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The pure spinor formulation of superstring theory includes an interacting sector of central charge
cλ = 22, which can be realized as a curved βγ system on the cone over the orthogonal Grassmannian
OG+(5, 10). We find that the spectrum of the βγ system organizes into representations of the
g = e6 affine algebra at level −3, whose so(10)−3 ⊕ u(1)−4 subalgebra encodes the rotational and
ghost symmetries of the system. As a consequence, the pure spinor partition function decomposes
as a sum of affine e6 characters. We interpret this as an instance of a more general pattern of
enhancements in curved βγ systems, which also includes the cases g = so(8) and e7, corresponding
to target spaces that are cones over the complex Grassmannian Gr(2, 4) and the complex Cayley
plane OP2. We identify these curved βγ systems with the chiral algebras of certain 2d (0, 2) CFTs
arising from twisted compactification of 4d N = 2 SCFTs on S2.

PACS numbers:

INTRODUCTION

The pure spinor formalism [1] is a reformulation of su-
perstring theory which has the virtue that it can be quan-
tized while preserving manifest covariance with respect to
ten-dimensional super-Poincaré symmetry. It therefore
provides a powerful approach to quantizing the super-
string in curved backgrounds with Ramond–Ramond flux
and computing multi-loop scattering amplitudes. Focus-
ing on the left-movers, the defining feature of this formal-
ism is the presence of a ghost system that is realized in
terms of a set of bosonic fields, λα, transforming in the
16 of so(10), satisfying the ‘pure spinor’ constraint

λαγµ
αβλ

β = 0, µ = 0, . . . , 9, (1)

and contributing cλ = 22 to the left central charge. In
this letter, we will argue that the pure spinor ghost sector
possesses a hidden affine ê6 symmetry at level −3, albeit
with a choice of stress tensor different from the Sugawara
one. With this choice of stress tensor, only the currents
for the ŝo(10)−3⊕û(1)−4 subalgebra corresponding to ro-
tational and ghost symmetries have conformal dimension
1. Nevertheless, we find that the ghost sector partition
function [2] can be expressed as a linear combination of
(̂e6)−3 affine characters:

Z = χ̂
(̂e6)−3

0 − χ̂
(̂e6)−3

−3ω1
. (2)

To motivate our results, we will start by briefly recall-
ing different known realizations of the ghost system. A
convenient realization is as a curved βγ system on the
space P of 10d pure spinors. A first hint of the enlarged
symmetry follows from the work of Levasseur, Smith, and
Stafford [3] who found that the space of differential op-
erators on P enjoys an action of e6; see also [4] and espe-
cially [5]. In the physics literature, the existence of an e6

finite-dimensional Lie algebra action on the zero modes
of the pure spinor ghost sector was first observed in [6, 7].
We will find it enlightening to consider a more gen-

eral family of βγ systems whose target spaces, X̂g, have
enlarged symmetry g = d4(= so(8)), e6, and e7. These va-
rieties can be described as cones over the complex Grass-
mannian Gr(2, 4), the complex orthogonal Grassmannian
OG+(5, 10), and the complex Cayley plane OP2, respec-

tively. An insightful way to realize the target spaces X̂g

is as Lagrangian submanifolds of the moduli spaces M̃g,1

of a single centered g-instanton. These moduli spaces are
in turn the Higgs branches of a family of 4d N = 2 super-
conformal field theories (SCFTs) Tg, whose chiral algebra
in the sense of [8] is the vacuum module of ĝk affine al-
gebra, where k = −2,−3,−4 respectively for g = d4, e6,
and e7. Applying a topological twist to Tg and reduc-
ing on S2 [9], we will obtain [10] a set of 2d (0, 2) CFTs

T (0,2)
g , whose chiral algebras we will identify with the cor-

responding βγ system on X̂g. We will present a detailed
analysis of these theories in a companion paper [10].
The global symmetry of the βγ systems is a certain

maximal subalgebra g0 of g. However, we will see that
from the perspective of geometric representation theory,
it is natural to expect the entire g to act on the states
of the theory. This is indeed the case for the theory

T (0,2)
so(8) , whose chiral algebra was found by Dedushenko

and Gukov [11] to realize the ŝo(8)−2 affine algebra.
We next study how the enlarged symmetry manifests

itself in the partition function for g = so(8) and g = e6.
In both cases, we will find that the partition function can
be expressed as a linear combination of two ĝk characters.

These results suggest that the chiral algebra of T (0,2)
g re-

ceives two types of contributions: one from states arising
from the reduction of the 4d N = 2 chiral algebra, and
one capturing contributions from a surface defect of the
4d SCFT Tg that is wrapped along S2.
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We will also find an elegant closed form for the par-
tition function of the pure spinor ghost system, written
in terms of e6 Weyl invariant Jacobi forms, which agrees
exactly with the first six energy levels computed in [2].
An amusing consequence is that the fields, ghosts, anti-
fields, and anti-ghosts of ten-dimensional supersymmet-
ric Yang–Mills theory organize into the 27 and 27 of e6.
Note added: We wish to thank B. Pioline and M.
Movshev for bringing references [4, 6, 7] to our attention,
where the existence of an action of the e6 finite Lie alge-
bra on the ground states of the pure spinor system was
discussed. M. Movshev has informed us of unpublished
work [12] in which the presence of an affine e6 symmetry
in the pure spinor system has also been studied.

