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ABSTRACT 
 

The production of wind energy worldwide has increased 20-fold since 2001. 
Composite material wind turbine blades, typically designed for a 20-year fatigue life, 
are beginning to come out of service in large numbers. In general, these de-
commission blades, composed primarily of glass fibers in a thermoset matrix, are 
demolished and landfilled. There is little motivation for recycling the composite 
materials, as the processes for reclaiming the fibers (solvolysis, pyrolysis) have not 
been proven to be economically viable. This research seeks to establish structural re-
use applications for wind turbine blades in civil engineering infrastructure, 
hypothesizing that advanced composite materials may be an attractive alternative to 
conventional infrastructure materials (e.g. steel, reinforced concrete). This paper 
presents an analysis and materials characterization of a 47 meter Clipper C96 wind 
blade. The primarily numerical analysis is accompanied by materials characterization 
taken from an un-used Clipper blade donated to the project from the Wind Turbine 
Testing Center (WTTC). The paper presents a brief background on wind turbine blade 
adaptive re-use, proposing a hypothetical load bearing application of the Clipper wind 
blade as an electrical transmission tower structure carrying axial compression, along 
with flapwise and edgewise bending forces. The paper summarizes the composite 
laminates and cross-section geometries of the blade and establishes the axial and 
flexural stiffnesses of the blade at multiple sections along the blade length. From a 
first-order estimation of applied loads for the tower application, the resulting stresses 
in the composite materials are estimated and compared to the design material 
properties for the wind blade as originally constructed.  
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INTRODUCTION 
 
Fiber-reinforced polymer composites are attractive construction materials due to 

their light weight, high strength-to-weight and stiffness-to-weight ratios, fatigue 
strength, and durability [1]. One major structural use for modern composite materials 
is in the fabrication of wind turbine blades, in which relatively thick laminates are 
bonded to lightweight sandwich shells in the shape of airfoils. The composite 
construction allows for highly complex geometries, lightweight construction and 
substantial fatigue resistance. However, due to the uncertainty in terms of fatigue 
loading, the service lives of wind blades are typically limited to 20 years [2]. The 
relative short service lives of these structures in their intended role as wind blades may 
allow for viable structural reuse, defined here as use of the entire wind blade or major 
sections cut from the wind blade, in load-bearing applications. The focus of the 
present work is on civil infrastructure applications, as these applications often involve 
large structures at relatively low stresses, deployed in environments where durability is 
often a prime concern. 
Many researchers have studied end-of-service options for composite wind turbine 

blades including disposal, recycling, and reconfiguration/reuse. Disposal is typically 
accomplished through incineration or landfilling; however, this is an environmentally 
harmful option that has many drawbacks with little positive societal impact. Recycling 
can be accomplished using mechanical, thermal and chemical processing, with the 
extracted materials used as replacements for virgin constituents in new composites [3-
4] or in cementitious mortars and concretes [5].  However, the feasibility of useful, 
economical extraction and the resulting mechanical property variations in composites 
fabricated with recycled fibers are significant issues. For the most part, FRP 
composites have reduced properties when manufactured with recycled fibers [6-7]. 
The research team believes that reuse may be the most promising option, and is 
working to develop, analyze, and prototype applications where large parts of the wind 
blades are utilized in new or retrofitted civil infrastructure [8-9].  
When considering reuse options for these elements, the specific geometry and 

internal structure of the wind blades must be identified. A wind blade structure is 
typically composed of three major parts: the aerodynamic shell, the spar cap, and the 
shear webs.  The spar cap and shear webs form a tapered box beam structure that 
cantilevers from the root of the wind turbine. Determination of the outer airfoil 
geometry, the internal skeletal structure and the material/laminated structure of these 
parts can be challenging due to proprietary construction techniques and the lack of 
information from wind blade manufacturers. This has resulted in several studies 
focusing on the digital “reconstruction” of wind blades. The current research program 
on the reconstruction process has led to a methodology, based on point-cloud 
acquisition and evolutionary solvers that predict the internal structure and geometry of 
any wind blade [10]. 
The present work focuses on the parametrization of the geometry and internal 

structure of a C96 Clipper blade. The Clipper blades (models C89 to C100) range 
from 43.2 to 48.2 meters long and are used to drive the 2.5 MW Liberty horizontal 



axis wind turbine. The research team was provided summary specifications detailing 
the internal structure of the blades. These parameters were used to calculate the 
engineering strength and stiffness properties at 10 stations along the C96 blade.  With 
this information, an adaptive reuse application is proposed, where a section of the 
wind blade, taken from the tip, is used as an electrical transmission tower, with design 
loads and stresses identified for the structure.    
 
