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SPECTRAL ACTION IN BETTI GEOMETRIC LANGLANDS

DAVID NADLER AND ZHIWEI YUN

ABSTRACT. Let X be a smooth projective curve, G a reductive group, and Bung(X) the moduli of
G-bundles on X. For each point of X, the Satake category acts by Hecke modifications on sheaves on
Bung (X). We show that, for sheaves with nilpotent singular support, the action is locally constant with
respect to the point of X. This equips sheaves with nilpotent singular support with a module structure
over perfect complexes on the Betti moduli Locgv (X) of dual group local systems. In particular, we
establish the “automorphic to Galois” direction in the Betti Geometric Langlands correspondence — to
each indecomposable automorphic sheaf, we attach a dual group local system — and define the Betti
version of V. Lafforgue’s excursion operators.
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1. INTRODUCTION

1.1. Motivation: the Betti Geometric Langlands. In [5], a Betti version of the geometric Langlands
correspondence was formulated. Let us recall its statement.

Let G be a complex reductive group and X a connected smooth projective complex curve. Let Bung(X)
be the moduli stack of G-bundles on X. Fix a commutative coefficient ring E that is noetherian and of
finite global dimension. Let Sh(Bung(X), E) be the dg derived category of all complexes of E-modules
on Bung(X).

Let T*Bung (X)) be its cotangent bundle (the underlying classical stack of the total space of its cotangent
complex), and let

Ne(X) € T*Bung(X)
be the global nilpotent cone (the zero-fiber of the Hitchin system).
To an object F € Sh(Bung(X), E), we can assign its singular support

sing(F) C T*"Bung(X)

which is closed, conic, and coisotropic.
On the automorphic side, we introduce the full dg subcategory

Sth(X) (Bung(X), E) C Sh(Bung(X), E)

of complexes with singular support lying in Ng(X). Since Ng(X) is Lagrangian, for each object of
Shyrgxy(Bung(X), E), by [13, Thm 8.5.5] there is a stratification of Bung(X) along which the ob-
ject is locally constant (see the discussion and references of Section 5.1.1 below). Thus objects in
Shrgxy(Bung(X), E) are weakly constructible, though their stalks do not necessarily satisfy the finite-
dimensional cohomology requirement of constructibility.

1.1.1. Remark. It was conjectured by Laumon [16, Conj. 6.3.1] that cuspidal Hecke eigensheaves have
nilpotent singular support. Thus the imposition of nilpotent singular support conjecturally keeps in play
the most interesting automorphic sheaves. See the introduction of [5] for detailed justification of imposing
the nilpotent singular support condition.

On the spectral side, let GV be the Langlands dual group of G, viewed as a group scheme over Z. Let
G, be its base change to E. Let Locgv(X) be the Betti derived stack over Z of topological G-local
systems on X, and let Locgv (X)g be its base change to E. For a choice of base-point xg € X, we have
the monodromy isomorphism

Locgv (X) ~ Hom(m (X, z0),GY)/GY.

Let IndCohpr(Locgv (X)) denote the dg category of ind-coherent sheaves on Locgv (X ) g with nilpotent
singular support (in the sense developed by Arinkin and Gaitsgory [1]).

1.1.2. Conjecture (Rough form of Betti Geometric Langlands correspondence, see [5, Conjecture 1.5]).
Let E be a field of characteristic zero. Then there is an equivalence

(11) IndCOhN(LOCGv (X)E) — ShNG(X)(Bung(X),E)
compatible with Hecke modifications and parabolic induction.

1.1.3. Remark. There are natural generalizations of the conjecture for G-bundles with tame level struc-
tures and corresponding GV-local systems on open curves, see [5, Conjecture 4.12].

This paper contains three main results motivated by Conjecture 1.1.2.

First, in order for Conjecture 1.1.2 to make sense, one needs to check that the Hecke functors on
Sh(Bung(X), E) in fact preserve the subcategory Sh,, (x)(Bung(X), E). Our first main result (see The-
orem 1.2.1) provides a strong version of this statement.

Second, on the spectral side, there is a natural tensor action of the tensor category of quasi-coherent
complexes, or equivalently ind-coherent sheaves with trivial singular support

QCoh(Locgv (X)) ~ IndCohg(Locgv (X)) ~ IndCohpr(Locav (X) g).
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Therefore the Betti geometric Langlands conjecture predicts an action of QCoh(Locgv(X)g) on the au-
tomorphic category Shar, (x)(Bung(X), E). The construction of such an action is the second main result
of this paper (see Theorem 1.3.1). Such an action was used recently in [20] to construct the geometric
Langlands correspondence in a special case, and we expect it to be a key tool in further developments in
the Betti Geometric Langlands program.

Lastly, our third main result (see Theorem 1.4.1) applies the preceding to construct a Betti Langlands
parameter to indecomposable automorphic sheaves.

We formulate our main results immediately below in more detail.

1.2. Singular support under Hecke modifications. Set O = C[[t]] to be the power series ring, and
K = C((t)) its fraction field. Let G(K) be the loop group, G(O) its parahoric arc subgroup, and Grg =
G(K)/G(O) the affine Grassmannian.

For each point x € X, and the choice of a local coordinate at x, the Satake category Satg =
She(G(O)\Grg, E) of G(O)-equivariant constructible complexes on Grg with compact support acts on
Sh(Bung(X), E) via Hecke modifications at x. For a fixed kernel V € Sat¢, this gives a Hecke functor

Hy ; : Sh(Bung(X), E) — Sh(Bung(X), E).

We will consider a version of the Satake category, denoted Sat%, whose objects carry equivariant structures
for changes of the local parameters, see Section 3.4.1. For V € Sat%, one can define a family version of
Hy . by allowing x to vary

Hy : Sh(Bung(X), E) —— Sh(Bung(X) x X, E).
For example, we can take the kernel V* € Satl, given by the constant sheaf on a G(O)-orbit Grgy C Grg
in which case we write
H* = Hyx : Sh(Bung(X), E) — Sh(Bung(X) x X, E).

Conversely, these basic kernels generate all possibilities.
Here is our main technical result, proved below in Section 5.2.

1.2.1. Theorem. For any kernel V € Sat%, the Hecke functor Hy preserves nilpotent singular support,
and, for sheaves with nilpotent singular support, it does not introduce non-zero singular codirections along
the curve: for F € Sh(Bung(X), E), we have

sing(F) C Ng(X) = sing(Hy(F)) C Ng(X) x X
where X C T*X denotes the zero-section.

1.2.2. Remark. We also discuss in Section 6 how Theorem 1.2.1 extends to G-bundles with level structures.

1.3. Betti spectral action. By the geometric Satake correspondence with general ring coefficients [19,
(1.1)] (see [11] for the case of complex coefficients), the convolution product on Sat preserves the perverse
heart Satg = Perv.(G(0O)\Grg, E); the induced monoidal structure on Satg extends to a tensor structure;
and there is a natural tensor equivalence

Satg, ~ Rep(G)

with the tensor category of representations of G}, on finitely generated E-modules.

Via the geometric Satake correspondence, Rep(G) acts on Shy, (x)(Bung(X), E) by Hecke functors.
Theorem 1.2.1 implies the action is locally constant in the modification point = € X (see Proposition 6.3.2).
In Section 6.3 below, we deduce from this the following second main result.

1.3.1. Theorem (Betti spectral action). Let E be a field of characteristic zero. Let Perf(Locgv(X)g) be
the tensor dg category of perfect complexes on Locgv (X )g. Then there is an E-linear tensor action

Perf(Locgv (X)g) ™ Shyrgx)(Bung(X), E)
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such that for any point x € X, its restriction via pullback along the natural evaluation
Rep(GY,) —== Perf(Locgv (X))

is isomorphic, under the Geometric Satake correspondence, to the Hecke action of Satg at the point x € X.

1.3.2. Remark. In the setting of D-modules with no prescribed singular support, the construction of
an analogous action of quasi-coherent sheaves on the stack of de Rham connections is a deep “vanishing
theorem” whose proof is sketched by Gaitsgory in [8].

1.3.3. Remark. In Section 6.3 below, we deduce Theorem 1.3.1 “by hand”, but one can also appeal to
the general machinery of topological chiral homology ([18, §5.5.4]) as we sketch here.

To the tensor dg category Perf(BGY,) of perfect complexes and curve X, one can assign the topological
chiral homology [ x Perf(BGY,). It is again a tensor dg category and comes equipped with a tensor functor
from Perf(BGY,), for each x € X. In fact, it is universal for having such functors along with equivalences
between them along paths, together with higher coherences along higher simplices. When FE is a field of
characteristic zero, the results of [3] provide a tensor equivalence

/ Perf(BGY,) ~ Perf(Locav (X)E)
X

compatible with the tensor functors from Perf(BGY,), for each z € X.

Recall that Theorem 1.2.1 implies the Perf(BG)-action on Shyr, (x)(Bung(X), E) is locally constant
in the modification point x € X. It follows from the universal property that the action descends to a
Jx Perf(BGY)-action, and thus a Perf(Locgv (X)p)-action, as asserted in Theorem 1.3.1.

1.4. Betti Langlands parameters. When F is a field of characteristic zero, one can use the action of
Theorem 1.3.1 to associate a Betti Langlands parameter to an indecomposable constructible automorphic
complex with finite type support. Here, as usual, indecomposable means the complex cannot be expressed
as a direct sum of non-trivial summands.

When E is an algebraically closed field of characteristic zero, the action of Perf(Locgv(X)g) on
Shrg(xy(Bung(X), E) of Theorem 1.3.1 implies that the dg algebra O(Locgv(X)g) acts on each ob-
ject F € Shp(x)(Bung(X), E). Moreover, when F satisfies certain finiteness properties, for example
when F is an irreducible perverse sheaf, this action allows us to assign a maximal ideal of O(Locgv (X))
to F, which determines a GV (F)-local system pr on X up to semisimplification. When FE is of arbitrary
characteristic, we do not establish the categorical action analogous to that in Theorem 1.3.1. Nevertheless
the assignment F +— pr can be constructed, as Theorem 1.4.1 below states.

Consider the full subcategory

ShNG(X)ﬁg(Bung(X), E) C ShNG(X)(Bung(X), E)

of objects of the form jiFy, where j : Y — Bung(X) is an open embedding of a finite type substack, and
Fu is a constructible complex on U. The restriction to such complexes is used to guarantee finiteness of
their endomorphisms (see the proof of Theorem-Construction 7.3.1). The following third main result will
be proved in Section 7.3.

1.4.1. Theorem (Betti Langlands parameter). Let E be an algebraically closed field. To any indecompos-
able object F € Shyr,(x),(Bun(X), E) one can canonically attach a semisimple G¥ (E)-local system pr
over X. Moreover, if F is a Hecke eigensheaf with eigenvalue p € Locgv (X)(E), then pr is isomorphic
to the semisimplification of p.

In the arithmetic Langlands program, the Langlands parameter of an automorphic representation of
G over a global field F is a continuous homomorphism p : Gal(F*/F) — GV(Q,). In the geometric
setting, the fundamental group of X plays the role of Gal(F'*/F), and GY-valued Galois representations
p are replaced by GV-local systems on X. Therefore it makes sense to call the GV (F)-local system pr
constructed in Theorem 1.4.1 the (semisimple) Betti Langlands parameter of F.
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1.4.2. Remark. There is also a version of Theorem 1.3.1 and Theorem 1.4.1 in the presence of level
structures. See Section 6.