THE PURE SPINOR GHOST SYSTEM

In the pure spinor formalism, the superstring is de-
scribed by a sigma model consisting of maps Σ → M
from the string worldsheet Σ into ten-dimensional super-
Minkowski space M coupled to a ghost system of central
charge cλ = 22. The matter fields on the worldsheet in-
clude a set of bosonic fields xµ in the 10 of so(10) and,
focusing on the left-movers, a set of periodic fermions
θα in the 16 of so(10), along with their conjugate mo-
menta pα, so that the total left-moving central charge
cL = cx + cθ + cλ = 0.

In the original ‘minimal’ formalism, the ghost sector
is captured by a sigma model describing maps Σ → P
into the space of ten-dimensional Cartan pure spinors P,
which is parametrized by the bosonic fields λα satisfying
the constraint in equation (1). These fields are accom-
panied by their conjugate momenta wα. The physical
spectrum is given by the cohomology of the nilpotent
BRST operator

Q =

∫
λα

(
pα + (γµθα)∂x

µ − 1

2
(γµθ)α(θγµ∂θ)

)
(3)

acting on a suitable Hilbert space H. The Hilbert space
can be defined using the curved βγ system [2, 13, 14].
A convenient way to do this is to pass to the non-
minimal formalism [15], where physical states are identi-
fied with the cohomology of the modified BRST operator
Q = Q + ∂̄, where ∂̄ is a Dolbeault operator acting on
P. As we will see, the symmetry of the quantum me-
chanics on P is enlarged from so(10) ⊕ u1 to e6. In the
next section, we will consider similar spaces with quan-
tum mechanical symmetry enhancement considered in
[3]. For special target spaces including P, we will argue
that the quantum mechanical enhancement will extend
to enhancement in the βγ system.

βγ SYSTEMS ON COMPLEX CONES

Curved βγ systems [13, 16–18] are two-dimensional

sigma models of holomorphic maps γ : Σ → X̂ with
action

S =
1

2π

∫

Σ

βi∂̄γ
i, (4)

where, in a given patch, γi, i = 1, . . . ,dim X̂ serve as
local coordinates, βi are (1, 0)-forms, and

γi(z)βj(w) ∼ δij
dw

z − w
. (5)

We consider the case where X̂ = X̂g is one of the vari-
eties constructed by Levasseur, Smith, and Stafford [3],
which is associated to a Lie algebra g. Constructing these
varieties involves a choice of a minuscule root of g. The
minuscule root defines a decomposition of g of the form

g = g−1 ⊕ g0 ⊕ g1 (6)

where g0 = u1⊕s, and g1 is aminuscule representation Vω

associated to the highest weight ω of the semi-simple Lie
algebra s [19]. Let Gs be the simply connected complex
Lie group corresponding to s, and Pω be the parabolic
subgroup corresponding to ω. Then, one defines X̂g to

be the complex cone over the base P(X̂g) = Gs/Pω. The

spaces X̂g have the following homogeneous coordinate
ring:

C[X̂g] ∼=
⨁

ℓ≥0

Vℓω. (7)

We focus on the following cases, where g belongs to
the Deligne-Cvitanović exceptional series:

g ω s dim g1 dimC X̂g P(X̂g) c1(P(X̂g))
d4 ω4 a3 6 5 Gr(2, 4) 4
e6 ω1 d5 16 11 OG+(5, 10) 8
e7 ω7 e6 27 17 OP2 12

TABLE I: Relevant varieties.

For e6, g0 is the Lie algebra d5⊕u1, Vω = Vω4 is the spinor

representation 16 of so(10), and X̂g coincides with P, the
space of ten-dimensional pure spinors.
The βγ system on X̂g has central charge c = 2dimC X̂g

and manifest global symmetry g0 = u1 ⊕ s, where the
abelian factor acts by rescaling the cone and s acts on
the base. We consider the following partition function:

Zg(t,m
s, τ)=TrH(−1)F e2πiτHtJ−

1
2au1 exp(2πimg),

(8)
where q = e2πiτ , t = e2πiσ, F is the fermion number,
H is the (left) Hamiltonian, J is the u1 generator, and
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ms ∈ h(s)C are fugacities for s. Our definition for the
partition function differs from that of [2, 20, 21] by a

factor of t−
1
2au1 , where

au1
= −c1(P(X̂g)) (9)

is the u1 symmetry anomaly appearing in the operator
product expansion (OPE)

J(y)T (z) ∼ au1

(y − z)3
+

J(z)

(y − z)2
. (10)

The u1 level, which appears in the OPE

J(y)J(z) =
ku1

(y − z)2
, (11)

is given in this class of models by

ku1
=

1

2
au1

. (12)

The u1 symmetry anomaly and level can be extracted
from the unrefined Hilbert series of X̂g [20].
The partition function displays the field-antifield sym-

metry

Zg(t,m
s, τ) = (−1)dimC X̂gZg(1/t,−ms, τ) (13)

and ⋆-conjugation symmetry

Zg(t,m
s, τ) = −(q

1
2 t−1)

1
2 c1(P(X̂g))Zg(q/t,−ms, τ) (14)

of the βγ system [2, 14]. The ground states contribute

q−
c
24 t

1
2 c1(X̂g)HSg (15)

to the partition function, where HSg=
∑∞

ℓ=0t
ℓχs

Vℓω
(ms)

is the refined Hilbert series of X̂g.

