \in \scrF (mf , Lf ).(4.1)

The well-known optimality condition in this case is

\scrX  \star = \{ x \star \in dom f : \nabla f(x \star ) = 0\} .
We now consider an iterative first-order algorithm in the canonical form (2.1) for
solving (4.1), where the feedback nonlinearity is given by \phi = \nabla f . Since the sequences
\{ xk\} and \{ yk\} converge to the same fixed point in the optimal set by assumption,
we must have that \nabla f(y \star ) = \nabla f(x \star ) = 0. In other words, the fixed points of (2.1)
satisfy

\xi  \star = Ak\xi  \star y \star = Ck\xi  \star u \star = \nabla f(y \star ) = 0, x \star = Ek\xi  \star = y \star for all k.(4.2)

In the following result, we characterize the quadratic bounds in (3.6) for the class
\scrF (mf , Lf ).

Lemma 4.1. Let x \star \in argminx\in \BbbR d f(x) be a minimizer of f \in \scrF (mf , Lf ) with
a finite optimal value f(x \star ). Consider an iterative first-order algorithm in the state-
space form (2.1) with \phi = \nabla f , where the fixed points (\xi  \star , u \star , y \star , x \star ) satisfy

\xi  \star = Ak\xi  \star , y \star = Ck\xi  \star , u \star = \nabla f(y \star ) = 0, x \star = Ek\xi  \star = y \star for all k.(4.3)

Define ek = [(\xi k  - \xi  \star )\top (uk  - u \star )\top ]\top . Then the following inequalities hold for all k:

f(xk+1) - f(xk) \leq e\top kM1
kek,(4.4a)

f(xk+1) - f(x \star ) \leq e\top kM2
kek,(4.4b)

0 \leq e\top kM3
kek,(4.4c)
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where M1
k ,M

2
k ,M

3
k are given by

M1
k = N1

k +N2
k , M2

k = N1
k +N3

k , M3
k = N4

k ,(4.5)

with

N1
k =

\biggl[ 
Ek+1Ak - Ck Ek+1Bk

0 Id

\biggr] \top \Biggl[ 
Lf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
Ek+1Ak - Ck Ek+1Bk

0 Id

\biggr] 
,

N2
k =

\biggl[ 
Ck  - Ek 0

0 Id

\biggr] \top \Biggl[ 
 - mf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
Ck  - Ek 0

0 Id

\biggr] 
,

N3
k =

\biggl[ 
Ck 0
0 Id

\biggr] \top \Biggl[ 
 - mf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
Ck 0
0 Id

\biggr] 
,

N4
k =

\biggl[ 
Ck 0
0 Id

\biggr] \top \Biggl[  - mfLf

mf+Lf
Id

1
2Id

1
2Id

 - 1
mf+Lf

Id

\Biggr] \biggl[ 
Ck 0
0 Id

\biggr] 
.

Proof. First, by Lipschitz continuity of \nabla f , we can write

f(xk+1) - f(yk) \leq 
\biggl[ 
xk+1  - yk
\nabla f(yk)

\biggr] \top \Biggl[ 
Lf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
xk+1  - yk
\nabla f(yk)

\biggr] 
.(4.6)

From the recursion in (2.1), we have that
\biggl[ 
xk+1  - yk
\nabla f(yk)

\biggr] 
=

\biggl[ 
Ek+1Ak  - Ck Ek+1Bk

0 Id

\biggr] \biggl[ 
\xi k  - \xi  \star 
uk  - u \star 

\biggr] 
.(4.7)

Substituting (4.7) in (4.6) yields

f(xk+1) - f(yk) \leq e\top k N1
kek.(4.8)

Next, we use (strong) convexity and the identity yk - xk = (Ck - Ek)(\xi k - \xi  \star ) to write

f(yk) - f(xk) \leq 
\biggl[ 
yk  - xk
\nabla f(yk)

\biggr] \top \Biggl[ 
 - mf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
yk  - xk
\nabla f(yk)

\biggr] 
(4.9)

\leq e\top k
\biggl[ 
Ck  - Ek 0

0 Id

\biggr] \top \Biggl[ 
 - mf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
Ck  - Ek 0

0 Id

\biggr] 
ek

= e\top k N
2
kek.

Adding both sides of (4.8) and (4.9) yields

f(xk+1) - f(xk) \leq e\top k (N1
k +N2

k )ek = e\top kM
1
kek.

By (strong) convexity and the identity yk  - y \star = Ck(\xi k  - \xi  \star ), we can write

f(yk) - f(y \star ) \leq 
\biggl[ 
yk  - y \star 
\nabla f(yk)

\biggr] \top \Biggl[ 
 - mf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
yk  - y \star 
\nabla f(yk)

\biggr] 
(4.10)

= e\top k

\biggl[ 
Ck 0
0 Id

\biggr] \top \Biggl[ 
 - mf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
Ck 0
0 Id

\biggr] 
ek

= e\top k N
3
kek.
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By adding both sides of (4.8) and (4.10), we obtain

f(xk+1) - f(x \star ) \leq e\top k (N1
k +N3

k )ek = e\top kM
2
kek.

Finally, since f \in \scrF (mf , Lf ), the gradient function \nabla f satisfies the IQC in (3.27).
Since yk  - y \star = Ck(\xi k  - \xi  \star ), we can write

e\top k N
4
kek = e\top k

\biggl[ 
Ck 0
0 Id

\biggr] \top 
, Qf

\biggl[ 
Ck 0
0 Id

\biggr] 
, ek =

\biggl[ 
yk  - y \star 
uk  - u \star 

\biggr] \top 
, Qf

\biggl[ 
yk  - y \star 
uk  - u \star 

\biggr] 
\geq 0.

(4.11)

The proof is now complete.

In Lemma 4.1, we used Lipschitz continuity and strong convexity assumptions
to find the matrices in (4.4). Explicitly, N1

k follows from Lipschitz continuity, while
N2
k and N3

k are due to strong convexity. Finally, the matrix M3
k = N4

k describes
the quadratic constraint between the input-output pairs (\xi k, uk) that are related via
uk = \nabla f(Ck\xi k). Note that M3

k = N4
k is an indefinite matrix as required.

Remark 2 (exploiting block diagonal structure). We can often exploit some
special structure in the data matrices (Ak, Bk, Ck, Ek) to reduce the dimension of the
LMI (3.7). For many algorithms, the matrices (Ak, Bk, Ck, Ek) are in the form (Ak =
\=Ak\otimes Id, Bk = \=Bk\otimes Id, Ck = \=Ck\otimes Id, Ek = \=Ek\otimes Id), where ( \=Ak, \=Bk, \=Ck, \=Ek) are lower
dimensional matrices independent of d [19, section 4.2]. By selecting Pk = \=Pk \otimes Id,
where \=Pk is a lower dimensional matrix, we can factor out all the Kronecker products
\otimes Id from the matrices M0

k ,M
1
k ,M

2
k ,M

3
k and make the dimension of the corresponding

LMI (3.7) independent of d. In particular, a multistep method with r \geq 1 steps yields
an (r+1)\times (r+1) LMI. For instance, the gradient method (r = 1) and the Nesterov's
accelerated method (r = 2) yield 2\times 2 and 3\times 3 LMIs, respectively. We will use this
dimensionality reduction in the forthcoming case studies.

We can now use Lemma 4.1 in tandem with Theorem 3.1 to derive convergence
rates for some existing algorithms in the literature.

4.1. Symbolic rate bounds. In order to certify a convergence rate for a given
algorithm, we must first represent the algorithm in the canonical form (2.1) and obtain
the matrices M1

k ,M
2
k ,M

3
k that characterize the bounds in (3.6). These matrices are

provided in Lemma 4.1 for the case f \in \scrF (mf , Lf ). Then we must formulate the
LMI (3.7) and search for a feasible triple (ak, Pk, \sigma k). In view of (3.4), we seek to
find the fastest convergence rate, i.e., the fastest growing \{ ak\} . In what follows, we
illustrate this approach via analyzing the gradient method and Nesterov's accelerated
algorithm.

4.1.1. The gradient method. Consider the gradient method applied to f \in 
\scrF (mf , Lf ) with constant stepsize:

xk+1 = xk  - h\nabla f(xk).(4.12)

This recursion corresponds to the the state-space form (2.1) with (Ak, Bk, Ck, Ek) =
(Id, - hId, Id, Id). By choosing Pk = pkId (pk \geq 0), we can apply the dimension-
ality reduction outlined in Remark 2 and reduce the dimension of the LMI. After
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dimensionality reduction, the matrices M i
k, i \in \{ 0, 1, 2, 3\} , in the LMI (3.7) read

M0
k =

\biggl[ 
pk+1 - pk  - hpk+1

 - hpk+1 h2pk+1

\biggr] 
,(4.13)

M1
k =

\biggl[ 
0 0
0 1

2 (Lfh
2  - 2h)

\biggr] 
,

M2
k =

\Biggl[ 
 - mf

2
1
2

1
2

1
2 (Lfh

2  - 2h)

\Biggr] 
,

M3
k =

\Biggl[  - mfLf

mf+Lf

1
2

1
2

 - 1
mf+Lf

\Biggr] 
.

We first consider strongly convex functions (mf > 0) for which we make two parameter
selections as follows.

\bullet By setting pk = \sigma k = 0, we obtain the LMI
\Biggl[  - mf

2 (ak+1  - ak) 1
2 (ak+1  - ak)

1
2 (ak+1  - ak) (

Lfh
2

2  - h)ak+1

\Biggr] 
\preceq 0 for all k.

It is easy to verify that this matrix inequality is equivalent to the conditions
ak+1 \leq \rho  - 1ak and 0 \leq h \leq 2/Lf , where \rho = 1 + mf (Lfh

2  - 2h). Solving
for ak and substituting all the parameters in (3.3), we conclude the following
convergence rate for strongly convex functions:

f(xk) - f(x \star ) \leq 
\bigl( 
1 +mf (Lfh

2  - 2h)
\bigr) k

(f(x0) - f(x \star )), 0 \leq h \leq 2

Lf
.

Notice that the decay rate \rho obeys 0 \leq \rho \leq 1 as h varies on [0, 2/Lf ]. In
particular, by optimizing \rho over h, we obtain the optimal stepsize h = 1/Lf ,
yielding the decay rate \rho = 1 - mf/Lf .

\bullet By the parameter selection ak \equiv 0 and pk = \rho  - 2kp0, \sigma k = \lambda 0\rho 
 - 2k - 2, the LMI

simplifies to

\biggl[ 
p0 - \rho 2p0  - hp0
 - hp0 h2p0

\biggr] 
+ \lambda 0

\Biggl[  - mfLf

mf+Lf

1
2

1
2

 - 1
mf+Lf

\Biggr] 
\preceq 0,(4.14)

which is the same LMI as the one proposed in [19] and yields the decay rate
\rho = max(| 1 - hmf | , | 1 - hLf | ).

We now consider convex functions (mf = 0). By the particular selections pk = p and
\sigma k = \sigma , the LMI (3.7) reduces to

\Biggl[ 
0 1

2 (ak+1  - ak  - 2ph+ \sigma )

1
2 (ak+1  - ak  - 2ph+ \sigma ) (

Lfh
2

2  - h)ak+1 + ph2  - \sigma 
Lf

\Biggr] 
\preceq 0 for all k,(4.15)

which is homogeneous in (ak, ak+1, p, \sigma ). We can therefore assume p = 1 without
loss of generality. With these selections, the above LMI becomes equivalent to the
following inequalities:

ak+1 = ak + 2h - \sigma ,
\biggl( 
Lfh

2

2
 - h

\biggr) 
ak+1 + h2  - \sigma 

Lf
\leq 0 for all k.
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Assuming a0 = 0 and solving for the fastest growing ak that satisfies the above
constraints, we obtain the rate bound

f(xk) - f(x \star ) \leq 
Lf\| x0  - x \star \| 22

Ck
,(4.16a)

where C is given by

C =

\left\{ 
 
 

2Lfh for 0 \leq Lfh \leq 1,
2(Lfh)2(2 - Lfh)

(Lfh)2  - 2Lfh+ 2
for 1 \leq Lfh \leq 2.