1.4.3. Remark. Theorem 1.4.1 can be viewed as a categorical analogue of the main result of V. Lafforgue
from [15]. Roughly speaking, when X is defined over a finite field k, V. Lafforgue constructs an action
of the coordinate ring of the GY-character variety of the absolute Galois group of F = k(X) on the
space of cuspidal automorphic forms on G(F)\G(Ar). This allows him to attach a semisimple Galois
representation to each irreducible cuspidal automorphic representation of G(Ar). In our situation, the
ring of regular functions on Locgv (X)) acts on each object of Sh,x)(Bung(X), E), and we can attach
a semisimple GV-local system to each indecomposable automorphic complex. V. Lafforgue’s construction
relies crucially on the partial Frobenius structure of the moduli of Shtukas. In a vague sense, the nilpotent
singular support condition we impose on complexes on Bung(X) is playing a similar role as the partial
Frobenius: in both cases they are ensuring certain local constancy of Hecke modifications.

1.4.4. Remark. For number theorists: the construction of the Betti Langlands parameters in Theo-
rem 1.4.1 uses an analogue of the R — T map (a ring homomorphism from a deformation ring of Galois
representations to a Hecke ring). When E is an algebraically closed field, we construct in Corollary 7.2.2
a diagram of rings

(1.2) R = H’(Locgv (X)) <=— R™Y —Z= Z(Shy, (x)(Bung(X), E))

where the right end is the center (i.e., endomorphisms of the identity functor) of Shy x)(Bung(X), F),
and the ring R"YV in the middle is defined by a universal property. Moreover, the map Spec R —
Spec R"™Y induced by w is a bijection on closed points. The construction of the diagram uses analogues
of V. Lafforgue’s excursion operators in the Betti setting. For details, see Section 7.1.

On the other hand, for topologists: for general E, the symmetric monoidal structure on Rep(GY};) equips
the topological chiral homology f ¥ Rep(GY;) with a symmetric monoidal structure as well. Theorem 1.2.1
and the formalism of topological chiral homology give an action diagram

Perf(Locgv(X)E) » [y Rep(GY) ~ Shpy(x)(Bung(X), E).

The monoidal unit 1 € [ ¥ Rep(GY,) acts on the module categories by the identity functor, so we obtain a
diagram of derived rings

(1.3) O(Locg (X)) = End(1) — Z(Sh, (x) (Bung(X), E))

where the right end denotes the derived center of Shyr, (x)(Bung(X), E)). A natural problem is to study
the relationship between R and End(1), and to compare (1.2) and (1.3).

1.5. Acknowledgements. We thank David Ben-Zvi for many inspiring discussions about a Betti form
of the Geometric Langlands correspondence. We thank an anonymous referee for generous comments.

DN is grateful for the support of NSF grant DMS-1502178. ZY is grateful for the support of NSF grant
DMS-1302071/DMS-1736600 and the Packard Foundation.

2. NOTATION

2.1. Automorphic side. All automorphic moduli stacks in this paper will be defined over C.

Let G be a reductive group, B C G a Borel subgroup, N C B its unipotent radical, and 7' = B/N the
universal Cartan. Let B~ G/B be the flag variety of G.

Let (Ar,RY, Ay, Ry ) be the associated based root datum, where Ay = Hom(G,,,T) is the coweight
lattice, RY C Ag the positive coroots, Ay, = Hom(T, G,,) the weight lattice, and Ry C Ay, the positive
roots. Let Af (resp. A7) be the set of dominant coweights (resp. dominant weights).

Fix a commutative coefficient ring FE that is noetherian and of finite global dimension. We will work
in the setting of E-linear dg categories. Most of our categories will comprise complexes of sheaves of
E-modules over the classical topology of (automorphic) stacks over C, e.g., Bung(X). All sheaf-theoretic
functors are understood to be derived functors.
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2.2. Spectral side. All stacks on the Langlands dual side are defined over Z, and we often take their
base change to F by adding a subscript F.

Form the dual based root datum (AY., Ry, Ar, Ri), and construct the Langlands dual group GV (over
7), with Borel subgroup BY C GV, unipotent radical N¥ € BY, and dual universal Cartan TV = BY /NV.
Let BY ~ GV /B" be the flag variety of G".

Let AV be the nilpotent cone in the Lie algebra g¥. We identify AV with the unipotent elements in
GV via the exponential map.

Let 4 : NV — NV be the Springer resolution. Recall that NV  GY x BY classifies pairs (g, BY)
such that the class g lies in the unipotent radical of BY. Note the isomorphism of adjoint quotients
NVY/BY ~ NV /GV.

3. LOCAL CONSTRUCTIONS

3.1. Automorphisms of disk. Set O = C[[t]] to be the power series ring, with maximal ideal mp =
tC|[[t]], and fraction field K = C((t)).

Let D = Spec O be the formal disk, and D* = Spec I C D the formal punctured disk.

Let Aut®(0) = Spec Cler, ¢ty ca,¢3,...] be the group-scheme of automorphisms of O that preserve
the maximal ideal mp. A point of Aut®(O) with coordinate (c1, ca,---) corresponds to the automorphism
f(t) = flert + cat? +---) of O. Let Aut(O) = UnenSpec Cleg, c1,¢1 Y, ca,c3,...]/(cl) be the group ind-
scheme of automorphisms of @. Similarly, a point of Aut(Q) with coordinate (co, ¢1,ca,- - ), where ¢q is
nilpotent, corresponds to the automorphism f(t) — f(co + c1t + cot? +--+) of O.

We have

LieAut(O) = Der(O) = O,

and Aut(O);eq = Aut®(0), so that (Der(O), Aut’(0)) forms a Harish Chandra pair for Aut(0O).
Note as well
Der(0)* ~ (K/0) ®0 Qo ~ (K/O)dt

where Qo = Odt. The C-linear pairing between Der(Q) and (K/O)dt is given by the residue pairing
(a(t)0y, b(t)dt) = Resi—o(a(t)b(t)).

3.2. Affine Grassmannian. Introduce the Laurent series loop group G(K) = Maps(D*, G), its parahoric
arc subgroup G(O) = Maps(D, G), and affine Grassmannian Grg = G(K)/G(O). Recall that Grg classifies
the data of a G-bundle £ over D with a trivialization (equivalently, section) of the restriction £|px. (We
will be exclusively interested in constructible sheaves on Gre, and hence ignore the non-reduced structure
arising when G is not semisimple.)

Note that Aut(O) naturally acts on G(K) preserving the subgroup G(O), and hence also acts on the
affine Grassmannian Grg.

3.2.1. Stratification by G(O)-orbits. The inclusion Ay = Hom(G,,,, T') = G(K), A — t* induces a bijection
of sets

Af ~ Ap/W —= G(ON\G(K)/G(O) A —— G(0) - t* - G(O)
For each \ € A}', set
G(K) = G(O) - t* - G(0) C G(K) Gry = G(O) - t* € Grg

and also let (IC))\ C G(K), @g C Grg denote their respective closures.

Recall that G(K)* C (IC))\ if and only if Gr}, C @/C\; if and only if 4 < A (in the sense that A — p is a
Z>(-combination of simple coroots).

It is well-known that (IC))\ C G(K) is a scheme (not locally of finite type), hence G(K) is an increasing

union of schemes, and Gr C Grg is a (typically singular) projective variety, hence Grg is an increasing
union of projective varieties.
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The subgroup Aut’(O) preserves Grg, and @g for each \ € AT,

3.2.2. Orbit closure resolutions. It will be technically useful to have on hand a resolution of @g C Grg.
Let us choose a G(O) x Aut”(O)-equivariant resolution of singularities

P e
v*: Grg —— Grg

To achieve this via general theory, observe that the G(O) x Aut’(O)-action on @g factors through a
finite-type group, so such a resolution exists by [14, Prop. 3.9.1]. Note this pulls back to a (G(O) x
G(0)) x Aut®(0O)-equivariant resolution

G —— G(K)

A oA . . .
3.2.3. Remark. It suffices to choose the resolutions Gr, — Grg for a generating collection of coweights
Ai € A;, and then in general take a convolution space

—~ ~ G(O) ~ G(0) G(O) —A
Gry =GN x G(K)» x - x Gry A= A

In particular, when G has a generating collection of minuscule coweights m; € A}, so with smooth
projective G(O)-orbits Gr¢y' = @gi, we can simply take the convolution space

_» c(0) co) o) | .
Grg =GK)™ x GK)™ x - x Grg* A=, m,.

3.3. Moment map. The action of Aut(O) on G(K) and Grg induces infinitesimal Der(O)-actions, or
equivalently moment maps

T*G(K) —— Der(0)*,

T*Grg — Der(0O)*.
We record here formulae for these moment maps.
3.3.1. Loop group. The infinitesimal Der(O)-action on G(K) is given at a point g(t) € G(K) by the formula
(3.1) 09 = Der(0) ——= Ty G(K) ~ 8(K) F&)o —— f(t)g'()g(t)~".

Here the symbol ¢/(t)g(t)~! denotes an element of g(K) defined in the following way. For each K-linear
G(K)-representation (V, p), with associated g(K)-module (V,dp), we obtain an endomorphism p(g(t))" €
Endi (V) by differentiating the matrix coefficients of p(g(t)). Set Yy = p(g(t)) p(g(t))~* € Endi (V).
For two such representations (Vi, p1), (Va, p2), it is easy to check that Yy, gv, = Y, ® idy, +idy, ® Yy,.
Therefore by Tannakian formalism, there is a well-defined element Y € g(K) such that dp(Y) = Yy, for
all such representations (V, p). We use the notation g(¢)’g(t)~! to denote this element Y.

To reformulate (3.1) as a moment map, consider the G(K)-equivariant isomorphism

(3.2) g(K)* = g*(K) ®0 Qo = g*(K)dt
given by the pairing
(v(t), w(t)dt) = Resi—o(v(t), w(t)dt), v(t) € g(K),w(t) € g*(K).

Then the moment map for the induced Aut(O)-action on the cotangent bundle T*G(K) is given at a point
g(t) € G(K) by the formula

g*(K)dt ~ g(K)* ~T*

" G(K) — (LieAut(0))* ~ Der(0)*

(3.3) ¢(t)dt —— (f ()0 ——= Resi=o(f(t)g'()g(t) ", o(t)dt))
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Under the further isomorphism Der(O)* ~ (K/O)dt given by the residue pairing, this takes the form
¢(t)dt —— (g'(t)g(t) ", $(t)dt) € (K/O)dt

3.3.2. Affine Grassmannian. We describe the cotangent bundle T*Grg and give a similar formula for the
moment map of the induced Aut(QO)-action.

Let g(t)G(O) € Grg. Since the G(K)-action on Grg is transitive, the tangent space Tyuq(0)Gre is
naturally isomorphic to the quotient

Tyyc0)Gra ~ ¢(K)/Adgwa(0)

Taking duals and using g(O)* ~ g*(O)dt under the adjoint-equivariant identification (3.2), we get a
canonical isomorphism

(3.4) T 600, Gra = Ady (g°(O)dt)

For the induced Aut(O)-action on T*Grg, the moment map
T;(t)G((’))GrG ~ Adq(t) (g*(O)dt) —_— Der(@)*
is given by the restriction of (3.3).

3.3.3. Remark. Recall that the Aut®(O)-action on Grg preserves the G(O)-orbits Gryy C Grg, for A € AT
But from formula (3.3), one can see the Aut(O)-action does not preserve each Grgy C Grg as the action
of 9, € Der(O) is not, tangent to Grey € Grg.

