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MIRROR SYMMETRY FOR THE LANDAU-GINZBURG A-MODEL
M=C"W =22,

DAVID NADLER

ABSTRACT. We calculate the category of branes in the Landau-Ginzburg A-model with back-
ground M = C™ and superpotential W = z; - .-z, in the form of microlocal sheaves along
a natural Lagrangian skeleton. Our arguments employ the framework of perverse schobers,
and our results confirm expectations from mirror symmetry.
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The aim of this paper is to establish a homological mirror symmetry equivalence for the

Landau-Ginzburg A-model with background M = C™ and superpotential W = z1--- 2z,

It

presents new challenges due to the fact that the critical locus {dW = 0} C M is not smooth
or proper. Its fundamental role is witnessed by the fact that its mirror variety is the (n — 2)-
dimensional pair of pants, the open complement of n generic hyperplanes in P"~2. The results
of this paper strengthen and generalize to arbitrary dimensions the results of [29] for the case
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M = C3 W = 212223 though the arguments differ. Here we emphasize the role of symmetry
in simplifying the calculation, while in [29] we broke symmetry following the theory developed
in [27, 28]. What results may appeal to audiences in several fields with distinct practices:

(1) Constructible/Microlocal sheaves. While our arguments employ universal paradigms
that could apply in many settings, we have adopted the technical framework of microlocal
sheaves [18]. The calculation of categories of constructible sheaves forms a longstanding cen-
tral challenge in Geometric Representation Theory (notably stemming from Kazhdan-Lustzig
theory [19] and Lusztig’s character sheaves [21, 22]), and prominently in the Geometric Lang-
lands program (for example, in the Geometric Satake correspondence [7, 16, 24]). The rapidly
growing industry of symplectic resolutions and their quantizations (see for example [11]) pro-
vides a broader setting where microlocalization becomes a basic construction. Recent advances
([35, 36]) have also broadened the impact of constructible sheaves and their microlocaliza-
tions on symplectic and enumerative invariants. In particular, our calculation in the case of
M = C3,W = z12923 established in [29] appears prominently in work of Treumann-Zaslow [39]
on Legendrian surfaces.

(2) Homological mirror symmetry. A natural motivation for our main result is homological
mirror symmetry for Landau-Ginzburg models. For background on homological mirror sym-
metry, and specifically the Landau-Ginzburg model studied here, we refer the reader to the
beautiful paper [2] and the references therein. It establishes the “opposite direction” of ho-
mological mirror symmetry between the Landau-Ginzburg B-model of M = C3 W = 22223,
in the form of the derived category of singularities, and the A-model of P!\ {0, 1,00}, in the
form of the wrapped Fukaya category. (For a brief discussion about the different guises of the
A-model, see Remark 1.2 below and the references therein.) This can be viewed as a refinement
of the results of Seidel [34], which in turn are generalized by Sheridan [37] to a matching of the
endomorphism algebras of the structure sheaf of the origin in the Landau-Ginzburg B-model
of M =C",W = z1 - - z, and of a distinguished compact brane in the A-model of the (n — 2)-
dimensional pair of pants. For the direction of homological mirror symmetry considered here,
there is also work in progress [1] with results parallel to those of this paper.

(3) Categorified sheaf theory. A third setting for our results and arguments is the nascent
subject of categorified sheaf theory. In traditional sheaf theory, a distinguished role is played
by the nearby and vanishing cycles, which encode the Morse theory of sections. To formalize
a similar structure for sheaves of categories, Kapranov-Schechtman [17] proposed the notion of
perverse schober. In its most basic realization, the natural map from the vanishing to nearby
cycles is replaced by a spherical functor from a vanishing to nearby dg category. A motivating
example is given by the A-model of a Lefschetz fibration, where the vanishing dg category
at each critical point is the local Landau-Ginzburg model. One expects the A-model of more
general superpotentials to also provide perverse schobers, and our main technical work confirms
this for M =C", W = z1--- z,,.

01 On
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1.1. Main result. Set M = C", with coordinates z; = r¢e¥,..., 2, = r,e"", and superpo-
tential W = 21 - - - 2z,,, The origin 0 € C is the only critical value of W, and we set

Mo =W~1(0) =U,_,{za = 0} My =W=H1) = (C)"!

Mo =W (Rs0) = (C*)" ! x Ryg M* =W=HC¥) = (CX)"

We also write T' = (S1)" for the standard n-torus, t = R for its Lie algebra, T° ~ (S1)"~! C
T for the kernel of the diagonal character, t°© C t for its Lie algebra, and work with a natural
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symplectic identification
My ~ (C)" L = T*T° ~T° x t°
Following the paradigms of Landau-Ginzburg A-models, we will focus on the geometry of

M above a cut in the plane C, specifically the non-negative real ray R>o C C. We introduce a
natural Lagrangian skeleton L C M, defined in polar coordinates by the equations

Zeazo and 0, =0 when r, # Tpin, fora=1,....n
a=1
where we set 7, = min{r,|a = 1,...,n}. It is a closed Lagrangian subvariety, conic with

respect to positive real scalings, and equal to the closure of its open subspace L* = LN M* =
L N M~g. Therefore it is determined by its fiber L1 = L N M;, which is itself a Lagrangian
subvariety of M;.

Under the identification M; ~ T*T°, the Lagrangian subvariety L1 C M; transports to a
conic Lagrangian subvariety Ay C T*T° of a simple combinatorial nature

As = U, ex 0T° x 0 C T° x (£0)*

Here ¥ C (t°)* is the complete fan on the images €y, ...,€, € (t°)* of the coordinate vectors
€1,...,e, € t* under the restriction t* — (t°)*, and given a positive cone o € X, we write
oT° C T° for the subtorus with Lie algebra the orthogonal subspace o C t°.

Returning to the Landau-Ginzburg A-model, we would like to study A-branes within M run-
ning along the Lagrangian skeleton L, as found in the infinitesimal Fukaya-Seidel category [33],
or transverse to L, as found in the partially wrapped Fukaya category [4, 6]. In some generality,
these two variants are expected to be in duality (in parallel with B-model dualities as found
in [8]), and in the specific situation at hand, each should in fact be self-dual and equivalent to
microlocal sheaves on M supported along L.

Ansatz 1.1. The category of branes in the Landau-Ginzburg A-model of M = C*" W =
21 -+ - zp, with Lagrangian skeleton L C M is given by the dg category of microlocal sheaves on
M supported along L.

Remark 1.2. The ansatz is compatible with the broad expectation, realized in numerous sit-
uations, that given L C M a Lagrangian skeleton of an exact symplectic manifold, there are
equivalent approaches to its “quantum category” of A-branes: the Floer-Fukaya-Seidel theory
of Lagrangian intersections and pseudo-holomorphic disks [14, 33] (analysis); the Kashiwara-
Schapira theory of microlocal sheaves [18] (topology); the theory of holonomic modules over de-
formation quantizations, exemplified by D-modules [9] (algebra); and finitary models following
expectations of Kontsevich [20, 27, 28] (combinatorics). In particular, since all of our construc-
tions ultimately lie in cotangent bundles, one could translate our results into the traditional
language of Fukaya categories following [25, 31]. Furthermore, there is work in progress [12, 15]
detailing such equivalences more generally for Weinstein manifolds. When the dust settles, the
results of this paper, and perhaps more interestingly, its methods, should hold independently
of the specific language used to describe A-branes.

Remark 1.3. One can argue that L C M is the most fundamental Lagrangian skeleton for
the Landau-Ginzburg model M = C*", W = z; - - z,,, but it is by no means the only possibility.
For example, we discuss below the alternative “singular thimble” L. C M, which is proper over
R>¢ C C and can be thought of as the smallest nondegenerate Lagrangian skeleton. Thanks
to the inclusion L, C L, our results for L easily imply results for L., which we record in some
corollaries below. But there are other distinct possibilities associated to alternative Lagrangian
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skeleta of the fiber My ~ T*T°, for example conic Lagrangian subvarieties Asy C T*T° defined
by alternative fans X' C (t°)*. We expect our techniques to extend easily to this level of
generality, and more broadly to other Landau-Ginzburg models as well.

Now we will state our main theorem. Fix a base field k of characteristic zero.

Let pShy, (M) denote the dg category of microlocal sheaves of k-vector spaces supported along
the Lagrangian skeleton L C M. In Sections 3.1 and 4.1, we explain how to work with such
microlocal sheaves building on the foundations of Kashiwara-Schapira [18]. Roughly speaking,
we identify the contactification N = M x R with the one-jet bundle JX = T*X x R of the base
manifold X = R™, and then observe that its symplectification is equivalent to an open conic
subspace Qx C T*(X x R). The symplectification and contactification come with natural maps

Oy == JX~N—SsM

and we lift L C M along the projection ¢ to the Legendrian subvariety L x {0} C N, then
transport it to J X, and take its inverse-image under s to arrive at a conic Lagrangian subvariety
A C Qx. The fact that L C M is conic implies that A C Qx is in fact biconic, and in particular
conic for a contracting action on X x R with fixed locus the origin. In this setting, one can
define microlocal sheaves as a localization of conic constructible sheaves on X such that the
intersection of their singular support with Qx lies within A.

Thanks to the comprehensive work [18], microlocal sheaves enjoy powerful functoriality in-
duced by similar functoriality for constructible sheaves. Microlocal kernels induce microlocal
transformations, and Hamiltonian reductions induce natural functors. For example, the open
inclusion M* C M provides a restriction functor

J* ‘UShL(M) ﬁ‘uSth(MX)

and the Lagrangian correspondence M* < M~ — M leads to an equivalence

~

Sk« (M*) == uShr, (My)

Going further, the identification My ~ T*T° allows us to pass from microlocal sheaves to a
more concrete dg category of constructible sheaves

lLLShLl (Ml) — Shl\z} (TO)

Moreover, the conic Lagrangian subvariety Az, C T*7T° is the singular support condition ap-
pearing in the most basic instance

Shy, (T°) — > Coh(P"~1)

of the coherent-constructible correspondence [10, 13, 38] between dg categories of constructible
and coherent sheaves.

Here the projective space P! arises as the T°-toric variety for the complete fan ¥ C (t°)*
and algebraic torus 7° ~ (G2)"~! dual to the compact torus 7° ~ (S")"~!. The conic
Lagrangian subvariety Ay, C T*T° contains the zero-section T° C T*T°, the singular support
condition appearing in the usual Fourier equivalence

Loc(T®) =~ Shyo(T°) — == Cohyops (T°)

between finite-rank local systems and torsion sheaves.
Now to state our main theorem, consider the section

S:O]Pn—l %O]pnfl(l) S([xlu"'uxn])le'i_"""xn
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and the inclusion of its zero-locus

i:P? > {s=0}——Pr!

The specific coefficients of s are not important only the T°-invariant fact that they are all non-
zero. Consider the corresponding pushforward on bounded dg categories of coherent complexes

ix : Coh(P"~2) —— Coh(P" 1)
Here is our main theorem (appearing as Theorem 5.1 below).

Theorem 1.4. There is a commutative diagram with horizontal equivalences

wShr, (M) —=— Coh(P"~?2)

J*l l

/LSth (MX) = COh(]Pmil)

The theorem immediately implies a subsidiary mirror equivalence which some readers may
find more expected. Introduce the proper Lagrangian skeleton L. C M defined in polar coor-
dinates by the equations

Zeazo and re =1y, fora,b=1,...,n
a=1

It is a closed Lagrangian subvariety, conic with respect to positive real scalings, and proper over
R>p C C. It can be viewed as a “singular thimble” in that it is the cone over the vanishing
torus

L.= Cone(T°) C M

Let pShy, (M) C pShr (M) denote the full dg subcategory of microlocal sheaves of k-vector
spaces supported along L, C M.

For each a = 1,...,n, introduce the hyperplane P?~3 = {z, = 0} C P"~2 cut out by the
corresponding coordinate x,, of the ambient P*~!. Introduce the inclusion of the “open simplex”
given by the complement of these hyperplanes

j . An—2 — ]Pm—2 \ UZ:l ]P)Z_3( R ]Pm—2

Pushforward along j provides a full embedding Cohy,,s(A""2) C Coh(P"~2) of torsion
sheaves supported on A"~2 C P"~2,
The theorem immediately restricts to an equivalence on full dg subcategories.

Corollary 1.5. There is a canonical equivalence
wuShr, (M) ——= Cohyyps(A"2)

To go beyond torsion sheaves, we can adopt the formalism of wrapped microlocal sheaves
introduced in [30]. We will not review this notion here but remark that our arguments naturally
extend to it and we obtain the following equivalence.

Corollary 1.6. For wrapped microlocal sheaves, there is a canonical equivalence

pShY (M) —== Coh(A"~2)
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Remark 1.7. The two corollaries are related by duality in that the first results from the second
by taking exact functionals to Perfy (see [8] for details for coherent sheaves). One can think
of uShy,, (M) as the infinitesimal Fukaya-Seidel category of the Landau-Ginzburg model, with
branes running along the singular thimble L. C M, and puShy (M) as the partially wrapped
Fukaya category of the Landau-Ginzburg model, with branes transverse to L. C M.

Remark 1.8. The theorem and its corollaries can be viewed as a distinguished instance of ho-
mological mirror symmetry for hypersurfaces in toric varieties [3]. The other Landau-Ginzburg
A-models arising in the subject can be obtained from that of M = C*", W = z;---2, by
Hamiltonian reduction. Thanks to the functoriality of microlocal sheaves, the theorem and its
corollaries should imply analogous results for them as well.

Before continuing on, let us mention one other straightforward application of our results.

In the course of our arguments, to any angle §# € S!, we introduce a Lagrangian skeleton
L(0) C M living over the ray e?™.Rsq C C. For f = 0, this is the Lagrangian skeleton intro-
duced above L(0) = L. For 6 # 0, we show that L(¢) C M has equivalent microlocal geometry
to L(0) = L, via natural monodromy equivalences, though they are not even homeomorphic.

Now consider the Landau-Ginzburg model with background M = C" as before, but now
with superpotential W = 27 - - - z,. Thus its geometry above a cut in the plane C is the same as
the geometry of the original superpotential above r cuts. Fix a collection of r angles © C S,
and introduce the corresponding Lagrangian skeleton

L(©®) =Upeo L(O) c M

In accordance with Ansatz 1.1, let us take the category of branes in the Landau-Ginzburg A-
model with background M = C" and superpotential W = 27 ---z] to be the dg category of
microlocal sheaves on M supported along L(0).

Our results imply the following generalization of Theorem 1.4. To state it, let M(r) be the
dg category of diagrams of coherent sheaves

1Mo My My M,y

where My € Coh(P"~2), My,...,M,_1 € Coh(P""1), and i : P"~2 — P"~! is the inclusion of
the generic linear hyperplane introduced above.

Theorem 1.9. Suppose r = |0|. Then there is a canonical equivalence
pShie)(M) —== M(r)

Remark 1.10. The theorem fits naturally into the formalism of perverse schobers discussed
immediately below, in particular the semiorthogonal decompositions of spherical pairs and
their higher analogues. It reflects what one expects to find by taking the rth power of the
superpotential of a Landau-Ginzburg A-model with a single critical value: its branes should
consist of an A,_j-quiver of objects from the nearby category augmented by an object of
the vanishing category. In the most basic example, for the Landau-Ginzburg A-model with
M = C and W = 2" (the case n =1 of the theorem), the vanishing category is trivial, and the
nearby category is Perfy. Thus its branes form perfect modules over the A, _j-quiver (for more
discussion, see for example [267 ]).

1.2. Sketch of arguments. We outline our arguments here, highlighting the two key notions of
perverse schobers and monoidal symmetry. They formalize basic principles implicit in Landau-
Ginzburg models and more broadly homological mirror symmetry. The first encodes the relation
between the nearby and vanishing geometry of branes; the second encodes the convolution
symmetry of branes corresponding to tensor product under T-duality.
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As outlined above, our starting point is the restriction functor
J* ‘UShL(M) —>,uSth (MX)

Following Kapranov-Schechtman [17], we interpret this as part of the diagram defining a
perverse schober on the complex plane C, with one singular point 0 € C, and a single cut
R>¢ C C. Recall that perverse sheaves on the complex plane C, with one singular point 0 € C,
are equivalent to diagrams of vector spaces

P
P =~

-
q

such that the endomorphisms
me = ide —qp my = idy —pq

are invertible. The equivalence is given by assigning to a perverse sheaf F its nearby and
vanishing cycles ¥ = ¢y (F), ® = ¢o(F) at the origin 0 € C equipped with their canonical maps.
In particular, the composite endomorphisms my, me are their monodromy transformations.