 
WIND BLADE GEOMETRY 
 
Wind blade geometry typically consists of a circular root which is connected to the 

hub around which the wind blades rotate, a relatively short transition zone, and an 
aerodynamic airfoil shape for the rest of the element. The aerodynamic shape (often 
called the shell) gives the wind blade the propeller shape that allows it to move 
effectively in the wind. The two spar caps (i.e., the flanges of the internal beam) are 
the primary load-bearing elements of the blade in the wind loading direction. The 
shear webs give the wind blade the ability to resist shear and torsional loading and 
provide stability for the overall shape. Section details for the wind blade used are 
given in Figure 1. A total of 10 stations were identified along the length of the wind 
blade and were used to determine the mechanical properties along the length (Figure 
2).  
 

 
 

Figure 1. Internal geometry of the Clipper C96 wind blade  
(photograph taken near Station 7, see Figure 2). 
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Figure 2. (a) Stations along the wind blade selected for mechanical characterization; (b) and (c) cross 

sections at the specified stations; and (d) edgewise and flapwise bending. 
 
 

AXIAL AND FLEXURAL SECTION PROPERTY DETERMINATION 
 
The cross-section stiffness at each of the wind blade stations is determined based 

on the stiffness of the laminates and the position of the various laminates in the cross-
sections. AutoCad was used to determine the area, centroids, and inertial properties for 
the spar cap, the web and the airfoil shell. For these calculations, the presence of 
sandwich core materials (end-grain balsa) was ignored. At each section the laminate 
configuration was taken from the Clipper blade specifications. The stiffness and first-
ply failure strength were determined for the spar cap, the webs and the aerodynamic 
shell using Autodesk Helius Composite software [11]. The laminate strength and 
stiffness values were used with the areal and inertial properties to establish composite 
beam section properties. 
The Clipper blade specification shows ply-drops in the spar cap laminate, depicted 

as a function of blade length in Figure 3. The overall thickness of the spar cap varies 
from 72 mm at the root of the blade to 5.6 mm at near the tip of the blade where the 

Flapwise bending ((EI)xx) 

Edgewise bending ((EI)yy)  

Chord length 



spar cap ends. Note that at the root end an additional 69 layers of uni- and bi-axial 
fabrics (not shown in Figure 3) merge with the spar cap laminate to form the root 
laminate. The root laminate tapers quickly and all root laminate layers are dropped at a 
distance of 2.5 m from the root. 
 

 
 

Figure 3. Spar cap laminate layup as a function of blade length.  
Red line indicates location of burnout test, see Figures 4 and 5. 
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Selected fiber layups for each location were verified using burnout tests per ASTM 
D2584 [12] as shown in Figure 4. Figure 5 shows the individual lamina in the spar cap 
laminate, a sample taken 26.5 meters from the root of the blade. The observed 
laminate structure was as follows: [Mat / 90 / 0 / 90 / 023 / ±45 / 016 / ±45]. According 
to the Clipper specifications, the biaxial layers are 989 g/m2 stitched mats and the uni-
directional layers weigh 950 g/m2. Figure 5 clearly shows the modest amount of glass 
weft that was stitched to the unidirectional fibers. The weights of the individual layers 
confirm the information provided in the specification. 

The volume fraction from the spar cap laminate is calculated from the burn out test 
to be 50.0%. This is slightly lower than the reference value of 54% observed by 
Nijssen in the Optimat wind blade material program [13-14]. The presence of the mat 
layers in the spar cap sample for the present work reduces the overall volume fraction 
observed during the burnout test. 
 

   
(a)                                                                                  (b) 

 
Figure 4. ASTM D2584 burnout samples taken at different locations of the wind blade section;  

(a) shell and web and (b) spar cap. 
 



 
 

Figure 5. Fiber layout verified from ASTM D2584 burnout test of a spar cap sample from Station 7. 
 
 

The distribution of bending and axial stiffness values along the wind blade are 
shown in Figure 6. As shown in Figure 6(a), the edgewise bending stiffness (EI)yy is 
generally higher than the flapwise bending stiffness (EI)xx except at the transition zone 
(defined as the location along the blade where the shape of the blade transitions from a 
circle, near the root, to the airfoil sections).  