(4.16b)

We have provided the detailed derivations in Appendix A. We observe that we can
characterize both the exponential and subexponential rates using the same LMI.

4.1.2. Nesterov's accelerated method. We now analyze Nesterov's acceler-
ated method [22] applied to f \in \scrF (mf , Lf ), which consists of the following recursions:

xk+1 = yk  - h\nabla f(yk),(4.17)

yk = xk + \beta k(xk  - xk - 1),

where \beta k \geq 0 is the momentum coefficient and h > 0 is the step size. With an
appropriate tuning, this method exhibits an \scrO (1/k2) convergence rate when mf = 0.

One such tuning is [22, 3]

\beta k = t - 1
k (tk - 1  - 1), tk =

1

2

\Bigl( 
1 +

\sqrt{} 
1 + 4t2k - 1

\Bigr) 
, t - 1 = 1, 0 < h \leq L - 1

f .(4.18)

Notice that by this selection, we can verify that t2k  - t2k - 1 = tk and tk - 1 \geq (k + 2)/2.

By defining the state vector \xi k = [x\top k - 1 x
\top 
k ]\top , we can write (4.17) in the canonical

form

\xi k+1 =

\biggl[ 
0 Id

 - \beta kId (1 + \beta k)Id

\biggr] 
\xi k +

\biggl[ 
0
 - hId

\biggr] 
\nabla f(yk),(4.19)

yk =
\bigl[ 
 - \beta k (1 + \beta k)Id

\bigr] 
\xi k,

xk =
\bigl[ 
0 1

\bigr] 
\xi k.

The fixed points of (4.19) are (\xi  \star , u \star , y \star , x \star ) = ([x\top  \star x\top  \star ]\top , 0, x \star , x \star ), where x \star \in \scrX  \star 
is any optimal solution to (4.1). Making use of Lemma 4.1, the matrices M i

k i \in 
\{ 0, 1, 2, 3\} for Nesterov's accelerated method read

M0
k =

\Biggl[ 
A\top 
k Pk+1Ak - Pk A\top 

k Pk+1Bk

B\top 
k Pk+1Ak B\top 

k Pk+1Bk

\Biggr] 
,(4.20)

M1
k =

\left[ 
  
 - 1

2mf\beta 
2
k

1
2mf\beta 

2
k  - 1

2\beta k
1
2mf\beta 

2
k  - 1

2mf\beta 
2
k

1
2\beta k

 - 1
2\beta k

1
2\beta k

1
2Lfh

2  - h

\right] 
  ,

M2
k =

\left[ 
  

 - 1
2mf\beta 

2
k

1
2mf\beta k(\beta k + 1)  - 1

2\beta k
1
2mf\beta k(\beta k + 1)  - 1

2mf (\beta k + 1)2 1
2 (\beta k + 1)

 - 1
2\beta k

1
2 (\beta k + 1) 1

2Lfh
2  - h

\right] 
  ,

M3
k =

\left[ 
 
 - \beta kId 0

(1 + \beta k)Id 0
0 Id

\right] 
 
\Biggl[  - mfLf

mf+Lf

1
2

1
2

 - 1
mf+Lf

\Biggr] \biggl[ 
 - \beta kId (1 + \beta k)Id 0

0 0 Id

\biggr] 
.D

ow
nl

oa
de

d 
05

/0
1/

20
 to

 1
65

.1
23

.2
24

.1
35

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2668 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V. M. PRECIADO

We now consider convex settings (mf = 0). It is straightforward to verify that
for the parameter selection \sigma k = 0, ak = t2k - 1 (with a0 = 1), and

Pk =
1

2h

\biggl[ 
1 - tk - 1

tk - 1

\biggr] \bigl[ 
1 - tk - 1 tk - 1

\bigr] 
,

the LMI (3.7) holds with equality, i.e., all the entries of the matrix is zero. Therefore,
Theorem 3.1 implies

f(xk) - f(x \star ) \leq 
f(x0) - f(x \star ) + 1

2h\| x0  - x \star \| 22
t2k - 1

= \scrO 
\biggl( 

1

k2

\biggr) 
,(4.21)

where the equality follows from the fact that tk - 1 \geq (k + 2)/2.
The analysis of Nesterov's method shows that finding a symbolic feasible pair

(ak, Pk) to the LMI (3.7) can be subtle. Nevertheless, we can also search for these
parameters via a numerical scheme, as we describe next.

4.2. Numerical bounds for exponential rates. We can also use the results
of Theorem 3.1 to search for the parameters (ak, Pk) numerically. This approach
is particularly efficient for time-invariant algorithms with exponential convergence.
Under these assumptions, the sequence of LMIs in (3.7) collapses into the single LMI
in (3.16), which no longer depends on the iteration index k. We can then use this
LMI to find the exponential decay rate numerically. Explicitly, the matrix inequality
(3.16) is an LMI in (a0, P0, \lambda 0) for a fixed \rho 2. We can therefore use a bisection search
to find the smallest value of the convergence rate \rho that satisfies (3.16) for some
(a0, P0, \lambda 0). Notice that the LMI in (3.16) is homogeneous in its decision variables.
We can therefore assume \lambda 0 = 1 without loss of generality.

4.2.1. Nesterov's accelerated method (strong convexity). In Nesterov's
accelerated method applied to strongly convex problems (mf > 0), the momentum
parameter does not change with k but may depend on the condition number \kappa f .
Nesterov proposed the following parameter selection for the algorithm in (4.17) and
the corresponding analytical rate bound [23]:

h =
1

Lf
, \beta =

\surd 
\kappa f  - 1
\surd 
\kappa f + 1

, \rho =

\sqrt{} 
1 - 1
\surd 
\kappa f
.(4.22)

In Figure 2, we plot the analytical rate bound \rho given in (4.22) for various values
of the condition number. We also plot the numerical rate bounds obtained by solv-
ing the SDP in (3.16) with M1

0 ,M
2
0 , and M3

0 given in (4.20), and h and \beta selected
according to (4.22). Finally, we plot the theoretical lower bound on the convergence
rate for the class F (mf , Lf ) [23]. We observe that the semidefinite program yields
slightly better bounds than the analytical rate bound, showing the nonconservatism
of the proposed semidefinite program. We remark that in [19] the authors make use of
quadratic Lyapunov functions and ``off-by-one"" IQCs to obtain numerical rate bounds
for strongly convex problems. They showed that pointwise IQCs alone exhibit crude
bounds, and the use of off-by-one IQCs improves the numerical solutions greatly.
In contrast, we have utilized nonquadratic Lyapunov functions and pointwise IQCs,
which yield nonconservative rate bounds. This nonconservatism is due to the inclu-
sion of the term ak(F (xk)  - F (x \star )) in the Lyapunov function. We conjecture that,
by incorporating off-by-one IQCs or other IQCs developed in [19] in our Lyapunov
framework, we can further improve the numerical bounds.
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Fig. 2. Comparison of rate bounds in Nesterov's method for different ratios \kappa f = Lf/mf using

the parameter selection h = 1/Lf and \beta =
\surd 
\kappa f - 1

\surd 
\kappa f+1

. For this parameter selection, the analytical rate

bound is \rho =
\sqrt{} 

1 - 1\surd 
\kappa f

[23]. The theoretical rate bound is \rho lb = 1 - 1\surd 
\kappa f

.

4.3. Numerical bounds for subexponential rates. For time-varying algo-
rithms and nonstrongly convex functions, the convergence rate is subexponential and
the LMI (3.7) becomes dependent on the iteration number. In this case, a numerical
approach amounts to solving an infinite sequence of LMIs to find a rate-generating
sequence \{ ak\} . Nevertheless, we can truncate the sequence of LMIs in order to obtain
rate bounds for a finite number of iterations. Specifically, for a given N > 0, we
consider the following semidefinite program:

maximize aN(4.23)

subject to for k = 0, 1, . . . , N  - 1:

M0
k + akM

1
k + (ak+1  - ak)M2

k + \sigma kM
3
k \preceq 0,

ak+1 \geq ak, \sigma k \geq 0, Pk \succeq 0,

with decision variables \{ (ak, Pk, \sigma k)\} Nk=1. Denoting the optimal solution of (4.23) by
a \star N , Theorem 3.1 immediately implies

f(xN ) - f(x \star ) \leq 
V0(x0, \xi 0)

a \star N
.(4.24)

In other words, (4.23) searches for the smallest upper bound on the Nth (last) iterate
suboptimality, subject to the stability constraint imposed by the LMI in (3.7). Notice
that (4.23) is homogeneous in the decision variables. To get a sensible problem, we
must normalize the variables by, for example, requiring all of them to add up to
a positive constant. Furthermore, the kth LMI in (4.23) is a function of ak, ak+1,
Pk, Pk+1, and \sigma k. This implies that the SDP is banded with a fixed bandwidth
independent of N , the number of iterations. We can exploit this sparsity structure in
solving the semidefinite program efficiently. For instance, for Nesterov's accelerated
method and N = 103 iterations, solving the corresponding semidefinite program takes
less than 10 seconds with an off-the-shelf solver.
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In Figure 3, we plot numerical rate bounds obtained by solving (4.23) for Nes-
terov's accelerated method (4.20) with the parameter selection given in (4.18). We
also plot the analytical rate bound given in (4.21). We observe that the numerical
rate bound coincides with the analytical rate.

0 50 100 150 200 250
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 3. Comparison of rate bounds obtained by numerically solving the semidefinite program
in (4.23) and analytical rate bounds for Nesterov's accelerated method with the parameter selection
given in (4.18).

5. Composite optimization problems. In this section, we consider composite
optimization problems of the form

\scrX  \star = argminx\in \BbbR d\{ F (x) = f(x) + g(x)\} ,(5.1)

where f : \BbbR d \rightarrow \BbbR is differentiable CCP, while g : \BbbR d \rightarrow \BbbR \cup \{ +\infty \} is nondifferentiable
and CCP. We assume that the optimal solution set \scrX  \star is nonempty and closed and that
the optimal value F (x \star ) is finite. Under these assumptions, the optimality condition
for (5.1) is given by

\scrX  \star = \{ x \star \in dom f \cap dom g : 0 \in \nabla f(x \star ) + \partial g(x \star )\} .(5.2)

Formally, the objective function in (5.1) is nonsmooth, and subgradient methods
are very slow. Splitting methods such as proximal algorithms circumvent this issue
by exploiting the special structure of the objective function to achieve convergence
rates comparable to their counterparts in smooth programming. In this section, we
analyze proximal algorithms using Theorem 3.1. To this end, we first show that
we can represent these algorithms in the canonical form (2.1), where the feedback
nonlinearity \phi is the generalized gradient mapping of F , which we will define next.
By deriving the proximal counterpart of Lemma 4.1, we can then immediately apply
Theorem 3.1 to proximal algorithms.