3.4. Satake category. Let Satg = Sh.(G(O)\Grg, E) be the dg category of G(O)-equivariant con-
structible complexes of F-modules on Grg with compact support. Convolution equips Satg with a
monoidal structure with monoidal unit the skyscraper sheaf at the base-point Gr% C Grg.

Recall by the geometric Satake correspondence with ring coefficients [19, (1.1)], the convolution product
on Satg preserves the perverse heart Satg = Perv.(G(O)\Grg, E); the induced monoidal structure on
Satg extends to a tensor structure; and there is a natural tensor equivalence

Satg, ~ Rep(Gy)

with the tensor category of representations of the dual group G}, on finitely generated E-modules. Note
the G(O)-equivariance of any object of Satg is a property not an additional structure, and in particular,
equivalent to its constructibility along the G(O)-orbits.

3.4.1. Equivariance for disk automorphisms. Let Saty, = Sh.((Aut’(0) x G(0))\Grg, E) be the dg cat-
egory of Aut®(O) x G(O)-equivariant constructible complexes on Grg with compact support. We can
equivalently view Sat% as the dg category of Auto((’))—invariants in Satg. From this perspective, the
Aut®(O)-action naturally factors through the evaluation Aut’(Q) — G,,.

Convolution equips Sat% with a monoidal structure with monoidal unit the skyscraper sheaf at the
base-point Grly C Grg with its natural Aut®(O)-equivariance. The forgetful functor Saty, — Satg is
monoidal and restricts to an equivalence of perverse hearts Sat%’o = Satg ([19, Prop. A.1]).

3.4.2. Example. For each A € AJ, the constant sheaf Eg,) on the G(O)-orbit Crgy € Grg (extended by
zero to Grg), the constant sheaf E» and intersection complex IC* (with E-coefficients) on the closure
el
_ ~x
Grg C Grg, and the pushforward of the constant sheaf E--» on the resolution v* : Grg — Grg, are all
el
canonically Aut’(0) x G(O)-equivariant.

The following is easy to observe by induction on the poset A}, and the observation that the stabilizer
within Aut®(©) x G(O) of the point t*G(O) € Grg, for A € Af, is connected.
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3.4.3. Lemma. FEvery object of Satq, respectively Sat%, is isomorphic to a finite complex of objects from
each of the following collections

A
{EGrg}AeA; {Eag}AeA; {1c }AGA; {V!’\Eag},\eA;

Proof. For the first three collections, the assertion is standard and the proof is left to the reader.

Let SatéA (resp. Saté’\) be the full dg-subcategory of Sats consisting of objects supported on @g
(resp. supported on @g\(}rg) We show by induction on A € A7 that every object in SatéA is a finite
complex of {’/!MEE;?Z,}MSA' This is trivial for A = 0. Suppose this is true for all \’ < \. Clearly, every object

. . . . . A X . .
in Saté’\ is a finite complex of Eq,s and objects in Sat5*. Recall that v : Grg — Grg is a resolution,

. . . . A
so in particular an isomorphism over the open dense locus Grg C Grg. Thus the cone of the natural map

A . ——A A . . <A . . <A
Ego, — v E@g is supported on Grg \ Grg, hence an object in Satg”. Therefore every object in Satg
is a finite complex of Vﬁ‘ﬂa;x and Saté’\. Finally, since GrG\Gr’C\; = Up< ,\Grg, by inductive hypothesis,
G
every object in Saté’\ is a finite complex of {V!Hﬂal’rg}u<)\. Therefore, every object in SautéA is a finite
complex of {u{‘ﬁaé}ug,\.

The argument in the case of Sat% is entirely the same. 0

4. CONSTRUCTIONS OVER A CURVE

Let X be a connected smooth projective curve over C.

4.1. Local coordinates. For a C-algebra R and an R-point x € X(R) with graph 'y, € Xr = X x¢
Spec R, let @x be the completion of Xr along the ideal Z, defining the graph I',. Let fm = 11(51. Let
D, = Spec (/9\1 be the formal disc around I',, and D = D, \ I'; be the formal punctured disk.

Consider the presheaf CoordO(X )Pr¢ on affine C-algebras whose value at a C-algebra R is the set of
pairs (z,t,) where z € X(R) and t, € Z, that induces an R-linear isomorphism ¢, : R[[t] = O, sending
t to t,. The sheafification of Coord”(X )P is representable by a right Aut’(O)-torsor Coord’(X) — X.

4.1.1. The Aut(O)-action. The Aut®(O)-action on Coord’(X) extends to an Aut(O)-action: for an au-
tomorphism a of R[[t] and (z,t,) € Coord”(X)(R), (x,ts) - o = (2’,t,) where 2’ is the R-point of X
defined by the ring homomorphism

-1 —1
a0V, t—0
-

O, —"R|[t]] R,

and t,» = ¢z, (a(t)). The induced infinitesimal Der(Q)-action is simply transitive, i.e., the moment map
T*Coord’(X) — Der(O)* restricts to an isomorphism on each cotangent space

(4.1) 1, ,.,Coord”(X) —== Der(0)", for (z,t,) € Coord’(X).

4.2. Uniformization. We will have use for an infinitesimal formula for the Grassmannian uniformization
of Bung(X). Consider the natural map

u : Grg x Coord’(X) — Grg,x — Bung/(X).

To a C-algebra R, a point ¢(t)G(ORR) € Grg(R), and a point (z,t,) € Coord’(X)(R) (t, is a formal
coordinate along the graph I, of ), it assigns the G-bundle £ = u(g(t)G(O), x,t,) on X given by glueing
the trivial bundles over D, and Xp \ I'; by the transition matrix g(¢,). By construction, £ is equipped
with a trivialization 7x\, : €|x\r, ~ G % (Xr\T'y).

4.2.1. Lemma. The map u is invariant under the anti-diagonal action of Aut(O) on Grg x Coord”(X).
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Proof. Let R be a C-algebra. For a point (g,z,t,) € G(R((t))) x Coord’(X)(R), and an automorphism
o of R[[t]], we have a - g € G(R((t))) is given by the composition Spec R((t)) == Spec R((t)) & G, and
(z,ty) - a = (2/,ty) is described in §4.1.1. Note that D, = Dy, DY = D, and Xp \ Ty = X\ T'».
The G-bundle u(a™! - g, (z,t;) - @) on X is obtained by gluing the trivial bundles over D, = D, and
Xp\ Ty = Xr\ T, by the following transition matrix

(pry00)«

Dy = Dy ——= """ 5 Spec R((t)) ——2 > G.

Direct calculation shows that the two appearances of a cancel out, and the composition above is the same
as g(¢r, (t)) = g(tz) : Dy — G, which is the same transition matrix defining the G-bundle u(g(t), x,t,).
This proves that u is invariant under Aut(O). O

4.3. Higgs fields. Let T*Bung(X) be the total space of the cotangent complex of Bung(X). It is a
derived algebraic stack locally of finite type. Its fiber at £ € Bung(X) is given by the complex of derived
sections

T{Bung(X) ~T'(X, g5 @ wx)

where gz = g* Xg £ denotes the coadjoint bundle of £, and wx the canonical bundle of X.

We will be exclusively interested in the traditional cotangent bundle T*Buneg (X ) given by the underlying
classical stack of T*Bung(X). It is an algebraic stack locally of finite type. Its fiber at £ € Bung(X) is
given by the space of Higgs fields

TBung(X) ~ HO(X, gh ® wx).

4.3.1. Global nilpotent cone. Consider the characteristic polynomial map

W:

X : §° = Spec Sym(g) — Spec Sym(g)“ ~ Spec Sym(h) tc

and recall it is G x G,,,-equivariant where G acts trivially on c.

Gm
Let Ag(X) := H°(X,c,,) be the Hitchin base, where ¢,, = wx X ¢ denotes the associated bundle,
where we write wy for the G,,-torsor associated with the line bundle wx.
Introduce the Hitchin map

Hitch : T*Bung(X) —— Ag(X) Hitch(&, ¢) = x (o).
The global nilpotent cone is the inverse image of the trivial point
Ne(X) = Hitch™(0) € T*Bung(X).

It is a Lagrangian substack by [17, 12] in the sense that for a smooth map v : U — Bung(X) from a
scheme U, with induced correspondence

TU < T*Bung(X) Xpung(x) U —— T*Bung(X),
we obtain a Lagrangian subvariety
du(u; ' (Na(X))) € T*U.
For £ € Bung(X), the fiber of Ng(X) over & is given by the space of nilpotent Higgs fields
¢ X —— Nexwy

where N C g* denotes the traditional nilpotent cone with the coadjoint action by G and dilation by G,,,
GXGyp,
and Negxw, = (€ xx wx) x N denotes the associated bundle, where as above we write wx for the

G,,,-torsor associated with the line bundle wx.
Note since N' C g* is closed, a Higgs field ¢ is nilpotent if and only if it is generically nilpotent.
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4.3.2. The differential of the uniformization. For a C-point (g(t)G(O),z,t,) € Grg x Coord’(X) with
image £ € Bung(X) under u, the differential du induces a map on cotangent spaces

du : T¢Bung(X) — Ty g0y Gra x T(, ;. Coord” (X)
which under our identifications (4.1) and (3.4) is more concretely a map
HY(X,g; ® wx) — Adyg*(O)dt x Der(O)*.

Here the first component is the composition of the trivialization 7x\,, restriction to D} and the change
of variable t, — t:

te—t
_—

(42) HO(X, gf @ wx) — H(X \ 2,9" @ wx) — ¢"(K;)dts g* (K)dt
and its image lies in Adyq)g*(O)dt. We denote the composition of the maps in (4.2) by ¢ — ¢[px.
4.3.3. Proposition. The second component of du viewed as a bilinear pairing
Der(0) x H(X, gt @ wx) —=C
takes the form
(43) (7000, 8) —= Resico((F(1)g' (1)g(6) ", 8l
where ¢|px is defined as in (4.2).

Proof. By Lemma 4.2.1, the map u factors through the anti-diagonal Aut(O)-action on Grg x Coord’(X).
Thus the image of the differential du lies in the kernel of the moment map

p=p1 % (—p2) : Ty o) Gra x T(*xytz)CoordO(U) — Der(0)*
The moment map ps is our usual identification (4.1). Using this identification, we thus have
ker(p) = {(n, (1)) € Ty 6(0)Gre x Der(0)* |1 € Ty g0y Gra}
Recall from (3.3), the first factor p;, viewed as a bilinear map, takes the form

Der(O) x T

shco)Grte —=C

(f (£)0e,m) ——= (£ ()0, 11 (n)) = Resi—o(f (t)g'(t)g(t) "', )

Using the fact that the first component of du is given by ¢ — ¢|px, we conclude that the second component
of du, viewed as a bilinear map, takes the asserted form

(f(£)0r, @) ——= (f(£)Or, 1 (@] px)) = Resi—o(f (£)g' (t)g(t) ™", ¢l px)-

4.4. Hecke modifications. Introduce the Hecke diagram

Bung(X) <-—— Heckeg (X) 2% Bung(X) x X

where Heckeq(X) classifies a point z € X, a pair of bundles £_,&; € Bung(X), together with an
isomorphism of G-bundles over X \ x

Qo g*|X\w = g+|X\LI)'

The map p_ returns the bundle £_, p; the bundle £, and 7 the point z.
For each A € AJTF, we have a subdiagram

A plxm

(4.4) Bung(X) <— Hecke (X) —— Bung(X) x X
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where £_,& are in relative position A at the point x, i.e., upon trivializing £ and £; over D, and
choosing a local coordinate t, at = to identify D, with D, a as an element in G(K) lies in G(K)*. The
closure Heckeé(X ) of Heckepy(X) also gives a diagram

A\ =

(4.5) Bung (X) < Hecken (X) 2% Bung(X) x X

where £_, &, are in relative position < A at the point x, i.e., upon the same trivializations as above, o as

an element in G(K) lies in (IC)A.
4.4.1. Satake kernels. Using the Aut”(O)-action on G(O) and G(K), we introduce the group scheme

Aut®(0)
G¢ = Coord”(X) x G(O)——=X

and the group ind-scheme
Aut’(0)
Gx = Coord’(X) x GK)—=X
Let B/lﬂlg(X)X — Bung(X) x X denote the G¢-torsor classifying a point # € X, a G-bundle £ over
X, and a trivialization of the restriction &|p,. By [2, 2.8.4], the GQ-action on gl;lc(X)X (by changes of
trivialization) naturally extends to a Gx-action by the usual gluing paradigm.
We have a canonical isomorphism

o

— g
(4.6) Heckeg (X) ~ Bung(X)x xx Gra.x

so that p_ is the evident projection to the first factor, and p4 is given by the Gx-action on El;lc (X)x.

