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ABSTRACT

The production of wind energy worldwide has increased 20-fold since 2001.
Composite material wind turbine blades, typically designed for a 20-year fatipue hife,
are begmning to come out of service m large numbers. In general, these de-
commuission blades, composed primanly of glass fibers in a thermoset matnix, are
demolished and landfilled. There 1s little motivation for recycling the composite
materials, as the processes for reclaiming the fibers (solvolysis, pyrolysis) have not
been proven to be economically viable. This research seeks to establish structural re-
use applications for wind turbine blades in civil engineening mfrastructure,
hypothesizing that advanced composite materials may be an attractive alternative to
conventional mnfrastructure matenals (eg steel, remnforced concrete). This paper
presents an analysis and materials charactenization of a 47 meter Clipper C96 wind
blade. The pnmanly numerical analysis 1s accompanied by matenals characterization
taken from an un-used Clipper blade donated to the project from the Wind Turbme
Testmg Center (WTTC). The paper presents a brief background on wind turbine blade
adaptive re-use, proposing a hypothetical load beaning application of the Clipper wind
blade as an electrical transmission tower structure carrying axial compression, along
with flapwise and edgewise bending forces. The paper summarnzes the composite
lanunates and cross-section geometries of the blade and establishes the axial and
flexural stiffnesses of the blade at multiple sections along the blade length From a
first-order estimation of applied loads for the tower application, the resulting stresses
m the composite materials are estimated and compared to the design materal
properties for the wind blade as originally constructed.
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INTRODUCTION

Fiber-reinforced polymer composites are attractive construction materials due to
their light weight, high strength-to-weight and stiffness-to-weight ratios, fatigue
strength, and durability [1]. One major structural use for modem composite materials
15 1n the fabnication of wind turbine blades, in which relatively thick laminates are
bonded to hghtweight sandwich shells i the shape of awfoils. The composite
construction allows for highly complex geometries, lightweight construction and
substantial fatigue resistance. However, due to the uncertamty m terms of fatipue
loadmng, the service hives of wind blades are typically limited to 20 years [2]. The
relative short service lives of these structures in their intended role as wind blades may
allow for viable structural reuse, defined here as use of the entire wind blade or major
sections cut from the wind blade, in load-beaning applications. The focus of the
present work 15 on civil infrastructure applications, as these applications often mvolve
large structures at relatively low stresses, deployed m environments where durability 1s
often a pnme concern.

Many researchers have studied end-of-service options for composite wind furbme
blades including disposal, recycling, and reconfiguration/reuse. Disposal 1s typically
accomplished through meimeration or landfilhing; however, this 1s an environmentally
harmful option that has many drawbacks with little positive societal impact. Recycling
can be accomplished using mechamcal, thermal and chemical processing, with the
extracted matenals used as replacements for virgin constituents in new composites [3-
4] or m cementitious mortars and concretes [5]. However, the feasibility of useful,
economical extraction and the resulting mechanical property vanations in composites
fabricated with recycled fibers are sigmficant issues. For the most part, FRP
composites have reduced properties when manufactured with recycled fibers [6-7].
The research team believes that reuse may be the most promusing option, and i1s
working to develop, analyze, and prototype applications where large parts of the wind
blades are utilized m new or retrofitted civil infrastructure [8-9].

When considering reuse options for these elements, the specific geometry and
mternal structure of the wind blades must be identified. A wind blade structure is
typically composed of three major parts: the aerodynamic shell, the spar cap, and the
shear webs. The spar cap and shear webs form a tapered box beam structure that
canfilevers from the root of the wind furbine. Determunation of the outer airfoil
geometry, the internal skeletal structure and the matenial/lamuinated structure of these
parts can be challenging due to propnetary construction techmques and the lack of
mformation from wind blade manufacturers. This has resulted in several studies
focusing on the digital “reconstruction™ of wind blades. The current research program
on the reconstruction process has led to a methodology, based on pomt-cloud
acqusition and evolutionary solvers that predict the imternal structure and geometry of
any wind blade [10].