Perverse schobers are a categorical analogue of perverse sheaves inspired by the above de-
scription. By definition, as recalled in Section 2.1, a perverse schober on the complex plane C,
with one singular point 0 € C, and a single cut R>o C C, is simply a spherical functor

S:D¢—>D\p

from a “vanishing category” to a “nearby category”. In one of several equivalent formulations,
this means that S fits into an adjoint triple (S%, S, S") such that the monodromy functors T .,
Ty ,, Ty, T ¢ defined by the triangles of the units and counits of the adjunctions

Te, = Cone(u,)[—1] —=ids o grs SS" — s idy — Cone(u,) =Ty,
Ty, = Cone(ug)[—1] ——idy . gt Sl — s idgy — Cone(ug) =To

are equivalences.

Our main technical work is to show that J* extends to a spherical functor, in particular that
it fits into an adjoint triple (Ji, J*, J.). We will highlight below the primary arguments proving
this, but it is worth mentioning here that we do not establish it directly. We rather introduce
a larger Lagrangian skeleton living over the real line R C C, and construct a perverse schober
on the complex plane C, with one singular point 0 € C, and the double cut R C C.

By definition, as recalled in Section 2.2, a perverse schober on the complex plane C, with
one singular point 0 € C, and the double cut R C C is a spherical pair. Spherical functors and
spherical pairs are the cases n = 1 and n = 2 of structures one can formulate for any number
of cuts in the complex plane. They are categorical analogues of the quiver presentations of
perverse sheaves resulting from such cuts. Given the structure for some number of cuts, one
can naturally form the structure for another number of cuts. In particular, a spherical pair
always gives rise to a spherical functor, but there is an advantage to a spherical pair: its
axioms do not explicitly involve units and counits of adjunctions. Roughly speaking, from the
perspective of Fukaya categories, it encodes the pseudo-holomorphic “teardrops” defining the
units and counits without explicitly counting them.

Once we have that J* extends to a spherical functor, we may proceed to monadically calculate
the Landau-Ginzburg vanishing category pShy (M) in terms of the known nearby category

/,LShLX (MX) ; COh(]P)n_l)
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We first need that J* is conservative, i.e. that its kernel is trivial, which is an immediate
consequence of dimension bounds for the support of microlocal sheaves. This special property
is an analogue of a perverse sheaf having no sections strictly supported at the origin 0 € C.

We next calculate that the nearby monodromy Ty ¢ corresponds to tensoring with the line
bundle Opn-1(—1), and hence the monad J*.J;, presented as the cone of a morphism of functors

Ty —idy,
corresponds to tensoring with the cone of a morphism of line bundles
O[pn—l (—1) 4 Opn—l

To see that s is indeed a generic morphism, equivalent to s([x1,...,2,]) = 1 + -+ + @, We
observe that it must be nonzero at each coordinate point of P*~!'. This is a manifestation
of the fact that the superpotential W is a submersion at the generic point of each coordinate
hyperplane of M, and hence the Landau-Ginzburg model vanishes there (see the discussion of
the case n = 1 in Section 1.3 below).

Finally, we verify the remaining technical hypotheses of Lurie’s Barr-Beck theorem [23],
appealing to the explicit form of the monad described above.

Now let us return to the assertion that J* is a spherical functor, and discuss the key role of
symmetry in our arguments.

Recall that we set T = (S')". Let us focus on the Hamiltonian T-action on M = C" by
coordinate rotation.

By the formalism of microlocal kernels and transforms developed in [18], one expects con-
structible sheaves on T to give endofunctors of microlocal sheaves on M. To make this precise,
we must take into account the well-known “metaplectic anomaly” appearing for example in
identities for the Fourier-Sato transform as encoded by the Maslov index. At the most concrete
level, it reflects the fact that rotating a graded Lagrangian line ¢ in the plane C by a full circle
27 will return the same line ¢ but with grading shifted by two.

Consider the Z-cover T — T defined by the diagonal character § : T — S!. There is a
canonical lift T° C T”, since by definition T° C T is the kernel of §, and for concreteness, one
can choose an isomorphism 7”7 ~ T° x R if one likes. Following [18], the monoidal dg category
She(T") of constructible sheaves on T” with compact support does indeed act on microlocal
sheaves on M. But the action does not factor through constructible sheaves on T since if we
translate an object A € Sh.(T") by an element m € Z ~ ker(T" — T, its action on microlocal
sheaves will be shifted by [2m].

With this in hand, we still must address that the endofunctors given by most objects of
She(T") do not preserve the support condition given by the Lagrangian skeleton L C M. To
proceed, we recall that a governing property of the coherent-constructible correspondence is
that the equivalence

Shy, (T°) — > Coh(P"~1)

is symmetric monoidal with respect to convolution and tensor product. We show that convo-
lution by objects of Shay, (T°), regarded as objects of Sh.(T") via the lift T° C T’, provides
endfunctors of the nearby and vanishing categories compatible with the restriction J*.

By construction, the nearby category uShyx (M) is a free rank one module over Shy,, (T°).
Thus to define adjoints to J*, it suffices to define their restrictions to a generator for the
monoidal action, for example, to the microlocal sheaf A € uShyx(M*) corresponding to the
structure sheaf Opn—1 € Coh(P"!). In our main technical step, we construct explicit con-
structible sheaves representing JiA, J. A € uShy (M), and confirm the adjunction identities.
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Finally, to verify the axioms of a spherical functor and to calculate the monodromy transfor-
mations T ,, Tw », Tw.e, To,¢, we appeal to the further symmetry given by a natural multiplica-
tive system of objects A, € Sh.(T'), indexed by 7 € R. They come equipped with canonical
equivalences A, x A, ~ A, 1 .,, and A is the skyscraper k. at the identity e € T".

Convolution by the multiplicative system provides a parallel transport of microlocal sheaves
on M so that if the support of a microlocal sheaf F lies over a cut ¢’ R>¢ C C, then the support
of A, % F will lie over the cut ei(e‘”)RZO C C. When 7 € 27Z, we can think of A, as the
“convex hull” of the the Dehn twists/Hecke operators for the individual coordinate directions.
It preserves the support condition given by the Lagrangian skeleton L C M, and specifically
when 7 = 27, enables us to see the monodromy transformation 7Ty ¢ corresponds to tensor
product with Opn-1(—1) € Coh(P"1).

1.3. Low-dimensional cases. The one and two—dimensional cases of our results are well-
known and easy to deduce due to the fact that the critical locus {dW = 0} is either empty and
W is a submersion (n = 1), or an isolated point and W is Morse (n = 2).

Nevertheless, we include a brief discussion of these cases to help guide the interested reader.
At minimum, our general arguments appeal to the simple geometry appearing in the submersive
case (n = 1), and for completeness it is worth highlighting it here.

1.3.1. Submersive case: n = 1. The Landau-Ginzburg A-model with M = C and W = 2", for
any 7 > 1, is well understood: its dg category of branes is equivalent to perfect modules over
the A,_i-quiver (for further discussion, see for example [267 ]). In particular, in our situation
where r = 1, its branes form the zero category, reflecting the fact that a submersion should not
have any nontrivial vanishing geometry.

In the setting of microlocal sheaves, it is easy to see that the branes form the zero category.
Our Lagrangian skeleton is the closed non-negative real ray L = R>¢ C C = M, or alternatively
any closed ray emanating from the origin 0 € M. Thus we expect the vanishing category to be
the zero category uShr, (M) = 0, since no nontrivial microlocal sheaves have support a manifold
with nonempty boundary.

To verify this, let us say more precisely what we mean by microlocal sheaves. We understand
microlocal sheaves on M = C to be microlocal sheaves on the conic open ball

Q= {(z,t),(&n)|n >0} C T*R?

obtained by taking the symplectification of the contactification of M. More specifically, we
understand microlocal sheaves supported along a conic Lagrangian subvariety R C M, so by
necessity a finite union of closed rays emanating from the origin 0 € M, to be microlocal sheaves
on the associated conic Lagrangian surface

Ar = {(z,2y),(—ny,n) |z +iy € R,n >0} C N

obtained by trivially lifting R to a Legendrian in the contactification and then taking its inverse-
image in the symplectification. Note that since R C M is invariant under scaling, Ar C Q is
invariant under the additional Hamiltonian scaling

- ((2,), (&) = ((rz, 72t), (r 71,7 72n)) r€Rso

Therefore all of the structure of such microlocal sheaves is captured in a small conic neighbor-
hood of the central codirection {((0,0), (0,7))|n >0} C Q.

Now starting with the Lagrangian skeleton given by the closed non-negative real ray L =
R>¢ C C = M, we arrive at the conic Lagrangian surface

A={(z,0),(0,7)|z>0,np>0} CQ
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Note that A is diffeomorphic to the manifold with nonempty boundary R>¢ x Ry, and so
indeed the vanishing category uShy, (M), realized in the form uSha(€2), is the zero category.

Alternatively, starting with the closed conic ray L(f) = e - Rso C C = M, with 6 # 47/2,
of slope ¢ = sin(f)/ cos(f) and horizontal direction d = cos(6)/| cos()|, the associated conic
Lagrangian surface takes the form

A0) = {(z,cx?), (=ncx,n) |dz > 0,n >0} C Q

In the special case § = +7/2, when L(+w/2) = +i-R>o C C = M, the associated conic
Lagrangian surface takes the form

A(£7/2) = {(0,0), (Fny,n) [y = 0,n >0} C Q

Rotations of M = C identify the original rays and corresponding rotations of €2 identify the
associated conic Lagrangian surfaces. In any case, each A(f) is diffeomorphic to R>g x R,
and so the vanishing category puShr (M), realized in the form pSh)(€2), is the zero category.

Remark 1.11. For the Landau-Ginzburg A-model with M = C and W = 2", for any r > 1,
we could take as Lagrangian skeleton the union of r closed rays.

For example, for r = 2, we could take the union Lg = L(0) U L(7) of the two real rays, and
work with microlocal sheaves on the associated conic Lagrangian surface

Ar = A0) UA(T) = {(2,0),(0,n)|n> 0} CQ

Note that Ag is diffeomorphic to the manifold R x R+, and thus the vanishing category takes
the expected form pShy, (M) ~ Perfy.

Alternatively, we could take the union L,z = L(7/2) U L(—n/2) of the two imaginary rays,
and work with microlocal sheaves on the associated conic Lagrangian surface

A = A(m/2) UA(=m/2) = {(0,0), (y,n) |n >0} C ©

Rotation of M = C by 7/2 takes Ly to L;g and a corresponding rotation of ) takes Ag to Ag.
This leads to a natural Fourier-Sato type equivalence of the vanishing categories

WShy, (M) — WShL iz (M)

Going further, rotation by 7 leads to iterating the above equivalence twice, and results
in the auto-equivalence of pShr, (M) ~ Perf), given by tensoring with the invertible shifted
orientation line orp,[1]. Rotation by 27 leads to iterating it four times, and thus results in the
auto-equivalence given by the shift [2] alone. This is the most basic instance of the “metaplectic
anomaly” found in the monodromy of the vanishing category.

1.3.2. Morse case: n = 2. When M = C? and W = 229, the dg category of the Landau-
Ginzburg A-model will be equivalent to perfect modules Perfy. This reflects the fact that a
single Morse critical point has a smooth vanishing thimble and otherwise is a submersion.
Following our general constructions, we work with a natural symplectic identification of the
nearby fiber M; = W~1(1) ~ C* with the cotangent bundle T*S* of the vanishing circle. We
start with the Lagrangian skeleton L; C M; given by the union 745! C T*S?! of the conormal
bundles of the stratification S by the point 0 € S and its complement S*\ {0}. We then take
the Lagrangian skeleton L C M to be the closure of the positive real scalings of Ly C Mj.
Away from the vanishing thimble L. C L, given by the cone over the vanishing circle S' C Ly,
the Lagrangian skeleton L C M is diffeomorphic to the manifold with boundary R>q x (L1\S?).
Thus any microlocal sheaf supported along L C M must be trivial away from L. C L. In fact,
if we start with an arbitrary Lagrangian skeleton L; C Mj, and similarly form the Lagrangian
skeleton L C M, the same argument will apply: since the superpotential is a submersion away
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from L. C M, we will find that L\ L. is diffeomorphic to R>g x (L1 \ S'). Thus any microlocal
sheaf supported along L C M must be trivial away from L. C L, and we can assume that
Ly C M reduces to the vanishing circle alone, so that L C M is simply the vanishing thimble.

Finally, the vanishing thimble itself L. C L is diffeomorphic to R?, and so indeed the vanish-
ing category admits the expected description uShy (M) ~ Perf;. Let us place this within the
mirror equivalence for the nearby category

uShr, (M) ~ Shs(S1) —= Coh(P')
More specifically, let us discuss how the natural restriction
puShp (M) —== pShr, (M)
corresponds to the pushforward
iy : Perfy ~ Coh(pt) —— Coh(P!)

along the inclusion i : pt — P! of a point not equal to 0,00 € P*.

First, let us take a direct approach available in this dimension. Under the mirror equivalence
for the nearby category, skyscraper sheaves at points A € G, = P!\ {0,000} correspond to
rank 1, monodromy A local systems on the vanishing circle S' € M;. And rank 1 local
systems on the vanishing thimble L. C M restrict to trivial rank 1 local systems on the
vanishing circle St € T*S! ~ M;. Thus under suitable conventions for choosing the equivalence
wShr, (My) ~ Shs(S'), the inclusion i : pt — P! will be of the point 1 € G,,, = P\ {0,00}

In higher dimensions, we will invoke a generalization of the following argument. Under the
coherent-constructible equivalence for the nearby category, the restriction of a microlocal sheaf
to the non-zero locus of the conormal line TiS* C T*S! ~ M, corresponds to the restriction
of a coherent sheaf to the points 0,00 € PL. Since any object of the vanishing category must
be trivial away from the vanishing thimble L. C L, in particular it must be trivial along the
non-zero locus of the conormal line 7§ S* € 7*S' ~ M;. Thus the inclusion i : pt — P! must
be of a point not equal to 0,00 € P!,

1.4. Acknowledgements. Ithank D. Auroux, D. Ben-Zvi, M. Kontsevich, J. Lurie, N. Rozen-
blyum, V. Shende, N. Sheridan, D. Treumann, H. Williams, and E. Zaslow for their interest,
encouragement, and valuable comments. Finally, I am grateful to the NSF for the support of
grant DMS-1502178.

2. PERVERSE SCHOBERS ON A DISK

This section is a synopsis of some of the theory proposed by Kapranov-Schechtman [17]. In
particular, we recall the notion of a perverse schober in its appearances as a spherical functor
and spherical pair.

2.1. Single cut: spherical functors. Let Dy, Dy be pre-triangulated dg categories.
Suppose given a dg functor

SZD¢—>D\IJ

that admits both a left and right adjoint so that we have adjunctions (S*,S) and (S, S") with
units and counits

U, : ide —= S8 ¢SS ——=idy

wp : idg ——= 9.5¢ co: SES —=idg
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Form the natural triangles of functors

Te,, = Cone(u,)[—1] —=ids o grs SST — s idy — Cone(u,) =Ty,
Ty = Cone(ug)[—1] ——idw . 98t S§lS — s idg —— Cone(ug) = To g

Definition 2.1. We call S : Dy — Dy a spherical functor if it satisfies:
(SF1) Ty, is an equivalence.
(SF2) The natural composition

S SrSS¢ Ty SY[1]

is an equivalence.

Remark 2.2. Consider the additional conditions:
(SF3) T, is an equivalence.
(SF4) The natural composition

STy, [-1] — S¢SS" —— §”

is an equivalence.
A theorem of Anno-Logvinenko [5] establishes that any two of the conditions (SF1) — (SF4)
imply the other two.