βγ SYSTEM FROM 4D/2D SCFT

Superconformal field theory (SCFT) provides an addi-
tional vantage point from which the curved βγ systems
can be studied. Indeed, the curved βγ system with target
X̂g can be identified with the holomorphic twist of a two-

dimensional (0, 2) sigma model on X̂g, which also implies
equality between the partition function of the former and
the elliptic genus of the latter [22–24].

To realize the (0, 2) sigma models with the targets

X̂g listed in table I, we begin with a triplet of four-
dimensional SCFTs Tg, where g denotes the Lie algebra
of the flavor symmetry group of Tg. The theory Td4

is
the N = 2 Super-Yang-Mills theory with gauge group
SU(2) and four flavors, while Te6 and Te7 are the rank-
one e6 and e7 Minahan–Nemeschansky theories [25, 26].
We next perform a partial N = −1 topological twist on
the N = 2 SCFT along the lines of [9], and reduce the

Tg h∨ cSug a4d c4d hmin ceff

Td4 6 −14 23
24

7
6

−1 10

Te6 12 −26 41
24

13
6

−2 22

Te7 18 −38 59
24

19
6

−3 34

TABLE II: Properties of the Tg theories.

theory on a two-sphere S2, leading to a two-dimensional
theory preserving (0, 2) supersymmetry.
Four-dimensional N = 2 SCFTs have both a Higgs

branch and an associated vertex operator algebra (VOA)
[8]. These invariants are intricately related to each other
[27]. The Higgs branch Higgs(Tg) is the minimal (non-
zero) nilpotent orbit O of g, which is also the centered
moduli space of one G-instanton [28, 29], and has com-
plex dimension 2h∨−2. Algebraically, the minimal nilpo-
tent orbit is the associated variety of the Joseph ideal
J0 [30]. The spaces X̂g are Lagrangian submanifolds of
Higgs(Tg). To see this, we first fix a triangular decompo-
sition g = n−⊕h⊕n+ of g. The irreducible components of
the intersection of O with n+ are called minimal orbital
varieties. They are isotropic subspaces with respect to
the Killing form, of dimension 1

2 dimO, hence Lagrangian
subvarieties of O by theorem 3.3.6 of [31], and play an
important role in geometric representation theory [3, 32–
34]. Smooth orbital varieties of the minimal nilpotent

orbit are minuscule varieties [35]. The spaces X̂g are
minuscule varieties for Gs.
The associated VOA, Vk(g), is the affine algebra ĝk at

level k = −h∨/6− 1, where h∨ is the dual Coxeter num-
ber of g [36]. The holomorphic twist of the (0, 2) theory
is a chiral theory whose spectrum organizes into repre-
sentations of the VOA. In particular, from the growth of
states, one can argue that the spectrum must include a
representation of dimension hmin = 1

2 (4a
4d − 5c4d) < 0

[9], where (a4d, c4d) are the anomaly coefficients of Tg
listed in Table II. Thus the central charge of the (0, 2)
theory is shifted from the Sugawara value

cSug =
dim g k

h∨ + k
(16)

to the effective central charge

ceff = cSug − 24hmin = 2dim X̂g, (17)

which coincides with the central charge of the βγ system
on X̂g. The shift in central charge can be traced back
to the fact that the stress-energy tensor differs from the
Sugawara stress tensor by a correction term [11, 14, 20]:

T = TSug + ∂J, (18)

which gives rise to the u1 anomaly of equation (10). Since
the J(y)TSug(z) OPE has no anomaly, the u1 symmetry
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anomaly and level are proportional, with relation given
by equation (12). Similarly, after the modification of the
stress-tensor, the currents in g0 retain conformal dimen-
sion 1, while the currents in g1 and g−1 acquire the new
conformal dimensions 2 and 0, respectively.

Altogether, these considerations suggest that the (0,2)
theories we constructed flow in the IR to a sigma model
on the Lagrangian submanifold X̂g of Higgs(Tg), and
that their elliptic genus coincides with the partition func-
tion of the corresponding βγ system. Indeed, for g = d4,
the twisted compactification of Td4

is the Dedushenko-
Gukov (0,2) model, which has been argued to flow to a

(0, 2) sigma model on X̂d4
[11]. We conjecture that an

analogous result holds for g = e6 and e7 as well.

SYMMETRY ENHANCEMENT

The βγ system with target X̂g has a manifest affine
ĝ0 ⊂ ĝ symmetry. In this section, we argue that in fact
the βγ system enjoys affine ĝ symmetry. First, let us
review how enhancement to g = g−1 ⊕ g0 ⊕ g1 occurs

in the quantum mechanics on X̂g, a fact which has been

studied in [6, 7]. The differential operators, D(X̂g), on

X̂g are equivalent to U(g)/J0, where U(g) is the univer-
sal enveloping algebra of g and J0 is the Joseph ideal [3].