The present work focuses on the parametrization of the geometry and mnternal
structure of a C96 Clipper blade. The Clipper blades (models C89 to C100) range
from 43.2 to 48.2 meters long and are used to drive the 2.5 MW Liberty hornizontal



axis wind turbine. The research team was provided summary specifications detailing
the mternal structure of the blades. These parameters were used to calculate the
engmeermg strength and stiffness properties at 10 stations along the C96 blade. With
this information, an adaptive reuse application 1s proposed, where a section of the
wind blade, taken from the tip, 1s used as an electrical transmussion tower, with design
loads and stresses 1dentified for the structure.

WIND BLADE GEOMETRY

Wind blade geometry typically consists of a circular root which 1s connected to the
hub around which the wind blades rotate, a relatively short transition zone, and an
aerodynamic airfoil shape for the rest of the element. The aerodynamic shape (often
called the shell) gives the wind blade the propeller shape that allows it to move
effectively in the wind. The two spar caps (1e., the flanges of the internal beam) are
the primary load-bearing elements of the blade in the wind loading direction The
shear webs give the wind blade the abihty to resist shear and torsional loading and
provide stability for the overall shape Section details for the wind blade used are
grven m Figure 1. A total of 10 stations were idenfified along the length of the wind
blade and were used to determune the mechamical properties along the length (Figure
2).

Figure 1. Internal geometry of the Clipper C96 wind blade
(photograph taken near Station 7, see Figure 2).
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Figure 2. (a) Stations along the wind blade selected for mechanical characterization: (b) and (c) cross
sections at the specified stations: and (d) edgewise and flapwise bending.

AXTAT AND FLEXURAL SECTION PROPERTY DETERMINATION

The cross-section stiffness at each of the wind blade stations 15 determuned based
on the stiffness of the laminates and the position of the various laminates in the cross-
sections. AutoCad was used to deternune the area, centroids, and inertial properties for
the spar cap, the web and the airfoil shell For these calculations, the presence of
sandwich core matenals (end-gramn balsa) was ignored. At each section the lanunate
configuration was taken from the Clipper blade specifications. The stiffness and first-
ply failure strength were determined for the spar cap, the webs and the aerodynanuc
shell using Autodesk Helius Composite software [11]. The laminate strength and
stiffness values were used with the areal and inertial properties to establish composite
beam section properties.

The Chpper blade specification shows ply-drops in the spar cap lanunate, depicted
as a function of blade length in Figure 3. The overall thickness of the spar cap vares
from 72 mm at the root of the blade to 5.6 mm at near the tip of the blade where the



spar cap ends. Note that at the root end an additional 69 layers of uni- and bi-axial
fabrics (not shown in Figure 3) merge with the spar cap lanunate to form the root

lanunate. The root laminate tapers quickly and all root laminate layers are dropped at a
distance of 2.5 m from the root.
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Figure 3. Spar cap laminate layup as a fimction of blade length.
Red line indicates location of burnout test, see Figures 4 and 5.



Selected fiber layups for each location were verified using burnout tests per ASTM
D2584 [12] as shown in Figure 4. Figure 5 shows the individual lamina in the spar cap
laminate, a sample taken 26.5 meters from the root of the blade. The observed
laminate structure was as follows: [Mat /90 / 0/ 90 / 03/ £45 / 056/ £45]. According
to the Clipper specifications, the biaxial layers are 989 g,/m2 stitched mats and the uni-
directional layers weigh 950 g/m®. Figure 5 clearly shows the modest amount of glass
weft that was stitched to the unidirectional fibers. The weights of the individual layers
confirm the information provided in the specification.

The volume fraction from the spar cap laminate is calculated from the burn out test
to be 50.0%. This is slightly lower than the reference value of 54% observed by
Nijssen in the Optimat wind blade material program [13-14]. The presence of the mat
layers in the spar cap sample for the present work reduces the overall volume fraction
observed during the burnout test.

-
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Figure 4. ASTM D2584 burnout samples taken at different locations of the wind blade section;
(a) shell and web and (b) spar cap.



Figure 5. Fiber layout verified from ASTM D2584 burnout test of a spar cap sample from Station 7.

The distribution of bending and axial stiffness values along the wind blade are
shown in Figure 6. As shown in Figure 6(a), the edgewise bending stiffness (EI)yy is
generally higher than the flapwise bending stiffness (EI)xx except at the transition zone
(defined as the location along the blade where the shape of the blade transitions from a
circle, near the root, to the airfoil sections).