Remark 2.3. For a spherical functor, T ¢, Ty ¢ are respective inverses of T », Ty ,.

Example 2.4 (Smooth hypersurfaces). Let X be a smooth variety. Let Lx — X be a line
bundle and o : X — Lx a section transverse to the zero section. Let Y = {¢ = 0} be the
resulting smooth hypersurface and 7 : Y — X its inclusion.

Let Coh(Y'), Coh(X) denote the respective dg categories of coherent sheaves. We will check
that the pushforward i, : Coh(Y) — Coh(X) is a spherical functor.

Regard the line bundle Lx as an object of Coh(X), and its restriction Ly = i*Lx as an
object of Coh(Y). Regard the section o as a morphism o : Ox — Lx, which by duality gives
a morphism o : LY — Ox.

Consider the natural adjunctions

i : Coh(Y) =—= Coh(X) : 4’ i* : Coh(X) =——= Coh(Y) : i,
Note the functorial identities
i*(=) ~ Oy ®ox () i'(=) = Ly[-1] @ox (=)

The natural triangles of functors associated to the units and counits of the adjunctions are
given by tensoring with the respective triangles of objects

ﬁy[—2]$0y%0y@£y[—1] Ey[—l]—>0x éﬁx
LY T Oy — =0y Oy @ Ly[l] —= Oy —%= £y 2]
Thus if we set Dg = Coh(Y), Dy = Coh(X) and S = i., we find that
Ty.r(=) ~ Lx ®ox () Tor (=) =~ Ly[-2] ®o, (-)
are both equivalences. Thus (SF1) and (SF3) hold so that S = i. is a spherical functor.

2.2. Double cut: spherical pairs.
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2.2.1. Semi-orthogonal decompositions. Let A be a pre-triangulated dg category, and B C A a
full pre-triangulated dg subcategory.

Let us denote by J : B — A the embedding. Introduce the full dg subcategories of left and
right orthogonals

LB ={A € A| Homu(A, B) ~0, for all B € B}

Bt ={A € A| Homy(B,A) ~0, for all B € B}

One says that B is left admissible, respectively right admissible, if J admits a left adjoint J* :
A — B, respectively a right adjoint J" : A — B. If either holds, then we have the corresponding
identity +B = ker(.J%), respectively *B = ker(J"). Moreover, we have a corresponding semi-
orthogonal decomposition in the sense of a functorial triangle

C = Cone(u)[-1] —=A—"=J'JA=B BeB,CetB

B'=JJ’A—"s A—— Cone(c) = C' B' € B,C' € B+

Note that if B is left admissible, then + 13 is right admissible and (+B)+ = B. Similarly, B is
right admissible, then B~ is left admissible and +(B+) = B.

2.2.2. Spherical pairs. Suppose we have a diagram of pre-triangulated dg categories

L VA
D> <— D13

Suppose further that J*,J} admit fully faithful left and right adjoints so that we have
adjoint triples

(Jor, J2, T ) (Jor, I3, o)

Thus we have the right admissible dg subcategories

D2, =Jy(D?) DS, = J(DS)
and the left admissible dg subcategories

D%, =J..(D?) DL =Ju(D3)

Introduce the dg subcategories
D_ =ker(J}) = +(D3,) = (D,)* D, =ker(J*) = +(D°,) = (D°,)*
with embeddings denoted by
p. . ptop,
Note that D_, D, are left and right admissible so that we have adjoint triples
(I*, I, 1Y) (I, Iy, 1Y)

and further that

D°, = (D)t D =(Dy) DL =(D)t D3 =4(D.)
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Definition 2.5. A spherical pair is a diagram

L U
D> <— DDy

of functors admitting fully faithful left and right adjoints so that:
(SP1) The compositions

JiJ-.:D° —=D5 J* Jps: Dy —= D2

are equivalences.
(SP2) The compositions

'l ., :D_.——=7D, I'l,, : D, —=1D_
are equivalences.

Remark 2.6. If the compositions of (SP1) are equivalences, their respective inverses are given
by the adjoint compositions

J* Jpy i DS —= D2 JiJoy: D2 ——=D5

and similarly if the compositions of (SP2) are equivalences, their respective inverses are given
by the adjoint compositions

I*I.,:Dy ——7D_ Iyl :D_.——=D,
Lemma 2.7. Suppose the compositions
J*I_,:D_ ——=D° Jily : Dy ——D5
are conservative. Then (SP1) implies (SP2).
Proof. Let G € D;. We will construct a functorial equivalence
LI "I G~G

and leave the other parallel equivalences to the reader.
Let F € D. By assumption, we have a triangle

JpJiF ——=F —— 1 ,I"F
and so can view I_I* F as the complex
Jp L Fl] —F
Again by assumption, we have a triangle

J T I F) —= J L J* F

T |

JJiFl] ———F

! |

Lol JpJ F1 —— LIV F
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and so can view Lr!I_!FI,in]-" as the total complex

J T I F —— J_ J* F[-1]

| |

JnJ ] F

Now set F = 111G € D;. Then J*F ~ J*1,G ~ 0, so we can view Lr!Ii_I,in]-" as the
total complex

J T i F ——0

]

JnJ Fll] —= F

Since the total complex I+gIﬂrI_ng]: and the right vertical complex F = I1G both result
from applying I, to an object of D, the left vertical complex does as well. Since applying
JY to the left vertical arrow produces an equivalence, the left vertical arrow must already be
an equivalence since Ji I, is conservative and Iy, is fully faithful. Thus the total complex
collapses to F itself, and we arrive at the sought-after equivalence

Lol I 1 G =TI I\ I"F ~ F =I1,G
O

Remark 2.8. We call a spherical pair conservative if the compositions of the above lemma are
conservative. A conservative spherical pair is an analogue of a perverse sheaf with no sections
strictly supported at the origin.

2.2.3. From spherical pairs to spherical functors. Given a spherical pair, introduce the diagram
of pre-triangulated dg categories

S = JjHD+ Zqu :D+ — DS :’D\y
Kapranov-Schechtman [17, Proposition 3.8] prove the following.
Proposition 2.9. S is a spherical functor with

Ty JrJ o J* T Ty, ~J J J" Jys

Topo~ IV 1 1" 14, To,~ 131 1" I,

Remark 2.10. Note if we start with a conservative spherical pair, then the resulting spherical
functor is conservative.

3. GEOMETRY OF M =C", W = 21 --- 2,

3.1. Preliminaries. Let M = C™ with coordinates z, = z4 + 1y, = reels fora=1,...,n.
Equip M with the exact symplectic form

wp = i drody, = i rodrqadl,
a=1

a=1
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with primitive

n n

1 1 9
apn = 5 ;(xadya - yadxa) = 5 ;Tadea
and Liouville vector field
S i + ) = 3 S
UM = = LaOgx a =3 TaOr
M D) 2 a T YaOy, B Z o

characterized by 4y, wn = o
We will refer to the above as the conic exact symplectic structure on M. Note that the
Liouville vector field vys generates the positive real scalings of M as a vector space.

Remark 3.1. It is not particularly significant whether we work with the above symplectic
structure wys or its opposite —wy; = 22:1 dyq.dr, = — ZZ:1 rqdrqdl, since they are exchanged
by complex conjugation. There is a modest inconvenience that wjy; is compatible with the
natural identification of M* = (C*)" with (an open subspace of) T*(S')", while —wys is
compatible with the natural identification of M = C" with T*R™.

By a Lagrangian subvariety L. C M, we will mean a real analytic subvariety of pure dimension
n such that the restriction of wy; to any submanifold contained within L vanishes. By an ezact
Lagrangian subvariety L C M, we will mean a Lagrangian subvariety that admits a continuous
function f : L — R such that the restriction of f to any submanifold contained within L
is differentiable and a primitive for the restriction of ays. By a conic Lagrangian subvariety
L C M, we will mean a Lagrangian subvariety invariant under positive real scalings. Note that
any conic Lagrangian subvariety is exact with primitive any constant function.

3.1.1. Summary. In what follows, we record some standard constructions tuned to our current
setting. Our aim is to place M = C", with its given exact symplectic structure, within the
microlocal geometry of X = R".

We first introduce the contactification N = M x R, and then identify it with the one-jet
bundle JX = T*X xR, compatibly with the natural projections to X x R. We then observe that
the symplectification of JX = T* X xR is equivalent to an open conic subspace Qx C T*(X xR),
compatibly with the natural projections to X x R.

The symplectification and contactification come with natural maps

Oy == JX~N—SsM

Given an exact Lagrangian subvariety L C M with primitive f : L — R, we can lift it along c
to a Legendrian graph I'y, _ ¢ C N, then transport it to JX, and finally take its inverse-image
under s to arrive at a conic Lagrangian subvariety A C Qx. In this way, we will be able to
apply the tools of microlocal geometry to study the given exact symplectic geometry.

Remark 3.2. In what follows, we set conventions so that taking the symplectification of the
contactification of a conic open subspace 2z C T*Z produces again such a conic open subspace

Qy ={((z,1),(¢,n) [(2,¢) € Qz, n >0} CT*(Z x R)

Therefore given a conic Lagrangian subvariety A C €, the associated conic Lagrangian sub-
variety A" C Q, will have equivalent microlocal geometry.
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3.1.2. Contactification. Given an exact symplectic manifold M, with symplectic form wys, and
primitive days = wpy, we will take its contactification to be the contact manifold N = M x R,
with contact form Ay = dt + aps, and contact structure &y = ker(Ay). Here and in what
follows, we often write ¢ for a coordinate on R. (The choice of Ay = dt 4+ ajs rather than
dt — apy is in the name of the consistency mentioned in Remark 3.2.)

Let us return to specifically M = C™ with its conic exact symplectic structure.
Consider the contactification N = M x R = C™ x R, with the contact form

1 & 1= ,
AN =dt+ong = dt + 5 > (@adya — Yadza) = dt + 5 > rido,

a=1 a=1
and cooriented contact structure
§N = ker()\N) CTN

By a Legendrian subvariety L C N, we will mean a real analytic subvariety of pure dimension
n such that any submanifold contained within £ is tangent to the contact structure &y .

Note that an exact Lagrangian subvariety L C M equipped with a primitive f : L — R lifts
to a Legendrian graph

Ip—p=A{@-f@)|zel}cMxR=N
In particular, a conic Lagrangian submanifold L C M lifts to the trivial graph

IF'to=Lx{0}CMxR=N

3.1.3. Identification with one-jets. Let X be an n-dimensional smooth manifold.
Let mx : T*X — X be the cotangent bundle, with points denoted by pairs (z,§) € T*X
with © € X a point, and £ C T X a covector. We will equip 7% X with its canonical one-form

ax = i fadza
a=1

and symplectic form

wx =dax =Y déada,

a=1

Recall that the graph I'yy C 7" X of the differential of a function f : X — R is an exact
Lagrangian submanifold with canonical primitive f o 7x|r, : I'q — R.

Let JX =T*X xR — X be the one-jet bundle, with points denoted by triples (z,&,t) € JX
with (z,£) € T*X a point and covector, and ¢ € R a number. We will equip JX with its
canonical contact form

n
Ax =dt —ax =dt =Y &aza
a=1
and cooriented contact structure

¢x =ker(Ax) C TJX

Recall that the one-jet J¢ C JX of a function f: X — R is a Legendrian submanifold.
Note that by our conventions, the diffeomorphism

JX == JX (z,&,t) — (z, =&, 1)
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intertwines the canonical contact form Ay = dt — ax with the contact form dt + ax arisingon
JX as the contactification of T*X following our conventions.

Now set X = R™ with coordinates z,, for a =1,...,n.
Consider the linear Lagrangian fibration given by taking real parts
p:M=C"—R"=X p(21y oy 2n) = (21, ..., 20)

Note that p is equivariant for real scalings and invariant under conjugation. There is a unique
lift to a Legendrian fibration

¢g: N=C"XR——=R"xR=X xR q(zl,...,zn,t):(:rl,...,a:n,t—l—%zgzlxaya)

such that the last component of ¢ vanishes on Legendrian lift R” x {0} C C" xR = N of the real
subspace R™ C C™ = M regarded as a section of p. Note that ¢ is equivariant for simultaneous
real scalings of the x,z components and squared real scalings of the last components. It is
also equivariant for simultaneous conjugation of the z components and negation of the last
component.

There is a cooriented contactomorphism

N ——JX (217"'7Zn7t)H((xla"'7xn)7(y17"'7yn)7t+%Ezzlxaya)

intertwining the Legendrian projection ¢ : N — X X R and front projection JX — X x R.
Note that it is equivariant for simultaneous real scalings of the z,y, z components and squared
real scalings of the last components. It is also equivariant for simultaneous conjugation of the
z components and negation of the y components and last components.

Remark 3.3. The above contactomorphism is an instance of the general observation: given
two primitives day = war, dafy; = way for a symplectic form on a manifold M, if the difference
an — oy is exact, then any primitive df = apr — oy, provides a diffeomorphism

F:MxR—/—=MxR F(m,t) = (m,t+ f(m))
intertwining the respective contact forms F*(dt + oy;) = dt + .

3.1.4. Symplectification. Let Z be an (n + 1)-dimensional smooth manifold.

Let m%° : §°°Z — Z be the spherically projectivized cotangent bundle, with points denoted
by pairs (z,[¢]) € S°Z with z € Z a point and [{] = Ry - & C T7Z \ {(2,0)} a nontrivial
ray. Consider the canonical line bundle £; — S*°Z with fiber at (z,[¢]) € S*°Z the line
R-¢ C TFZ. The canonical one-form az on T*Z descends to a LY-valued one-form A3 on
S°°Z whose kernel defines a cooriented contact structure £5° C T'S*°Z.

A choice of Riemannian metric on Z provides an identification of S°°Z with the resulting
unit cosphere bundle U*Z C T*Z, and equivalently, a trivialization of the canonical line bun-
dle £L; — S§°°Z. In this case, the then untwisted one-form A} on S°°Z corresponds to the
restriction of the canonical one-form ay to U*Z

Next, suppose Z = X x R, for an n-dimensional smooth manifold X.

Introduce the open subspace

Tx ={(z,1),[&n]) |n >0} C §%(X xR)
and fix the diffeomorphism
JX —=17 (.’L‘,f,t)l—>(($,t),[—§,1])

respecting the natural projections to X x R. The canonical line bundle Lx g — S°(X x R) is
canonically trivialized over the image, and the pullback of the thus untwisted one-form A¥,  on
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S°(X x R) is equal to the canonical contact form Ax on JX. Thus the above diffeomorphism
furnishes a cooriented contactomorphism.

Now set Z =X xR=R" x R.
The composition of our previous two cooriented contactomorphisms provides a cooriented
contactomorphism

P N—"=JX == 7Ty

"/’(217 SRR vat) = ((Il, ce 7:En)7t + % 2221 xaya)v [_yla ceey T Yn, 1])
intertwining the Legendrian projection ¢ : N — X xR and the natural projection Tx — X xR.
Note that it is equivariant for simultaneous real scalings of the z,y, 2 components and squared
real scalings of the additional components. It is also equivariant for simultaneous conjugation
of the z components and negation of the y,t components and last base component.

For compatibility with standard refererences, which often adopt the setting of exact sym-
plectic rather than contact geometry, it is useful to go one step further.

Let us regard T*(X x R) \ (X x R) as the symplectification of S*°(X x R). Introduce the
symplectification of the open subspace T x C S°°(X X R) in the form of the conic open subspace

Qx = {((z,1),(&n) [n >0} CT*(X xR)\ (X xR)

Here and in what follows, we say a subvariety of T*(X x R) is conic if it is invariant under
positive real scalings of the cotangent fibers.

Note that taking the inverse-image under the natural map Qx — Yx induces a bijection
from subvarieties of T x to conic subvarieties of ) x.

Definition 3.4. To an exact Lagrangian subvariety L C M with primitive f : L — R, we
define the associated Lagrangian subvariety A C Qx as follows.

First, we lift L C M to the Legendrian graph I'r _; C N in the contactification, then
transport I'r, _y C N to the Legendrian subvariety A> = ¢(I'r, ) C Tx, and finally take
A C Qx to be the inverse image of A* C T x under the natural map Qx — Tx.