Calculations show the contribution from each part of the section and are 
highlighted in Figure 7(a), (b) and (c). At the root (length = zero), the structure 
consists of a solid composite ring (no webs, no spar cap, no sandwich panel). Moving 
away from the root, the major contributor to bending stiffness in the edgewise 
direction is the shell, while the spar cap is the major contributor to bending stiffness in 
the flapwise direction as well as the axial rigidity EA. 
 



 
(a) 

 
(b) 

    
Figure 6. (a) Bending stiffness distribution in flapwise and edgewise directions  

and (b) axial stiffness distribution. 
 

 
(a) 
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Figure 7. Stiffness distribution in the three primary sub-structures: spar cap, webs, and shell: 

 (a) flapwise bending, (b) edgewise bending, and (c) axial.  
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STRESSES IN THE BLADE DUE TO BENDING AND AXIAL LOADS 
 

To illustrate the unique behavior of wind blades under the applied static loads, the 
Clipper blade is fixed at the “zero” point (cantilever) and is subjected to a unit load (1 
kN) in the flapwise direction (edgewise bending), in the edgewise direction (flapwise 
bending), and in the axial direction. These unit loads are applied separately at Station 
10, where the spar cap ends, near the tip, and produce the bending moments and axial 
forces shown in Figure 8(a). The resulting maximum stresses in different components 
composing the cross-section of the wind blade are shown in Figures 8(b) and 8(c). The 
flapwise bending stresses are primarily carried in the spar cap, while the edgewise 
bending stresses are carried by the aerodynamic shell. The relative axial stiffness of 
the different parts of the cross section are shown in Figure 8(d), with the spar cap 
being the stiffest and the webs being the least stiff part. At the root end there are no 
separate parts as the webs, spar cap and shell merge.  
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Figure 8. (a) Bending moment and axial force diagrams due to unit loads in the edgewise, flapwise, and 
axial directions, (b) Bending stresses due to flapwise bending, (c) bending stresses due to edgewise 

bending, and (d) axial compressive stresses. 

 
 
Figure 8 reveals crucial findings that outlines the path forward for the structural 

analysis and re-design of wind blades. The results presented in Figure 8(b) 
demonstrate that the spar cap is the main contributor to the flapwise stiffness; those 
presented in Figure 8(c) indicate that the shell is the major contributor to edgewise 
stiffness.  However, though the shell is stiff, it is not sufficiently strong based on first-
ply failure. When such criteria are considered, the shell will likely be the limiting case 
for design – that is, elements in the shell, near the leading and trailing edge of the wind 
blade, will reach their limiting stresses first.  But failure in the controlling ply in the 
shell does not constitute complete failure of the structure; once the first ply failure 
occurs, the spar cap will provide increasing strength in the edgewise direction – albeit 
with some stiffness reduction. A more complete consideration of the controlling 
failure modes will be the focus of future work. The results presented in Figure 8(c) 
demonstrate that axial stiffness decreases along the length of the wind blade, with 
higher stresses carried by the different components closer to the tip.  
In addition, Figures 8(b) and (c) reveal sudden changes in the stresses between 

stations 3 and 5. The cause for these changes is reflected in Figure 2, which shows a 
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transition of the airfoil from a circular section to an airfoil section between these 
stations.  Thereafter the chord length (as defined in Figure 2) decreases linearly along 
the wind blade towards the tip and the stress transitions are smoother. 
 
 
MATERIALS PROPERTIES OF WIND BLADE COMPOSITES 
 
Laminates in wind blades can be characterized as either (i) primarily uni-

directional; (ii) tri-axial [±45/0]N with significant strength in the longitudinal direction 
and improved transverse and shear properties; or (iii) bi-axial laminates, [0/90]N. The 
specific materials and fiber geometry used in commercial wind blades are proprietary. 
Manufacturers do not publish layups, material strengths or design allowable stresses. 
There are, however, national and international efforts to develop datasets of static and 
fatigue properties of reference wind blade materials. In the U.S., Sandia National 
Laboratory, Montana State University, and the National Renewable Energy Lab 
publish material property data for a range of wind blade materials using multiple resin 
and fiber suppliers [15]. In Europe, the OPTIMAT research program has created a 
similar database of reference materials that generally match those used in production 
wind blades in Europe. 
Key material properties from the three OPTIMAT laminates are provided in Table 

I as taken from Nijssen et al. [14]. The significant figures in the table are exactly as 
taken from the reference and represent mean property data extracted from the 
OPTIDAT database. 
 