Infinitesimal rotation and dilatation symmetries of X̂g

are generated by differential operators transforming in
g0. Differential operators realizing g−1 and g1 also have
a simple description: those in g−1 correspond to coordi-
nate multiplication, while those in g1 act like generalized
special conformal transformations.

Next let us discuss how the identification between
D(X̂g) and U(g)/J0 suggests a relationship between the

βγ system on X̂g and the VOA Vk(g). On the one hand,
the operators realizing the affine ĝk symmetry in the βγ
system, whose explicit construction we defer to future
work [10], are expected to reduce to differential opera-

tors on X̂g in the limit of quantum mechanics. On the
other hand, the chiralization of the algebra U(g)/JW ∼=
C × U(g)/J0 is the VOA Vk(g), where the ideal JW of
U(g) is defined in [37]. This means that the Zhu algebra
of Vk(g) is C×U(g)/J0. This suggests that we can view
the VOA Vk(g) as an algebraic analog of the curved βγ

system on X̂g. The various relations are summarized in
the following diagram:

βγ system on X̂g affine VOA Vk(g)

D(X̂g) U(g)/J0

The relation between the βγ system and the twisted
S2 compactification of the Tg theory provides a further
reason to expect the appearance of the affine ĝk algebra.

Indeed, as we have seen in the previous section, the chiral
algebra of the resulting (0, 2) model provides a represen-
tation of the VOA Vk(g).
In the remainder of this section, we discuss in detail

how the symmetry enhancement manifests itself in the
partition function in the ŝo(8)−2 and (̂e6)−3 cases. Zhu’s
theorem [38] relates the classification of simple highest
weight Vk(g)-modules to Joseph’s classification [34] of
simple highest weight U(g)/J0-modules [37]. We use this
classification in the following examples.

Enhancement to (d̂4)−2 in the Gr(2, 4) cone βγ system

We start with the βγ system on the complex cone over
Gr(2, 4). There exist at least two convenient UV descrip-
tions of the corresponding (0, 2) sigma model, for which
the appearance of an affine (d̂4)−2 algebra was found in
[11]: the first is as a two-dimensional (0, 2) SU(2) gauge
theory with four fundamental chiral multiplets, which
arises directly from the twisted compactification of the
4d N = 2 theory Tso(8); the second is as a (0, 2) Landau-
Ginzburg model consisting of a single Fermi superfield,
Ψ and a set of chiral superfields Φ in the ∧24 = 6 repre-
sentation of SU(4), coupled via a J-type superpotential
interaction term J = ΨPf(Φ).
Classically, the vacuum moduli space of this model is

a quadric in C6, specifically the affine cone over G(2, 4),

which is the closure of X̂so(8). Quantum corrections will
modify this picture in the interior. As we will discuss
in [10], in analogy with the pure spinor case, we con-
jecture [55] that quantum corrections move the singular
vertex of the affine cone infinitely far away, realizing a
two-dimensional (0, 2) sigma model on X̂so(8).
For this theory, g0 = u1 ⊕ a3 is the manifest global

symmetry, while g−1 = g1 is the Vω2
= 6 representation

of a3. The partition function can be computed straight-
forwardly, either as the elliptic genus of the (0, 2) SQCD
theory [39] following [40–42], or directly as the partition
function of the curved βγ system on Gr(2, 4) [14]. It is
given by:

Zd4(t,m
a3 , τ) =

i η(τ)5θ1(2σ, τ)∏
w∈6 θ1(σ + (ma3 , w), τ)

. (19)

The product in the denominator is over the weights in the
6 of a3. We now proceed to express the partition function
in terms of (d̂4)−2 characters. The embedding of u1 ⊕ a3
into d4 implies the following mapping of parameters:

md4
i = ma3

i for i = 1, 2, 3;

md4
4 = σ − ma3

1

2
−ma3

2 − ma3
3

2
.

The algebra (d̂4)−2 is known to possess four irreducible
highest weight representations, corresponding to the fol-
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lowing choices of highest weight [37, 43]:

0, −2ω1, −2ω3, −2ω4. (20)

The three non-vacuum representations are related by tri-
ality. While each of these highest weights is not domi-
nant, it is still the case that there exists a unique dom-
inant weight Λ in the shifted Weyl orbit of the highest
weight. As a consequence [44, 45], the corresponding
affine characters are determined in terms of Kazhdan-
Lusztig polynomials [44, 45]. By an explicit computation,
we find that the partition function is given by a sum of
two characters:

Zd4
(t,ma3 , τ) = χ̂

(d̂4)−2

0 (md4 , τ)− χ̂
(d̂4)−2

−2ω4
(md4 , τ). (21)

The vacuum character has the following q-expansion:

χ̂
(d̂4)−2

0 = q
14
24 (1+χd4

28 q+(χd4
300+χd4

28+1) q2+ . . . ). (22)

The non-vacuum character has conformal dimension h =
−1, consistent with table II. As noted in [27], it has the
property that an infinite number of states appear at each
energy level. In particular, its lowest energy level com-
ponent, expressed in u1 ⊕ a3 fugacities, has the following
series expansion:

−q
14
24−1t2

∞∑

ℓ=0

tℓχa3

Vℓω2

(ma3), (23)

which encodes the ground states of the partition function
of the βγ system, equation (15). At the next energy level,
one finds the following contributions:

q
14
24

(
2− t2(χa3

15+1)− t2(χa3
15+1)− t3(χa3

64+2χa3
6 )+ . . .