To a conic Lagrangian subvariety L C M, we always take the zero function as primitive, and
then define the associated Lagrangian subvariety A C Qx as above.

Remark 3.5. By construction, the associated Lagrangian subvariety A C Qx of an exact
Lagrangian subvariety L C M with primitive f : L — R is always conic with respect to positive
real scalings of the cotangent fibers.

For a conic Lagrangian subvariety L C M, the associated Lagrangian subvariety A C Qx is
additionally conic with respect to the commuting Hamiltonian scaling action

- ((2,), (&) = ((rz, 72t), (r 1,7 72n)) r€Rso

induced by the scaling action r - (z,t) = (rz, r%t) on the base. To see this, note that A C Qx
is conic with respect to the scaling action

T ((‘Tat)v(gun)) = ((7“%7“2’5)7(7“&77)) r€Rso

and this simply differs from the asserted action by the corresponding squared scalings of the
cotangent fibers under which A C Qx is already invariant.

Furthermore, the above Hamiltonian scaling action contracts the pair A C Qx to a neigh-
borhood of the positive codirection

{((070)7 (0777)) | n> O} C QX

We will use the term biconic to summarize the above structure of the pair A C Qx.
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3.1.5. Symmetries. Let S* = R/27Z, and T = (S*)", with Lie algebra t = R". There is a
Hamiltonian T-action on M = C" by coordinate rotation

O1,...,00) (21,...,20) = (P21, ... e 2,)
with moment map
MM%{* /14(217"'7277,):(7'%/2,.,,,7“121/2)

It preserves the conic exact symplectic structure, and its fixed locus is the origin 0 € M.
There is an induced T-action on the contactification N = C™ x R which is trivial on the
additional factor
O,y 00) (21, oy 20, t) = (00 2q, ..., €% 2, 1)

It preserves the contact structure, and its fixed locus is the transverse curve {0} x R C N.
By transport along the contactomorphism

p: N—"=Tx C S®(X xR)

there is an induced T-action on the open subspace T x C S°°(X x R). It preserves the contact
structure, and its fixed locus is the transverse curve {((0,¢),[0,1])} C Tx.

There is an induced Hamiltonian T-action on the symplectification Qx C T*(X x R) with
moment map

-1
78 QX 2 TX v N c M t

where s : Qx — Y x is the projection of the symplectification, and ¢ : N — M is the projection
of the contactification. It preserves the conic exact symplectic structure, and its fixed locus is
the conic symplectic surface {(0,¢),(0,1))|n > 0} C Qx.

m

Remark 3.6. Tracing back through the constructions, the Hamiltonian T-action on Q2x orig-
inates by viewing 7' as a maximal torus in the symplectic group of the contact plane at the
point ((0,0),[0, 1)) € 0.

Finally, it is useful to recast the Hamiltonian T-action on Qx in the form of the action

Lagrangian correspondence
ET)QX C Qx X Qg( x T*T

Loy = {(w1,—w2,(9,()) € Qx x Q% X T*T' |w1 = g - wa, v(w1) = (}
where Q% C T*(X xR) denotes the antipodal subspace with respect to the negation of covectors.
Note the diffeomorphism
Lroy —=Qx xT (w1, —w2,(g,¢)) = (w1,9)
In particular, for g € T', there is the action Lagrangian correspondence

Lgyﬂx C Qx x Qf;(

ngQX = {(wlu _(UQ) S QX X Qg( |W1 =g- Wg}

Remark 3.7. Fix g = (0y,...,0,) € T.

Let Y; C (X x R) x (X x R) be the front projection of L4 0, C Qx x Q%. To describe it,
let (z1,...,@p,t), (z],...,2,,t') be coordinates on the two factors of (X x R) x (X x R).

First, points of Y, always satisfy ¢’ = t. If 6, = 0, they satisfy =, = z,, and if 8, = 7, they
satisfy #/, = —x,. Otherwise, the projection (z4,2}) : Y, — R? is a fibration.

Thus Y, C (X xR)x (X xR) is a smooth submanifold with codimY, = 1+#{a |6, = 0 or 7},
and L4 0, C Qx x Q% is the intersection of {2x with its conormal bundle.
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3.2. Lagrangian skeleta. We continue with M = C" and the above setup.
Introduce the superpotential

W.:M——=C W(z1,.. . 2n) =21 2n

Set My = W=1(0), M* = W=L(C*) = (C*)".
For 0 € S', let C*(0) C C* be the open ray

CX(0) = {z=re" |r € Rso}
For © C S! a nonempty finite subset, let C(0) C C be the closed union of rays
C(©) ={0} UTlpece C*(6)
Set M(©) = W=(C(0)) and M*(0) = W~1(C*(0)) so that
M(©) = Mo U [Ipee M*(6)

When © = {#} is a single element, we write C(¢) in place of C(0), and M () in place of M (0).

Fix a point z = (21,...,2,) € C™ with polar coordinates z, = rqete. for a = 1,...,n.
Let £ = {r1,...,rn} C R>q be the set of lengths of the coordinates, and ¢y € ¢ the minimum
length. Let I, C {1,...,n} comprise those indices a € {1,...,n} whose coordinate is of

minimal length r, = ¢y. Note a & I,,,;, implies in particular r, > 0.
Introduce the subspace L(©) C M (0) cut out by the equations

0, =0, for a & I,

Note that L(©) C M is closed since M(0©) C M is closed, and L(0©) C M(©) results from
imposing the above additional equations that become weaker as I,,;, increases in size. When
© = {0} is a single element, we write L(0) in place of L(O).

There is a natural decomposition of L(©) into conic isotropic locally closed submanifolds.
We have the initial decomposition

L(©) = Lo U lpeo L™(0)

Lo = L(©) N M, LX(0) = L(©) N M*(6)

For each nonempty subset 7 C {1,...,n}, introduce the subspace JLy C Lg of points with
Ipin, = J. This is the locally closed submanifold cut out by the equations

rq =0, foraed rq >0, foragd 0, =0, foragd

Its codimension is n + |J| and it is clearly isotropic.
For each nonempty subset J C {1,...,n}, introduce the subspace JL*(0) C L* () of points
with I,,;, = J. This is the locally closed submanifold cut out by the equations

rqe > 0, for all a re =1y, fora,b e re <Tp, fora €I, b J

0, =0, forag?d Doulba=10

Its codimension is n and it is clearly isotropic hence Lagrangian.
Finally, for each nonempty subset J C {1,...,n}, note the natural identification

JLoUIL*(0) ~ Cone((SH)171-1) x RZ !
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Example 3.8. When J = {1,...,n}, we have JLo = {0} and also
JLX(0) = {(re®r, ... ret) |r > 0,3, 0, =0} ~ (S x Ry
so that their union is the closed Lagrangian cone
JLoUJIL*(0) =~ Cone((S*)"1)
Lemma 3.9. L(©) C M is a closed conic Lagrangian.

Proof. We have noted that L(©) C M is closed. Each piece JLg, JL(§) C M is conic and
isotropic. Moreover, we have seen that JL¢ is in the closure of JL*(0) and the latter is of
dimension n. Thus L(©) C M is Lagrangian. O

Definition 3.10. (Lagrangian skeleton) By a Lagrangian skeleton for M = C", W = z1 - - - 2y,
we will mean the closed conic Lagrangian subvariety L(6) C M, for some 6 € S*.

3.3. Microlocal interpretation. Fix the standard identification 7*S' ~ S' x R with canoni-
cal coordinates (6, £). We have the canonical one-form o = £df, symplectic form w = da = d€d0,
and Liouville vector field v = £0¢.

Introduce the product torus 7' = (S1)". Fix the standard identification T*T ~ T x R™ with
canonical coordinates (61, ...,0,,&1,...,&,). We have the canonical one-form v = ", £,d6f,,
symplectic form >""'_ | w = da, = d€,df,, and Liouville vector field v = >"""_ | £,0k, .

Introduce the open subspaces

T>081 = {¢ >0} cT*S! T>9T = (1>°SY)y» c T*T
and the exact symplectic identification

p: M* = (C)" —>T>0T

o(rie®, . ) = (01, ...,0,,72)2,...,12/2)

Note that ¢ is equivariant for the natural T-actions, and the codirection component of ¢ is
simply the restriction of the moment map pu.
Fix § € S'. Recall the Lagrangian skeleton L(f) C M, and specifically its open subspace
L*(0) c M*, with locally closed submanifolds JL*(0) C L*(6), for nonempty J C {1,...,n}.
Transporting them along the above identification, we obtain a corresponding conic La-
grangian with locally closed submanifolds

L=0(6) = (L™ (9)) JLZ0(0) = p(IL*(8))
Our aim in this section is to describe them in microlocal terms.

3.3.1. Lagrangians via cones. Continue with T = (S1)", so that

X«(T) = Hom(S1,T) ~ Z" x*(T) = Hom(T, S') ~ 7"
t=x.(T) ®zR~R" ' =x"(T)®zR ~R"
Similarly, set T+ = S' x T, with
X«(TH) = Hom(S', T+) ~ 7+ X*(T+) = Hom(T*, St) ~ z' "
tH = x.(TT) @z R ~ Rn () = x*(TH) @z R ~ RM"

Let eg,e1,...,en € X*(TT) be the coordinate vectors, so that t = {eg = 0} C tT.
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Let 7 € [0,27) be the lift of § € S* = R/27Z, and define
d=e1+-+e,ex (D) 0t =—(1/2m)eg +e1+ - +e, € X (TT)

and note that 6| = 4.
For each nonempty subset J C {1,...,n}, introduce the linear span

Joiin = Span({0} U {e, |a ¢ T}) C t*
Introduce also the relatively open cones
Jo = Span ({0} U{ea|a ¢T}) C t* Jot = Span, ({67} U{ea|a ¢ T}) C (t7)"

where by the positive span we require that all of the listed vectors have positive coefficients.
Note that JoT| = Jo, and also that J; C Jy implies Joo C Jy0, Joo™ C Jio™T.

Introduce the affine subspace tjﬁ- = {eg = 1} C t* and the canonical identification t/, ~ t
preserving the coordinates eq,...,e,. Introduce the orthogonal subspace

(Jot)t ={vett|{v,\) =0, forall A\ € JoT} C t+
and the affine subspace
(Got) gy = FoT)ENtfy Ctly >t
Note that J; C Jo implies (Jo )+ C (Jo )+, (3Uf)éﬁ C (jag)éﬁ.
Consider the natural projection g : t = t/x.(T) ~ T, and form the image
35 = a((30+)35) € T

Note that J; C Jo implies 715 C J5S.

Note also when J = {1,...,n}, we have that JS C T is cut out by the equation ) 6, =0,
since (30*)%- C tis cut out by the equation ), v, = 7/27. More generally, for any nonempty
subset J C {1,...,n}, we have that 3S C T is cut out by the further equations 6, = 0, for
a ¢ 7, since (ja"’)fl'ff C t is cut out by the further equations v, = 0, for a & J.

Let T*T be the cotangent bundle of T" with its natural identification 7*7T ~ T x t*. For each
nonempty subset J C {1,...,n}, introduce the conic Lagrangian subspaces

IS x Jop, CT x t* IS xJoC T x t*
and note the identification
T3,T =38 x Joyn,
Recall the conic locally closed Lagrangian submanifolds
JL700) c (T>9(SH)" Cc T x t*
Lemma 3.11. For a nonempty subset 3 C {1,...,n}, inside of T*T ~T x t*, we have
JL>°(0) = 3S x Jo
Proof. Recall that JL*(#) C M * is cut out by the equations
rq >0, for all a rq =1y, fora, b€ re <Tp, fora €I, b
0, =0, foragd Youlba=10
Recall that IL>°(0) = p(TL*(#)) for the exact symplectic identification
o MX = (C)" ——(T>°(S"))" c T*((S1)")
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o(riet, . raefn) = (01,72/2,...,0,,72/2)
Therefore JL>°(0) C T*T is cut out by the similar equations
o >0, forall a o =&, fora,bed o <&, foracT,bgd
0, =0, forag?d Youba=10

Now we can simply match formulas. We have seen that the last two of the above collections
of equations together cut out JS C T'. The first three describe precisely what it means to be
in the positive cone Jo = Span. ({6} U{eq|a ¢ J}) C t. O

3.3.2. Structure when 6 = 0. Let us focus further on the case § =0 € S1.
Consider the diagonal character

51T—>Sl 5(9179n):91++9n
Introduce the subtorus T° = ker(d) C T, with Lie algebra t° C t, and note
X+(T°) = Hom(S*, T°) ~ {§}+ C x.(t) X*(T°) = Hom(T°, S*) ~ x*(T)/ Span({6})

Let X C t* be the complete real fan with rays ey, ..., e, € x*(T°) the images of the coordinate
vectors eq,...,e, € x*(T) under the quotient map x*(7) — x*(7°). Note that nonempty
subsets J C {1,...,n} index the positive cones o = Span. ,({€, | a € J}) C X, and in particular,
the subset J = {1,...,n} indexes the origin o = {0} C X.

Remark 3.12. Let 7° = SpecC[x.(T°)] denote the complex torus dual to T7°. Then the
complete fan ¥ C x*(T°) corresponds to the T°-toric variety P~ 1.

For each positive cone o C 3, introduce the orthogonal subspace
ot ={vet|(v,\) =0, forall A\ € o} C t°
Consider the natural projection ¢ : t° — t°/x.(T°) =~ T°, and form the image
oT° =q(ot) CcT°
Define Ay, C T*T° ~ T° x (t°)* to be the conic Lagrangian
Ap=J 0T x o CT° x ()
oCs
Remark 3.13. As we will discuss later, the conic Lagrangian Ay, C T*T° is the mirror skeleton
to the T°-toric variety P~ 1.

The inclusion 7° C T induces a natural Lagrangian correspondence

T*T° <2 T s TOC L o T

T x (t°)* ~—— T° x "> T x t*
compatible with the natural projection t* — t*/ Span({d}) ~ (t°)*.
Recall the conic Lagrangian L>%(0) C T*T, and its locally closed submanifolds JL>°(0) C

T*T, for nonempty subsets J C {1,...,n}.
Introduce the corresponding conic Lagrangian and locally closed submanifolds

A° = p(i=(L>°(0))) € T*T° JA° = p(i~1(IL>°(0))) C T*T°
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Note that L>°(0) in fact already lies in T*T x T, since its points satisfy > ., 6, = 0, so
the inverse image i~ ' is unnecessary in the above formulas.

Note also that the fibers of p are the cosets of the line Span({¢}) ~ R, and their intersections
with L>9(0) are cosets of the positive ray Span. ({0}) ~ R~¢. Thus the projection L~>°(0) —
A° is simply an R+ g-bundle.

Lemma 3.14. Inside of T*T°, we have
A° = Ay JAN° =0T° x o
where a nonempty subsetI C {1,...,n} indexes the positive cone o = Span. ({€, |a ¢ J}) C X.
Proof. The second assertion refines the first. For the second, by Lemma 3.11, we have
JL>°(0) ~ 38 x Jo

where 35 = ¢(ot) C T° since 7 = 0, and Jo = Span. ({6} U {e,]a &€ J}) C t*. Hence
JS = oT°, and Jo projects to o. O

3.4. Canonical section. Recall for any 6 € S!, the Lagrangian skeleton L(§) C M admits a
decomposition

L(0) = Lo Ulpeo L*(0)

Lo = L(0) N M,y L*(0) = L(O) N M*(0)
Recall the decomposition of Ly into the locally closed submanifolds JLy C Lg, for nonempty
subsets J C {1,...,n}, cut out by the equations
re =0, foraed 0, =0, forag?d

Note that points of Ly are completely described by their radial coordinates and the angular
coordinates are either not well-defined or set equal to zero.

Recall the complete fan ¥ C (t°)* with rays e1,...,€, € x*(T°) the images of e1,...,e, €
X*(T) under the quotient map x*(T") — x*(T°). Recall that nonempty subsets J C {1,...,n}
index the positive cones o = Span.({€,|a ¢ J}) C X, and in particular, the subset J =
{1,...,n} indexes the origin o = {0} C .