Consider the resulting natural diagram

Heckeg (X ) <—— Heckeg (X ) x x Coord®(X) —= G(0)\Grg
where ¢ is the evident Aut’(O)-torsor, and p records the relative position of the pair (£|p,,&’|p,) using
the local coordinate at x.

The Auto((’))-equivariance of any object V € Sat% induces an AutO(O)—equivariance on the pullback
p*V along the Aut®(O)-equivariant map p. Since ¢ is an Aut”(O)-torsor, the Aut’(0)-equivariant complex
p*V descends along ¢ to a unique complex we denote by V' € Sh(Heckeg(X), E).

Let Sh(Bung(X), E) be the dg derived category of all complexes of E-modules on Bung(X), in the
sense explained in Section 2.1.

Introduce the Hecke functor

(4.7)  Hy:Sh(Bung(X), F) —— Sh(Bung(X) x X, E) Hy(F) = (py x th(V' @ (p—)*F).
4.4.2. Example. For V = Eq,, with its natural Aut’(0) x G(O)-equivariance, the corresponding Hecke
functor Hy = H? is given by (using notation from (4.4))

H?* : Sh(Bung(X), E) — Sh(Bung(X) x X, E)
HMNF) = (p} x mh(p))* F.

4.4.3. Hecke stack resolutions. The maps pi,pi x 7 are in general smooth and (locally on the base) quasi-
projective but not proper, while the maps p* ,ﬁi x m are in general (locally on the base) projective but
not smooth. Thus estimating the singular support of the Hecke functors is not as concrete as we would
like. We will find it convenient in Section 5.2 to work with a smooth resolution to address this.

Under the isomorphism (4.6), we have

Heckeé(X) o~ gl;lg(X)X Xx Grg x-
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P W—
Recall the resolution v* : Grg — Grg from Section 3.2.2, and consider its globalization

Y Aut®(0) —
Grg x = Coord’(X)  x  Grg.

Introduce the resolved Hecke stack

Nt . G¢ —a _ 6% —
™ Heckeg (X) := Bung(X)x xx Grg x — Bung(X)x xx Grg x ~ Heckeg (X).

Form the resolved Hecke diagram

(4.8) Hecke(X)
2 l/)\ m}\
fo A Py X
Bung(X) Hecke(X) Bung(X) x X

. . . . oA —A\ . N . C .
with commutative triangles. Since v* : Gr, — Gry is G(O)-equivariant, its restriction over each G(O)-

orbit Grf, C @g is an étale locally trivial fibration, and therefore r*

above each smooth substack Heckef, (X) C Heckeg (X), for p < A.
Introduce the Hecke functors

(4.9) H* : Sh(Bung(X), E) —= Sh(Bung(X) x X, E) HMNF) = (7 x mh(p2)*F.

is an étale locally trivial fibration

Then under the notation (4.7), we have

H* ~ Hy, foerl/f‘Eax.
i -

5. MICROLOCAL GEOMETRY

5.1. Singular support. We recall some basic definitions and properties of the singular support of a
complex of sheaves. The standard reference is Kashiwara-Schapira’s book [13]. Much of the theory
developed therein is for bounded or bounded below complexes. One can remove this assumption, using
the formalism of six operations presented in [24] and the specific microlocal foundations provided by [22].

5.1.1. Schemes. Let U be a smooth scheme with cotangent bundle T*U.

Let Sh(U) be the dg derived category of all complexes of abelian groups on U. We will often abuse
terminology and use the term sheaves to refer to its objects.

Suppose S = {Uq }aca is a p-stratification of U in the sense of [13, Def. 8.3.19]. Let As = UaecaTf; U C
T*U denote the union of the conormal bundles to the strata.

Let Shs(U) C Sh(U) denote the full dg subcategory of complexes locally constant along the strata of S.
For any F € Shs(U), its singular support sing(F) C T*X is a closed conic Lagrangian subscheme. By [13,
Prop. 8.4.1], we have the containment sing(F) C As, and hence sing(F) is a union of some irreducible
components of As. An irreducible component of Ag is not in the singular support sing(F) if and only if
the vanishing cycles ¢;(F) are trivial for some germ of a function f at a point u € U whose differential
df |, € T*U is a generic point of the irreducible component.

Given a closed conic Lagrangian subscheme A C T*U, by [13, Cor. 8.3.22], we may choose a p-
stratification S = {Ua}aeca of U such that A C As = UaeaTy;, U C T*U. Denote by Sha(U) C Shs(U)
the full dg subcategory of complexes with singular support sing(F) contained within A. By [13, Thm.
8.3.20, Prop. 8.4.1], this is independent of the choice of p-stratification.

Singular support satisfies the following functoriality. For details we refer to [13, Chapter 5.4]. Let
f:U — V be a morphism between smooth schemes. We consider the Lagrangian correspondence

U <21y <y UL ey
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(1) Smooth pullback. Suppose f is smooth, then for G € Sh(V'), we have

) sing(f*G) = df (f (sing(9)))-

(2) Proper pushforward. Suppose f is proper, then for F € Sh(U), we have
) sing(f«F) C fy(df ~* (sing(F))) -

5.1.2. Stacks. Let Y be a smooth stack, let T*Y be the total space of its cotangent complex, and T*Y its
underlying classical cotangent bundle.

Let Sh(Y) be the dg derived category of all complexes on Y.

Thanks to the functoriality recalled above, the notion of singular support readily extends to this setting.
Namely, for 7 € Sh(Y), we may assign its singular support sing(F) C T*Y uniquely characterized by
the following property. For a smooth map w : U — Y where U is a smooth scheme, with induced
correspondence

(5.1

(5.2

T*U <M Ty xy U —2s T,
we have the compatibility
sing(u*F) = du(u[l(sing(]—')) cT*U

Observe that with this characterization in hand, the functoriality recalled in Section 5.1.1 readily extends
to representable maps of smooth stacks.

5.2. Analysis of Hecke correspondences. Let Shyy,(x)(Bung(X), E) C Sh(Bung(X), E) denote the
full subcategory of complexes with singular support in the global nilpotent cone

sing(F) C Ng(X)
The rest of the section is devoted to the proof of the following.

5.2.1. Theorem. For any kernel V € Sat(c);, the Hecke functor Hy preserves nilpotent singular support,
and, for sheaves with nilpotent singular support, it does not introduce non-zero singular codirections along
the curve. In other words, for F € Sh(Bung(X), E),

sing(F) C Ng(X) = sing(H*(F)) C Ng(X) x X,
where X C T*X denotes the zero-section.

5.2.2. Remark. The results and arguments to follow will not involve any object F in any specific way,
but devolve to the maximal possible singular support of Ng(X) itself.

5.2.3. Remark. Since the curve X and group G will not change, to simplify the notation in what follows,
let us write Bun = Bung (X)), Hecke = Heckeg (X)), and similarly for related spaces.

Proof of Theorem 5.2.1. Let A be a dominant coweight. First, to the map p*, we have the Lagrangian
correspondence

() dp>
T*Bun ——- T*Bun X gy, Hecke® ———> T*Hecke

Second, to the map pi x 7, we have the Lagrangian correspondence

d(p} ) () x)
T*Hecke® =2 T*(Bun x X) X gunxx Hecke® = >'T*(Bun x X)

Pretending pi is proper, the functoriality of singular support suggests the consideration of the following
conic Lagrangian in 7*(Bun x X)

sing” = (p} x m)y(d(p2 x 7))~ (dp2)(p2); 'Ne(X) € T*(Bun x X).
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Claim. For any X € A}, the conic Lagrangian substack sing® satisfies
sing® € Ng(X) x X.

The claim can be viewed as a naive version of the theorem: if pi were always proper, the Claim would
imply the theorem by the functoriality of singular support recalled in (5.1) and (5.2). We will turn to the
proof of the Claim in a moment, but let us first see that it implies the theorem.

5.2.4. Lemma. The Claim implies Theorem 5.2.1.

Proof. Recall from (4.9) the Hecke functors H* associated to the Hecke correspondences (4.8) (correspond-
ing to the kernel V!)\E(f}v/\ ), for A € A;F. By Lemma 3.4.3, the theorem is equivalent to the assertion:
e

sing(F) € Na(X) = sing(HM(F)) € Na(X) x X, Ve Ab.

To the map p”* , we have the Lagrangian correspondence

)y A dp A
T*Bun =<—— T*Bun Xy, Hecke ———= T*Hecke

To the map 5§r x 7, we have the Lagrangian correspondence

A d@) x) —~—X (Phxm)y

T*Hecke <——— T*(Bun X X) Xgunxx Hecke ——— = T*(Bun x X)
The standard properties (5.1), (5.2) imply

(5.3) sing(H(F)) € (P} x m)y(d(F) x 7))~ (dp™) (3 ); 'sing(F).

We will show that the right hand side lies in Ng(X) x X.
Unwinding the definitions, the right hand side of (5.3) comprises all elements
((54-756)7 (¢+7 6‘)) € T*(Bun X X)

~ A
arising as follows: there is a point h € Hecke with images

& =p*(h),&. =p*(h) € Bun, z=n(h)eX
along with a covector
¢_ €T¢ Bun
satisfying the equation
A
(5.4) AN (€, §-) = AP x 7)((E+,2), (6+.,6)) € T Hecke .

Now for some p < A, we have
h = r*(h) € Hecke" C Hocke .

Recall that 7} restricts to an étale locally trivial fibration

A
™ u : Hecke |Hecker — Hecke!.

Thus we may choose a section of r*|, above the formal neighborhood of h passing through h. Pullback
along this section shows that (5.4) also implies the equation

(5:5) dp” (E-,¢-) = d(py x m)((E4, ), (¢4,0)) € Ty Hecke".