 
PROPOSED ADAPTIVE RE-USE APPLICATION 
 
The proposed adaptive re-use application is a three-phase electrical transmission 

tower for 60 to 130 kV sub-transmission lines (Figure 9). These poles are taller than 
the typical distribution poles in cities and suburbs, but are smaller than the cross-
country towers used for the transmission of electricity directly from power plants. The 
proposal is to use approximately 21 meters of the tapering section of the blade with a 
supplemental frame for the three “phases” (the cables that carry the alternating 
current). Approximately two meters of the blade will be underground, with the portion 
of the blade underground encased in Portland cement concrete. The blade cavity in the 
underground section will be filled with concrete as well. 
 

TABLE I. REPRESENTATIVE MATERIAL PROPERTIES  
FROM THE OPTIDAT DATABASE [14]. 

Material E11 E22 G12 ν12 ρ Ft
0 Fc

0 
 MPa MPa MPa  kg/m3 MPa MPa 

Uni-axial 38,887 9,000 3,600 0.249 1,869 810 507 
Tri-Axial 24,800 11,500 4,861 0.416 1,826 436 349 
Bi-Axial 11,700 11,700 9,770 0.501 1,782 180 144 

 
 
 
 
 



  
 

Figure 9. Conceptual prototype of the wind blade tip as a pole in a power transmission line. 

 
 
ESTIMATED LOADS ON THE POLES 
 
The loads on the utility towers are both axial and flexural, and the pole behaves as 

a cantilever, much like the blade in its original application on a wind turbine. The tip 
of the blade experiences some level of restraint from the steel shielding cables that run 
along the blade tip between adjacent towers. 
 
There are well-established standards for the analysis of electrical transmission 

towers, with ASCE 74 [16] being the primary resource used in the United States. 
Individual loads that must be considered include self-weight of the tower and the 
supported electrical cables, the weight of ice collecting on the cables, the potential for 
non-concentric loading due to either unbalanced ice loading or broken conductors, and 
wind. The individual loads are applied in 16 combinations using load multipliers 
found in ASCE 74. A complete discussion of all load cases is beyond the scope of this 
paper. Rather, a discussion of two critical and controlling load cases is presented 
briefly. 
The governing axial load combination of ice and wind leads to an axial force on 

the blade of 107.7 kN and a lateral load of 0.5 kN (distributed along the blade). The 
governing transverse wind loading combination (wind moving transverse to the 
direction of the electrical wires) leads to an axial force on the blade of 40.9 kN with a 
lateral wind load of 4.9 kN (distributed along the blade). For this initial screening 
assessment, the stresses can be computed as multipliers of the unit loads applied to the 
wind blade as depicted in Figure 8. The first load combination (ice and wind) will 
result in a maximum compressive stress of approximately 120 MPa in the wind blade. 
For reference, the compressive strength of a primarily uniaxial Glass-FRP is 
approximately 500 MPa (see Table I). The second load combination (transverse wind) 
results in a maximum compressive stress of 50 MPa which is also far less than the 
typical Glass-FRP strength. 



From this first-order analysis, it is clear that the tower application has merit, and 
the strengths of the composite materials are likely to be sufficient to resist the global 
forces applied to the wind blade. Additional work will be needed to address issues of 
local and global structural stability, deflections due to wind and unbalanced gravity 
loads, and most importantly, the establishment of end-of-first-life material properties 
for second-life structural design. 
 
 
SUMMARY AND CONCLUSIONS 
 
This paper examines the feasibility of an adaptive reuse application of composite 

wind blades as primary support structures for electrical transmission towers. The 
results indicate that adaptive reuse of wind blades is feasible as an environmentally-
preferable alternative to disposal of these advanced structures. Section stiffness values 
were determined at multiple stations along a C96 Clipper blade, and the contributions 
of each component part to the overall section stiffness at each station were highlighted. 
A simplified static analysis of critical load cases taken from governing ASCE 
Standards indicated that the blade structure could easily resist the expected loading for 
this application.  The present work is aimed at developing reliable and rigorous 
analysis and design procedures for these novel structural elements, to allow for their 
re-use in civil infrastructure applications, instead of being disposed of. Future work in 
this area will focus on the experimental validation of critical material and section 
mechanical properties, as well as full-scale physical tests for each potential reuse 
application. 
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