Calculations show the contribution from each part of the section and are
highlighted in Figure 7(a), (b) and (c). At the root (length = zero), the structure
consists of a solid composite ring (no webs, no spar cap, no sandwich panel). Moving
away from the root, the major contributor to bending stiffness in the edgewise
direction is the shell, while the spar cap is the major contributor to bending stiffness in
the flapwise direction as well as the axial rigidity EA.
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Figure 7. Stiffness distribution in the three primary sub-structures: spar cap, webs, and shell-
(3) flapwise bending, (b) edgewise bending, and (c) axial




STRESSES IN THE BELADE DUE TO BENDING AND AXTAI L.OADS

To illustrate the umque behavior of wind blades under the apphied static loads, the
Clipper blade 1s fixed at the “zero” pomt (cantilever) and 1s subjected to a umt load (1
kN) mn the flapwise direction (edgewise bending), in the edgewise direction (flapwise
bending), and m the axual direction. These umt loads are applied separately at Station
10, where the spar cap ends, near the tip, and produce the bending moments and axaal
forces shown mn Figure 8(a). The resulting maximum stresses in different components
composing the cross-section of the wind blade are shown 1n Figures 8(b) and 8(c). The
flapwise bending stresses are primarly carned m the spar cap, while the edgewise
bending stresses are carmed by the aerodynamuc shell The relative axial stiffness of
the different parts of the cross section are shown in Figure 8(d), with the spar cap
bemg the stiffest and the webs bemg the least stff part. At the root end there are no

separate parts as the webs, spar cap and shell merge.
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Figure 8. (a) Bending moment and axial force diagrams due to unit loads in the edgewise, flapwise, and
axial directions, (b) Bending stresses due fo flapwise bending, (c)) bending stresses due to edgewise
bending and (d) axial compressive stresses.

Figure 8 reveals crucial findings that outlines the path forward for the structural
analysis and re-design of wind blades. The results presented m Figure 8(b)
demonstrate that the spar cap 1s the main contnibutor to the flapwise stiffness; those
presented m Figure 8(c) indicate that the shell 1s the major contributor to edgewise
stiffness. However, though the shell 1s stiff, it 1s not sufficiently strong based on first-
ply failure. When such critenia are considered, the shell will likely be the hinuting case
for design — that 1s, elements m the shell, near the leading and trailing edge of the wind
blade, will reach their hnuting stresses first. But failure i the confrolling ply in the
shell does not constitute complete failure of the structure; once the first ply failure
occurs, the spar cap will provide increasing strength i the edgewise direction — albest
with some stiffness reduction. A more complete consideration of the controlling
failure modes will be the focus of future work. The results presented in Figure 8(c)
demonstrate that axial stiffness decreases along the length of the wind blade, with
higher stresses carmed by the different components closer to the tip.

In addition, Figures 8(b) and (c) reveal sudden changes in the stresses between
stations 3 and 5. The cause for these changes 1s reflected in Figure 2, which shows a



transition of the airfoil from a circular section to an amrfoil section between these
stations. Thereafter the chord length (as defined m Figure 2) decreases hinearly along
the wind blade towards the tip and the stress transitions are smoother.

MATERIALS PROPERTIES OF WIND ELADE COMPOSITES

Laminates m wmd blades can be charactenized as etther (i) pnmanly um-
directional; (i7) trni-axial [+45/0]y with significant strength in the longitudinal direction
and improved transverse and shear properties; or (iif) bi-axual laminates, [0/90];. The
specific matenials and fiber geometry used in commercial wind blades are proprietary.
Manufacturers do not publish layups, material strengths or design allowable stresses.
There are, however, national and international efforts to develop datasets of static and
fatipue properties of reference wind blade matenals. In the U.S., Sandia National
Laboratory, Montana State Umversity, and the National Renewable Energy Lab
publish material property data for a range of wind blade matenials usmg multiple resin
and fiber suppliers [15]. In Europe, the OPTIMAT research program has created a
similar database of reference matenials that generally match those used i production
wind blades in Europe.

Key matenial properties from the three OPTIMAT lammnates are provided in Table
I as taken from Nijssen et al. [14]. The sigmificant figures in the table are exactly as
taken from the reference and represent mean property data extracted from the
OPTIDAT database.