5.1. Generalized gradient mapping. Let g : \BbbR d \rightarrow \BbbR \cup \{ +\infty \} be a CCP
function. The proximal operator \Pi g,h : \BbbR d \rightarrow \BbbR d of g with parameter h > 0 is defined
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as

\Pi g,h(x) = argminy\in \BbbR d

\biggl\{ 
g(y) +

1

2h
\| y  - x\| 22

\biggr\} 
.(5.3)

For the composite function in (5.1), we define the generalized gradient mapping
\phi h : \BbbR d \rightarrow \BbbR d as

\phi h(x) =
1

h
(x - \Pi g,h(x - h\nabla f(x))), h > 0,(5.4)

with dom\phi h = dom f . Notice that when g(x) \equiv 0 (so that \Pi g,h(x) = x), the gen-
eralized gradient mapping simplifies to the gradient function \nabla f . Furthermore, we
have that \phi h(x \star ) = 0 for x \star \in \scrX  \star , i.e., \phi h vanishes at optimality. In the following
proposition, we characterize several properties of \phi h which will prove useful.

Proposition 5.1. Consider the composite function F = f+g with f \in \scrF (mf , Lf )
and g \in \scrF (0,\infty ). Correspondingly, define the generalized gradient mapping \phi h of F
as in (5.4).

1. \phi h satisfies the pointwise IQC defined by (Q\phi h
, x \star , \phi h(x \star )), where Q\phi h

is given
by

Q\phi h
=

\left[ 
  

1

2h
(\gamma 2f  - 1)

1

2
1

2
 - h

2

\right] 
  \otimes Id,(5.5)

with \gamma f = max\{ | 1 - hLf | , | 1 - hmf | \} .
2. The inequality

F (y - h\phi h(y)) - F (x) \leq \phi h(y)\top (y - x) - mf

2
\| y - x\| 22 +

\biggl( 
1

2
Lfh

2 - h
\biggr) 
\| \phi h(y)\| 22

(5.6)

holds for all h \geq 0 and x, y \in domF .

3. \phi h(x \star ) = 0 if and only if x \star \in argmin F (x).

Proof. See Appendix B.

5.2. Proximal algorithms. Using the definition of generalized gradient map-
ping in (5.4), we can represent proximal algorithms with the same state-space struc-
ture as in (2.1), where the feedback nonlinearity is \phi h. For example, Nesterov's
accelerated proximal gradient method is defined by

xk+1 = \Pi g,h(yk  - h\nabla f(yk)),(5.7)

yk = xk + \beta k(xk  - xk - 1),

which, by using (5.4), can be rewritten as

xk+1 = xk + \beta k(xk  - xk - 1) - h\phi h(yk),(5.8)

yk = xk + \beta k(xk  - xk - 1).
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By defining the state vector \xi k = [x\top k - 1 x
\top 
k ]\top \in \BbbR 2d, the corresponding state-space

matrices (Ak, Bk, Ck) are given by

\biggl[ 
Ak Bk
Ck 0

\biggr] 
=

\left[ 
 

0 Id
 - \beta kId (\beta k + 1)Id

0
 - hId

 - \beta kId (\beta k + 1)Id 0

\right] 
 .(5.9)

We observe that (5.9) has the same structure as Nesterov's accelerated method with-
out proximal operation, with the difference that \nabla f is replaced by \phi h in the nonlinear
block. Recall the assumption that the sequences \{ xk\} and \{ yk\} converge to the same
fixed point in the optimal set. Since \phi h is zero at optimality, we must therefore have
that \phi h(y \star ) = \phi h(x \star ) = 0. In other words, the fixed points satisfy

\xi  \star = Ak\xi  \star , y \star = Ck\xi  \star , u \star = \phi h(y \star ) = 0, x \star = Ek\xi  \star = y \star for all k.(5.10)

Having characterized the generalized gradient mapping with quadratic constraints
(Proposition 5.1), we are now ready to develop the proximal counterpart of Lemma
4.1.

Lemma 5.2. Let x \star \in argmin F (x) be a minimizer of F = f + g with a finite
optimal value F (x \star ), where f \in \scrF (mf , Lf ) and g \in \scrF (0,\infty ). Consider a proximal
first-order algorithm in the state-space form (2.1) with \phi = \phi h defined as in (5.4).
Suppose the fixed points (\xi  \star , u \star , y \star , x \star ) satisfy

\xi  \star = Ak\xi  \star , y \star = Ck\xi  \star , u \star = \phi h(y \star ) = 0, x \star = Ek\xi  \star = y \star for all k.(5.11)

Then the following inequalities hold for all k:

F (xk+1) - F (xk) \leq e\top kM1
kek,(5.12a)

F (xk+1) - F (x \star ) \leq e\top kM2
kek,(5.12b)

0 \leq e\top kM3
kek,(5.12c)

where ek = [(\xi k  - \xi  \star )\top (uk  - u \star )\top ]\top and M1
k ,M

2
k ,M

3
k are given by

M1
k =

\biggl[ 
Ck - Ek 0

0 Id

\biggr] \top \Biggl[ 
 - mf

2
1
2

1
2 ( 1

2Lfh
2 - h)

\Biggr] \biggl[ 
Ck - Ek 0

0 Id

\biggr] 
,(5.13)

M2
k =

\biggl[ 
Ck 0
0 Id

\biggr] \top \Biggl[ 
 - mf

2
1
2

1
2 ( 1

2Lfh
2 - h)

\Biggr] \biggl[ 
Ck 0
0 Id

\biggr] 
,

M3
k =

\biggl[ 
Ck 0
0 Id

\biggr] \top 
Q\phi h

\biggl[ 
Ck 0
0 Id

\biggr] 
.

Proof. See Appendix C.

Remark 3. In [19], the authors use a different block diagonal representation of
proximal algorithms, in which the linear component is in parallel feedback connec-
tion with the gradient function \nabla f , and with the subdifferential operator \partial g. Then,
each nonlinear block is described by its corresponding IQC, i.e., the IQC of gradi-
ent mappings and subdifferential operators. In contrast, we collectively represent all
the nonlinearities in a single feedback component (the generalized gradient mapping),
whose IQC is given in Lemma 5.1.

In the following, we use Lemma 5.2 in conjunction with Theorem 3.1 to analyze
the proximal gradient method and the proximal variant of Nesterov's accelerated
method.
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5.2.1. Proximal gradient method. The classical proximal gradient method
is defined by the recursion

xk+1 = \Pi hg(xk  - h\nabla f(xk)),(5.14)

which, by using the definition of the generalized gradient mapping in (5.4), can be
written as

xk+1 = xk  - h\phi h(xk).(5.15)

The state-space matrices are therefore given by (Ak, Bk, Ck, Ek) = (Id, - hId, Id, Id).
By selecting Pk = pkId, pk \geq 0, the matrices M i

k, i = 0, 1, 2, 3, are given by

M0
k =

\biggl[ 
pk+1 - pk  - hpk+1

 - hpk+1 h2pk+1

\biggr] 
\otimes Id,(5.16a)

M1
k =

\biggl[ 
0 0
0 1

2 (Lfh
2 - 2h)

\biggr] 
\otimes Id,(5.16b)

M2
k =

\Biggl[ 
 - 1

2mf
1
2

1
2

1
2 (Lfh

2  - 2h)

\Biggr] 
\otimes Id,(5.16c)

M3
k =

\Biggl[ 
1
2h (\gamma 2f  - 1) 1

2

1
2  - h2

\Biggr] 
\otimes Id,(5.16d)

where \gamma f = max\{ | 1 - hLf | , | 1 - hmf | .
Strongly convex case. We first consider the selection ak \equiv 0 for strongly convex

settings. Then the LMI (5.16) simplifies to

\biggl[ 
pk+1 - pk  - hpk+1

 - hpk+1 h2pk+1

\biggr] 
+ \sigma k

\Biggl[ 
\gamma 2
f - 1

2h
1
2

1
2  - h2

\Biggr] 
\leq 0.

It can be verified that the above LMI is equivalent to the conditions

\sigma k/(2h) \leq pk/\gamma 2f , pk+1  - pk \leq \sigma k(1 - \gamma 2f )/(2h).

These two conditions together imply pk+1 \leq pk/\gamma 
2
f . Therefore, we can write pk =

\gamma  - 2k
f p0, p0 > 0. Using the bound (3.20), we can establish the bound

\| xk - x \star \| 22 \leq (max\{ | 1 - hLf | , | 1 - hmf | \} )2k \| x0 - x \star \| 22.

On the other hand, setting pk \equiv 0 in (5.16) yields the LMI

\left[ 
  
 - mf

2
(ak+1  - ak)

ak+1  - ak
2

ak+1  - ak
2

\biggl( 
Lfh

2

2
 - h

\biggr) 
ak+1

\right] 
  \preceq 0.

Omitting the details, we obtain from the above LMI that ak+1 \leq \rho  - 2ak and 0 \leq h \leq 
2/Lf , where \rho 2 = 1 +mf (Lfh

2  - 2h). Substituting ak in (3.17) yields the bound

F (xk) - F (x \star ) \leq (1 +mf (Lfh
2 - 2h))k(F (x0) - F (x \star )).
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In particular, the optimal decay rate is attained at h = 1/Lf and is equal to \rho =
1 - mf/Lf .

Convex case. When the differentiable component of the objective is convex (mf =
0), we select pk = p > 0, \sigma k = \sigma in (5.16) to arrive at the LMI

\left[ 
   

\sigma 

2h
(\gamma 2f  - 1)

1

2
(ak+1  - ak  - 2ph+ \sigma )

1

2
(ak+1  - ak  - 2ph+ \sigma )

\biggl( 
Lfh

2

2
 - h

\biggr) 
ak+1 + ph2  - \sigma h

2

\right] 
   \preceq 0.

To further simplify the LMI, we take \sigma = 0. Then the LMI enforces that

ak+1 = ak + 2ph, a0 \geq 0, (Lfh
2/2 - h)(ak+1) + ph2 \leq 0.

Solving for ak leads to

F (xk) - F (x \star ) \leq 
a0(F (x0) - F (x \star )) + p\| x0  - x \star \| 22

a0 + 2phk
.

In particular, if a0 = 0, then it must hold that 0 \leq h \leq 1/Lf , and we recover the
convergence result in [3, Theorem 3.1].

5.2.2. Accelerated proximal gradient method. Consider the proximal vari-
ant of Nesterov's accelerated method outlined in (5.7), for which the state-space ma-
trices are given in (5.9). Making use of Lemma 5.2, the matrices M i

k, i \in \{ 0, 1, 2, 3\} ,
read

M0
k =

\Biggl[ 
A\top 
k Pk+1Ak - Pk A\top 

k Pk+1Bk

B\top 
k Pk+1Ak B\top 

k Pk+1Bk

\Biggr] 
,(5.17)

M1
k =

\left[ 
  
 - 1

2mf\beta 
2
k

1
2mf\beta 

2
k  - 1

2\beta k
1
2mf\beta 

2
k  - 1

2mf\beta 
2
k

1
2\beta k

 - 1
2\beta k

1
2\beta k

1
2Lfh

2  - h

\right] 
  ,

M2
k =

\left[ 
  

 - 1
2mf\beta 

2
k

1
2mf\beta k(\beta k + 1)  - 1

2\beta k
1
2mf\beta k(\beta k + 1)  - 1

2mf (\beta k + 1)2 1
2 (\beta k + 1)

 - 1
2\beta k

1
2 (\beta k + 1) 1

2Lfh
2  - h

\right] 
  ,

M3
k =

\left[ 
 
 - \beta kId 0

(1 + \beta k)Id 0
0 Id

\right] 
 
\Biggl[ 

1
2h (\gamma 2f  - 1)Id

1
2Id

1
2Id  - h2 Id

\Biggr] \biggl[ 
 - \beta kId (1 + \beta k)Id 0

0 0 Id

\biggr] 
.