But this is precisely the equation that exhibits
((nga I)a (¢+7 9)) € Singu'



16 DAVID NADLER AND ZHIWEI YUN

By the Claim, sing” C Ng(X) x X, therefore ((E+,%), (¢+,0)) € Ng(X) x X. Hence the right hand
side of (5.3) lies in Ng(X) x X. Thus the Claim implies the theorem. O

Now it remains to prove the Claim.
Proof of the Claim. Fix C-points x € X, £_, &, € Bun, and respective covectors

0eTrX, ¢- € H'(X,g: ®uwx), ¢+€H0(X,g;§+®wx).
Fix an isomorphism
o 5—|X\z — 5+|X\z

of relative position A at x, so that we have an equality
(5.6) dpX () = dp}(¢+) +dr(0) € T}, o ¢ oy Hecke™,

Then to prove the Claim, we must show: if ¢_ € Ng(X), then ¢+ C Ng(X) and 6 = 0.
Set HeckeA|m C Hecke™ to be the fiber, and j : X \ = X the open inclusion.
Note that « induces an isomorphism of quasicoherent sheaves

JxJ 85~ JxJ 0z, -
Consider the coherent subsheaf
05 ve, =0 05, CUnJ 05 ~JeJ 05, -
Then the fiber of the cotangent complex of Hecke’\|m is given by the complex of derived sections

T?ﬁ'—;&ma)

A *
Hecke’|, =~ T'(X, g7 e, ®wx),
and that of its underlying classical cotangent bundle by the space of sections

Te e

Hecke|, ~ HO(X, 95 ve, ®wx).
Thus we have a short exact sequence
* * A *
TiX —=T(, ¢ ¢, o Hecke’ — HO(X, 9% ve, ®wx).

The pullback of covectors

A

p_
HY(X,g; ®uwx)=T§ Bun —=T¢, o o Hecke® —= H(X, g7 ¢, ®@wx)
is the inclusion induced by the inclusion
98— 0¢ ve, -

Likewise, the pullback of covectors

dp>‘
HO(X, g%, ®wx) ~ Tf, Bun —=1T¢, o . Hecke — HO(X, 0} ¢, ®wx)

is the inclusion induced by the inclusion
g;+ —— g§7V5+ :
Therefore the equality (5.6) implies, after passing to
* A *
T(e ¢, oHecke l. ~ H(X, 95 ve, ®wx),

that we have the equality

O |x\z = O4|x\a-
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In particular, if ¢_ € Ng(X), then ¢ € Ng(X).
Thus it remains to show if ¢_ € Ng(X), then § = 0.
Consider the coherent subsheaf

O ae, = 0: NGE, C Oz ve, -

Let ¢ denote the common value of ¢_, ¢, upon passing to H°(X, g5 ve, ® wx ), and note that it lies in
the subspace

HO(X,0; pe, @wx) C HYX, 07 e, ©wx).

Since the equality (5.6) can be rewritten as

dr(0) = dpX (¢-) — dp (¢+),
it suffices to show:
(5.7) When ¢ € HY(X, 95 e, ®wx) is nilpotent, we have dp? (¢—) = dp’ (¢4 ).
We will deduce this by passing to a Grassmannian uniformization. Let us denote by
(GrgxGrg)y C GrgxGrg

the subspace of the product comprising lattices in relative position A. Similar to the construction of the
map u in §4.2, we have the uniformization map

0 Aut®(0) 0 N
r: (GrgxGrg)x x Coord”(X) —— (GrgxGrg)y x  Coord”(X) —— Hecke™.

To show (5.7), we will show that
(5.8) When ¢ € H(X, 95 ne, ®wx) is nilpotent, we have dr(dp? (¢-)) = dr(dp} (¢+)).

By the discussion in §4.3.2, the uniformization map w, and hence r, are submersions in the sense that
they induce injective maps on cotangent spaces. However, u and r are guaranteed to be surjective only
when G is semisimple. Therefore when G is semisimple, (5.8) implies (5.7). The case of a reductive G can
be reduced to the semisimple case as follows. Let G®! be the adjoint quotient of G, with maximal torus

T* =T/Z(G), and let X € A, be the image of A. Then we have the Hecke correspondence

ad,\ ad,AX

Bungaa(X) < Heckegad (X)p+—>7rBunGad (X) x X
Since ¢4 is nilpotent, it lies in H°(X, gzdi’* ®wx) C HY(X,g;, ®wx). For v : Hecke® = Heckegy(X) —
Heckepvaa (X) the natural map, we have
dp(6-) =dvodp™ (@), dpi(ey) =dvodpi (#:).

Therefore it suffices to treat the case G = G4,
From now on we assume G is semisimple, in which case it suffices to show (5.8). Choose g_(t), g+(t) €
G(K), (z,t,) € Coord”(X) such that

T(g— (t)G(O)vg-i-(t)G(O)vxatm) = (,T, &, &, a)'

Using (4.1), the cotangent space of (GrgxGrg)x x Coord’(X) at (g_(t)G(O), g4 (t)G(O),z,t,) can be
naturally identified with

(Ad97 (t)g* (O)dt + Adg+(t)g* (O)dt) &) Der(O)*.
By Proposition 4.3.3, under the above decomposition, we have

dr(dp? (¢-)) = (d—|px: 1y 1)c(0)(P=|px)),

dr(dp (¢4)) = (d+|px, g, ()c(0) (D+]px)).
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Let ¢ = ¢4 |px = ¢_|px € Ady_»g*(O)dt N Ady, +g*(O)dt. Now it suffices to show if ¢ is nilpotent,
then we have the equality
g— (e (V) =ty a0y (¥) € Der(0)* ~ (K/O)dt.
Write g4 (t) = g—(t)h(t) (where h(t) is well-defined in the double coset G(O)\G(K)/G(O)), so
to e (®) = (gh)g+ ()7, 9)
= (" (t)g-(t)~" +Adg (OB, ¥)
= g wc©)(®) + (W (Oh) ™!, Ady_ 1)1 (1)) € Der(0)* = (K/O)dt
Write Ad,_(y-1(¢) = ndt, so
(5.9) 1 € ¢°(0) N Ady)g*(0)-
It remains to show that
(5.10) (R (t)h(t)~t,n) € O

for nilpotent n satisfying (5.9). This is the content of Lemma 5.2.5 immediately below, which will complete
the proof of the theorem for G semisimple. The general case then follows by our previous reduction. [

5.2.5. Lemma. Let h(t) € G(K) and n € g*(O)NAdpg*(O) be a nilpotent element, then (h'(t)h(t)~1,n) €
me, i.e., the inclusion (5.10) holds.

Proof. Since the inclusion (5.10) does not change if we multiply h(t) on the left or on the right by an
element in G(O), we may assume h(t) = t*, for some A € Ar. In this case, we reduce to showing

(A, ) € mo, Vn € g*(0) N Adpg*(0O).

Using a Killing form on g, let us identify g* with g. Let 77 denote the image of 1 in the quotient
9(0)/g(mo) ~ g. The condition n € Ad;»g(O) implies that 77 € p,, where py is the parabolic of g
containing t = LieT" with roots {a|(c, A) < 0}. The Levi factor [ of p) has roots {«|(a,\) = 0}. Let
m:py — [ be the projection. We have

m = <)‘7ﬁ> = <)‘77T(ﬁ)>[/\

where the first term denotes the image of (\,;n) € O in the quotient O/me ~ C. Since 7 is nilpotent, so
are 77 € g and 7(7) € [1. Since A is central in [y, we conclude that (A, 7 (7)), = 0, hence (\,n) = 0 and
(A\,m) € mp. This finishes the proof. O

The proof of Theorem 5.2.1 is now complete. O

6. BETTI SPECTRAL ACTION

6.1. Multiple Hecke modifications. Theorem 5.2.1 formally extends to the case of Hecke modifications
at multiple points. More precisely, consider the iterated Hecke stack

Heckeg (X™) = Heckeg (X) X Bung(x) Heckeg(X) XBung(x) =+ XBune (x) Heckeg(X)

formed using n factors of Heckeg(X), where the fiber product is formed using p_ to map Heckeg(X) to
the copy of Bung(X) to the left of it and using p; to map to the copy of Bung(X) to the right of it. We
have maps

Pn,+XTn

(6.1) Bung (X) <= Heckeg(X™) Bung(X) x X"

where p,, _ is the p_ from the first factor of Heckeq(X) and p,, + is the p4 from the last one.
As in the discussion in Section 4.4.1, in the case of the iterated Hecke stack, we have a diagram

Heckeg (X™) <2— Heckeg (X™) x xn Coord’(X)" —> (G(O)\Grg)"
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with ¢, an Aut’(O)"-torsor. Let
Saty(n) := She(Aut’(0)" x G(O)"\Crd, E)

Then for any object V € Satg(n), using its Aut®(O)™-equivariant structure, its pullback p%V to Heckeg (X ™)X xn
Coord”(X)" descends to a complex V' on Heckee(X™), which can be used to define a Hecke functor

H,y : Sh(Bung(X), E) —— Sh(Bung(X) x X", E)
Hp y(F) = (pn+ X T )V @5, _F).

6.1.1. Theorem. For any kernelV € SatOG(n), the Hecke functor H,, y preserves nilpotent singular support,
and for sheaves with nilpotent singular support, it does not introduce non-zero singular codirections along

the curve. In other words, for F € Sh(Bung(X), E),
sing(F) C Ng(X) = sing(H, v(F)) C Ng(X) x X"
where X™ C T*X™ denotes the zero-section.

Proof. An analogue of Lemma 3.4.3 for Sat%(n) implies that it suffices to prove the theorem for V = V2
the constant sheaf (extended by zero) on Grrg1 X Grg", for any sequence A = (A1, ,A,) of dominant
coweights of G. Consider the substack of Heckeg(X™)

Hecke? = Heckeg1 (X) XBung (x) Heckeg1 (X) XBung (X) *** XBune (X) Heckeg" (X).

We have a diagram

A A
X T

Bung(X) —— Hecke (X) © Bung(X) x X"
restricted from (6.1). We have
Hyya(F) ~ HMF) = (0} x ma)i(0™)* F.

We only need to show that the statement holds for H2.

We argue by induction on n. The case n = 1 is Theorem 5.2.1. Suppose the case n — 1 is proved.
Let A = (A1,-+ ,An—1) and F € Shy,x)(Bung(X), E). By the inductive hypothesis, sing(H2'(F))
Ng(X) x X"~ We have a diagram (we again use the abbreviated notation Bun := Bung(X), etc.)

P PAm, X
n—1 m—1 An n—1 +on—t n—1
Bun x X <—— Hecke™ x X ————— > Bunx X x X

given by simply taking the product of the diagram (4.4) with X™~!. Here piiZ%1 = p;\E” X idyn-1 :
Hecke™ x X" ! — Bun x X" L. By proper base change, we have
HA(F) = (0 oy X h(p2, 1) HY (F).
The same argument as Lemma 5.2.4 shows that it suffices to prove the naive estimate
(Pmy X (AP, g x )~ dp, ) (P27, 1)y NG (X) € Na(X) x X
However, the left hand side above is exactly sing®* x X"~ 1 ¢ T*(Bun x X) x T*X"~ !, and the above
inclusion follows from the Claim preceding Lemma 5.2.4. O

6.1.2. Remark. Let E be a perfect field. Recall Rep(GY,) is the abelian category of finite-dimensional
E-representations of G,. There is a natural map

7 Ty Rep(GY) ~ [T1, Satg:” ——= Satg;(n)?

given by external tensor product. This functor is exact in each factor. Recall Deligne’s definition of the
tensor product of a finite collection of E-linear abelian categories with finite dimensional Hom spaces and
objects of finite lengths [7, 5.1, Prop. 5.13(i)]. By [7, Prop. 5.13(vi)], the functor 7/ canonically extends
to an exact functor of the n-fold tensor product of the abelian category Rep(GY,). By [7, Lemme 5.21
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(special case of 5.18)], the n-fold tensor product of Rep(GY,) is identified with Rep((G),)"™) as a tensor
category. Since 7/ is tensor in each factor, the resulting functor

7 s Rep((G)") —= Satly (n)°
is also a tensor functor. Therefore, for each V' € Rep((G¥,)"), we have a Hecke functor
H, v : Sh(Bung(X), E) —— Sh(Bung(X) x X", E)
defined as H,, y for V = 7,,(V).