PROPOSED ADAPTIVE RE-USE APPLICATION

The proposed adaptive re-use application 1s a three-phase electrical transmission
tower for 60 to 130 kV sub-transnussion lines (Figure 9). These poles are taller than
the typical distribution poles in cities and suburbs, but are smaller than the cross-
country towers used for the transmmssion of electnicity directly from power plants. The
proposal 1s to use approximately 21 meters of the tapering section of the blade with a
supplemental frame for the three “phases” (the cables that carry the altemating
current). Approxmmately two meters of the blade will be underground, with the portion
of the blade underground encased in Portland cement concrete. The blade cavity n the
underground section will be filled with concrete as well.

TABLEI REPRESENTATIVE MATERIAL PROPERTIES
FROM THE OPTIDAT DATABASE [14].

Material En En Gz Vi p F’ F.
MPa MPa MPa kg/nn’ MPa MPa
Uni-axial  38.887 9,000 3,600 0.249 1.869 810 507
Tri-Axial ~ 24.800 11.500 4861 0.416 1.826 436 349
Bi-Axial 11,700 11.700 9.770 0.501 1,782 180 144
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Figure 9. Conceptual prototype of the wind blade tip as a pole in a power transmission line.

ESTIMATED LOADS ON THE POLES

The loads on the utility towers are both axial and flexural, and the pole behaves as
a cantilever, much like the blade in its oniginal application on a wind furbine. The tip
of the blade experiences some level of restramnt from the steel shielding cables that run
along the blade tip between adjacent towers.

There are well-established standards for the analysis of electrical transmission
towers, with ASCE 74 [16] bemg the pnmary resource used in the United States.
Individual loads that must be considered include self-weight of the tower and the
supported electrical cables, the weight of ice collecting on the cables, the potential for
non-concentric loading due to either unbalanced ice loading or broken conductors, and
wind. The individual loads are applied in 16 combinations vsing load multipliers
found 1n ASCE 74. A complete discussion of all load cases 1s beyond the scope of this
paper. Rather, a discussion of two cnitical and controlling load cases 1s presented
briefly.

The governing axial load combmation of ice and wind leads to an axial force on
the blade of 107.7 kN and a lateral load of 0.5 kIN (distributed along the blade). The
governing transverse wind loading combination (wind moving transverse to the
direction of the electrical wires) leads to an axial force on the blade of 40.9 kN with a
lateral wind load of 4.9 kN (distributed along the blade). For this imifial screeming
assessment, the stresses can be computed as nmltiplhiers of the umt loads applied to the
wind blade as depicted i Figure 8. The first load combination (ice and wind) will
result n a maximum compressive stress of approximately 120 MPa in the wind blade.
For reference, the compressive strength of a pnmanly umaxial Glass-FRP i1s
apmmﬂely 500 MPa (see Table I). The second load combination (transverse wind)
results 1n a maximum compressive stress of 50 MPa which 1s also far less than the
typical Glass-FRP strength



From thus first-order analysis, it 15 clear that the tower application has ment, and
the strengths of the composite matenials are likely to be sufficient to resist the global
forces appled to the wind blade. Additional work will be needed to address 1ssues of
local and global structural stability, deflections due to wind and unbalanced gravity
loads, and most importantly, the establishment of end-of-first-life material properties
for second-life structural design.

SUMMARY AND CONCLUSIONS

This paper examunes the feasibility of an adaptive reuse application of composite
wind blades as prnimary support structures for electrical transmission towers. The
results indicate that adaptive reuse of wind blades 15 feasible as an environmentally-
preferable alternative to disposal of these advanced structures. Section stiffness values
were determined at multiple stations along a C96 Clipper blade, and the contributions
of each component part to the overall section stiffness at each station were mghhighted.
A smmphfied static analysis of cmtical load cases taken from governing ASCE
Standards indicated that the blade structure could easily resist the expected loading for
this application. The present work 15 aimed at developing reliable and nigorous
analysis and design procedures for these novel structural elements, to allow for their
re-use in civil mfrastructure applications, instead of being disposed of Future work in
this area will focus on the expenimental validation of critical matenal and section
mechanical properties, as well as full-scale physical tests for each potential reuse
application.
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