Observe that the matrices M0
k ,M

1
k , and M2

k are precisely the same as those of Nes-
terov's method without proximal operation. The only difference is in M3

k . As a result,
by setting \sigma k = 0 (the coefficient of M3

k ) in the LMI (3.7), the analysis of Nesterov's
accelerated method in section 4.1.2 immediately applies to the proximal variant [11].

Remark 4 (gradient methods with projection). For the case when g(x) = \BbbI \scrX (x)
is the indicator function of a nonempty, closed convex set \scrX \subset \BbbR d, the proximal
operator \Pi g,h reduces to projection onto \scrX . Due to projection, we must have xk \in \scrX 
for all k, implying g(xk) = 0. Therefore, the convergence result of Theorem 3.1 holds
for the suboptimality f(xk) - f(x \star ).
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6. Further topics. In this section, we consider further applications of the de-
veloped framework, namely, calculus of IQCs for various operators in optimization,
continuous-time models, and more importantly, algorithm design.

6.1. Calculus of IQCs. We now describe some operations on mappings from
an IQC perspective, namely, inversion, affine operations, and function composition.
These operations form a calculus that is useful for determining IQCs for commonly
used nonlinear operators in optimization algorithms, such as proximal operators, pro-
jection operators, reflection operators, etc., and their compositions.

It directly follows from the definition of pointwise IQCs in (3.21) that if \phi satisfies
multiple pointwise IQCs defined by (Q\phi ,i, x \star , \phi (x \star )), i = 1, 2, . . . , \ell , it also satisfies

the pointwise IQC defined by (
\sum \ell 
i=1\sigma iQ\phi ,i , x \star , \phi (x \star )), where \sigma i \geq 0, i = 1, 2, . . . , \ell .

Further, \phi also satisfies the IQC defined by (Q, x \star , \phi (x \star )) for any Q \succeq Q\phi . In the
next two lemmas, we study the effect of inversion and affine transformation on IQCs.

Lemma 6.1 (IQC for inversion). Consider an invertible map \phi : \BbbR d \rightarrow \BbbR d with
\phi  - 1(dom\phi ) \subseteq dom\phi satisfying the pointwise IQC defined by (Q\phi , x \star , \phi (x \star )). Then,
the inverse map \phi  - 1 : \BbbR d \rightarrow \BbbR d satisfies the pointwise IQC defined by (Q\phi  - 1 ,\phi (x \star ),x \star ),
where

Q\phi  - 1 =

\biggl[ 
0 Id
Id 0

\biggr] 
Q\phi 

\biggl[ 
0 Id
Id 0

\biggr] 
.(6.1)

Proof. By the substitution x\leftarrow \phi  - 1(x) in (3.21), we obtain

\biggl[ 
\phi  - 1(x) - \phi  - 1(x \star )

x - x \star 

\biggr] \top 
Q\phi 

\biggl[ 
\phi  - 1(x) - \phi  - 1(x \star )

x - x \star 

\biggr] 
\geq 0.(6.2)

Further, we have

\biggl[ 
\phi  - 1(x) - \phi  - 1(x \star )

x - x \star 

\biggr] 
=

\biggl[ 
0 Id
Id 0

\biggr] \biggl[ 
x - x \star 

\phi  - 1(x) - \phi  - 1(x \star )

\biggr] 
.(6.3)

Substituting (6.3) in (6.2) yields (6.1).

Lemma 6.2 (IQC for affine operations). Consider a map \phi : \BbbR d \rightarrow \BbbR d satisfy-
ing the pointwise IQC defined by (Q\phi , x \star , \phi (x \star )). Correspondingly, define the map
\psi (x) = S2x+ S1\phi (S0x) with S0(dom\phi ) \subseteq dom\phi , where S0, S1, S2 \in \BbbR d\times d, and S1 is
invertible. Then, \psi satisfies the pointwise IQC defined by (Q\psi , x \star , \psi (x \star )), where

Q\psi =

\biggl[ 
S\top 
0  - (S - 1

1 S2)\top 

0 S - 1
1

\biggr] 
Q\phi 

\biggl[ 
S0 0

 - S - 1
1 S2 (S - 1

1 )\top 

\biggr] 
.(6.4)

Proof. By the substitution x\leftarrow S0x in (3.21), we obtain

\biggl[ 
S0x - S0x \star 

\phi (S0x) - \phi (S0x \star )

\biggr] \top 
Q\phi 

\biggl[ 
S0x - S0x \star 

\phi (S0x) - \phi (S0x \star )

\biggr] 
\geq 0.(6.5)

Further, since \psi (x) = S2x+ S1\phi (S0x), we have

\biggl[ 
S0x - S0x \star 

\phi (S0x) - \phi (S0x \star )

\biggr] 
=

\biggl[ 
S0 0

 - S - 1
1 S2 S - 1

1

\biggr] \biggl[ 
x - x \star 

\psi (x) - \psi (x \star )

\biggr] 
.(6.6)

Substituting (6.6) in (6.5) yields (6.4).
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φ1(·) φ2(·)
yx z

Fig. 4. Cascade connection of two nonlinear mappings.

Finally, we study the composition of mappings. Specifically, consider the cascade
connection of two mappings \phi 1, \phi 2 : \BbbR d \rightarrow \BbbR d, i = 1, 2, as in Figure 4, where y =
\phi 1(x) and z = \phi 2(y). Further assume \phi 1 and \phi 2 satisfy pointwise IQCs defined by
(Q\phi 1

, x \star , y \star ) and (Q\phi 2
, y \star , z \star ), respectively. By definition, these mappings impose the

following quadratic constraints on the pairs (x, y) and (y, z):

\biggl[ 
x - x \star 
y  - y \star 

\biggr] \top 
Q\phi 1

\biggl[ 
x - x \star 
y  - y \star 

\biggr] 
\geq 0,

\biggl[ 
y  - y \star 
z  - z \star 

\biggr] \top 
Q\phi 2

\biggl[ 
y  - y \star 
z  - z \star 

\biggr] 
\geq 0.

These two constraints separately define a quadratic constraint on the triple (x, y, z),
which can be encapsulated in a single constraint, as follows:

\left[ 
 
x - x \star 
y  - y \star 
z  - z \star 

\right] 
 
\top 

Q\psi 

\left[ 
 
x - x \star 
y  - y \star 
z  - z \star 

\right] 
 \geq 0,(6.7a)

where Q\psi \in \BbbS 3d is given by

Q\psi =

\left[ 
 
Id 0
0 Id
0 0

\right] 
 \sigma 1Q\phi 1

\biggl[ 
Id 0 0
0 Id 0

\biggr] 
+

\left[ 
 

0 0
Id 0
0 Id

\right] 
 \sigma 2Q\phi 2

\biggl[ 
0 Id 0
0 0 Id

\biggr] 
,(6.7b)

with \sigma 1, \sigma 2 \geq 0. The quadratic constraint in (6.7a) follows by substituting (6.7b) into
(6.7a). In the language of IQCs, we say that the map \psi =[\phi \top 1 (\phi 2 \circ \phi 1)\top ]\top : \BbbR d \rightarrow \BbbR 2d

satisfies the pointwise IQC defined by (Q\psi , x \star , \psi (x \star )), where Q\psi is given by (6.7b).
We remark that the above treatment can be extended to multiple compositions.

Specifically, for \ell mappings in a cascade connection, the corresponding \ell individual
IQCs can be grouped into a single quadratic constraint on the concatenated vector of
the input-output signals.

6.1.1. Proximal operators. Recall the definition of proximal operator for f :
\BbbR d \rightarrow \BbbR \cup \{ +\infty \} :

\Pi f,h(x) = argminy\in \BbbR d

\biggl\{ 
f(y) +

1

2h
\| y  - x\| 22

\biggr\} 
.(6.8)

To characterize \Pi f,h from an IQC perspective, we note that for any given x \in 
dom f , a necessary condition for optimality in (6.8) is that

0 \in \partial f(\Pi g,h(x)) +
1

h
(\Pi f,h(x) - x) for all x \in dom f,(6.9)

which is an implicit equation on \Pi f,h(x). In the next proposition, we show how
to obtain a quadratic constraint for the proximal operator \Pi f,h from that of the
subgradient Tf by using the necessary optimality condition (6.9) that couples these
two operators.
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Proposition 6.3 (IQCs for proximal operators). Let f : \BbbR d \rightarrow \BbbR \cup \{ +\infty \} be
a closed proper function whose subgradient Tf satisfies the pointwise IQC defined by
(Qf , x \star , Tf (x \star )), where Tf (x \star ) \in \partial f(x \star ). Then, the proximal operator \Pi hf satisfies
the pointwise IQC defined by (Q\Pi hf

, x \star ,\Pi hf (x \star )), where

Q\Pi hf
=

\biggl[ 
0 h - 1Id
Id  - h - 1Id

\biggr] 
Qf

\biggl[ 
0 Id

h - 1Id  - h - 1Id

\biggr] 
.(6.10)

Proof. Suppose Tf (x) \in \partial f(x) (Tf (x) = \nabla f(x) when f is differentiable) satisfies
the pointwise IQC defined by (Qf , x \star , Tf (x \star )). By the substitutions x\leftarrow \Pi hf (x) and
x \star \leftarrow \Pi hf (x \star ) in (3.21), we obtain

\biggl[ 
\Pi hf (x) - \Pi hf (x \star )

Tf (\Pi hf (x)) - Tf (\Pi hf (x \star ))

\biggr] \top 
Qf

\biggl[ 
\Pi hf (x) - \Pi hf (x \star )

Tf (\Pi hf (x)) - Tf (\Pi hf (x \star ))

\biggr] 
\geq 0.(6.11)

On the other hand, by the optimality condition (6.9), we have Tf (\Pi hf (x)) = 1
h (x  - 

\Pi hf (x)). Substituting this into (6.11), we obtain

\Biggl[ 
\Pi hf (x) - \Pi hf (x \star )

1

h
(x - x \star ) - 

1

h
(\Pi hf (x) - \Pi hf (x \star ))

\Biggr] \top 

Qf

\Biggl[ 
\Pi hf (x) - \Pi hf (x \star )

1

h
(x - x \star ) - 

1

h
(\Pi hf (x) - \Pi hf (x \star ))

\Biggr] 
\geq 0.

(6.12)

Further, we can write

\Biggl[ 
\Pi hf (x) - \Pi hf (x \star )

1

h
(x - x \star ) - 

1

h
(\Pi hf (x) - \Pi hf (x \star ))

\Biggr] 
=

\Biggl[ 
0 Id

1

h
Id  - 1

h
Id

\Biggr] \biggl[ 
x - x \star 

\Pi hf (x) - \Pi hf (x \star )

\biggr] 
.

(6.13)

By substituting (6.13) in (6.12), we arrive at the desired inequality in (6.10).

Notice that by (6.9), we have that \Pi hf = (I + h\partial f) - 1. In other words, the
proximal operator is obtained by the operations \partial f \rightarrow I + h\partial f \rightarrow (I + h\partial f) - 1, i.e.,
an affine operation on \partial f followed by an inversion. Therefore, to obtain the IQC
of \Pi hf from that of \partial f , we can directly use Lemmas 6.1 and 6.2 to arrive at an
alternative derivation of (6.10).