6.2. Level structure. We state here a generalization of Theorem 5.2.1 incorporating level structure.
Recall for a point z € X, we write O, for the completed local ring at x, with maximal ideal m,, and
fraction field /C,.
A level structure at x € X is by definition a subgroup scheme K, C G(K;) that contains a congruence
subgroup G(O,)y = ker(G(0,) — G(O,/mL)), for some N, as a normal subgroup, and is contained in
the normalizer of a maximal parahoric subgroup of G(IC).

6.2.1. Example. A favorite example is K, C G(K,) an Iwahori, or more generally a parahoric subgroup.

Let S C X be a finite subset, and set U = X \ S. Let Lg = (K;),cs denote the choice of a level
structure for each x € S. If each K, is a congruence subgroup G(O,)n,, the moduli stack Bung(Lg) of
G-bundles with Lg-level structures classifies (€, 7) where £ is a G-bundle over X and 7, is a trivialization
of &€ along the divisor ¢ N, - 2. For general level structures Ls = (K;)zecs, the moduli stack Bun(ILs)
of G-bundles with Lg-level structures is defined as follows. For each x € S, pick a congruence subgroup
G(Oy)n, which is normal in K,. Let Lﬁs = {G(Oy)nN, }res and define Bung(Lg) to be the quotient of
Bung (Lus) by [[,cs Ke/G(Or)n, . Tt is easy to see that Bung(Ls) is independent of the choice of { N, }es.

Let T*Bun(LLg) denote the classical cotangent bundle of Bun(Lg). Its fiber at £ € Bun(Lg) is the space
of Higgs fields given by the short exact sequence

T¢Bun(Lg)—— HO(U, EZ’IU ® wx ) — DresLie(K,)*dt,

where t, € m, denotes a coordinate.

Thus it makes sense to say whether a point of T*Bun(LLg) is nilpotent by asking for its generic values
to be nilpotent. We will write N'(Lg) C T*Bun(Lg) for this global nilpotent cone.

Let Sh(Bun(Lg), E) denote the dg category of all complexes on Bun(Lg).

Using the Hecke correspondence over U

ZDU><7TU

U
Bun(Ls) <~ Hecke(Ls)y ——= Bun(Lg) x U
we can define Hecke functors indexed by V € Satd,
HY : Sh(Bun(Lg), E) — Sh(Bun(Lgs) x U, E) HY(F) = (pY x mu (V) @ (pY)*F)

where V; is the spread-out of V to Hecke? (Ls)u, defined using a similar procedure as in Section 4.4.1.
More generally, for any positive integer n, we have Hecke modifications at n points indexed by V €
Satd(n)
HY\, : Sh(Bun(Ls), E) — Sh(Bun(Lg) x U™, E).
The following generalization of Theorem 6.1.1 can be deduced by a verbatim repeat of its proof.

6.2.2. Theorem. For anyV € Sat%(n), the Hecke functor Hgy preserves nilpotent singular support, and
for sheaves with nilpotent singular support, it does not introduce non-zero singular codirections along the
curve. In other words, for F € Sh(Bun(Lg), E),

sing(F) C N(Ls) = sing(HY,(F)) C N(Ls) x U™.

where U™ C T*U™ denotes the zero-section.
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6.3. Spectral action. We record here our main application of Theorem 5.2.1 and its generalization
Theorem 6.2.2.

In this subsection, let E be a field of characteristic zero. Let G}, be the base change of G¥ to E. We
shall use the notation set out in Section 2.2. Recall the geometric Satake equivalence [19, (1.1)]

Satg ~ Rep(GY},).

6.3.1. Unramified case. Recall by Theorem 5.2.1, the Hecke action on Sh(Bung(X), FE), at any point
r € X, preserves the full subcategory Shy, x)(Bung(X), E). Restricting to kernels in Satg provides a
Rep(Gy)-action on Shyr,(x)(Bung(X), E).

6.3.2. Proposition. Let S be a topological space equipped with a deformation retraction to a point sg € S.
Given any map f : S — X, the Rep(G';)-action on Shy,x)(Bung(X), E) at any point f(s) € X is canon-
ically isomorphic to that at f(so) € X. More generally, the Rep(Gy)®™-action on Shy,x)(Bung(X), E)
at any collection of points f(s1),. .., f(sn) € X is canonically isomorphic to the tensor product Rep(GY,)®" —
Rep(GY;) followed by the Rep(G};)-action at f(so) € X.

Proof. We will give details for the first assertion of the proposition for S = R, sg = 0; the general case and
more general assertion for multiple points are similar (using Theorem 6.1.1 in place of Theorem 5.2.1).
Thus for any path v : R — X, we seek to show the Rep(G'y;)-action on Shyr,(x)(Bung(X), E) at any
point y(t) € X is canonically isomorphic to that at v(0) € X.
For any object F € Shyx)(Bung(X), E), and kernel V € Satg, we have by Theorem 5.2.1

HV(]:) S ShNg(X)xX(BunG(X) x X, E)
Restricting along v we get
(id x 7)*"Hy(F) € Shyg (x)xr(Bung(X) x R, E)

whose further restriction to each Bung(X) x {t} is the Hecke modification of F at ~(¢) by the kernel V.
Thus it suffices to show that for any ¢ € R, the restriction functor
(6.2)

resg : ShNg(X)X]R(BunG(X) X R, E) —_— Sth(X)X{t} (Bung(X) X {t}, E) = ShNG(X)(Bung(X), E)

1

is an equivalence, and that for ¢ € R, the functor res; " o res; is canonically isomorphic to the identity

functor of Shyr, x)(Bung(X), E).
As discussed in Section 5.1.2, for any smooth scheme with smooth map u : U — Bung(X), with induced
correspondence

T*U <2 T*Bung(X) X pung(x) U ——> T*Bung(X)
we have the induced nilpotent Lagrangian
Nu = du(u; ' (Na(X)) € T*U.

By [13, Cor. 8.3.22], we may choose a p-stratification S = {Ua}taca of U such that Ny C TiU =
UaeaTy;, U. Then (u x v)*Hy(F) is locally constant along the stratification S x R = {Us x R}nea of
U x R by [13, Prop. 8.4.1]. Thus for any ¢t € R, the restriction functor

resy,s.t ShSXR(U X R, E) — Shgx{t}(U X {t}, E)

is an equivalence such that res{,ls_0 oresy,s, is canonically isomorphic to the identity functor of Shs(U, E).
Restricting to the full subcategories by imposing nilpotent singular support conditions, the restriction
functor

resy,t : Shay xr(U X R, E) —— Shpr, w3 (U x {t}, E)
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is also an equivalence such that res,}l0 oresy, is canonically isomorphic to the identity. Since the restriction
functors resy ¢ are functorial in the map u : U — Bung(X), we conclude that res; in (6.2) is an equivalence
as desired, and that res; 16 res; is canonically isomorphic to the identity. 0

Recall that Rep(GY,) ~ Perf(BG%)". Let 7 : GY,/G} — BGY, denote the natural projection from the
adjoint quotient, and e : BGY, — GY./GY, the identity section. Since 7 is affine, we have the equivalence

(6.3) 7. : QUoh(GY/GY) —== Modo, QCoh(BGY,)

where Modp,, QCoh(BGY;) denotes module objects for the algebra object Og = Oy /Gy = ®aen+ VY e®
V) of functions on the group.

The following is a well-known consequence of the structure produced in Proposition 6.3.2. We will give
a proof focusing on the key structures; see Remark 6.3.4 immediately after for a more scientific approach.

6.3.3. Proposition. Given a loop v : S' — X based at a point o € X, the Perf(BGY)-action on
Shyre(x)(Bung(X), E) at the point xo € X canonically extends along 7* : Perf(BGY,) — Perf(GY,/GY,) to
a Perf(GY,/GY,)-action.

Moreover, given an extension of v to a disk 5 : D* — X, the Perf(GY./G))-action canonically factors
through e* : Perf(GY,/GY,) — Perf(BGY,) followed by the original Perf(BGY,)-action.

Proof. Consider the universal cover p : R — S! = R/Z and the lift ¥ = yop : R — X. By Proposition 6.3.2,
the Perf(BGY;)®"-action on Sh,x)(Bung(X), E) at any collection of points J(t1),...,5(tn) € X is
canonically isomorphic to the tensor product Perf(BGY,)®" — Perf(BGY,) followed by the Perf(BGY,)-
action at (0) = xo.

Let us leave aside the symmetric monoidal structure of Perf(BGY,) for the moment and regard it as
a plain monoidal category. By Proposition 6.3.2, translation along R by an integral amount provides a
canonical monodromy automorphism m of the monoidal action: automorphisms my : Hy 5, = Hy 4,, for
V € Perf(BGY,), along with equivalences my, gy, ~ my, @ my, and evident associativity coherences.

Let us use the monodromy automorphism m to show the Hecke functors Hy ,,, for V € Perf(BGY,),
factor through n* : Perf(BGY,) — Perf(G},/GY,). For this, it suffices by (6.3) to show Hy ., carries
a functorial Og-module structure given by an action map Hopg 4o © Hy z, — Hy z, with identity and
associativity coherences. From the decomposition Og = ®yecp+ VY ® Vi, to construct the action map
Hog 2o 0 Hy 2o = Hy z,, it suffices to define Hvygvy o0 © Hyzo = Hy gy, for A € AT. We take this to be
the transpose of the monodromy automorphism my, gy under the duality of V). It is a diagram chase to
show the canonical equivalences my, gy, >~ my, ® my,, and their higher coherences naturally extend this
action map to an Og-module structure on Hy 4.

Now we have shown there is a natural factorization of the Hecke functor

(6.4) H,, : Perf(BGY) ——= QCoh(GY,/GY) — End(Shys, (x)(Bung(X), E))

but not yet confirmed it is monoidal. For this, let us return to the picture that Perf(BGY,) is not only
monoidal but a tensor category. The canonical equivalences of Proposition 6.3.2 enhance the monodromy
automorphism m to a tensor automorphism: there are evident coherences intertwining the symmetric
structure of Perf(BGY;) and the monodromy automorphisms my, gy, , my,ey, - It is again a diagram chase
to show that this equips the factorization (6.4) with a monoidal structure.

This concludes the proof of the first assertion; the second is similar and we leave to the reader. O

6.3.4. Remark. Let us outline a more scientific approach to Proposition 6.3.3 (see also the discussion
of Remark 1.3.3) whose more detailed explanation would take us too far a field. Set A = Perf(BGY,),
C = Shpr,(x)(Bung(X), E), so that A is a symmetric monoidal or E..-category, and the Hecke action at
xo € X gives a monoidal or Ej-functor H : A — End(C).

Let £(End(C)) be the inertia or loop category of objects ¢ € End(C) equipped with an automorphism
v € Aut(yp). Since End(C) is an Ej-category, L(End(C)) is an Fs-category, and the projection L(End(C)) —
End(C) is an Ej-functor. By a monoidal automorphism, let us mean an Ej-lift H) : A — £(End(C)); by
a tensor automorphism, let us mean an Ep-lift H) : A — £(End(C)).
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In our geometric situation, given a loop 7 : S' — X based at xy € X, Proposition 6.3.2 provides a
natural tensor automorphism H? : A — £(End(C)). By adjunction, this in turn provides an E;-functor
A® S — End(C), where A® S! denotes the Hochschild F;-category of the Es-category A. Furthermore,
we have the explicit calculation Perf(BGY,) @ S' ~ Perf(GY,/GY.) (see for example [3]).