Lemma 3.15. We have a piecewise-linear homeomorphism
ho @ Lo A (’LO)* ~ Rn—1 ho(Tla e Tn) = —T71E] — - — TpEn

that takes the locally closed submanifold ILy C Lo homeomorphically to the corresponding
opposite cone —o C —I.

Proof. Note that Ly C M consists of n-tuples (r1,...,7,) € M of real non-negative radii with
at least one radius equal to zero. The corresponding submanifolds and cones are cut out by the
vanishing and positivity of the respective radii and coordinate coefficients. O

Remark 3.16. Motivation for the negative signs in the definition of hy can be found in natural
extensions of it immediately below.

Now fix a representative 7 € (—2, 27) projecting to 6 € S*.
We will construct a closed conic Lagrangian subvariety P(7) C L(6) and a homeomorphism

h=gxw:P(t)—= (t°)* x C(§) ~R""! x R>g
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where the second factor w : P(7) — C(6) is simply the restriction of the superpotential W :
M — C. Furthermore, above the origin 0 € C(6), the homeomorphism will be that of the
previous lemma

h|0 =hg: P(T)lo =Ly = (to)* ~ Rn1

For a = 1,...,n, fix the representative 7, € [0,27) projecting to 6, € S*, if 7 > 0, or
alternatively 7, € (—2x,0], if 7 < 0.

Definition 3.17 (Canonical section). Define P*(7) C L*(0) to be the closed conic Lagrangian
cut out by the single additional equation

2a=1Ta =T
Define P(1) C L(#) to be the closed conic Lagrangian P(1) = Lo U P* (7).

Remark 3.18. Note that P(7) is equivalently the closure of P*(7) regarded as a subspace of
L(0) or as a subspace of M.

Recall the decomposition of L*(6) into the locally closed submanifolds JL*(6), for nonempty
subsets J C {1,...,n}. Taking intersections, we obtain a decomposition of P*(7) into locally
closed submanifolds

JP*(1) = P*(1)N3JIL*(0)
cut out by the equations
rq > 0, for all a rq =1y, fora,bed rq <71y, fora € J3,0& 7
Ta =0, foragd YuTa=T

Transporting them along the identification ¢, we obtain a conic Lagrangian with locally
closed submanifolds

PX(r) = o(P(r))  IP>(r) = p(3P* (1)

for nonempty subsets J C {1,...,n}.
Let A(7) C T be the simplex with >_'_, 7, = 7. Note that we have

P>0(1) = L>°(0) x1 A(T)

For a nonempty subset J C {1,...,n}, introduce the relatively open subsimplex JA(7) C
A(T) defined by the equations 7, # 0, for a € J, and 7, = 0, for a € 7.
As an immediate consequence of Lemma 3.11, we have the following description.

Lemma 3.19. For a nonempty subset 3 C {1,...,n}, inside of T*T ~T x t*, we have
JP>0(1) = JA(7) x Jo
Now set r =ry - - -1y, and define the first factor of the sought-after homeomorphism to be
g:P(t) ——= (t°)* @R ! g(rie®, . rpet?n) = (rrp —r)er + -+ (P71 — T0)En
Observe that when r = 0, this clearly restricts to the homeomorphism hy.
Proposition 3.20. The map g : P(1) — (t°)* provides the first factor of a homeomorphism
h=gxw:P(t)—/ (t°)* x C(§) ~R""! x R>g

with second factor w : P(1) — C(0) the restriction of the superpotential W : M — C.
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Proof. By Lemma 3.15, it suffices to study the restriction to P> (7).
When 7 = 0, observe that all angles vanish, P*(0) C M* consists of n-tuples (r1,...,7,) €
M of positive radii, and the map reduces to the homeomorphism

h(Tla s 7T’n.) = (_Tlél - = Tnéna’r)

When 7 > 0, observe that P*(r) C M* consists of n-tuples (r1ei™,... r,ei™) € M*
satisfying the following.

First, the angles (71,...,7,) € RZ, form the simplex A(T).

Second, by Lemma 3.19, above JA(7) C A(7), we have

P*(7)|3a = JA(T) X Jo Jo = Span.({e} U{eq|a & T})
Thus above JA(7) C A(7), the map takes the form
h(ri,...;rn, i, o s Tn) = (1) 4c5 Ta€a — Zbgj Tb€h,y T')
and hence provides an inclusion
PX(T)laam—=R"" x Rsg

The images of the above inclusions decompose R~ x R+ into disjoint subspaces indexed
by nonempty subsets J C {1,...,n}. Thus h provides a bijection

PX(1) —=R" ! x Ry

and by the description of Lemma 3.19, it is a homeomorphism.
When 7 < 0, a similar analysis holds.

Corollary 3.21. For 11,7 € (—2m,27) representing 01 # 05 € S, the union P(m1) U P(12) C
L(61) U L(02) admits a homeomorphism

H: P(1)UP(m2) —— (t°)* x (C(6) UC(f) ~R"1 xR
Proof. Take the homeomorphisms constructed above on each piece of the union P(71) U P(72)
and note that they agree on the intersection Ly = P(11) N P(72). O
4. LANDAU-GINZBURG A-MODEL

4.1. Microlocal sheaves. This section collects mostly standard material from [18] tailored to
our setting.

4.1.1. Setup. Let Z be a real analytic manifold.
Consider the cotangent bundle and its spherical projectivization
.17 ——= 7 787 =(T*Z\Z)/Rsg —=Z

with their respective standard exact symplectic and contact structures.
For convenience, fix a Riemannian metric on Z, so that in particular we have an identification
with the unit cosphere bundle
S*Z~UZCT*Z
Consider a closed conic Lagrangian subvariety and its Legendrian spherical projectivization
ANCT*Z A® =(AN(T*Z\ Z))/Rsog C S>®Z

Introduce the front projection
Y =n%A*)CcZ
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In the generic situation, the restriction
TP g0 1 A® ——Y

is finite so that Y C Z is a hypersurface.
Fix § = {Z4}aca a Whitney stratification of Z such that Y C Z is a union of strata. Hence
we have inclusions

ANCTEZ =lpenTz 2 A>®CSTZ =11,cnS% 2
where we take the union of conormal bundles to strata and their spherical projectivizations.

4.1.2. Sheaves. Fix a field k of characteristic zero.

Let Sh(Z) denote the dg category of constructible complexes of sheaves of k-vector spaces on
Z. Let Shs(Z) C Sh(Z) denote the full dg subcategory of S-constructible complexes. We will
abuse terminology and refer to objects of Sh(Z) as constructible sheaves. All functors between
dg categories of constructible sheaves will be derived in the dg sense, though the notation may
not explicitly reflect it.

Recall to any F € Sh(Z), we can assign its singular support

ss(F)CcT*Z
which is a closed conic Lagrangian subvariety, and also its spherical projectivization
$8°(F) = (ss(F)\ (T*Z\ 2))/Rso C S*Z
which is a closed Legendrian subvariety.

Example 4.1. To fix conventions, suppose ¢ : U — Z is the inclusion of an open subspace
whose closure is a submanifold with boundary modeled on a Euclidean halfspace. Then the
singular support ss(i.ky) C T*Z of the standard extension i,.ky € Sh(Z) consists of the union
of U C Z and the inward conormal codirection along the boundary 0U C Z. More precisely,
if near a point z € U, we have U = {f > 0}, for a local coordinate f, then ss(i.ky)|. is the
closed ray Rx>o(df].).

More generally, suppose i : U — Z is the inclusion of an open subspace whose closure
is a submanifold with corners modeled on a Euclidean quadrant. Then the singular support
ss(ixky) C T*Z consists of the inward conormal cone along the boundary oU C Z. More
precisely, if near a point z € U, we have U = {f1,..., fr > 0}, for local coordinates f1, ..., f,
then ss(i.ky )|, is the closed cone R>o(df1|z, ..., dfl:)-

For a conic Lagrangian subvariety A C T*Z, we write Sha(Z) C Sh(Z) for the full dg
category of objects F € Sh(Z) with singular support satisfying ss(F) C A.

The inclusion A C T$Z implies the full inclusion Sha(Z) C Shs(Z), and more generally, an
inclusion A C A’ implies the full inclusion Sha(Z) C Sha/ (Z).

For the zero-section A = Z, there is a canonical equivalence Shy(Z) ~ Loc(Z) with the
full dg subcategory Loc(Z) C Sh(Z) of local systems. For the antipodal conic Lagrangian
subvariety —A C T*Z, Verdier duality provides a canonical equivalence

Dy : Sha(Z)% —> Sh_A(Z)

When U C Z is an open subset, we will abuse notation and write Shs(U) C Sh(U) for
complexes constructible with respect to SNU, and Sha (U) C Sh(U) for complexes with singular
support lying in A N7~ 1(U).
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Example 4.2. Let T ~ (S1)" be a torus.
Let m : T x T — T be the multiplication map, and ¢ : T — T the inverse map. Then Sh(T")
is a tensor category with respect to convolution

Fix Fo=m(F1 X Fa) F1,Fe € SK(T)
with unit k. € Sh(T') the skyscraper at the identity e € T, and duals given by
FY = uDrp(F) F € Sh(T)

The full dg subcategory Loc(T) ~ Shy(T) of local systems is a monoidal ideal, and admits
the non-unital monoidal Fourier description

Loc(T) ~ Shy(T) —== Cohyprs(T)

where T ~ (G,,)" is the dual torus, and Cohya(T) its dg category of torsion sheaves.
Let i : S — T be the inclusion of a subtorus. Then Sh(S) is similarly a tensor category, and
pushforward along ¢ induces a fully faithful tensor functor

ix : Sh(S)—= Sh(T)

Let p : T — T be a covering group, possibly with infinite but discrete kernel. Then the
full dg subcategory Sh.(T’) C Sh(T’) of objects with compact support is similarly a tensor
category, and pushforward along p induces a fully faithful tensor functor

pr =~ py: Sh(T") —— Sh(T)

Example 4.3. Recall the torus T° and the conic Lagrangian Ay, C T*T° associated to the com-
plete fan ¥ C (t°)*. Recall the dual torus 7° and that the complete fan ¥ C (t°)* corresponds
to the T°-toric variety P 1.

The full dg subcategory Sha,, (T°) C Sh(T°) is a tensor subcategory, and a basic instance of
the coherent-constructible correspondence of [10, 13, 38] is a canonical tensor equivalence

Shay, (T°) — > Coh(P"~1)

where Coh(P"!) is equipped with its usual tensor product.

Alternatively, we could work with the antipodal conic Lagrangian subvariety —Ax C T*T°.
The choice is largely a matter of conventions thanks to the auxiliary equivalences provided by
the inverse map and Verdier duality

Lt Shag (T°) —== Sh_.(T°) Dro @ Shopy (T°) —== Shn, (T°)°P

The full dg subcategory Sh_a,,(T°) C Sh(T°) is also a tensor subcategory, and the inverse map
provides a tensor equivalence.

Let us mention two further compatibilities among many the coherent-constructible equiva-
lence enjoys:

i) For a = 1,...,n, introduce variables 7, € (0, 27), and consider the open simplex

d:A={(r,....,70) | Yon_yTa =2m}——T°

Then ss(d.ka) C Ax, and the equivalence takes dika € Shay (T°) to Opn-1(—1) € Coh(P"~1).
ii) On the one hand, recall that over the identity e € T°, the fiber of Ay is the complete fan
3. Moreover, recall that the smooth locus of Ax|. ~ ¥ is the union of the open cones

0o = Spanyo({€.|a #a}) C X aec{l,....,n}
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Given a covector (e,&,) € 0, in such an open cone, we can form the vanishing cycles
¢a : ShAE (TO) —_— Perfk ¢a(]:) == F{fazo} (U; .7:)

where f, : T° — R is any smooth function with f,(e) = 0,dfs|lc = &, and U C T° is a
sufficiently small open ball around e.
On the other hand, for « € {1,...,n}, introduce the inclusion of the a-coordinate line

Qo : pt = {lea]}——P""!
and the induced pullback functor
i* : Coh(P"~1) —— Coh(pt) ~ Perf;,

Then the equivalence extends to a commutative diagram

~

Shas (T°)

X i

Perfy,

Coh(Pm—1)

4.1.3. Microlocal sheaves. Let Qz C T*Z be a conic open subspace, and let A C T*Z be a
closed conic Lagrangian subvariety. Only the intersection A Nz will play a role, and we will
often not specify A outside of .

Let uSha(Qz) denote the dg category of microlocal sheaves on Q supported along A. It is
useful to view uSha(€2z) as the sections over A of a natural sheaf of dg categories with local
sections admitting the following concrete descriptions. Note for (z,£) € A there are two local
cases: either 1) £ = 0 so that locally Q is the cotangent bundle T*B of a small open ball
B C Z, or 2) £ # 0 so that locally Q is the symplectification of a small open ball Q% C S*Z.

Case 1) For B = 7(§z), there is always a canonical functor Shp(B) — uSha(Qz), and when
Qz = T*B, this functor is in fact an equivalence

Sha(B) —> uSh(T*B)

Case 2) Suppose 1z C T*Z is the symplectification of a small open ball Q¥ C S*Z. By
applying a contact transformation, we may arrange to be in the generic situation where the
front projection

TP g 1 A® ——=Y

is finite so that Y = 7°°(A*) C Z is a hypersurface.
For B = 7(€z), the natural functor Sha(B) — uSha(f2z) induces an equivalence on the
quotient dg category

ShA(B)/,COC(B) s ;J,ShA(Qz)

where Loc(B) C Sh(B) denotes the full dg subcategory of local systems, or in other words
complexes with singular support lying in the zero-section B C T*B.
Alternatively, in this case, introduce the respective full dg subcategories

ShA(B)g C ShA(B) ShA(B)P C ShA(B)
of complexes F € Shp(B) with no sections and no compactly-supported sections

I'(B,F)~0 I'.(B,F)~0
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Then the natural functor Sha(B) — pSha(£2z) restricts to equivalences
Sha(B)? —— uSha((Qz) Sha(B)Y —— uSha((Q2z)

More generally, if we happen not to be in the generic situation, let Shy(B,Qz) C Sh(B)
denote the full dg subcategory of objects F € Sh(B) with singular support satisfying ss(F) N
Qz C A. Then there is a natural equivalence

Sha(B,Qz)/K(B,Qz) —— uSha(Qz)

where K(B,Qz) C Sha(B,§z) denotes the full dg subcategory of objects F € Sh(B) with
singular support satisfying ss(F) N Qz = 0.

Remark 4.4. We will not encounter complicated gluing for microlocal sheaves.

When not in Case 1), we will have a contracting action « : Ryg x Z — Z with a unique
fixed point, the pair A C Q7 will be biconic for the additional induced Hamiltonian action and
contracted by it to a neighborhood of a single codirection based at the fixed point. Thus the
situation will be equivalent to Case 2), and we will have an equivalence

Shy’™(Z,Qz) [/ K*™(Z,Qz) —— pSh(Qz)

where Shi”"(Z,Qz) C Sha(Z,9Qz), K"(Z,Qz) C K(Z,Qz) denote the respective full dg
subcategories of a-conic objects. In this way, we will be able to work with pSha(€Qz) concretely
as a localization of Sh{""(Z,€z) all at once, and in particular be in the local setting studied in

detail in [18, Ch. VI]. See Remark 3.5 for the precise situation we will encounter.

Remark 4.5. We will primarily work with microlocal sheaves supported along a fixed closed
conic Lagrangian subvariety A C Qz. An inclusion A C A’ of such induces a full embedding
wSha(Qz) C puSha(Qz). Tt is sometimes convenient to not specify the support, for example if
we have a collection of A C Q7 in mind, and then we will write ©Sh(€Qz) for the union of the
dg categories 1Sha(2z) over all such A C Q2 under consideration.