)
.

(24)
Interestingly, it appears natural to define the following
new combination of characters:

ξ̂
(d̂4)−2

−2ω4
(md4 , τ) = −χ̂

(d̂4)−2

−2ω4
(md4 , τ) + 2χ̂

(d̂4)−2

0 (md4 , τ),
(25)

in terms of which

Zd4
(t,ma3 , τ) = −χ̂

(d̂4)−2

0 (md4 , τ) + ξ̂
(d̂4)−2

−2ω4
(md4 , τ).

(26)
The (d̂4)−2 characters, once expressed in terms of u1⊕a3
fugacities, satisfy the following simple relation:

t2

q
χ̂
(d̂4)−2

0 (τ−σ,ma3 , τ)= ξ̂
(d̂4)−2

0 (σ,ma3 , τ), (27)

which guarantees that the partition function obeys the
⋆-conjugation symmetry of equation (14).

Enhancement to (̂e6)−3 in the pure spinor βγ system

We now turn to the pure spinor βγ system and dis-
cuss how the affine (̂e6)−3 symmetry manifests itself at

the level of the partition function. The partition func-
tion has been computed up to energy level five by fixed
point techniques in [14], and an all-order expression in
the md5 → 0 limit was found in [46] using local algebra
[47]. In what follows, we will be able to give a very simple
closed form for the partition function for arbitrary values
of me6 fugacities.
For this theory, g0 is the u1 ⊕ d5 ghost and rotational

symmetry of the pure spinor ghost system. The com-
ponents g−1 and g1 correspond to the 16 and 16 rep-
resentations of d5, respectively. We begin by discussing
the e6 → u1 ⊕ d5 branching rules. The realization of the
space P of pure spinors as the variety X̂e6 implies the
following mapping of parameters between e6 and u1⊕d5:

⎛
⎜⎜⎜⎜⎜⎜⎝

me6
1

me6
2

me6
3

me6
4

me6
5

me6
6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−3 − 1
2 −1 − 3

2 − 3
4 − 5

4
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

mu1

md5
1

md5
2

md5
3

md5
4

md5
5

⎞
⎟⎟⎟⎟⎟⎟⎠

(see appendix A for our conventions). At the level of
representations, the 27 and adjoint of e6 decompose as
follows, where the subscript denotes u1 charge:

27 → 1−4 + 16−1 + 102,

78 → 16−3 + 10 + 450 + 163.

Furthermore, to match the pure spinor formalism con-
ventions, in equation (8) we must set

t = e2πi·(−3mu1 ). (28)

The algebra (̂e6)−3 possesses a finite number of irre-
ducible modules [37] corresponding to the highest weights

0, −3ω1, −3ω6, ω1 − 2ω3, ω6 − 2ω5, −2ω2, −ω4. (29)

The non-vacuum representations have conformal dimen-
sion −2 which equals the value of hmin given in table II.
We find that the pure spinor partition function is given
by the following combination of (̂e6)−3 characters:

Ze6(t,m
a3 , τ) = χ̂

(̂e6)−3

0 (me6 , τ)− χ̂
(̂e6)−3

−3ω1
(me6 , τ). (30)

The lowest energy component of the non-vacuum term is
the Hilbert series of the Wallach representation of the e6
finite-dimensional Lie algebra [5] corresponding to high-

est weight −3ω1, up to an overall factor of −q
26
24−2t4.

Expressed in terms of u1 ⊕ d5 fugacities, it is given by

−q−
22
24 t4

∞∑

ℓ=0

tℓχd5

Vℓω5

(md5), (31)

in agreement with the Hilbert series of the cone over the
orthogonal Grassmannian OG+(5, 10), which is the space
of pure spinors in ten dimensions.
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Again, it appears natural to define the following com-
bination of characters:

ξ̂
(̂e6)−3

−3ω1
(me6 , τ) = −χ̂

(̂e6)−3

−3ω1
(me6 , τ) + 2χ̂

(̂e6)−3

0 (me6 , τ),
(32)

in terms of which

Ze6(t,m
d5 , τ) = −χ̂

(̂e6)−3

0 (me6 , τ) + ξ̂
(̂e6)−3

−3ω1
(me6 , τ).