Similar considerations apply equally well to the second assertion of Proposition 6.3.3.

Now let Locgv (X) be the Betti derived stack of topological GV-local systems on X. Thus for a choice
of a base-point z¢ € X, we have the monodromy isomorphism

Locgv (X) ~ Hom(m (X, z0), GY)/GY

More concretely, regarding X as a topological surface, fix a standard basis a1, ..., ag, B1, .. ., B4 of loops
based at xg so that we have [[9_,[a;, 8;] = 1 € m (X, x0). Given a GV-local system, with a trivialization
of its fiber at xg, taking monodromy around these loops gives a collection of elements g(«a;), g(8;) € G, for
i=1,...,¢9. In this way, we obtain a Cartesian presentation

Locgv (X) —= ((GY)? x (G¥)7)/GY

l )

BGY —— ¢ . GV/GY

where the map c¢ is induced by []7_,[g9(cv), 9(3:)], and the map e by the inclusion of the identity.

To understand perfect complexes on Locgv (X) g via the above Cartesian square, let us follow the proof
of [3, Proposition 4.13]. Its hypotheses do not hold here, since neither BGY, nor ((G})? x (G})9)/G}; is
affine, but in fact all that its proof uses is that BGY, has affine diagonal, and e and c¢ are affine. Namely,
the fact that e is affine implies pushforward along it induces an equivalence

QCoh(BGY;) —— Mode, 0,,,, QCoh(G},/G})

where Mode*@BGYa QCoh(G'y;/GY;) denotes module objects for the algebra object e.Opgy € QCoh(G};/GY)

of functions on the adjoint-orbit of the identity. By [3, Proposition 4.1], this in turn implies that
QCoh(BGY,) is self-dual, and in particular dualizable, as a QCoh(GY,/GY,)-module. Along with the fact
that BGY, has affine diagonal, and e and ¢ are affine, the limit calculations of the proof of [3, Proposition
4.13] only depend on this dualizability. Thus we conclude that pullback induces a tensor equivalence

QCoh(Locgv (X)) <—— QCoh(((G})? x (G)?)/Gl) ®qcenay/cy) QCoh(BGT)
Since this equivalence preserves compact objects, we obtain a similar tensor equivalence
(6.5) Perf(Locav (X)p) <—— Perf(((GE)? x (G})?)/G) @patcy/ay) Perf(BGY)

by recalling the compatibility of the tensor product of small stable co-categories and presentable stable
oo-categories under taking Ind and conversely passing to compact objects.
With the preceding in hand, we can now conclude the following.

6.3.5. Theorem (Betti spectral action). Let E be a field of characteristic zero. There is an E-linear
tensor action

Perf(Loch (X)E) % Sth(X) (BunG (X), E)

such that for any point x € X, its restriction via pullback along the natural evaluation
Rep(GY,) —== Perf(Locgv (X))

is isomorphic, under the Geometric Satake correspondence, to the Hecke action of Satg at the point x € X.
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Proof. By the geometric Satake correspondence, the Hecke action by Satg at the base-point =g € X
provides a Rep(GY;)-action on Sh, x)(Bung(X), E). By the first assertion of Proposition 6.3.3, the based
loops i, ...,a,, Bi1,..., B, provide a lift to a Perf(G);/G%)®?9-action. Applying the second assertion of
Proposition 6.3.3 to a disk with boundary the composition [[{_; [c, 3;] of the based loops, we see that the
Perf(GY,/G})®?9-action factors through a Perf(Locgv (X) g)-action. O

6.3.6. With level structure. Let S C X be a finite subset, and set U = X \ S. Let Lg = (K;),cs denote
the choice of a level structure for each = € S.

Let Locgv (U) be the Betti derived stack of topological GV-local systems on U. Thus for a choice of a
base-point ug € U, we have the monodromy isomorphism

Locgv (U) ~ Hom(m (U, up), G¥)/G".
Assuming S is nonempty, so that U is homotopy equivalent to a bouquet of n circles, we may choose based
loops so that the monodromy isomorphism takes the form
Locgv (U) = (GV)"/G".

The following generalization of Theorem 6.3.5 can be deduced from Theorem 6.2.2 by the same argu-
ment. (In fact, assuming S is nonempty, it only involves the first two steps, but not the third, since there
is no equation to impose.)

6.3.7. Theorem (Betti spectral action with level structure). Let E be a field of characteristic zero. There
is an E-linear tensor action

Perf(Locgv (U)g) ™ ShyLgy(Bun(Ls), E)

such that for any point w € U, its restriction via pullback along the natural evaluation
Rep(GY,) ey Perf(Locgv (U)g)

is isomorphic, under the Geometric Satake correspondence, to the Hecke action of Satg at the point u € U.

6.3.8. With tame ramification. Let S C X be a finite subset, and set U = X \ S. We consider here level
structure Lg = (I;),es that is Iwahori level structure at each = € S. To simplify the notation, we will only
include S, rather than Lg, in the notation for the resulting objects. For example, Bung (X, S) denotes the
moduli of of G-bundles on X with a B-reduction at each s € S. Let Ng(X,S) C T*Bung(X, S) denote
the global nilpotent cone.

Let Locgv (X, S) denote the moduli of GV-local systems on U equipped near S with BY-reductions with
trivial induced HY-monodromy.

Thus for a choice of a base-point ug € U, we have the monodromy isomorphism

LOCGv (X, S) ~ (Hom(m (U, UQ), Gv) X(Gv)s (j\V/\/)S)/G\/
and an induced tensor equivalence (E is a characteristic zero field)
Perf(Loch (X, S)E) <= Perf(Horn(m (U, UO), GE)/GE) ®Peri’(Gé/Gg)®S Perf(./\Nbe/GE)‘gS

By Bezrukavnikov’s tame local Langlands correspondence [6, Theorem 1(4)], at each s € S, we have a
monoidal equivalence

Coh(Stav.5/GY) ~ Sho(I\G((ts))/Is, E)

where Stgv = NV X av NV is the derived Steinberg variety over E, and Stgv g is its base change to E.
In particular, via the diagonal embedding A : NV < Stgv, we have a monoidal functor

(6.6) Perf(NY/GY) —2> Coh(Stev.p/GL) = She(I\G((t,))/Ls, E).

Since the Iwahori-Hecke category Sh.(I;\G((ts))/Is, E) acts on Sh(Bung(X,S),E) by bundle modifi-
cation at s, we get commuting actions of Perf(NyY/GY) on Sh(Bung(X,S),E) for each s € S. By
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Bezrukavnikov’s construction [6, 4.1.2], the restriction of the actions along the pullback Rep(G},) ~
Perf(BGY,) — Perf(N % /GY) is equivalent to the nearby cycles of the Satake action of Rep(GY;) at nearby
points. Moreover, the monodromy of the nearby cycles provides the lift of the restriction to the pullback
Perf(GY,/GY,) — Perf(Ny /GY).

With the preceding in hand, the following tamely ramified version of Theorem 6.3.5 can be deduced by
the same argument.

6.3.9. Theorem (tamely ramified Betti spectral action). Let E be a field of characteristic zero. There is
a tensor action

Perf(Locgv (X, S)g) ™ Shy,(x,s)(Bun(X, S), E)

such that for any point u € U, its restriction via pullback along the natural evaluation
Rep(GY,) —2= Perf(Locgv (X, S) )

is isomorphic, under the Geometric Satake correspondence, to the Hecke action of Satg at the point u € U,
and for any point s € S, its restriction via pullback along the natural evaluation

vt : Perf(NY/GY,) — Perf(Locav (X, S)g)
is isomorphic to the action of Perf(NY /GY.) at the point s € S given by (6.6).
D elbp P g Y

7. BETTI EXCURSION OPERATORS AND BETTI LANGLANDS PARAMETERS

One can use the local constancy of the Hecke functors proved in Theorem 6.2.2 to define a subalgebra
of the center of the automorphic category, analogous to the “excursion operators” defined by V. Lafforgue.
Using these operators, we can associate a Betti Langlands parameter to an indecomposable automorphic
complex.

In this subsection, E is an algebraically closed field.

Let S C X be a finite subset, and set U = X'\ S. Set I' = 71 (U, up), which is a finitely presented group.
Let Ls = (K;)zes denote the choice of a level structure for each z € S.

7.1. Betti excursion operators. In [15], V. Lafforgue constructed a collection of operators on the space
of cusp forms called “excursion operators” using moduli of iterated Shtukas. In the setting of Betti geomet-
ric Langlands, we have an analogous construction, now acting on each object F € Shys(Ly)(Bun(Ls), E)
(or, acting on the identity functor of Shy;rg)(Bun(Ls), E)).

For any n > 1, consider O,, = O(G%)®" = O((G%)"). Consider the action of (GV)"*! on (GV)" given
by

(hoyhay -+ ha) - (91,92, -+ 5 9n) = (hogihi ', hogehy 'y -+ hognhy ).

This way O,, becomes a representation of (GV)"*!. By Remark 6.1.2, each object V € Rep((GV)" ™!, E)
defines a Hecke functor H, ;1 y. Passing to ind-objects, the ind-object O,, € Ind — Rep((GV)""1, E)
defines a Hecke functor

HnJrl.,On : ShN(LS)(BUD(LS)7E) —_— Sh/\/(Ls)(BUH(Ls) X U"+1,E)

If we restrict to the diagonal A : GV — (GY)"*, the induced action of GV on (GY)" is by simultaneous
conjugation.
Consider the tautological inclusion

oGy /ay) = 0P o0,
as A(GY;)-modules. This induces a natural transformation
¢t O((Gé)"/Gé) ®id —— Hp11,0, |A(uo)

of endo-functors on Shyrrg)(Bun(Ls), E). Here Hy,11,0,|A(u,) is the composition of Hy 1,0, with the
restriction to Bun(ILg) x {A(ug)}.
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Now by Theorem 6.2.2, the functor Hy 41,0, | (u,) carries an action by the fundamental group 7 (U™, A(ug)) ~
I'"*1, In particular, for any 7= (v, ,7) € I'", we may consider the action

(1,7) : Hnt1,0, 1A (wo) = Hnt1,0,, | A(uo)

of (1,71,--,9m) on Hpy1,0,|A()- Finally, evaluation at the identity gives a A(GY)-invariant map
O, — F, hence a natural transformation

e Hyi1,0, Ay — Hi,p = id
The composition

. cu (1’1) cb .
O((GE)"/GY) @id —— Hui1,0, | A(uwe) — Hnt1,0, | A(ug) —id

defines an E-linear map
Sl : O((GE)"/G%) —— End(idShN(LS)(Bun(ILs),E)) = Z(ShN(LS)(BU.D(LS), E))

It is easy to check that this is indeed an F-algebra map.

We may call S, the Betti excursion operator associated to the n-tuple y € I'". For each object F €
Shars)(Bun(Ls), E), we get an action of O((G%)"/GY) on F
(7.1) S.r: O(G)" /G) — Z(End(F))

where End(F) is the (plain) E-algebra of endomorphisms of F in the homotopy category of Shr(Lg)(Bun(Ls), £),
and Z(End(F)) its (underived) center.
The assignment v — Sl defines a universal excursion operator

On: O((GR)"/Gg) —= C(I", Z(ShyLs) (Bun(Ls), E))).

Here the right hand side is the ring of Z(Shyr)(Bun(LLs), E))-valued functions on I'", under pointwise
ring operations.