Example 4.6. Suppose Z = R. Inside of T*R ~ R x R, introduce the conic Lagrangian
subvariety and conic open subspace

A =RU{(0,n)[n >0} Qz ={(t,n)[n >0}
Then there are canonical equivalences
Perfy, ——= Shp(Z)) —— uSha(Q2z) Vi——j.p*V

induced by the correspondence

ot P+ RS J+ R
Similarly, there are canonical equivalences
Perf, —— Shp(2)? —== uShx(Qz) Vi—sj_p-V
induced by the correspondence
< RS R

Furthemore, the composite functors are naturally equivalent

Jopt =~ jyph : Perfr, — = puSh (Qz)
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An inverse equivalence is induced by the hyperbolic localization
@ : Sha(Z) —— Perfy, O(F) =iyt F
with respect to the inclusions
io: X ={0}——=R>g iy :Rs>p——R

The constructions j;.p* and j_1p"_ provide respective left and right adjoints to the natural
microlocalization functor
Sha(Z) ——= pSha(Qz) ~ Perfy,

realized by functorial equivalences
Hom(j;.p% £, F) ~ Hom(L, ¢(F)) Hom(é(F),V) ~ Hom(F,j_ip" V)

Example 4.7. Suppose Z = R2.

Suppose g+ : R — R are smooth functions with ¢, (0) = 0, ¢g4+(s) > 0, for s > 0, and
g—(s) = —g+(s). We will only use their restrictions to R>¢ C R.

Inside of T*R? ~ R2 x R?, introduce the conic open subspaces

Qzx ={(s,1),(&n)|s>0,n7>0}

and conic Lagrangian subvarieties

Ai = {(87 fi(s))v (_ndgi(s)vn)) | § > 0777 > 0}

Inside of T}, ,,R? ~ R?, introduce the cone

(0,0)
Ao = Span((=dg+(0),1), (=dg-(0),1))

Form the total conic Lagrangian subvariety and conic open subspace

A=R2UA; UAQUA_ Qz ={((s,t),(&n)|n >0}
Consider the iterated inclusions
Ut s Y L R?
U={(s;t) € Rso x R[g_(s) <t <gi(s)} V={(s,t) € Ruo xR|g_(s) <t < gy(s)}

Then there is a canonical equivalence
Perfy, ——= uSha(Qx) V —— vu Vi

factoring through the coincident full dg subcategories Sha(R?){ = Shy(R?)) C Sh(R?).
Finally, the open restrictions provide further equivalences

wSha(Qx) ——= uSha, (x,+)

Note that each pair Ay C Qz 4 is locally modeled on the pair of Example 4.6. When we
compare each composite equivalence

ct : Perfy, — == uShp(Qx) —— uSha, (Qx.+)

with the equivalence ¢ = j_ip' ~ J++p} of Example 4.6, we see that c_ agrees with ¢, but
¢4+ agrees with ¢ ® org[—1], where we shift by —1 and twist by the orientation line org of the
second factor of R2.
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4.1.4. Twisted symmetry. Let us focus here on the setting of Remark 4.4, and specifically the
setting of Remark 3.5.
Set Z =X xR =R" xR, and consider the conic open subspace

Qx = {((x,), (&, m) |9 > 0} € T*(X x R)

Let A C Qx be a closed biconic Lagrangian subvariety in the sense of Remark 3.5, so conic
with respect to the positive scaling of covectors, and also conic with respect to the commuting
Hamiltonian scaling action induced by the scaling action on the base

a:RyoX X XxR——= X xR a(r, (z,t) = (rz,r?t)
Recall that the Hamiltonian scaling action contracts the pair A C 2x to a neighborhood of the
positive codirection
{((0,0),(0,m) [n >0} C A CQx

Thus microlocal sheaves on Q2 x supported along A can be represented by a-conic constructible
sheaves on X x R, or alternatively by their restrictions to any small open ball around the origin.

Next, recall the Hamiltonian T-action on Qx with moment map v : Qx — t* and action
Lagrangian correspondence

;CT’QX C Qx X QaX x T*T

L1y = {(w1,—w2,(9,()) € Qx x Q¢ X T*T |w1 = g - wa, v(w1) = (}
and in particular, for g € T', the action Lagrangian correspondence

‘Cg,Qx C Qx X Qf;(

ngQX = {(wlu _(UQ) € QX X ng |W1 =g- Wg}

The theory of microlocal kernels and transformations [18, Ch. VII] provides, for each g € T,
an integral transform equivalence

Dy wSha(Qx) —= pShy(a)(Qx) Dy(F) =KgoF

following the notation of [18, Definition 7.1.3], where the microlocal kernel K, to be specified
momentarily, is rank one along the smooth action Lagrangian correspondence L4 o .

We would like to highlight the twisted nature of compositions of the above equivalences.
First, for the identity e € T, let us normalize K. so that ®. is the identity. Next, for any g € T',
let us attempt to specify K, by continuity: for a path v, : [0,1] — T, with v = e,71 = ¢,
there is a unique K4(7) given by parallel transporting K.. But for a loop s : [0,1] — T, with
Yo =71 = e, we find that KC.() is not necessarily equivalent to K.

Proposition 4.8. There is a canonical equivalence
Ke(v) =~ Ke[2(5,7)]

where 6 € x*(T) is the diagonal character, 5 € w1 (T) ~ x(T) is the class of s, and we shift
by twice their natural pairing.

Proof. For simplicity, we will focus on the one-dimensional calculation, as arises for each coor-
dinate circle S' C T, and not carry along the additional fixed coordinate directions.

Thus we set X = R and consider T'= S* = R/27Z acting on Qx C T*(R?).

Consider the continuous family of integral transform equivalences

@, uSh(Qx) —— pSh(Qx) reR
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normalized so that ®¢ is the identity, for 0 € R. We seek to show P9, ~ [2], where only the
specific twist of the identity functor is in question.

It suffices to act upon the Qx-microlocalization F of the constant sheaf kx along the first
coordinate direction X = R x {0} and calculate what results. The singular support of kx is
the conormal bundle T%R?, and we will denote by A = T{R? N Qy its relevant part.

Rotation by 0 # +7/2 € St takes A C Qx to the smooth conic Lagrangian surface

A(0) = {(x, cx®), (=nex,m) | n > 0} C Qx

where we set ¢ = sin(f)/ cos(f) from here on, and rotation by 6 = +7/2 takes it to the smooth
conic Lagrangian surface

A(£7/2) = {(0,0), (ny,n) | n > 0} C Nx

Note that A(f) = A(—0) since we happen to have chosen A = A(0) to be invariant under
rotation by 6 = 7.
Let X (0) = 7w(A(f)) C R? be the front projection. For 6 # 47 /2, it is the parabola

X(0) = {(x,cx?®)} C R?

and for 6 = +7/2, it is the origin X (£7/2) = {(0,0)}.

Now for 7 € R, with image § € S', let us calculate the microlocal sheaf ®,.(F). It will be
rank one along A(6) C Qx, with its particular twist what we seek.

To start, recall that F is represented by the constant sheaf kx along the first coordinate
direction X = R x {0}. Alternatively, following Example 4.6, it is also represented by the
extensions ji.kx, and j_i(kx_ ® ory)[1] along the open inclusions

j+ZX+:RXR>OC%R2 jle,:RXR<OC—>R2

where ory is the line of orientations of the second coordinate direction Y = {0} x R.

For r € (—7/2,7/2), with image § € S, by continuity, ®,(F) is represented by the con-
stant sheaf kx gy on the parabola X (¢). Alternatively, it is also represented by the extensions
J(0)++kx o), and j(0) 1(kx)_ ® ory)[1] along the open inclusions

J0)4: X0 = {(@,0) [t > c@?}—=R2 i X(0)- = {(5,0) |t < ca?}—> R?
When r — 7/2, the representative j(0);.kx ), limits to the extension iy.kw, along the
inclusion of the ray
Z'_;,_ : W_;,_ = {(O,t)|t> 0}9R2

To keep track of twists, it is worth noting the relation via the inverse Fourier-Sato transform [18,
Definition 3.7.8] in the first coordinate direction
Z+*kW+ =~ (j+*kX+)VX

as appears in [18, Lemma 3.7.10]. Observe as well that the € x-microlocalization of i4.kw, is
alternatively represented by the skyscraper k(g,0) at the origin. Thus we conclude that @ /5(F)
is represented by kq,0)-

Similarly, when r — —m /2, the representative j(6) 1 (kx@)_ ® ory)[1] limits to the extension
i—1(kw_ ® orxxy) along the inclusion of the ray

i W_={(0,t)|t < 0}—— R?
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where orxyy is the line of orientations of R? = X x Y. Again there is the relation via the
Fourier-Sato transform in the first coordinate direction

ii(kw_ ® orxxy) =~ (joi(kx_ @ ory)[1])"x

Observe as well that the 2 x-microlocalization of i_i(kw_ ® orx xy) is alternatively represented
by the skyscraper sheaf k(o) ® orx[—1] at the origin. Thus we conclude that ®_, /5(F) is
represented by ko) ® orx|[—1].

Therefore starting with ®_ 5(F), and applying @, we obtain the identity

Dryo(F) = @ )o(F) @ orx|l]
This can be viewed as a reflection of the standard identity [18, Proposition 3.7.12] for the square
of the inverse Fourier-Sato transform in the first coordinate direction
E,0) ® orx[1] = (ko,0)) V¥V
Iterating this, we obtain the canonical equivalence ®o, ~ [2] as asserted. This concludes

the one-dimensional calculation, and higher-dimensional generalizations follow by the same
argument run independently on the relevant coordinate directions. O

It is convenient to encode the above twist in the following form. Introduce the Z-cover
T"=Txs1R——=T

defined by the diagonal character § : T — S', and the universal cover R — S?.
Then for ¢’ € T', with image g € T, we have unambiguous integral transform equivalences

g : uSha(Qx) —> uShy(a)(2x)

obeying evident composition laws. Furthermore, elements m € Z ~ ker(T" — T) of the kernel
act by the invertible functor

D, (F) = F[2m] F € nuSha(2x)

Remark 4.9. Following the literature on gradings in Fukaya categories, and specifically graded
Lagrangians [32], here is an intuitive way to think about the above twist.

Let ko, be the complex canonical bundle of Q2 x, with respect to a compatible almost complex
structure, and let mgi be its bicanonical bundle. The embedding Qx C T*(X x R) provides a
canonical trivialization

szngi ——C

by the top-exterior power of the tangent bundle of the zero-section X x R C T*(X x R).
Let Ag,, C A denote the smooth locus, so that we have the tangent bundle T'Ag,, C TQx.
Taking the argument of 7x applied to the top-exterior power of T'Ag,, C TQx produces a phase

Ox i Agp — St
Define the grading Z-torsor to be the base change under the phase
A =Agm Xxg1 R——=Ag,
For a path v : [0,1] = T, with vo = e,y1 = g, there is an isomorphism of grading Z-torsors
Ay —— g(AL)

And for a loop 7 : [0,1] — T, with v = 71 = e, the resulting automorphism of the grading
Z-torsor A, is equal to translation by 2(d,7,) € Z.
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This completely captures the twists on microlocal sheaves on 2x supported along A, since
the twists are determined along the smooth locus Agy,.

Finally, it is useful to expand the scope of the above symmetry beyond individual group
elements. Note that the T’-action on z, via the cover 7" — T, is encoded by the action
Lagrangian correspondence

-AT/,QX = AT7QX XT T C Qx x QaX x T*T’

Let Sho(T") C Sh(T’) be the full dg subcategory of objects with compact support. Then we
have a monoidal convolution action

w0 She(T") @ uSh(Qx ) — 1uSh(Qx)
AxF=0(ARF) =Ko (AR F) A€ She(T"), F € uSh(Qx)

where the microlocal kernel K is a rank one local system along the smooth action Lagrangian
correspondence Arp o, normalized so that the monoidal unit Ay = k. € Sh.(T’) acts by the
identity functor. Omne recovers the prior symmetries for group elements by convolving with
skyscraper sheaves at points.

Let add : Z x T" — T’ denote the translation action by the kernel Z ~ ker(T — T).
Returning to the twists discussed above, for m € Z, there is an equivalence of monoidal actions

(add(m) A) % F ~ (A]2m]) x F A€ She(T"), F € uSh(Q2x)

To see this concretely, one can express objects of Sh.(T”) in terms of objects defined on funda-
mental domains for the Z-cover T — T', and then translate by elements of the kernel for which
we have already calculated the twist.

Remark 4.10. To concisely formalize the above structure, one could introduce the dg category
TSh(T) of twisted constructible sheaves as the Z-coinvariants of Sh.(T") where for m € Z, the
translation add(m), is identified with the cohomological shift [2m]. Then the above Sh.(T")-
action on puSh(Qx) factors through the natural map Sh.(T") — 7Sh(T).

Informally speaking, objects of 7.Sh(T) are constructible sheaves with grading defined with
respect to the nonconstant background bicanonical trivialization given by the diagonal character
§ : m(T) — S'. This is the bicanonical trivialization arising by restricting the constant
bicanonical trivialization from M = C™ to the unit torus T'= (SY)" C C" = M

Finally, note that the kernel T° C T' of the diagonal character 6 € x*(T') admits a canonical
lift T° C T" since the cover T/ — T is defined by ¢ € x*(T'). Pushforward along the canonical
lift T° C T’ provides a monoidal embedding Sh(T°) C Sh.(T"), and we may restrict the above
monoidal convolution functor to a monoidal action

*: Sh(T°) @ uSh(Qx) — uSh(Qx)

4.2. Nearby and vanishing categories. Now we will form the dg category of microlocal
sheaves on the the exact symplectic manifold M = C" supported along the Lagrangian skeleton

LO)c M 6 e St
or more generally, along the finite union of skeleta
L(©) = Ugeo L(#) ¢ M 0 c st

Set X =R", and Z =X xR=R" x R.
Recall that in Section 3.1, we constructed a conic open subspace Qx C T*(X x R). Further-
more, recall that in Definition 3.4, to a conic Lagrangian subvariety L C M, we associated a
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biconic Lagrangian subvariety A C Qx. Applying this to the Lagrangian skeleton L(6) C M,
we obtain a biconic Lagrangian subvariety denoted by
A(f) C Qx g St

or more generally, applying this to the finite union L(©) C M, we obtain a biconic Lagrangian
subvariety denoted by

A©) = Upeo Al0) C Qx ecst
Definition 4.11 (Vanishing category). For 6 € S, define the vanishing category
pShie)(M)

to be the dg category pShy(g)(€2x) of microlocal sheaves on 2x supported along A(6).
More generally, for finite nonempty © C S*, define the multi-vanishing category

pShie) (M)
to be the dg category uShy(e)(Q2x) of microlocal sheaves on 2x supported along A(©).

We will similarly form the dg category of microlocal sheaves on the exact symplectic manifold
M* = (C*)™ supported along the Lagrangian skeleton

L*(#) c M~ 6 e St

via the corresponding conic open subspace Q% C T*(X x R)\ (X x R), and biconic Lagrangian
subvariety

A*(0) = A(0) N Q% 6e St
Definition 4.12 (Nearby category). For 6 € S*, define the nearby category
(Shrx gy (M)
to be the dg category pShax (9)(Q§) of microlocal sheaves on Q% supported along A*(6).

The main goal of this paper is to calculate the vanishing category puShy, ) (M) in terms of
the much simpler nearby category j1Shy,x g)(M *). There is an evident restriction functor

S o) (M) ——= puShix g)(M™)

and our main technical results will construct and characterize its adjoints.
To tackle the nearby category, let us first establish the following lemma which treats the case
6 = 0 and then appeal to monodromy equivalences in general.

Lemma 4.13. There is an equivalence
Shas (T°) — pShrx0)(M*)
Proof. Recall the exact symplectic identification
o M¥ = (CX)" — T0((81)") = T>0T
and the transported conic Lagrangian
L>°(0) = ¢(L*(0))

We seek an equivalence
ShAE (To) —— ILLShL>0(O) (T>OT)
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Recall the inclusion i : T° — T induces a natural Lagrangian correspondence
T*T° <2 T*T xp T°—> T*T
T X () <—— T x t'C—= T x t*
compatible with the natural projection t* — t*/Span({d}) ~ (t°)*.