(33)
The (̂e6)−3 characters, expressed in terms of u1 ⊕ d5 fu-
gacities, satisfy the following relation:

t4

q2
χ̂
(̂e6)−3

0 (τ−σ,md5 , τ)= ξ̂
(̂e6)−3

0 (σ,md5 , τ), (34)

which guarantees that the partition function obeys the ⋆-
conjugation symmetry described by equation (14). The
significance of writing the partition function as in equa-

tion (33) is that the ξ̂
(̂e6)−3

−3ω1
character captures the contri-

bution of the globally defined operators, which are iden-

tified with the zeroth cohomology H0(∂̄), while χ̂
(̂e6)−3

0

captures the contribution from the ‘missing states’ in the
Hilbert space of the pure spinor system, which are built
out of the b-ghost and correspond to H3(∂̄).
We also find that the pure spinor partition function,

written in terms of e6 fugacities, can be written in the
following very simple closed form:

Ze6(m
e6 , τ) =

(2i)−1α−5,1(m̃
e6 , τ)

η(τ)22
∏16

j=1 φ−1,1/2((me6 , α∨
16,j), τ)

.

(35)
The product in the denominator is over the subset α∨

16

of coroots of e6 that belong to g−1 = 16 under the grad-
ing in equation (6). On the other hand, the numerator
is given in terms of the Weyl[e6]-invariant Jacobi form
αe6
−5,1(m

e6 , τ) (see appendix B), with the following sub-
tlety: the argument me6 is replaced by the shifted e6 fu-
gacities m̃ =

∑
i m̃

e6
i ωi, where m̃

e6
i = mi for i = 2, . . . , 6,

but

m̃e6
1 = −3m1 − 3m2 − 5m3 − 6m4 − 4m5 − 2m6. (36)

Under e6 → d5 ⊕ u1, this shift corresponds to setting
mu1 → −3mu1 , while keeping md5 invariant.
Using the modular transformation properties of the nu-

merator (and taking into account the shift (36)), one finds
that under τ → −1/τ Ze6 transforms as follows:

Ze6

(
me6

τ
,−1

τ

)
= exp

(
−3

π i

τ
(me6 ,me6)

)
Ze6(m

e6 , τ) ,

where the phase factor is consistent with the occurrence
of the (̂e6)−3 algebra [48].

It is now straightforward to express the partition func-
tion (35) in terms of the pure spinor fugacities t and md5

via equations (45); after doing so, we find an exact match
with [2], where Ze6 was computed up to the fifth energy
level by fixed point techniques.

Rewriting the partition function as

Ze6(m
e6 , τ) =

χ̂
(̂e6)1
ω1 (me6 , τ)− χ̂

(̂e6)1
ω6 (me6 , τ)∏16

i=1 η(τ)
−1θ1((m, α∨

16,i), τ)
, (37)

where χ̂
(̂e6)1
ω1,6 = Θe6

ω1,6
/η6 are level 1 e6 affine characters,

suggests a possible alternative interpretation as a level 1
e6 sector coupled to 16 complex bosons; we do not pursue
this direction further in this letter.

CONCLUSIONS

We have found that the states in the βγ system with
target X̂g organize into a direct sum of irreducible mod-
ules of an affine ĝ symmetry algebra. When the target
is the space of ten-dimensional pure spinors, P, the sym-
metry algebra is (̂e6)−3. This knowledge led us to find
a compact closed form expression for the full partition
function of the ghost system of the pure-spinor super-
string in equation (35). We leave it to future work to
study possible implications for the computation of op-
erator product expansions and scattering amplitudes in
superstring theory.

While we have given several arguments for the appear-
ance of the ĝk symmetry, it should be possible to explic-
itly realize its generators in the curved βγ system. We
have focused on three different smooth targets for the βγ
system. It would also be natural to extend our analysis
to other targets, possibly with singularities.

We have seen that the appearance of ĝk symmetry has
a natural explanation from the perspective of the four-
dimensional SCFT, Tg, dimensionally reduced on S2.
This also explains the appearance of the vacuum module
of ĝ in the elliptic genus. It remains however to explain
the occurrence of a second module. A possible hint is
that the unflavored limit of the vacuum character of the
VOA V (gk), for g belonging to the Deligne-Cvitanović
exceptional series, satisfies a second order linear modu-
lar differential equation [27, 49]; the other solution has
been conjectured by Beem and Rastelli to arise from a
surface operator in the Tg theory. This suggests an in-
terpretation of the second module in the (0, 2) theory as
originating from a surface defect wrapping the S2. We
plan to return to this issue in a separate work [10].

We would like to thank C. Beem, T. Creutzig, J. Dis-
tler, R. Donagi, I. Melnikov, M. Movshev, B. Pioline,
I. Saberi, and J. Song for valuable discussions and cor-
respondence. R.E. thanks the Korean Institute for Ad-
vanced Study for hospitality. The work of G.L. is sup-
ported by ERC starting grant H2020 ERC StG #640159.
The work of E.S. is partially supported by NSF grant
PHY-1720321.
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ω0

❡10 ω1

❡45

ω2
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ω3

❡16

ω5

❡16 ω4

e6:

❡27

ω1

❡351

ω3

❡2925

ω4

❡351

ω5

❡27

ω6

❡78 ω2

❡1 ω0

FIG. 1: Dynkin diagrams showing our labeling conventions.

Appendix A: Lie algebras.