The following proposition is an analogue of [15, Definition-Proposition 11.3(c)(d)], with the same formal
aspects of the proof. The local constancy of the Hecke action proved in Theorem 6.1.1 replaces the use of
Drinfeld lemma in [15].

7.1.1. Proposition. The universal excursion operators ©,, satisfy the following properties.
(1) For any m,n > 1 and any map ¢ : {1,2,--- ,m} = {1,2,--- ,n}, the following diagram is com-
mutative

O((Gy)™/GY) —22= C(T™, Z(Shrrs) (Bun(Ls), E)))

l()c l()C

O(GY)" /G —2> (T, Z(Shp (1) (Bun(Ls), E)))

Here the vertical maps labeled (—)¢ are induced by the natural maps
(GV)n (G\/)m, IRE Tm
given by (g1, 9n) = (9e1)s > 9c(m))-
(2) For anyn > 1, the following diagram is commutative

O((Gy)"/GY) —2s C(T™, Z(Shy(1s)(Bun(Ls), E)))

lﬂn,n«#l lﬂn,n+1

O((GY)™+1/GY) — O™, Z(Shyr(ws)(Bun(Ls), E)))
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where the vertical maps labeled by fiy, n+1 are induced by the maps
(GV)nJrl (G\/)n, I\nJrl I\n

gwen by (g1, s gns Gnt+1) = (91, Gn—1, GnGn+1)-

7.2. The geometric R — T map. Let R = H’(Locgv (U)g, O) be the ring of regular functions on the
(non-derived) moduli stack of Locgv(U)g ~ Hom(I',G},)/GY.. For any v = (v1, -+ ,7n) € I'", we have
an evaluation map B

evy : Locgv (U)p — (G)"/GY.

Here (GY,)™/G" is the quotient of (G),)™ by the diagonal conjugation action of G};. Pulling back functions,
we get an F-algebra map
evi 1 O((GE)"/GY) — R.

Equivalently, we have an E-algebra map
evp, : O((GY)"/GY) —— C(I'", R).

The maps {ev,, } satisfy the same properties as {©,,} listed in Proposition 7.1.1 with Z(Shr(Ls)(Bun(Ls), E))
replaced by R. These constructions work for any semigroup I' (monoid without unit), with R = Rr defined
as the ring of regular functions on the stack Hom(I', G};)/GY, classifying conjugacy classes of semigroup
maps I' = G,. When I is group, semigroup maps I' — G}, are the same as group homomorphisms.

Now consider the category Rr of E-algebras R’ equipped with algebra maps 6, : O(G})"/GY) —
C (T, R') satisfying the properties listed in Proposition 7.1.1.

7.2.1. Lemma. For any semigroup T, the category Rr has an initial object (REMY, {eviniv}),

Proof. For any n > 1, let F;f be the free monoid in n generators. Then Hom(F,,T') = T'". Any map of
free monoids ¢ : Ff — F} induces a map or : I'" = Hom(F,,T) ow, Hom(F,},T) = I'™, hence a
pullback map ¢y 5 : C(I'"™, R') — C(T'™, R') for any ring R’. Similarly, ¢ induces pgv : (G¥)" = (G¥)™
and v O(GE)™/GY) — O((GY)"/GY,). Now the properties in Proposition 7.1.1 for (R, {0,}) € R
are equivalent to the statement that for any map of free monoids ¢ : F,} — F.I, the following diagram is
commutative

O((Gy)™/GY) —22= o, R))
l%ﬂgv ‘/’;,R/

O(Gy)"/GY) —2> C(I™, R))

We first consider the case I is finitely generated as a semigroup. Choose a finite set of generators
e, ,ep for I'. Let 7 : F;f — T be the map sending the i-th generator to e;. Let I C O((G¥%)"/GY,) be

the ideal generated by all elements of the form ¢%. (f) — Y&y (f) where p, 9 : F.} — F.I are two maps of
semigroups such that mop =m0, and f € O(G%)™/GY%),m > 1. We let

R = O((Gy)" /Gy 1

We then define evi™V for any m > 1. For any 7 € I'™, the corresponding map 7 : Ff — T factors as
Ft 2 FF 5T, and we then define

eVEY(y) : O((GY)™/GY) ~E O((GY)" /GY) —= R.

m
that (REMY, {evi"V}) is an initial object in Rr.
For general I', we write I as a filtered colimit of finitely generated sub-semigroups I',,. Then Rr is the
filtered colimit of Rr_. The initial object in Qr is also the filtered colimit of the initial objects in Rr_ .
Therefore Rr is the initial object in Rr. [l

The construction of R implies that ev““i"(l) is independent of the choice of . It is then easy to check
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For our I' = 71 (U, ug), denote by (R"™V, {evitiV}) the universal object in Rr.

7.2.2. Corollary. There are canonical E-algebra maps

(7.2) R =H"(Locgv (U)g, 0) =<=— R —Z s Z(Shy ) (Bun(Ls), E)).

7.2.3. Proposition. In either of the following situations, there is a canonical ring homomorphism
(7.3) G : R—— Z(ShyLs)(Bun(Ls), E))

such that 0 =T ow.

(1) When T is a free group, in which case w is an isomorphism.

(2) When char(E) = 0.

Proof. In situation (1), if T is a free group of rank n, then both R™V and R are canonically isomorphic
to O((GY)"/G).

In situation (2), by Theorem 6.3.7, Perf(Locgv (U)E) acts on Shy(Lg)(Bun(Ls), E), therefore the en-
domorphism ring of the tensor unit Orec,., (), € Perf(Locgv(U)g), which is R, maps to the center of
ShrLgy(Bun(Lg), E). This gives the map @. The factorization o = Gow follows from the construction. [

7.2.4. Remark. The map @ in Proposition 7.2.3 should be thought of as an analogue of the R — T map
in number theory, where R is a universal deformation ring of Galois representations, and T is a certain
Hecke algebra.

In general we do not know whether w : R™"V — R is an isomorphism, but the next proposition shows
that w always induces a bijection on the closed points of Spec R and Spec R"™V.

Recall from [23, 3.2.1] that a homomorphism p : I' — GY(E) is called completely reducible if for
any parabolic P C G}, containing p(I"), there exists a Levi subgroup of P that still contains p(I'). Let
Hom (T, GY(F)) C Hom(T', GY(E)) be the subset of completely reducible homomorphisms.

7.2.5. Proposition (Richardson, Bate-Martin-Rohrle, V. Lafforgue). The affinization map Locgv (U)g —
Spec R and w induce bijections of sets

L : Hom®" (F, G\/ (E))/G\/ (E) _~ . MaX(R) _~ g MaX(Runiv)

Proof. Choose generators 71, -+ ,yy for I'. Then Hom(I',G}%) is a closed subscheme of (G)" by eval-
uating at v1,--+,yn. A homomorphism p € Hom(T', GY(F)) is completely reducible if and only if the
Zariski closure of the group generated by p(v1),- -+, p(yn) is a completely reducible subgroup of GY. By
[4, Corollary 3.7] (which is a combination of [21, Theorem 16.4] and [4, Theorem 3.1]), the latter condition
is equivalent to that the G'z-orbit of (p(v1), -+, p(vn)) € (GE)N is closed in (G)%)Y, which is also equiv-
alent to that the Gj-orbit of p is closed in Hom(T', GY,). Therefore, p € Hom“ (I, G¥(E)) if and only if
its G},-orbit is closed in Hom(I', G}). Then the first bijection follows from general properties of the affine
case of the GIT quotient [21, 1.3.2].

Now the bijectivity of L¢". The maximal ideals of Max(R"") correspond to objects (F, {0, }) € R where
the underlying algebra is E itself. When char(E) = 0, the result of V.Lafforgue in [15, Proposition 11.7]
(based on Richardson [21, Theorem 3.6]) says that (E,{6,}) € R are in bijection with GV (F)-conjugacy
classes of semisimple (same as complete reducible in characteristic zero) representations I' — G (F), hence
L is a bijection. When char(E) > 0, the same statement is true, see [15, paragraphs before Théoréme
13.2], using again [4, Corollary 3.7]. O

7.3. Betti Langlands parameters. Define the full subcategory
ShN(LS)y!(Bun(LS), E) C ShN(LS)(Bun(LS), E)

of objects of the form j 7, where j : U — Bun(Lg) is an open embedding of a finite type substack, and
Fu is a constructible complex on U/, including the traditional requirement that its cohomology sheaves are
bounded and finite-rank.

The construction of Betti Langlands parameters now easily follows from the existence of the map
o : R™Y — Z(ShyLy) (Bun(Ls), E)) and Proposition 7.2.5.
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7.3.1. Theorem-Construction (Betti Langlands parameter). Let E be an algebraically closed field. To
any indecomposable object F € Shyr(Lg),(Bun(Ls), E), one can canonically attach a GV (E)-local system
pr € Locgv (U)(E) whose image has reductive Zariski closure.

We call pr the Betti Langlands parameter of F.

Proof. Since F is constructible with finite type support and indecomposable, the (underived) center
Z(End(F)) is a finite-dimensional E-algebra without nontrivial idempotents. The image of the map

Runiv - o Z(ShN(LS)(BU.D(]LS), E)) —_— Z(End(]:))

is a local artinian E-algebra, which then corresponds to a unique maximal ideal mz of R"™V. We then
define pr to be L~ (mz). O

7.3.2. Hecke eigensheaves. Recall that an object F € Shy(Ly)(Bun(Ls), E) is a Hecke eigensheaf with
eigenvalue p € Locgv (U)(E), if for any n > 1 and V' € Rep((G);)"), there is an isomorphism on Bun(Lg) x
Un

Qn v @ Hn,V(]:) = ]:&pV

Here py is the local system on U™ given by the representation

n

(U™, up) =TI 2~ GV(E)" —— GL(V).
These isomorphisms {ay, v} are required to satisfy compatibility conditions with the tensor structure
on Rep((G%)™) and factorization structures when passing to diagonals. For a detailed account of these
compatibilities, see [10, 2.8].
For a homomorphism p : T' = GY(FE), the semisimplification of p is the defined in [23, 3.2.4]: choose a
parabolic P C G}, that minimally contains p(I'), and choose a Levi subgroup L of P. Let m : P — L be
the projection. The semisimplification p* of p is defined, up to GV (F)-conjugation, as the composition

p

r P(E) —"~ L(E)——> G(E).

7.3.3. Proposition. Let E be an algebraically closed field. If F € Shyrg),(Bun(Ls), E) is a Hecke eigen-
sheaf with eigenvalue p € Locgv (U)(E), then the Betti Langlands parameter pr constructed in Theorem
7.3.1 is isomorphic to the semisimplification of p.

Proof. If F is a Hecke eigensheaf with eigenvalue p, and f € O((G%)"/GY), v € I'™, the excursion operator
S+.7(f) (see (7.1)) is the composition

o (1,7) b
F —— Hyn11,0,(F)aue) — Hni1,0, (F)awe) —=F

. An+1,0n An+1,0p
1d®f l R l id®evy

FR0O, —— S FR0,

Computing the composition using the lower row (where Ry means the right translation action of 7y on
On = O((GE)™)), we see that S, #(f) acts on F by the scalar f(p(v1),- -, p(7n))-
Let p* € Hom“ (I, GY(E))/G" (E) be the semisimplification of p. Then
Fp(n)s - p(m)) = F(p™ ()5 -+ 07 (m))-
On the other hand, by the construction of pr, the image of S, #(f) € Z(End(F)) in the residue field £
is flpr(m), -+, pr(yn)). Therefore

This implies L (p**) = L"(px) € Max(R"*). By Proposition 7.2.5, we have pr ~ p**. O
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