Recall that L>°(0) C T*T x7 T°, and the projection L>°(0) — A° is simply a Span. ({d})-
bundle. Therefore by Lemma 3.14, pushforward along the inclusion

ix : Sh(T°) ——= Sh(T)
induces the desired functor, with inverse induced by the hyperbolic localization
¢s 2 Sh(T) ——= Sh(T°) G5 (F) = iy, F
with respect to the inclusions
ig: T°——=T]0,¢) iy :T[0,6)——=T

where T[0,¢) = f~1([0,¢) for any function smooth function f : T — R with 7° = f~1(0),
df |7e = e, and sufficiently small € > 0. O

Coupling the lemma with the case of the coherent-constructible correspondence recalled in
Example 4.3 gives the following.

Corollary 4.14. The nearby category for 6 =0 admits a mirror equivalence
/,LSth (0) (MX) —— COh(]P)n_l)

4.3. Symmetry and monodromy. Recall the torus 7 ~ (S*)" and subtorus i : T° — T.

Following Example 4.2, recall that Sh(T') is a tensor dg category with respect to convolution,
and pushforward induces a tensor embedding Sh(T°) C Sh(T).

We will study here how appropriate objects of Sh(T') act on the nearby category, vanishing
category, and more generally, on the multi-vanishing category. Recall by the constructions of
Section 3.1 and definitions of Section 4.2, we set X = R", and take these categories to comprise
suitable microlocal sheaves on the biconic open subspace Qx C T*(X x R).

Following the discussion of Section 4.1, introduce the Z-cover T" — T defined by the diagonal
character § € x*(T'), the tensor dg category Sh.(T") of constructible sheaves on T” with compact
support, and the monoidal action

* 1 She(T") @ uSh(Qx) —— uSh(Qx)
Recall there is an equivalence of monoidal actions
(add(m).A) x F ~ (A[2m]) x F A€ Sh.(T"), F € uSh(Qz)

where m € Z ~ ker(T" — T), and add : Z x T" — T" is the translation action. Recall as well
the natural lift 7° C T” provides a tensor embedding Sh(T°) C Sh.(T') allowing us to restrict
the above monoidal action.
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4.3.1. Symmetry. To apply the above symmetries to specific objects of Sh.(T”), we need to
know they respect supports. Here we will focus on the tensor subcategory Sh(T°) C Sh.(T"),
and following Example 4.3, the further tensor subcategory Shay (7°°) C Sh(T°).

Lemma 4.15. For § € S*, the convolution action of Shay,(T°) preserves the nearby category
Shix 9y (M) and vanishing category uShrey(M), and is compatible with restriction

S o) (M) ——= puShix (g)(M™)

More generally, for finite nonempty © C S, the convolution action of Sha, (T°) preserves
the multi-vanishing category pShyey(M), and is compatible with restriction

1Sh ) (M) — Bpee 1Shrx9) (M)

Proof. The T-action preserves M* = W~1(C*), so convolution is compatible with restriction.

Recall that My = W~1(0) is the union of the coordinate hyperplanes in M = C", and hence
does not contain any n-dimensional isotropic submanifolds. Thus for § € S*, if convolution by
objects of Shy, (T°) preserves the nearby category puShyx(g)(M*), then it will also preserve
the vanishing category Shy, ) (M), since L(0) is the closure of L*(6). Moreover, if convolution
by objects of Shy, (T°) preserves the vanishing category pShpxgy(M*), for any 0 € S1, then it
will also preserve the multi-vanishing category uShr,g)(M), for finite nonempty © C S 1 since
L(©) is the union of L(#), for § € O©. Thus it suffices to show that convolution by objects of
Shay (T°) preserves the nearby category pShpx gy (M™), for fixed 6 € St

Recall the exact symplectic identification

©: M* = (Cx)n ~ T>O((S1)”) = T7>0
and the transported conic Lagrangian
L>0(0) = o(L*(9))

Since ¢ is T-equivariant, it suffices to show that convolution by objects of Shay (T°) preserves
the category wSh L>0(9)(T>OT). More concretely, it suffices to see that the correspondence
induced by multiplication takes Ay, x L>%(0) C T*T° x T>°T back into L>°(0) c T>°T.

To confirm this, recall the decompositions

L>%0) =Jy 38 xJo C T x t* As =, 0T° x o CT° x (t°)*

and that the index sets are matched by a nonempty subset 3 = {1,...,n} determining the cone
o = Span.({eq|a & J}) C 3. Furthermore, the cones in the second factors are compatible
under the projection t* — t*/Span(d) ~ (t°)* in the sense that o = Jo/Span,(9).

Since the positive cones of ¥ are disjoint, it remains to check for fixed o C ¥, and corre-
sponding J, the multiplication of JS by elements of ¢7° lies back within JS. But recall that
JS is cut out by 6, =0, for a ¢ J, and ' _, 0, = 0, and oT° is cut out by 6, = 0, for a € J,
and "', 6, = 0. O

Remark 4.16. In the special case § = 0, note that the canonical equivalence
Shias (T%) —> jShp oy (M)

of Lemma 4.13 is naturally compatible with the convolution action of Sha,,(T°) since by con-
struction, it is induced by pushforward along the inclusion ¢ : T° — T
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4.3.2. Monodromy. Recall the Z-cover T’ — T defined by the diagonal character § € x*(T).
Note the canonical identification of Lie algebras ¢ = t ~ R", and let us write ¢’ : t' —
t'/ker(6) ~ T’ for the natural map.

For 7 € R*, let sgn(r) € {£1} be its sign. Consider the inclusion i, : A(7) — t' of the
relatively open simplex

A(T) ={(11,...,m) €t|sgu(r)r, >0, foralla=1,...,n, and >.'_ 7, =7}

Let Ay = ke € Sh.(T") be the skyscraper at the identity e € T". For 7 > 0, let A, € Sh.(T")
be the pushforward of the x-extension of the constant sheaf

AT = q;iT*kA(T)

For 7 < 0, let A, € Sh.(T") be the pushforward of the !-extension of the Verdier dualizing
complex

Ar = qLhwa(r)
Note the canonical convolution equivalences
Apy % Ary = Ay ir,
and in particular that A, is invertible with inverse
AY ~ 1, Dp A ~ A,

Lemma 4.17. For 7 € R, and 0 € S' = R/2rZ, convolution with A. € Sh.(T") provides
monodromy equivalences

Arx: pShi,g) (M) ——= pShr g4 (M) At pShpx gy (M*) —= pShix g1y (M)
fitting into a commutative diagram with restriction

11Sh,9) (M) ——= pShrg1+)(M)

l l

1Shpx gy (M) —= pShpx (947 (M*)

More generally, for 7 € R, and finite nonempty © C S* = R/27Z, convolution with A, €
She(T") provides a monodromy equivalence

Arx : pShp o) (M) ——= pShre+r) (M)
fitting into a commutative diagram with restriction

uShiey (M) pShrer) (M)

l |

Doco 1Shix(9)(M*) ——= Byee 1Shrx (94 (M*)

Proof. Convolution by A, € Sh.(T") is invertible with inverse given by convolution by the dual
A_. =~ AY € Sh.(T"). Thus the lemma follows if convolution by A, € Sh.(T’) maps the stated
categories to the respective stated categories.

As in the proof of Lemma 4.15, it suffices to establish the assertion for the nearby category
in the form

AT* : ,lLShL>0(9) (T>OT) I ,LLShL>0(9+T) (T>OT)
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Moreover, by composition of convolutions, it suffices to assume 6 = 0, and 7 € [0,27), and
establish the assertion for

AT* : ,lLShL>0(O) (T>OT) I ILLShL>0(T)(T>OT)

Since Sh.(T") is a tensor category, convolution by A, € Sh.(T") commutes in particular with
convolution by objects of Sha,,(T°). Hence by Lemma 4.15 and Remark 4.16, it suffices to see

ss(A;) NT>T  L>°(7)
But by Lemma 3.19, and the conventions of Example 4.1, we have that
ss(A;)NT>T = P>°(1) c L”(7)
O

Thanks to Corollary 4.14 and Lemma 4.17, we have the following generalization of Corol-
lary 4.14. Note that the equivalence obtained here is not canonical since it depends on the
choice of 7 € R through its appearance in Lemma 4.17.

Corollary 4.18. Given 0 € S* = R/27Z, for the choice of a lift T € R, the nearby category
admits a mirror equivalence

/LSth 0) (MX) —— COh(]Pm_l)

Finally, let us record the ambiguity of the equivalence of the corollary by analyzing what
happens when § = 0 € S = R/27Z and 7 € 277Z.

When 7 = 2, note that add(—1).As, € Sh.(T”) is supported on 7° C T’ and in fact
add(—1)+Azx € Shp, (T°). Recall that it corresponds to Opn-1(—1) € Coh(P"~!) under the
equivalence of Example 4.3. Thus we have the following.

Corollary 4.19. Fiz 7 = 2mm € 2nZ. Under the equivalence of Corollary 4.14, convolution
by A, € Sh(T") corresponds to tensoring with Opn—1(—m)[2m)].

4.4. Adjoints to restriction. We now arrive at the main technical result of this paper.
Let us focus on the skeleta L(0), L(w/2) C M over the respective real rays R>g, R<g C C,
and simplify our previous notation by setting

L* = L*(n) LY = L*(0)
L_=L*UlLg Ly =L{ULg L=LXULyULZ
Recall that the open embeddings
e opx

induce restriction functors
J* J*
puShox (M*) <—— puShp, (M) — pShyx (M)
Here is our main technical result which will be proved in this section.

Theorem 4.20. 1) The restriction functors J*,J} admit fully faithful left and right adjoints
fitting into adjoint triples

(J—!ajiﬂ]—*) (J+!7J-T-7J+*)

and intertwining the natural convolution actions of Sha, (T°).
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3) The compositions
JrJ JE T
are equivalences with respective inverses the adjoint compositions
J*Jq JyJo
4) The composition JiJ_1J* Jy is equivalent to convolution with Azx[—2] € She(T").
Remark 4.21. By Corollary 4.19, under the equivalence
MSth (M*) —== Coh(P"~1)

convolution with A, [—2] € Sh.(T") is given by tensoring with Opn-1(—1) € Coh(P"~1).

The proof of the theorem will occupy the rest of this section. To begin, let us use symmetry
to simplify the assertion.
Consider the object Ay € pSh, < (M*), corresponding to Ag € Shay, (T°), under the equiv-
+

alence of Lemma 4.13, and the object A_ = Ar x Ay € pShy < (M*).
Note their endomorphisms are scalars, and they provide equivalences

ShAE(TO)—N>uShLi(MX) Fr—FxAs
Introduce the fully faithful embeddings
Vi :Perfk’:—>,uShLi(MX) Ve(V) =V As

Note we have adjoint triples (yi, Y+, Y1) with adjoints given by

VL (F) = Hom(F, A+)Y Vi (F) =Hom(Ay,F)

Introduce the commutative diagram

uSth (M) <—,uShL —>uSth
/ \ y+
Perfk Perfy,
where we set j* = YL J*, jx =YV Jr.

Proposition 4.22. Suppose the restriction functors j* , ji fit into adjoint pairs
(JZ57—+) (J+1,55%)
the canonical maps are equivalences
T ==Y V=T T
and there is an equivalence
Jr i =2 Yo @ —1]

where £ is a square-trivial line (%% ~ k.
Then the conclusions of Theorem 4.20 hold.
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Remark 4.23. We include the line ¢ and its square-trivialization ¢¥2 ~ k in the formulation
and in what follows since it arises naturally as an orientation line. But the validity of the
proposition is independent of its appearance since we do not specify any characterizing or
universal properties of the equivalence it participates in.

Proof. Let k € Perf), denote the rank one vector space.
For F € Shp,(T°), set

]:_:]:*A_E/J,ShLi(MX) ]:J,_:]:*AJ,-E/LShLi(MX)
and define candidate adjoints
Jou(Fo) = Frjoulk)  TnlFa) = Frjlk)

Note they evidently intertwine the natural convolution actions of Sha, (T°). Once we confirm
they provide adjoints, we will have that they are fully faithful since

T T (F)= T (Frjos(k) = FrJ (jos(k)) ~ Fx A_ = F_

Tt T(Fe) = TL(Fx jar(k) = Fo T3 (i (k) = Fx Ay = Fy

using the assumed canonical equivalences J*j_. ~ YV _, YV ~ Jy jy.
Now to see they provide adjoints, for G € uShy, (M), we calculate

Hom(G, J_.(F_)) = Hom(G, F * j_.(k)) ~ Hom(F" x G, j_.(k))
~ Hom(j* (F¥ % G), k) ~ Hom(Hom(J* (FV % G), A_)V, k)
~ Hom(J* (F¥ % G), A_) ~ Hom(F" » J*(G), A_)
~ Hom(J*(G), F x A_) ~ Hom(J* (G), F_)
and similarly calculate
Hom(J41(F4),G) = Hom(F % j11(k),G) ~ Hom(j1(k), F¥ x G)
~ Hom(k, j* (F¥ * G)) ~ Hom(k, Hom(A_, J% (F¥ % G)))
~ Hom(A, J3(FY % G)) = Hom(Ay, F¥ x J*(G))

~ Hom(F » Ay, J3(G)) ~ Hom(Fy, J:(G))

Next to see that J* Jy, is an equivalence, and so with inverse equivalence its right adjoint
JiJ s, we calculate

T Ja(Fx Ay) = J(Fxja(k)) ~ Fx J= (k) = Fx A @ ([-1]

using the assumed equivalence J* j11 ~ Y_®¢[—1]. For later use, note in particular J* Jy (A4 ) ~
A_ @ ([-1].

Finally, convolution with A, provides evident equivalences
JHG) = Anx (AL %G)  TH(G) & A x JH (AL G)
and thus we have the other fully faithful adjoints
J(F-) 2 A e T (A * F) i (Fy) = Anx J_o (A7 * )
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Moreover, JiJ_y is an equivalence, and so with inverse equivalence its right adjoint J*.J .,
since

JET (Fo) 2 Ap x JE (AL Ar o+ (A *x F2)) > Ar & T2 T (AL« F-)
exhibits it as a composition of equivalences. Note in particular that
JEJ (AZ) = Ar x T2 T (AL + AL)) > Ae % JEJ(Ay) >~ Ar  A- @ ([—1]
using the previously noted identity J* Jyi(A4) ~ A_ @ ([—1].

Using the previously noted identities J* Jy1(Ay) ~ A @/{[—-1] and J}J (A_) ~ A+ A_®
¢[—1], and the given isomorphism £®? ~ k, we have equivalences

JEJ T Jp(Ay) > JEJ (A @-1]) ~ A x A_[-2] ~ Ay % A [—2]

Since all of the functors intertwine convolution by objects of Sha,, (T°), this establishes the last
asserted equivalence. O

Now to prove Theorem 4.20, we will verify the assumptions of Proposition 4.22.
Let us simplify our prior notation by setting

P* =pP*(m)c L PX =P*(0) Cc L
P =P*ULyCL_ P+:PJ’>><ULOCL+ P:PEUL()UPJ?CL
Recall the homeomorphism
h:P—=R"
along with its restrictions
ho =h|px : PX —=>R"! xR hi = hlpx : PY —=R" x Rxg

Thus restriction gives equivalences
pSh px (M*) <=— uShp(M) ——= USth (M)
Assume for the moment there is an object
A€ uShp(M) C uShy (M)
whose restrictions satisfy

A|P+>< ~ A, € “ShPf (M) C “ShLi(M) Alpx = A_ @ l[-1] € pShpx (M) C pShyx (M)

where ¢ is a square-trivial line /%2 ~ k. Note that such an object A, if it exists, must be unique
up to equivalence.