Given a Lie algebra g, let h(g) be its Cartan subalge-
bra, ∆g its root lattice, αi, i = 1, . . . , rank(g) a choice
of simple roots, and α∨

i the corresponding coroots. The
fundamental weights ωi are defined by

(ωi, α
∨
j ) = δij , (38)

where (·, ·) is the invariant bilinear form on h(g)C, nor-
malized such that (α, α) = 2 for the long roots. We adopt
Bourbaki’s numbering convention for the ωi. We denote
the irreducible representations associated to the highest
weight ω either by Vω or by its dimension, following the
conventions of [50] (see e.g. figure 1). The character of a
highest weight representation R of g is given by

χR(mg) =
∑

w∈R

exp
(
2πi(mg, w)

)
, (39)

where mg =
∑

i mg
i ωi ∈ h∗

C. The character of a g = u1

representation of charge k is just e2πikmu1
. For an affine

Lie algebra, we denote a highest weight representation
simply by the finite part ω =

∑
i niωi of its highest

weight (ω, k, n). We denote by χ̂ĝk
ω (mg, τ) the corre-

sponding affine character.

Appendix B: Modular and Jacobi forms

The Dedekind η function is defined as follows:

η(τ) = q1/24(q; q)∞ = q1/24
∞∏

k=1

(1 − qk). (40)

The Jacobi theta functions are given by:

θ1(ζ, τ) = i
∑

n∈Z+ 1
2

(−1)nznq
n2

2 , θ2(ζ, τ)=
∑

n∈Z+ 1
2

znq
n2

2 ,

θ3(ζ, τ) =
∑

n∈Z
znq

1
2 n2

, θ4(ζ, τ) =
∑

n∈Z
(−1)nznq

1
2 n2

,

where z = e2πiζ . Closely related is the weak Jacobi form
of weight −1 and index 1

2

ϕ−1,1/2(ζ, τ) =
θ1(ζ, τ)

η(τ)3
. (41)

We also make use of Weyl-invariant weak Jacobi forms
[51–54]. Under a modular transformation, a Weyl[g]-
invariant weak Jacobi form ϕw,n : h(g)×H → C of weight
w and index n transforms as:

ϕw,n

(
z

cτ+d
,
aτ+b

cτ+d

)
=(cτ+d)wexp

(
π i n c

cτ+d
(z, z)

)
ϕw,n(z, τ),

(42)
while for s ∈ Weyl[g]

ϕw,n(sz, τ) = ϕw,n(z, τ). (43)

Denote by Jg
w,n the vector space of Weyl[g]-invariant

weak Jacobi forms of weight w and index n. For g ≠ e8,
the bigraded ring Jg

∗,∗ =
⊕

w,n Jg
w,n is a polynomial ring

over the ring of SL(2, Z) modular forms, which is known
to be generated by rk(g) + 1 independent forms αg

w,n

of specified weight and index. For g = e6, the seven
generators

αe6
0,1, αe6

−2,1, αe6
−5,1, αe6

−6,2, αe6
−8,2, αe6

−9,2, αe6
−12,3.

have been constructed in [52, 53]. In this letter, we make
use of the unique Weyl[e6]-invariant weak Jacobi form of
weight −5 and index 1,

αe6
−5,1(m

e6 , τ) =
2i(Θe6

ω1
(me6 , τ)−Θe6

ω6
(me6 , τ))

η(τ)16
, (44)

where the level 1 e6 theta functions

Θe6
ω1,6

(me6 , τ) =
∑

w∈∆e6+ω1,6

exp (πiτ(w, w) + 2πi(w,me6))

have the following q-series expansions:

Θω1
e6 (m, τ)

q11/24η(τ)5
= χe6

27+q χe6
351+q2(χe6

1728+χe6
351′)+O(q3),

Θω6
e6 (m, τ)

q11/24η(τ)5
= χe6

27
+q χe6

351
+q2(χe6

1728
+χe6

351′)+O(q3).

In terms of d5 ⊕ u1 fugacities,

Θe6
ω1

(m, τ) =q1/6

2

4∑

k=1

σke−2πiµθk(3µ−τ, 3τ)

5∏

j=1

θk(µj , τ),

Θe6
ω6

(m, τ) = q1/6

2

4∑

k=1

σke2πiµθk(3µ+τ, 3τ)

5∏

j=1

θk(µj , τ),

(45)

FIG. 1: Dynkin diagrams showing our labeling conventions.

Appendix A: Lie algebras.

Given a Lie algebra g, let h(g) be its Cartan subalge-
bra, ∆g its root lattice, αi, i = 1, . . . , rank(g) a choice
of simple roots, and α∨

i the corresponding coroots. The
fundamental weights ωi are defined by

(ωi, α
∨
j ) = δij , (38)

where (·, ·) is the invariant bilinear form on h(g)C, nor-
malized such that (α, α) = 2 for the long roots. We adopt
Bourbaki’s numbering convention for the ωi. We denote
the irreducible representations associated to the highest
weight ω either by Vω or by its dimension, following the
conventions of [50] (see e.g. figure 1). The character of a
highest weight representation R of g is given by

χR(mg) =
∑

w∈R

exp
(
2πi(mg, w)

)
, (39)

where mg =
∑

i m
g
i ωi ∈ h∗C. The character of a g = u1

representation of charge k is just e2πikm
u1
. For an affine

Lie algebra, we denote a highest weight representation
simply by the finite part ω =

∑
i niωi of its highest

weight (ω, k, n). We denote by χ̂ĝk
ω (mg, τ) the corre-

sponding affine character.