6.1.2. IQCs for projection operators. The projection operator is the proxi-
mal operator \Pi hf for the particular selection f(x) = \BbbI \scrX (x), where \BbbI \scrX is the extended-
value indicator function of the nonempty closed convex set \scrX \subset \BbbR d onto which we
project. Since f is nondifferentiable and convex in this case, its subgradient operator
Tf satisfies the pointwise IQC defined by (Qf , x \star , Tf (x \star )), where Qf is given by (3.27)
with Lf = \infty . It then follows from Proposition 6.3 that the projection operator \Pi \scrX 
satisfies the IQC defined by (Q\Pi \scrX , x \star ,\Pi \scrX (x \star )), where

Q\Pi \scrX =

\left[ 
  

0
1

2
1

2
 - 1

\right] 
  \otimes Id.(6.14)

This IQC corresponds to the firm nonexpansiveness property of the projection oper-
ator [7], which implies the Lipschitz continuity of \Pi \scrX with Lipschitz parameter equal
to one.
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6.2. Beyond convexity. The convergence analysis of several algorithms does
not make full use of convexity. In other words, convexity is sufficient for convergence
of these algorithms. This has motivated the introduction of function classes that are
relaxations of convexity. In this subsection, we briefly discuss some of these classes
and how they can be related to the framework developed in this paper. Formally,
consider a continuously differentiable function f : \BbbR d \rightarrow \BbbR that satisfies the bounds

\biggl[ 
x - x \star 
\nabla f(x)

\biggr] \top 
R\prime 
f

\biggl[ 
x - x \star 
\nabla f(x)

\biggr] 
\leq f(x) - f(x \star ) \leq 

\biggl[ 
x - x \star 
\nabla f(x)

\biggr] \top 
Rf

\biggl[ 
x - x \star 
\nabla f(x)

\biggr] 
,(6.15)

where Rf , R
\prime 
f \in \BbbS 2d are symmetric matrices and x \star is such that \nabla f(x \star ) = 0. It

follows from (6.15) that

\biggl[ 
x - x \star 
\nabla f(x)

\biggr] \top 
(Rf  - R\prime 

f )

\biggl[ 
x - x \star 
\nabla f(x)

\biggr] 
\geq 0.(6.16)

Note that since \nabla f(x \star ) = 0, the above inequality implies that \nabla f satisfies the point-
wise IQC defined by (Rf  - R\prime 

f , x \star ,\nabla f(x \star )). Several function classes can be written
in the form (6.15), where Rf and R\prime 

f differ for each class. We give three examples
below.

6.2.1. (Strongly) convex functions. In section 3.2.2, we considered IQCs
for convex functions. Specifically, the quadratic inequality (3.26) is necessary and
sufficient for the inclusion f \in \scrF (mf , Lf ). An equivalent inequality involving function
values is [29]4

f(y) - f(x) - \nabla f(x)\top (y - x) \geq 1

2(Lf - mf )
\| \nabla f(y) - \nabla f(x)\| 22(6.17)

+
mfLf

2(Lf - mf )
\| y - x\| 22 - 

mf

Lf - mf
(\nabla f(y) - \nabla f(x))\top (y  - x).

If we restrict (6.17) to hold only for the particular selections (x, y) = (x \star , x) and
(x, y) = (x, x \star ), we obtain a new class of functions that can be put in the form (6.15)
with R\prime 

f , Rf given by

R\prime 
f =

\Biggl[ 
mfLf

2(Lf - mf )
 - mf

2(Lf - mf )
 - mf

2(Lf - mf )
1

2(Lf - mf )

\Biggr] 
\otimes Id, Rf =

\Biggl[  - mfLf

2(Lf - mf )
Lf

2(Lf - mf )
Lf

2(Lf - mf )
 - 1

2(Lf - mf )

\Biggr] 
\otimes Id.(6.18)

Using (6.16), we can conclude that

\biggl[ 
x - x \star 
\nabla f(x)

\biggr] \top \Biggl[ 
 - mfLf

mf+Lf
Id

1
2Id

1
2Id  - 1

mf+Lf
Id

\Biggr] \biggl[ 
x - x \star 
\nabla f(x)

\biggr] 
\geq 0.(6.19)

Note that this quadratic inequality is the same as that of convex functions but only
holds when reference point x \star in the definition of pointwise IQC satisfies \nabla f(x \star ) = 0.

4Note that by adding both sides of (6.17) to the inequality obtained by interchanging x and y
in (6.17), we obtain (3.26).
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6.2.2. Weakly smooth weakly quasi-convex functions. Suppose f is con-
tinuously differentiable and satisfies [13]

1

\Gamma f
\| \nabla f(x)\| 22 \leq f(x) - f(x \star ) \leq 

1

\tau f
\nabla f(x)\top (x - x \star ) for all x \in \scrS ,(6.20)

where x \star is a global minimum of f , and 0 < \tau f ,\Gamma f < \infty . These inequalities ensure
that any point with vanishing gradient is optimal [13], i.e., \nabla f(x \star ) = 0. The inequality
(6.20) can be put in the form (6.15), where R\prime 

f , Rf , and Qf are given by

R\prime 
f =

\biggl[ 
0 0
0 1

\Gamma f

\biggr] 
\otimes Id, Rf =

\Biggl[ 
0 1

2\tau f
1

2\tau f
0

\Biggr] 
\otimes Id, Qf =

\Biggl[ 
0 1

2\tau f
1

2\tau f
 - 1

\Gamma f

\Biggr] 
\otimes Id.(6.21)

6.2.3. Polyak--\Lojasiewicz (PL) condition. Suppose f is continuously dif-
ferentiable and satisfies

0 \leq f(x) - f(x \star ) \leq 
1

2mf
\| \nabla f(x)\| 22 for all x \in \scrS (6.22)

for some mf > 0. Again, this class can be put in the form (6.15).

6.3. Continuous-time models. There is a close connection between iterative
algorithms and discretization of ordinary differential equations (ODEs). In fact, many
iterative first-order optimization algorithms reduce to their ``generative"" ODEs by
time-scaling and infinitesimal stepsizes. In this subsection, we consider convergence
analysis of continuous-time models for solving the unconstrained problem in (4.1).
Specifically, consider the following continuous-time dynamical system in state-space
form:

\.\xi (t) = A(t)\xi (t) +B(t)u(t), y(t) = C(t)\xi (t), u(t) = \nabla f(y(t)) for all t \geq t0,(6.23)

where at each continuous time t \geq t0, \xi (t) \in \BbbR n is the state, y(t) \in \BbbR d is the
output (d \leq n), and u(t) = \nabla f(y(t)) is the feedback input. We assume (6.23)
solves (4.1) asymptotically from all admissible initial conditions; i.e., y(t) satisfies
limt\rightarrow \infty f(y(t)) = f(y \star ), where the optimal point y \star obeys \nabla f(y \star ) = 0. Therefore,
any fixed point of (6.23) satisfies

0 = A(t)\xi  \star , y \star = C(t)\xi  \star , u \star = \nabla f(y \star ) = 0 for all t \geq t0.(6.24)

We replicate the convergence analysis of discrete-time models using the Lyapunov
function

V (\xi (t), t) = a(t)(f(y(t)) - f(y \star )) + (\xi (t) - \xi  \star )\top P (t)(\xi (t) - \xi  \star ),(6.25)

where (\xi (t), y(t)) satisfies (6.23) and (\xi  \star , y \star ) satisfies (6.24). The Lyapunov function is
parameterized by P (t) \in \BbbS n+, and a(t) \geq 0. If a(t) and P (t) are such that \.V (\xi (t), t) \leq 
0, then we could guarantee that V (\xi (t), t) \leq V (\xi (t0), t0), which in turn implies

0 \leq f(y(t)) - f(y \star ) \leq V (\xi (t0), t0)/a(t) = \scrO (1/a(t)) for all t \geq t0.(6.26)

In other words, a(t) provides a lower bound on the convergence rate. Ideally, we are
interested in finding the best bound, which translates into the fastest growing a(t).
In the following theorem, we develop an LMI to find such an a(t).
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Theorem 6.4. Let f \in \scrF (mf , Lf ), and consider the continuous-time dynamics
in (6.23), whose fixed points satisfy (6.24). Suppose there exist a differentiable non-
decreasing a(t) : [t0,\infty )\rightarrow \BbbR +, a differentiable P (t) : [t0,\infty )\rightarrow \BbbS n+, and a continuous
\sigma (t) : [t0,\infty )\rightarrow \BbbR + that satisfy

M0(t) + a(t)M1(t) + \.a(t)M2(t) + \sigma (t)M3(t) \preceq 0 for all t \geq t0,(6.27)

where

M0(t) =

\biggl[ 
P (t)A(t)+A(t)\top P (t)+ \.P (t) P (t)B(t)

B(t)\top P (t) 0

\biggr] 
,

M1(t) =
1

2

\biggl[ 
0 (C(t)A(t) + \.C(t))\top 

C(t)A(t) + \.C(t) C(t)B(t) +B(t)\top C(t)\top 

\biggr] 
,

M2(t) =

\biggl[ 
C(t)\top 0

0 Id

\biggr] \Biggl[  - mf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
C(t) 0

0 Id

\biggr] 
,

M3(t) =

\biggl[ 
C(t)\top 0

0 Id

\biggr] \Biggl[  - mfLf

mf+Lf
Id

1
2Id

1
2Id  - 1

mf+Lf
Id

\Biggr] \biggl[ 
C(t) 0

0 Id

\biggr] 
.

Then, for any y(t0) \in dom f , the following inequality holds for all t \geq t0:

f(y(t)) - f(y \star ) \leq 
a(t0)(f(y(t0)) - f(y \star )) + (\xi (t0) - \xi  \star )\top P (t0)(\xi (t0) - \xi  \star )

a(t)
.(6.28)

Proof. It suffices to show that the LMI condition in (6.27) implies \.V (\xi (t), t) \leq 0.
The time derivative of the Lyapunov function (6.25) is

\.V = \.a(f(y) - f(y \star )) + a\nabla f(y)\top \.y+2(\xi  - \xi  \star )\top P \.\xi + (\xi  - \xi  \star )\top \.P (\xi  - \xi  \star ).(6.29)

We have dropped the arguments for notational simplicity. We proceed to bound all
the terms in the right-hand side of (6.29), using the assumption f \in \scrF (mf , Lf ). By
invoking (strong) convexity, we can write

f(y) - f(y \star ) \leq 
\biggl[ 

y  - y \star 
\nabla f(y) - \nabla f(y \star )

\biggr] \top \Biggl[ 
 - mf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
y  - y \star 

\nabla f(y) - \nabla f(y \star )

\biggr] 
(6.30)

=

\biggl[ 
\xi  - \xi  \star 
u - u \star 

\biggr] \top \biggl[ 
C 0
0 Id

\biggr] \top \Biggl[ 
 - mf

2 Id
1
2Id

1
2Id 0

\Biggr] \biggl[ 
C 0
0 Id

\biggr] \biggl[ 
\xi  - \xi  \star 
u - u \star 

\biggr] 

= e\top M2e,

where we have defined e =
\bigl[ 
(\xi  - \xi  \star )\top (u - u \star )\top 

\bigr] 
. Further, we can write

\nabla f(y)\top \.y = (u - u \star )\top (CA(\xi  - \xi  \star ) + CB(u - u \star ) + \.C(\xi  - \xi  \star ))(6.31)

=

\biggl[ 
\xi  - \xi  \star 
u - u \star 

\biggr] \top \Biggl[ 
0 1

2 (CA+ \.C)\top 

1
2 (CA+ \.C) 1

2 (CB +B\top C\top )

\Biggr] \biggl[ 
\xi  - \xi  \star 
u - u \star 

\biggr] 

= e\top M1e,

where we have used (6.23) and (6.24). Similarly, we can write

2(\xi  - \xi  \star )\top P \.\xi =

\biggl[ 
\xi  - \xi  \star 
u - u \star 

\biggr] \top \biggl[ 
PA+A\top P PB
B\top P\top 0

\biggr] \biggl[ 
\xi  - \xi  \star 
u - u \star 

\biggr] 
= e\top M0e.(6.32)
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Finally, since f \in \scrF (mf , Lf ), \nabla f satisfies the quadratic constraint in (3.27). There-
fore, we can write

e\top M3e =

\biggl[ 
\xi  - \xi  \star 
u - u \star 

\biggr] \top \biggl[ 
C 0
0 Id

\biggr] \top \Biggl[ 
 - mfLf

mf+Lf
Id

1
2Id

1
2Id  - 1

mf+Lf
Id

\Biggr] \biggl[ 
C 0
0 Id

\biggr] \biggl[ 
\xi  - \xi  \star 
u - u \star 

\biggr] 
(6.33)

=

\biggl[ 
y  - y \star 
u - u \star 

\biggr] \top \Biggl[ 
 - mfLf

mf+Lf
Id

1
2Id

1
2Id  - 1

mf+Lf
Id

\Biggr] \biggl[ 
y  - y \star 
u - u \star 

\biggr] 
\geq 0.