Recall the fully faithful embeddings
Vi :Perfk—w>u5’hp£ (M*)C—> uShLi(MX) Vi(V)=Ve AL
and introduce the fully faithful embedding
Y : Perfy, —— juShp(M)—— uShy(M) YV)=VeA
Set jy1 =Y, j—« = Y ®{[1] so that by assumption, there are canonical equivalences
Jrja =Y SV s = Vo Jr =Y @L[-1]

Thus the following will allow us to invoke Proposition 4.22 and in turn establish Theo-
rem 4.20.
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Theorem 4.24. There is an object
A€ pShp(M) C uShi (M)
whose restrictions satisfy
Alpe Ay Apx ~ A0 (1]

where £ is a square-trivial line (22 ~ k.
Furthermore, for F € uShr, (M), there are functorial equivalences

Hom(J*F, A_) ~ Hom(F, A® ([1]) Hom(A, F) ~ Hom(A;, J1F)

Proof. 1t is convenient to realize the symmetry between LX = L*(7) and LY = L*(0) in a
more explicit geometric form. Though convolution by A, gives an equivalence

the underlying spaces L, L% are not even homeomorphic. This is due to the special nature

of the angle 0 € S, and the resulting special nature of LY. Thus we will “rotate” all of our

constructions by —7 /2 and replace the angles 0,7 € S with the generic angles —7/2,7/2 € S*.
To this end, let us simplify our prior notation by setting

iL* = L*(n/2) iLY = L*(—7/2)
iL_=L*ULg iLy =LY UL iL =iLX ULoUiL}
and similarly
iPX = P*(r/2) CiLX iP; = P*(—7/2) CiL}
iP_.=P*ULyCiL_ iPy =P ULy CiLy iP =1iP*ULyUiP} CiL

Remark 4.25. We caution the reader that the above 4 subscripts are chosen to be compatible
starting from our prior + subscripts and “rotating” by —m /2, but they are not compatible with
the standard conventions for positive and negative imaginary numbers. For example, starting
with Ly over the positive real ray R>o C C and “rotating” by —m/2 leads to what we denote
by iL, though it lies over the negative imaginary ray iR<g C C.

By Lemma 4.17, convolution with A_; /5 provides canonical equivalences compatible with
restriction

,uShL(M)4N>uSth(M) ,uShp(M)4N>,uSth(M)
pSh i (MX) = piShyp o (MX) puShp (M) = piSh, e (M)

Consider the objects
By =A_px Ay € uShiLi(MX) Bo=A_rp*xA- = Ao x Ay € puShyp (M)

It suffices to show there is an object

Be /J,Shlp(M) C /LShiL(M)



46 DAVID NADLER

whose restrictions satisfy

B|z'P+X ~B, Bl;px ~B_ @ {[-1]

where £ is a square-trivial line /92 ~ k, and such that for F € uSh, (M), there are functorial
equivalences

Hom(J* F,B_) ~ Hom(F, B ® £[1]) Hom(B, F) ~ Hom(By, J1 F)

We will explicitly construct B by working with the specific Legendrian fibration introduced
in Section 3.1 and finding a constructible sheaf that represents .

Let us rapidly recall some of our prior constructions.

Set X = R"™ with coordinates x,, for a = 1,...,n, and recall the linear Lagrangian fibration

p:M=C"—R"=X p(21y oy 2n) = (21, ..., 20)
given by taking real parts, and its lift to a Legendrian fibration
¢g: N=C"XR——=R"xR=X xR q(z1,. . zn,t) = (21, T, b+ %Ezzlxaya)
Recall the open subspace
Tx = {(@.1), [€,n]) |0 > 0} € $(X x R)
and the cooriented contactomorphism

1/):]\];’1‘)(

Y21,z t) = (@1, T),t + 53 220 Ta¥a)s [=Y1, -+, —Yn, 1))

intertwining the Legendrian projection ¢ : N — X X R and the natural projection T x — X xR.
Recall the symplectification of Tx C S°°(X x R) in the form of the biconic open subspace

Qx = {((2, ), (&) |1 > 0} € T*(X x B) \ (X xR)

Following Definition 3.4, we associate to the conic Lagrangian subvarieties ¢L, Py, P C M
the respective biconic Lagrangian subvarieties A, illy, Il C Qx. Recall the biconic property
encodes invariance under the usual cotangent fiber scaling as well as under the Hamiltonian
action induced by the scaling action

a:Rypx X xR——= X xR a(r, (z,t)) = (ra,r?t)

In order to construct B, we will record some elementary properties of iPL C M and their
behavior under the Legendrian projection ¢ : N — X x R. Analogous properties of iI1+ C Qx
will immediately hold for the natural projection 2x — X x R thanks to the fact that the
contactomorphism v interwines ¢ : N — X x R with the natural projection Tx — X x R and
iIlL C Qx are inverse images under the natural map Qx — T x.

Introduce the closed positive quadrant

Q=R CR"=X
and more generally, for J C {1,...,n}, the locally closed submanifold
JQCqQ

cut out by the equations x, = 0, for a € J, and z, > 0, for a # 0. Note that JQ is the interior
of ), when J = (), and the union ]_[|J|>0 Q) is the boundary 9Q.
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The restriction of p to the isotropic subvariety Ly C M provides a homeomorphism
Ly — 0Q C X
and more precisely, diffeomorphisms
JLo—=3JQCX 3] >0
The restriction of p to the Lagrangian subvariety iPy C M has image
p(iPy) =Q C X
and the further restriction
iP:t|JQ e 3@ c X
is a diffeomorphism, when |J| # 1, and a fibration with interval fibers, when |J| = 1.
The restriction of ¢ to the isotropic subvariety Ly C M also provides a homeomorphism

Lo—=0Q x {0} c X xR
and more precisely, diffeomorphisms
JLo—=3JQ x {0} C X xR 3] >0
The restriction of g to the Lagrangian subvariety iPy C M has image the graph
q(iPy) =Ty C X xR
of a function fy : @ — R such that
f+<0 f+log =0 f-=—f+

The explicit form of fi will not be important, but let us for example confirm the property
[+ < 0. By the definition of ¢, we have fy = >""'_, z,y, when evaluated on iP; C M, and by
the definition of iPy C M, it lies inside the locus of points with z, > 0,9, <0, fora=1,...,n.

Following across 1, the restriction of Tx xr : T*(X xR) — X xR to the Lagrangian subvariety
il C Qx has image the same graph

mxxr(ily) =Ty C X xR

Let us describe the projection iIIx — 'y in microlocal terms. When |J| # 1, over JQ C Q,
we find the positive codirection within the conormal line bundle

iMlil30 = {(2, f£(2)), (=rdfs(z), 7)) |x € JQ,r € R0} C Tp, (X X R)
When |J| = 1, over JQ C Q, we find the positive two-dimensional cone bundle
i3 = {(z, f1(2)), (=rdf+(x),s)) | € JQ, 7,5 € R0, 7 + 5 € Roo}
Now consider the subspaces
U={(0,t) QxR () <t< f (x)}
V=A(x,t) e @ xR| fi(z) <t < f ()}

and their iterated inclusions
Ut vl X xR

Let Ly be a locally constant sheaf on U, and form the iterated extension

B =vu. Ly € Sh(X x R)
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Following the standard conventions recalled in Example 4.1, observe that

ss(B) =illUT ss(B) N Qx = ill

Set B € uShip(M) to be the object represented by B € Sh(X x R). Following Example 4.6,
we may normalize Ly in order to have the agreement

B|’LPJ>: ~ B+

It remains to show there is an equivalence

Blipx ~ B ([-1]

for a square-trivial line ¢, and for F € uSh;r, (M), there are functorial equivalences
Hom(J* F,B_) ~ Hom(F, B ® £[1]) Hom(B, F) ~ Hom(By, J1 F)

Recall the family of conic Lagrangian subvarieties P(7) C M, for 7 € (—2m, 2w), for which
iP. = P(—7/2), iP- = P(w/2). Introduce the associated biconic Lagrangian subvarieties
II(1) C Qx, for 7 € (=2, 27), for which Il = II(—n/2), I_ = II(7/2).

In what follows, we will restrict the parameter to assume that 7 € (—m/2,7/2) to interpolate
between the points of focus 7 = /2.

Generalizing the prior discussion, we find that the restriction of mx g : T*(X xR) = X xR
to the Lagrangian subvariety II(7) C Qx has image the graph

FXXR(H(T)) =I'Cc X xR
of a function f; : @ — R such that f; <0, when 7 <0, and in general
leOQ:O f—T:_fT

In microlocal terms, the projection II(7) — I'(7) is uniformly the positive codirection within
the conormal line bundle

(1) = {(z, fr(x)), (=rdf-(2),7)) | v € Q,r € Ruo} C T (X x R)
Next, for a pair 74 < 72 € [—7/2,7/2], consider the subspaces

U(ri,m2) ={(z,1) € Q X R| fr, () <t < fr(2)}

V(r, ) ={(z,t) € Q xR fr, () <t < fr, ()}
and their iterated inclusions

(71,72) v(T1,T2)

U7y, 79)— > V(r, 7o) — > X x R

Set Ly (r,,7) = LU|U(r1,m)» and introduce the object

B(71,72) = v(11, To (71, 72)« LU (7, ,75) € SH(X x R)
and note that
ss(B) = II(m) UTL(12) UU (11, 72) ss(B) N Qx = TI(r1) UTI(7y)
Set B(71,72) € pShp(r,)up(r)(M) to be the object represented by B(r1,7) € Sh(X x R).

Note the agreement B = B(—n/2,7/2), so that for 7y = —7/2, and any 7 € (—7/2,7/2], we
have in particular

B(=m/2,72)|px(r,) ~ B+
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Thus by continuity in 71, for any 71 < 7o € [—7/2,7/2], we have
B(71,72)[ px (ry) = Ary /2 * By
Thus fixing 72 = 7/2, and following Example 4.7, we have
B(71,m/2)|px (rj2) = Ax % By @ £]-1] ~ B_ @ {[-1]

for the square-trivial line £ = org of orientations on the second factor of the base X x R.

Finally, for small € > 0, and any F € Shia (X x R,Qx), representing F € puShip(2x), note
that B(—m/2, —7/2 + €) represents the microlocal restriction to il C Q%, as discussed in
Examples 4.6 and 4.7, in the sense of a functorial equivalence

Hom(B(—7/2,—m/2+€), F) ~ Hom(By, F)

For any 7 € (—m/2,m/2), we have the key property P*(7)NiL = ), and hence II* (1) NiA =
(. Thus for any 7 € (—7/2,7/2), and F € Shia(X x R,Qx), we have a non-characteristic
propagation equivalence, highlighted with t in the following sequence

Hom(B, F) = Hom(uv, Ly, F) ~ Hom(v, Ly, u' F)
=~ Hom(v(—w/2,T)*kU(,,,/Q)T),u(—w/2,7)!]})

~ Hom(u(—7/2, ) ww(—7/2,7)sky(—r /2,1, F) = Hom(B(—7/2,7), F)

Write F € Ind Shia(X x R,Qx) for the ind-object representing the right adjoint of the
microlocalization of F € uSh;r,(M). Then we can assemble a functorial equivalence

Hom(B, F) ~ Hom(B, F) ~ Hom(B(—7/2, —7/2 + ¢€), F) ~ Hom(B,., F)
We leave it the reader to obtain an analogous functorial equivalence
Hom(J* F,B_) ~ Hom(F, B ® ([1])
by a similar argument or by duality. This concludes the proof of the theorem. 0

4.5. Spherical structure. Let us return to the setting of Theorem 4.20, in particular the
skeleta over the real rays R>o, R<g C C, as organized by the simplified notation

L* = L*(r) L = L*(0)

L_=L*UlLg Ly =L{ULg L=LXULyULZ

The closed embeddings
L “—sL<~—L,

induce fully faithful embeddings
I I
(1Shy, (M)~ puShy (M) <—puShy, (M)
and we identify pShy,_ (M), uShy, (M) with their images.
Lemma 4.26. Inside of uShy (M), we have
pShy (M) = ker(JY) puShr, (M) = ker(J*) uShr_ (M) N pr, (M) = {0}

In particular, the compositions JyI1_y, J* I, are conservative.
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Proof. By definition, if a microlocal sheaf vanishes on an open subset, then its microsupport
lies in the closed complement. This proves the first two identities. For the third, recall that the
dimension of the intersection L_ N L4 = L is less than n = (dim M) /2 so does not support any
nontrivial microlocal sheaves. Finally, the identities imply the kernels of J7 Iy, J* I, vanish
and so they are conservative. ([

Theorem 4.27. The diagram of restriction functors

*

Shyx (M) <—— pShy (M) —> Sh < (M)
forms a conservative spherical pair.
Proof. Immediate from Lemma 2.7, Theorem 4.20, and Lemma 4.26. O
Recall the open embedding
Li—— 1L,

with corresponding restriction functor

uShi, (M) = uSh, (M)
Corollary 4.28. Restriction is a conservative spherical functor

puShr, (M) —~ uShy < (M)
Proof. Immediate from Proposition 2.9, Lemma 4.26, and Theorem 4.27. 0

5. MIRROR SYMMETRY

Recall the dual torus 7° = Spec C[x.(7°)], and the fan ¥ C (t°)* determining the T°-toric
variety P~ 1,
Consider the section

S Opn—l —>OIF’”*1(1> 5([;171,”_,1371]) =x1+- - -+x,
and the inclusion of its zero-locus

i:P? > {s=0}——Pr!

The specific coefficients of s will not not be important only the T°-invariant fact that they are
all non-zero.

Theorem 5.1. There is a commutative diagram with horizontal equivalences
wShr,, (M) —=— Coh(P"?)

MSth (M*) —= Coh(P"~1)

Proof. We will study the monad A = J*.J; of the adjunction (.J), J*).
By Theorem 4.20 and the spherical functor formalism, under the equivalence

pShpx (M*) — Coh(P"~1)
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the monad A = J*J, is given by tensoring with the cone of a morphism
Opn-1(=1) —2> Opn 1

Now let us calculate the morphism s. For each a = 1,...,n, let us focus on the Lagrangian
skeleton Ly C M near the coordinate vector e, € Ly with z, = 1, for a = a, and z, = 0,
for a # . Observe that Ly locally near e, is homeomorphic to R>¢ x R"™! such that Ly
corresponds to R~ox R" 1. Thus any object of uShy (M) must vanish near e,,, and in particular
any object of uShrx(M*) coming by restriction from pShy, (M) must vanish near e,.

Recall the object Ay € uShyx (M*) corresponding to the structure sheaf Opn—1 € Coh(P"~1).
By the above discussion, the object J*J\(Ay) € uShpx(M*) vanishes near e,. Thus by the
compatibility recalled in Example 4.3, the corresponding object Cone(s) € Coh(P"~1) has
vanishing stalk at the coordinate line [e,] € P"~!. Therefore the map s must be non-zero at
[eq] € P71 and so the zero locus of s is a generic linear hypersurface

i ]Pm72 5 ]mel
We have an equivalence of monads A ~ i,i*, and hence an equivalence of modules

Mod 4 (MSth (M*)) — Coh(P"~2)

Note the comonad AY = J*J, is similarly equivalent to i.i'.

Recall that J* is conservative. Thus by Lurie’s Barr-Beck Theorem [23], to see the canonical
lift

uShr, (M) AN MOdA(/‘ShLi (M*)) === Coh(P"~?)
is an equivalence, it suffices to check the following.

Let --- — ¢1 — c¢o be a complex of objects of pShy, (M). Suppose the complex --- —
J*c1 — J*¥co of objects of “Sth (M*) =~ Coh(P"~!) extends to a split colimit diagram

VR LT TN
i J*Cl J*CO d

a

Then we must check that --- — ¢; = ¢o admits a colimit in uShr, (M).

First, observe that since J*cy € Coh(P"~2), the splitting implies d € Coh(P"~2), or more
precisely that d ~ i,d" where we regard d’ € Coh(P"~?). Choose an object d € Coh(P" 1)
together with an equivalence

fod—"si4'd~J"J.d
The counit ¢ of the adjunction (J*,J.) provides an extended diagram

o gt pgd—cad

J*eq J*¢q
and then together with the unit u of the adjunction (J*, J,) an induced augmented complex

Jx«(cofoa)ou ~

C1 Co J.d

We claim that this is the sought-after colimit diagram.
To check this, since J* is conservative, it suffices to see that the complex

J*Js(cofoa)ou ~
T Jreg eI ey
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is a colimit diagram. Since d is a colimit, it suffices to see the following diagram commutes

J* J.(a)ou J*J.(cof ~
Treg —L T ey g D g d

d

By standard identities for an adjunction, the triangle to the left is commutative. Thus it suffices
to show the triangle to the right is commutative. With our previous identifications, it admits
a reinterpretation completely in terms of coherent sheaves

i*i!d% z*z'J

—~

Its commutativity is a straightforward exercise we leave to the reader. 0
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