Appendix B: Modular and Jacobi forms

The Dedekind η function is defined as follows:

η(τ) = q1/24(q; q)∞ = q1/24
∞∏

k=1

(1− qk). (40)

The Jacobi theta functions are given by:

θ1(ζ, τ) = i
∑

n∈Z+ 1
2

(−1)nznq
n2

2 , θ2(ζ, τ)=
∑

n∈Z+ 1
2

znq
n2

2 ,

θ3(ζ, τ) =
∑

n∈Z
znq

1
2n

2

, θ4(ζ, τ) =
∑

n∈Z
(−1)nznq

1
2n

2

,

where z = e2πiζ . Closely related is the weak Jacobi form
of weight −1 and index 1

2

φ−1,1/2(ζ, τ) =
θ1(ζ, τ)

η(τ)3
. (41)

We also make use of Weyl-invariant weak Jacobi forms
[51–54]. Under a modular transformation, a Weyl[g]-
invariant weak Jacobi form φw,n : h(g)×H → C of weight
w and index n transforms as:

φw,n

(
z

cτ+d
,
aτ+b

cτ+d

)
=(cτ+d)wexp

(
π i n c

cτ+d
(z, z)

)
φw,n(z, τ),

(42)
while for s ∈ Weyl[g]

φw,n(sz, τ) = φw,n(z, τ). (43)

Denote by Jg
w,n the vector space of Weyl[g]-invariant

weak Jacobi forms of weight w and index n. For g ̸= e8,
the bigraded ring Jg

∗,∗ =
⨁

w,n J
g
w,n is a polynomial ring

over the ring of SL(2,Z) modular forms, which is known
to be generated by rk(g) + 1 independent forms αg

w,n

of specified weight and index. For g = e6, the seven
generators

αe6
0,1, αe6

−2,1, αe6
−5,1, αe6

−6,2, αe6
−8,2, αe6

−9,2, αe6
−12,3.

have been constructed in [52, 53]. In this letter, we make
use of the unique Weyl[e6]-invariant weak Jacobi form of
weight −5 and index 1,

αe6
−5,1(m

e6 , τ) =
2i(Θe6

ω1
(me6 , τ)−Θe6

ω6
(me6 , τ))

η(τ)16
, (44)

where the level 1 e6 theta functions

Θe6
ω1,6

(me6 , τ) =
∑

w∈∆e6+ω1,6

exp (πiτ(w,w) + 2πi(w,me6))

have the following q-series expansions:

Θω1
e6 (m, τ)

q11/24η(τ)5
= χe6

27+q χe6
351+q2(χe6

1728+χe6
351′)+O(q3),

Θω6
e6 (m, τ)

q11/24η(τ)5
= χe6

27
+q χe6

351
+q2(χe6

1728
+χe6

351′)+O(q3).

In terms of d5 ⊕ u1 fugacities,

Θe6
ω1
(m, τ) =q1/6

2

4∑

k=1

σke
−2πiµθk(3µ−τ, 3τ)

5∏

j=1

θk(µj , τ),

Θe6
ω6
(m, τ) = q1/6

2

4∑

k=1

σke
2πiµθk(3µ+τ, 3τ)

5∏

j=1

θk(µj , τ),

(45)
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where −σ1 = σ2 = σ3 = −σ4 = 1, µ = −2mu1 , and

µ1 = md5
1 +md5

2 +md5
3 +

1

2
md5

4 +
1

2
md5

5 ,

µ2 = md5
2 +md5

3 +
1

2
md5

4 +
1

2
md5

5 ,

µ3 = md5
3 +

1

2
md5

4 +
1

2
md5

5 ,

µ4 =
1

2
md5

4 +
1

2
md5

5 , µ5=−1

2
md5

4 +
1

2
md5

5

are d5 fugacities expressed in the orthogonal basis.
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pressed in terms of O, O(1), but the latter is trivial since
the vertex has been removed, suggesting that all Chern

classes of TX̂so(8) vanish.
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http://www.numdam.org/item?id=CM_1992__82_3_293_0
http://www.numdam.org/item?id=CM_1992__82_3_293_0
http://projecteuclid.org/euclid.pja/1195511346
http://projecteuclid.org/euclid.pja/1195511346

	Introduction
	The pure spinor ghost system
	 systems on complex cones
	 system from 4d/2d SCFT
	Symmetry enhancement
	Enhancement to (d"0362d4)-2 in the `3́9`42`"̇613A``45`47`"603AGr(2,4) cone  system
	Enhancement to (e"0362e6)-3 in the pure spinor  system

	Conclusions
	Appendix A: Lie algebras.
	Appendix B: Modular and Jacobi forms
	References