By substituting (6.30)--(6.32) in (6.29) and rearranging terms, we can write

\.V \leq e\top (M0 + aM1 + \.aM2) e.(6.34)

The LMI in (6.27) implies

M0 + aM1 + \.aM2 \preceq  - \sigma M3.(6.35)

Multiplying (6.35) on the left and right by e\top and e, respectively, and substituting
the result back into (6.34) yields

\.V \leq  - \sigma e\top M3e \leq 0,

where the second inequality follows from (6.33). The proof is now complete.

According to Theorem 6.4, we can find the rate generating function a(t) by solving
the LMI in (6.27). More precisely, this LMI defines a first-order differential inequality
on a(t) whose solutions certify an \scrO (1/a(t)) convergence rate. The best lower bound
on the convergence rate (i.e., the fastest growing a(t)) can be found by solving the
following symbolic optimization problem:

maximize
\.a(t)\geq 0,\sigma (t)\geq 0

\.a(t) subject to \.a(t)M0(t) + a(t)M1(t) +M2(t) + \sigma (t)M3(t) \preceq 0.(6.36)

The optimality condition for (6.36) translates into a first-order ODE on a(t). The so-
lution to this ODE yields the best rate bound that can be certified using the Lyapunov
function (6.25). In the following, we specialize the model in (6.23) to the particular
case of the gradient flow (section 6.3.1) and its accelerated variant (section 6.3.2),
where we will use Theorem 6.4 to derive the corresponding convergence rates.

6.3.1. Continuous-time gradient flow. Consider the following ODE for solv-
ing (4.1):

\.x(t) =  - \alpha \nabla f(x(t)), x(0) \in dom f,(6.37)

where \alpha > 0. This ODE can be represented in the form (6.23) with n = d, and
(A,B,C) = (0d, - \alpha Id, Id). By selecting P (t) = pId, p \geq 0, and applying the dimen-
sionality reduction outlined in Remark 2, we obtain the following LMI:

\Biggl[ 
 - mf

2
\.a(t) 1

2 \.a(t) - p\alpha 
1
2 \.a(t) - p\alpha  - \alpha a(t)

\Biggr] 
+ \sigma (t)

\Biggl[  - mfLf

mf+Lf

1
2

1
2

 - 1
mf+Lf

\Biggr] 
\preceq 0.(6.38)

By elementary calculations, it can be verified that the solution to the corresponding
optimization problem in (6.36) is \sigma (t) = 0, and \.a(t) = 2p+mf\alpha a(t) + ((mf\alpha a(t))2 +
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2pmf\alpha a(t))1/2. Setting p = 0 and solving the latter ODE with initial condition
a(0) > 0 yields a(t) = a(0) exp(2mf\alpha t). Therefore, the gradient flow (6.37) exhibits
the following convergence rate for strongly convex f :

f(x(t)) - f(x \star ) \leq e - 2mf\alpha t(f(x(0)) - f(x \star )).

Now we consider convex functions (mf = 0) for which the LMI reduces to
\left[ 
   

0 1
2 \.a(t) - p\alpha +

\sigma (t)

2
1

2
\.a(t) - p\alpha +

\sigma (t)

2
 - \alpha a(t) - \sigma (t)

Lf

\right] 
   \leq 0.

This LMI condition is equivalent to the condition \.a(t) \leq 2p\alpha  - \sigma (t). Therefore, by
setting \sigma (t) = 0, we obtain the optimal (fastest growing) a(t), which satisfies the ODE
\.a(t) = 2p\alpha . Solving this ODE with the initial condition a(0) \geq 0, we obtain the rate
bound

f(x(t)) - f(x \star ) \leq 
a(0)(f(x(0)) - f(x \star )) + p\| x(0) - x \star \| 22

a(0) + 2p\alpha t
.

6.3.2. Continuous-time accelerated gradient flow. As a second case study,
we consider the following second-order ODE for solving (4.1):

\"x(t) +
r

t
\.x(t) +\nabla f(x(t)) = 0, r > 0.(6.39)

This ODE is the continuous-time limit of Nesterov's accelerated scheme combined
with an appropriate time-scaling [27]. The ODE (6.39) and its variants have been
investigated extensively in the literature [1, 5, 2]. A state-space representation of
(6.39) is given by

\.\xi (t) =

\left[ 
  - 

r  - 1

t
Id

r  - 1

t
Id

0 0

\right] 
 \xi (t) +

\left[ 
 

0

 - t

r  - 1
Id

\right] 
 \nabla f(y(t)),(6.40)

y(t) =
\bigl[ 
Id 0

\bigr] 
\xi (t),

where \xi 1 = x, \xi 2 = x + t/(r  - 1) \.x are the states, \xi = [\xi \top 1 \xi \top 2 ]\top \in \BbbR 2d is the
state vector, and y = \xi 1 is the output. The fixed points of (6.40) are (\xi  \star , y \star , u \star ) =
([x\top  \star x\top  \star ]\top , x \star , 0), where x \star \in \scrX  \star is any optimal solution satisfying \nabla f(x \star ) = 0.

We now analyze the convergence rate of (6.40) for convex functions (mf = 0).

By selecting P (t) = \^PId, where \^P \in \BbbS 2++ is time-invariant, and applying the dimen-
sionality reduction of Remark 2, we arrive at the 3\times 3 LMI

\left[ 
   

 - 2(r - 1)p11
t

(r - 1)(p11 - p21)
t

\.a(t)+\sigma 
2  - (r - 1)a(t)

2t  - tp12
r - 1

(r - 1)(p11 - p21)
t

2(r - 1)p21
t

(r - 1)a(t)
2t  - tp22

r - 1

\.a(t)+\sigma 
2  - (r - 1)a(t)

2t  - tp12
r - 1

(r - 1)a(t)
2t  - tp22

r - 1  - \.a(t)
2Lf
 - \sigma 

Lf

\right] 
   \preceq 0,

where \^P = [pij ]. A simple analytic solution to the above LMI can be obtained by
choosing p11 = p12 = p21 = 0. With this particular choice, the LMI simplifies to the
conditions

\.a(t) + \sigma (t)

2
 - (r  - 1)a(t)

2t
= 0, p22 =

\biggl( 
r  - 1

t

\biggr) 2
a(t)

2
.(6.41)
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Using the assumption that p22 is constant, together with the condition \sigma (t) \geq 0, the
above conditions are equivalent to a(t) = ct and p22 = c(r  - 1)2/2, where c > 0 and
r \geq 0. Using Theorem 6.4, we obtain the convergence rate

f(x(t)) - f(x \star ) \leq 
(r  - 1)2\| x(0) - x \star \| 22

2t2
, r \geq 3.

This convergence result agrees with [27, Theorem 5]. More generally, by allowing the
matrix P (t) to be time-dependent, the LMI (6.27) can be used to directly answer the
following question: How does the convergence rate of the accelerated gradient flow
change with the parameter r?

6.4. Algorithm design. In this subsection, we briefly explore algorithm tuning
and design using the developed LMI framework. In particular, we consider robustness
as a design criterion. It has been shown in [9, 19, 8] that there is a trade-off between an
algorithm's rate of convergence and its robustness against inexact information about
the oracle. In particular, fast methods such as Nesterov's accelerated method require
first-order information with higher accuracy than standard gradient methods to obtain
a solution with a given accuracy [9]. To explain this trade-off in our framework, we
recall the proof of Theorem 3.1, in which we showed that the LMI

M0
k + akM

1
k + (ak+1  - ak)M2

k + \sigma kM
3
k \preceq 0 for all k(6.42)

ensures that the Lyapunov function satisfies

Vk(\xi k+1) \leq V (\xi k) - \sigma ke\top kM3
kek for all k.(6.43)

In view of (6.43), the nonnegative term \sigma ke
\top 
kM

3
kek provides an additional stability

margin and hence makes the algorithm robust against uncertainties in the algorithm
or underlying assumptions (for instance, the value of mf or Lf ). Based on this
observation, we propose the LMI

M0
k + akM

1
k + (ak+1  - ak)M2

k + \sigma kM
3
k + Sk \preceq 0 for all k,(6.44)

where Sk is any symmetric matrix that satisfies e\top k Skek \geq 0 for all k. In particular,
any Sk \succeq 0 is a valid choice. By revisiting the proof of Theorem 3.1, we see that the
feasibility of the above LMI imposes the stricter condition

Vk+1(\xi k+1) \leq Vk(\xi k) - e\top k (\sigma kM
3
k + Sk)ek, e\top k Skek \geq 0,(6.45)

on the decrement of the Lyapunov function. The LMI in (6.44) is the robust counter-
part of (3.7). Now we can use (6.44) to search for the parameters of the algorithm,
considering Sk as a tuning parameter that makes the trade-off between robustness
and rate of convergence.

6.4.1. Robust gradient method. As an illustrative example, consider the gra-
dient method applied to f \in \scrF (mf , Lf ). Consider the robust counterpart of the LMI
in (4.14):

\biggl[ 
p - \rho 2p  - hp
 - hp h2p

\biggr] 
+ \lambda 

\Biggl[  - mfLf

mf+Lf

1
2

1
2

 - 1
mf+Lf

\Biggr] 
+

\biggl[ 
0 0
0 s

\biggr] 
\preceq 0, s \geq 0.(6.46)D
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This LMI is homogeneous in (p, \lambda , s). We can hence assume p = 1. Using the Schur
complement, the above LMI is equivalent to

\left[ 
  
 - \rho 2  - \lambda mfLf

mf+Lf

\lambda 
2 1

\lambda 
2  - \lambda 

mf+Lf
+ s  - h

1  - h  - 1

\right] 
  \preceq 0,(6.47)

which is now an LMI in (\rho 2, \lambda , h, s). By treating s as a tuning parameter for robustness
and minimizing the convergence factor \rho 2 over (\lambda , h), we can design stepsizes that yield
the best convergence rate for a given level of robustness. Conversely, by treating \rho 2

as a tuning parameter and maximizing s over (\lambda , h), we can design stepsizes which
yield the largest robustness margin for a desired convergence rate.

6.4.2. Robust Nesterov's accelerated method. As our design experiment,
we consider Nesterov's accelerated method applied to a strongly convex f :

xk+1 = yk  - h\nabla f(yk),(6.48)

yk = xk + \beta (xk  - xk - 1).

Specifically, we consider the robust version of the LMI in (3.16), where the matrices
M i
k, i \in \{ 0, 1, 2, 3\} , are given as in (4.20), and the robustness matrix is chosen as

sI3, s \geq 0. For a given condition number \kappa f =
Lf

mf
and robustness margin s, we use

the LMI to compute the convergence factor \rho on the grid (h, \beta ) \in [0 2
Lf

]\times [0 1]. See

subsection 4.2.
In Figure 5, we plot the contour plots of \rho for s = 0 and s = 0.01, respectively.

The condition number is fixed at Lf/mf = 10. We observe that when s is nonzero,
the parameters of the robust algorithm shift towards smaller stepsizes and higher
momentum coefficients, leading to higher robustness and lower convergence rates.

7. Concluding remarks. In this paper, we have developed a linear matrix
inequality (LMI) framework, built on the notion of integral quadratic constraints
(IQCs) from robust control theory and Lyapunov stability, to certify both exponential
and subexponential convergence rates of first-order optimization algorithms. To this
end, we proposed a class of time-varying Lyapunov functions that are suitable for
generating nonconservative convergence rates in addition to proving stability. We
showed that the developed LMI can often be solved in closed form. In particular,
we applied the technique to the gradient method, the proximal gradient method, and
their accelerated extensions to recover the known analytical upper bounds on their
performance. Furthermore, we showed that numerical schemes can also be used to
solve the LMI.

In this paper, we have only used pointwise IQCs to model nonlinearities. More
complicated IQCs, such as ``off-by-one"" IQCs, have shown to be fruitful in improving
numerical rate bounds in strongly convex settings [19]. One direction for future work
would be to use these IQCs in tandem with the Lyapunov function proposed in this
paper to further improve the numerical bounds in nonstrongly convex problems. Ob-
taining better worst-case bounds is useful in a variety of applications, such as model
predictive control (MPC). MPC is a sequential optimization-based control scheme,
which is particularly useful for constrained and nonlinear control tasks. Implementa-
tion of MPC requires the solution of a constrained optimization problem in real time
within the sampling period to a specific accuracy determined from stability consider-
ations [26]. It is thus important to bound a priori, in a nonconservative manner, the
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Fig. 5. Plot of convergence rate \rho of Nesterov's accelerated method as a function of stepsize h
and momentum parameter \beta , and for two values of the robustness parameter s. Higher values of s
increase the robustness of the algorithm at the expense of reduced convergence rate.

number of iterations needed for a specified accuracy. Improving the numerical rate
bounds will allow us to optimize this bound for every problem instance. More gen-
erally, having a nonconservative estimation of convergence rate allows us to compare
different algorithms, which must be done by extensive simulations otherwise. We will
pursue these applications in future work.

Appendix A. Symbolic convergence rates for the gradient method. The
LMI in (4.15) with p = 1 along with the condition ak+1 \geq ak is equivalent to the
inequalities

ak+1 \geq ak,(A.1)
\biggl( 
Lfh

2

2
 - h

\biggr) 
ak+1 + h2  - \sigma 

Lf
\leq 0,(A.2)

 - 
\Bigl( ak+1  - ak  - 2h+ \sigma 

2

\Bigr) 2

\geq 0.(A.3)
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The last inequality implies ak+1 = ak + 2h - \sigma . Assuming a0 = 0 and solving for ak,
we obtain ak = (2h - \sigma )k. Therefore, the fastest convergence rate corresponds to the
smallest \sigma . By substituting ak in (A.1) and (A.2), we obtain

2h - \sigma \geq 0,

\biggl( 
Lfh

2

2
 - h

\biggr) 
(2h - \sigma )(k + 1) + h2  - \sigma 

Lf
\leq 0.(A.4)

Since the second inequality must hold for all k \geq 0, we must have that Lfh
2/2 - h \leq 0

or, equivalently, 0 \leq h \leq 2/Lf . Under this condition, it suffices to ensure that the
second inequality in (A.4) holds for k = 0. This leads to

max

\biggl( 
0,

(Lfh)(Lfh - 1)(2h)

(Lfh)2  - 2(Lfh) + 2

\biggr) 
\leq \sigma \leq 2h.(A.5)

Therefore, the optimal (minimum) \sigma is

\sigma opt =

\left\{ 
 
 

0 if 0 \leq hLf \leq 1,
(Lfh)(Lfh - 1)(2h)

(Lfh)2  - 2(Lfh) + 2
if 1 < hLf \leq 2.

(A.6)

By substituting all the parameters in (3.4), we obtain

f(xk) - f(x \star ) \leq 
\| x0  - x \star \| 22

(2h - \sigma opt)k
,(A.7)

which is the same as (4.16).

Appendix B. Proof of Proposition 5.1.
Proof of part 1. Since g is nondifferentiable and convex, it follows from the

discussion in sections 6.1.1 and 6.1.2 that \Pi g,h is firmly nonexpansive and hence
Lipschitz continuous with Lipschitz parameter equal to one. Further, it is well known
that the map x \mapsto \rightarrow x  - h\nabla f(x) is Lipschitz continuous with Lipschitz constant \gamma f =
max\{ | 1 - hLf | , | 1 - hmf | \} ; see, for example, [4] for a proof. Therefore, the composition
\Pi g,h(x - h\nabla f(x)) is Lipschitz continuous with parameter \gamma f . In other words, we can
write

\| \Pi g,h(x - h\nabla f(x)) - \Pi g,h(x \star  - h\nabla f(x \star ))\| 22 \leq \gamma 2f\| x - x \star \| 22.

Making the substitution \Pi g,h(x - h\nabla f(x)) = x - h\phi h(x), completing the squares, and
rearranging terms yield

\biggl[ 
x - x \star 

\phi h(x) - \phi h(x \star )

\biggr] \top 
\left[ 
  

1

2h
(\gamma 2f  - 1)Id

1

2
Id

1

2
Id  - h

2
Id

\right] 
  
\biggl[ 

x - x \star 
\phi h(x) - \phi h(x \star )

\biggr] 
\geq 0.

Proof of part 2. First, note that the optimality condition of the proximal operator,
defined in (5.3), is

0 \in \partial g(\Pi g,h(w)) +
1

h
(\Pi g,h(w) - w)

or, equivalently,

0 = Tg(\Pi g,h(w)) +
1

h
(\Pi g,h(w) - w), Tg \in \partial g,(B.1)
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where Tg(w) denotes a subgradient of g at w. On the other hand, by the definition
of the generalized gradient mapping in (5.4), we have that

\Pi g,h(y  - h\nabla f(y)) = y  - h\phi h(y).(B.2)

Substituting (B.2) and w = y  - h\nabla f(y) in (B.1), we can equivalently write \phi h(y) as

\phi h(y) = \nabla f(y) + Tg(y  - h\phi h(y)).(B.3)

Consider the points x, y, z \in dom f . We can write

f(z) - f(y) \leq \nabla f(y)\top (z - y)+
Lf
2
\| z - y\| 22,

f(y) - f(x) \leq \nabla f(y)\top (y - x) - mf

2
\| y - x\| 22.

In the first and second inequality, we have used Lipschitz continuity and strong con-
vexity, respectively. Adding both sides yields

f(z) - f(x)\leq \nabla f(y)\top (z - x) +
Lf
2
\| z - y\| 22 - 

mf

2
\| y - x\| 22.(B.4)

Further, since g is convex, we can write

g(z) - g(x) \leq Tg(z)\top (z  - x), Tg(z) \in \partial g(z), x, z \in dom g.(B.5)

Adding both sides of (B.4) and (B.5) for all x, z \in dom f \cap dom g, y \in dom f and
making the substitutions z = y  - h\phi h(y) and (B.3) yield (5.6).

Proof of part 3. Suppose \phi h(y) = 0 for some y \in dom\phi h. It then follows from
(B.3) that 0 = \nabla f(y) + Tg(y) or, equivalently, 0 \in \nabla f(y) + \partial g(y). This implies
that y \in \scrX  \star , according to (5.2). Conversely, suppose y \in \scrX  \star . We therefore have
\nabla f(y) =  - Tg(y). Substituting this in (B.3) yields \phi h(y) = Tg(y  - h\phi h(y))  - Tg(y).
Since Tg is monotone, we can write

0 \leq (Tg(y  - h\phi h(y)) - Tg(y))\top (y  - h\phi h(y) - y) =  - h\| \phi h(y)\| 22 for all h.

Therefore, we must have that \phi h(y) = 0. The proof is now complete.

Appendix C. Proof of Lemma 5.2. In order to bound F (xk+1) - F (xk) and
F (xk+1) - F (x \star ), we use the inequality

F (y - h\phi h(y)) - F (x) \leq \phi h(y)\top (y - x) - mf

2
\| y - x\| 22 +

\biggl( 
1

2
Lfh

2 - h
\biggr) 
\| \phi h(y)\| 22,(C.1)

which we proved in Proposition 5.1. Specifically, we substitute (x, y) = (x \star , yk) in
(C.1) to get

F (xk+1) - F (x \star ) \leq (uk  - u \star )\top (yk - y \star )+

\biggl( 
Lfh

2

2
 - h

\biggr) 
\| uk  - u \star \| 22 - 

mf

2
\| yk - y \star \| 22

=

\biggl[ 
yk  - y \star 
uk  - u \star 

\biggr] \top \Biggl[ 
 - mf

2
1
2

1
2 ( 1

2Lfh
2 - h)

\Biggr] \biggl[ 
yk  - y \star 
uk  - u \star 

\biggr] 

=

\biggl[ 
\xi k  - \xi  \star 
uk  - u \star 

\biggr] \top \biggl[ 
Ck 0
0 Id

\biggr] \top \Biggl[ 
 - mf

2
1
2

1
2 ( 1

2Lfh
2 - h)

\Biggr] \biggl[ 
Ck 0
0 Id

\biggr] \biggl[ 
\xi k  - \xi  \star 
uk  - u \star 

\biggr] 

= e\top kM
2
kek,
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where we have used the identities u \star = \phi h(y \star ) = 0 and yk  - y \star = Ck(\xi k  - \xi  \star ).
Similarly, in (C.1) we substitute (x, y) = (xk, yk) to obtain

F (xk+1) - F (xk) \leq (uk  - u \star )\top (yk  - xk)+

\biggl( 
1

2
Lfh

2 - h
\biggr) 
\| uk - u \star \| 22 - 

mf

2
\| yk - xk\| 22

(C.2)

=

\biggl[ 
yk  - xk
uk  - u \star 

\biggr] \top \Biggl[ 
 - mf

2
1
2

1
2 ( 1

2Lfh
2 - h)

\Biggr] \biggl[ 
yk  - xk
uk  - u \star 

\biggr] 

=

\biggl[ 
\xi k  - \xi  \star 
uk  - u \star 

\biggr] \top \biggl[ 
Ck - Ek 0

0 Id

\biggr] \top \Biggl[ 
 - mf

2
1
2

1
2 ( 1

2Lfh
2 - h)

\Biggr] \biggl[ 
Ck - Ek 0

0 Id

\biggr] \biggl[ 
\xi k  - \xi  \star 
uk  - u \star 

\biggr] 

= e\top kM
1
kek,

where we have used x \star = y \star and yk  - xk = (Ck  - Ek)(\xi k  - \xi  \star ) to obtain the second
equality. Finally, by Proposition 5.1 uk = \phi h(yk) satisfies the pointwise IQC defined
by (Q\phi h

, x \star , \phi h(x \star )). Therefore, we can write

e\top kM
3
kek =

\biggl[ 
\xi k  - \xi  \star 
uk  - u \star 

\biggr] \top \biggl[ 
Ck 0
0 Id

\biggr] \top 
Q\phi h

\biggl[ 
Ck 0
0 Id

\biggr] \biggl[ 
\xi k  - \xi  \star 
uk  - u \star 

\biggr] 
(C.3)

=

\biggl[ 
yk  - y \star 
uk  - u \star 

\biggr] \top 
Q\phi h

\biggl[ 
yk  - y \star 
uk  - u \star 

\biggr] 

\geq 0,

where we have used the identity yk - y \star = Ck(\xi k - \xi  \star ) to obtain the second inequality.
The proof is complete.

REFERENCES

[1] F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert
spaces, SIAM J. Control Optim., 38 (2000), pp. 1102--1119, https://doi.org/10.1137/
S0363012998335802.

[2] H. Attouch, J. Peypouquet, and P. Redont, Fast convex optimization via inertial dynamics
with Hessian driven damping, J. Differential Equations, 261 (2016), pp. 5734--5783, https:
//doi.org/10.1016/j.jde.2016.08.020.

[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci., 2 (2009), pp. 183--202, https://doi.org/10.1137/080716542.

[4] D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, 2015.
[5] A. Cabot, H. Engler, and S. Gadat, On the long time behavior of second order differential

equations with asymptotically small dissipation, Trans. Amer. Math. Soc., 361 (2009),
pp. 5983--6017, https://doi.org/10.1090/S0002-9947-09-04785-0.

[6] A. Cherukuri, E. Mallada, S. Low, and J. Cort\'es, The role of convexity in saddle-point
dynamics: Lyapunov function and robustness, IEEE Trans. Automat. Control, 63 (2018),
pp. 2449--2464, https://doi.org/10.1109/TAC.2017.2778689.

[7] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, 2011,
pp. 185--212, https://doi.org/10.1007/978-1-4419-9569-8 10.

[8] S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard, A robust accelerated optimization algorithm
for strongly convex functions, in Proceedings of the 2018 Annual American Control Con-
ference (ACC), IEEE, 2018, pp. 1376--1381, https://doi.org/10.23919/ACC.2018.8430824.

[9] O. Devolder, F. Glineur, and Y. Nesterov, First-order methods of smooth convex opti-
mization with inexact oracle, Math. Programming, 146 (2014), pp. 37--75, https://doi.org/
10.1007/s10107-013-0677-5.

[10] Y. Drori and M. Teboulle, Performance of first-order methods for smooth convex min-
imization: A novel approach, Math. Programming, 145 (2014), pp. 451--482, https:
//doi.org/10.1007/s10107-013-0653-0.

[11] M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado, A dynamical systems perspective
to convergence rate analysis of proximal algorithms, in Proceedings of the 55th Annual

D
ow

nl
oa

de
d 

05
/0

1/
20

 to
 1

65
.1

23
.2

24
.1

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/S0363012998335802
https://doi.org/10.1137/S0363012998335802
https://doi.org/10.1016/j.jde.2016.08.020
https://doi.org/10.1016/j.jde.2016.08.020
https://doi.org/10.1137/080716542
https://doi.org/10.1090/S0002-9947-09-04785-0
https://doi.org/10.1109/TAC.2017.2778689
https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.23919/ACC.2018.8430824
https://doi.org/10.1007/s10107-013-0677-5
https://doi.org/10.1007/s10107-013-0677-5
https://doi.org/10.1007/s10107-013-0653-0
https://doi.org/10.1007/s10107-013-0653-0


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 2689

Allerton Conference on Communication, Control, and Computing, IEEE, 2017, pp. 354--
360, https://doi.org/10.1109/ALLERTON.2017.8262759.

[12] D. Feijer and F. Paganini, Stability of primal--dual gradient dynamics and applications to
network optimization, Automatica, 46 (2010), pp. 1974--1981, https://doi.org/10.1016/j.
automatica.2010.08.011.

[13] M. Hardt, T. Ma, and B. Recht, Gradient Descent Learns Linear Dynamical Systems,
preprint, https://arxiv.org/abs/1609.05191, 2016.

[14] E. Hazan, K. Levy, and S. Shalev-Shwartz, Beyond convexity: Stochastic quasi-convex opti-
mization, in Advances in Neural Information Processing Systems, NIPS Proc. 28, C. Cortes
et al., eds., Neural Information Processing Systems Foundation, Inc., 2015, pp. 1594--1602.

[15] B. Hu and L. Lessard, Control interpretations for first-order optimization methods, in Pro-
ceedings of the 2017 American Control Conference, IEEE, 2017, pp. 3114--3119, https:
//doi.org/10.23919/ACC.2017.7963426.

[16] B. Hu and L. Lessard, Dissipativity theory for Nesterov's accelerated method, in Proceedings
of the Thirty-Fourth International Conference on Machine Learning, Proc. Mach. Learn.
Res. 70, International Machine Learning Society (IMLS), 2017, pp. 1549--1557.

[17] H. Karimi, J. Nutini, and M. Schmidt, Linear convergence of gradient and proximal-gradient
methods under the Polyak-\Lojasiewicz condition, in Proceedings of the Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2016,
pp. 795--811, https://doi.org/10.1007/978-3-319-46128-1 50.

[18] D. Kim and J. A. Fessler, Optimized first-order methods for smooth convex minimization,
Math. Programming, 159 (2016), pp. 81--107, https://doi.org/10.1007/s10107-015-0949-3.

[19] L. Lessard, B. Recht, and A. Packard, Analysis and design of optimization algorithms via
integral quadratic constraints, SIAM J. Optim., 26 (2016), pp. 57--95, https://doi.org/10.
1137/15M1009597.

[20] A. Megretski and A. Rantzer, System analysis via integral quadratic constraints, IEEE
Trans. Automat. Control, 42 (1997), pp. 819--830, http://doi.org/10.1109/9.587335.

[21] I. Necoara, Yu. Nesterov, and F. Glineur, Linear convergence of first order methods for
non-strongly convex optimization, Math. Program., 2018, pp. 1--39, https://doi.org/10.
1007/s10107-018-1232-1.

[22] Y. Nesterov, A method of solving a convex programming problem with convergence rate o
(1/k2), Soviet Math. Dokl., 27 (1983), pp. 372--376.

[23] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Appl. Optim.
87, Kluwer Academic Publishers, 2013.

[24] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan, A General Analysis
of the Convergence of ADMM, preprint, https://arxiv.org/abs/1502.02009, 2015.

[25] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput.
Math. Math. Phys., 4 (1964), pp. 1--17, https://doi.org/10.1016/0041-5553(64)90137-5.

[26] S. Richter, C. N. Jones, and M. Morari, Computational complexity certification for real-
time MPC with input constraints based on the fast gradient method, IEEE Trans. Automat.
Control, 57 (2012), pp. 1391--1403, https://doi.org/10.1109/TAC.2011.2176389.

[27] W. Su, S. Boyd, and E. J. Cand\`es, A differential equation for modeling Nesterov's accelerated
gradient method: Theory and insights, J. Mach. Learn. Res., 17 (2016), pp. 1--43.

[28] A. B. Taylor, J. M. Hendrickx, and F. Glineur, Exact Worst-Case Convergence Rates
of the Proximal Gradient Method for Composite Convex Minimization, J. Optim. Theory
Appl., 178 (2018), pp. 455-476, https://doi.org/10.1007/s10957-018-1298-1.

[29] A. B. Taylor, J. M. Hendrickx, and F. Glineur, Smooth strongly convex interpolation
and exact worst-case performance of first-order methods, Math. Programming, 161 (2017),
pp. 307--345, https://doi.org/10.1007/s1010.

[30] J. Wang and N. Elia, Control approach to distributed optimization, in Proceedings of the
48th Annual Allerton Conference on Communication, Control, and Computing, IEEE,
2010, pp. 557--561, https://doi.org/10.1109/ALLERTON.2010.5706956.

[31] J. Wang and N. Elia, A control perspective for centralized and distributed convex optimization,
in Proceedings of the 50th IEEE Conference on Decision and Control and European Control
Conference, IEEE, 2011, pp. 3800--3805, https://doi.org/10.1109/CDC.2011.6161503.

[32] A. Wibisono, A. C. Wilson, and M. I. Jordan, A variational perspective on accelerated
methods in optimization, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. E7351--E7358, https:
//doi.org/10.1073/pnas.1614734113.

[33] A. C. Wilson, B. Recht, and M. I. Jordan, A Lyapunov Analysis of Momentum Methods
in Optimization, preprint, https://arxiv.org/abs/1611.02635, 2016.

[34] V. Yakubovich, Frequency conditions for the absolute stability of control systems with several
nonlinear or linear nonstationary blocks, Avtomat. i Telemekh., 6 (1967), pp. 5--30 (in
Russian).

D
ow

nl
oa

de
d 

05
/0

1/
20

 to
 1

65
.1

23
.2

24
.1

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1109/ALLERTON.2017.8262759
https://doi.org/10.1016/j.automatica.2010.08.011
https://doi.org/10.1016/j.automatica.2010.08.011
https://arxiv.org/abs/1609.05191
https://doi.org/10.23919/ACC.2017.7963426
https://doi.org/10.23919/ACC.2017.7963426
https://doi.org/10.1007/978-3-319-46128-1_50
https://doi.org/10.1007/s10107-015-0949-3
https://doi.org/10.1137/15M1009597
https://doi.org/10.1137/15M1009597
http://doi.org/10.1109/9.587335
https://doi.org/10.1007/s10107-018-1232-1
https://doi.org/10.1007/s10107-018-1232-1
https://arxiv.org/abs/1502.02009
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1109/TAC.2011.2176389
https://doi.org/10.1007/s10957-018-1298-1
https://doi.org/10.1007/s1010
https://doi.org/10.1109/ALLERTON.2010.5706956
https://doi.org/10.1109/CDC.2011.6161503
https://doi.org/10.1073/pnas.1614734113
https://doi.org/10.1073/pnas.1614734113
https://arxiv.org/abs/1611.02635

	Introduction
	Related work
	Notation and preliminaries

	Algorithm representation
	Main results
	Time-invariant algorithms with exponential convergence
	IQCs for optimization algorithms
	Pointwise IQCs
	IQCs for (strongly) convex functions
	Nondifferentiable convex functions


	Performance results for unconstrained smooth programming
	Symbolic rate bounds
	The gradient method
	Nesterov's accelerated method

	Numerical bounds for exponential rates
	Nesterov's accelerated method (strong convexity)

	Numerical bounds for subexponential rates

	Composite optimization problems
	Generalized gradient mapping
	Proximal algorithms
	Proximal gradient method
	Accelerated proximal gradient method


	Further topics
	Calculus of IQCs
	Proximal operators
	IQCs for projection operators

	Beyond convexity
	(Strongly) convex functions
	Weakly smooth weakly quasi-convex functions
	Polyak–Łojasiewicz (PL) condition

	Continuous-time models
	Continuous-time gradient flow
	Continuous-time accelerated gradient flow

	Algorithm design
	Robust gradient method
	Robust Nesterov's accelerated method


	Concluding remarks
	Appendix A. Symbolic convergence rates for the gradient method
	Appendix B. Proof of Proposition 5.1
	Appendix C. Proof of Lemma 5.2
	References

