More nonabelian mirrors and some two-dimensional dualities

Wei Gu, Hadi Parsian, Eric Sharpe

Dep’t of Physics
Virginia Tech
850 West Campus Dr.
Blacksburg, VA 24061
weig8@vt.edu, varzi61@vt.edu, ersharpe@vt.edu

In this paper we extend the nonabelian mirror proposal of two of the authors from two-
dimensional gauge theories with connected gauge groups to the case of O(k) gauge groups
with discrete theta angles. We check our proposed extension by counting and comparing
vacua in mirrors to known dual two-dimensional (S)O(k) gauge theories. The mirrors in
question are Landau-Ginzburg orbifolds, and for mirrors to O(k) gauge theories, the critical
loci of the mirror superpotential often intersect fixed-point loci, so that to count vacua, one
must take into account twisted sector contributions. This is a technical novelty relative to
mirrors of gauge theories with connected gauge groups, for which critical loci do not intersect
fixed-point loci and so no orbifold twisted sector contributions are pertinent. The vacuum
computations turn out to be a rather intricate test of the proposed mirrors, in particular
as untwisted sector states in the mirror to one theory are often exchanged with twisted
sector states in the mirror to the dual. In cases with nontrivial IR limits, we also check that
central charges computed from the Landau-Ginzburg mirrors match those expected for the

IR SCFTs.
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1 Introduction

In the paper [1], two of the authors proposed a description of mirrors to nonabelian two-
dimensional gauge theories, extending work on mirrors to abelian two-dimensional gauge
theories in [2]. The paper [1] only considered mirrors to gauge theories with connected
gauge groups: SO(k) but not O(k), for example. The later work [3] also only considered
mirrors of theories with connected gauge groups. The purpose of this paper is to remedy
this omission by extending the nonabelian mirror proposal of [1] to mirrors to gauge theories
with non-connected gauge group O(k), which we will check by comparing mirrors to dual
gauge theories described in [4]. The dualities described there relate, for example, theories
with gauge group SO(k) to theories with gauge group O(k) with various mod two theta
angles and Z, orbifold actions, denoted O (k) in [4], and so by studying the mirrors to those
duals we can get some nontrivial tests of our extension of the nonabelian mirror proposal
of [1].

The dual gauge theories discussed in [4] are Seiberg dual: equivalent in the IR, but
not necessarily in the UV. We will compute mirrors to gauge theories on each side of the
dualities in [4], and compare the number of vacua in the mirrors to either side. This is a
rather intricate computation, and we will see that in every case, our (extended) nonabelian
mirror construction correctly duplicates both the number of vacua of the original gauge
theory as well as the number of vacua of the dual.

On a more technical level, this paper also extends the nonabelian mirror proposal of [1]
in another way. The nonabelian mirrors constructed are Landau-Ginzburg orbifolds, but for
mirrors to theories with connected gauge groups, the orbifold group acts freely on the non-
excluded critical loci, so that there are no twisted sector contributions to low-energy analyses.
By contrast, mirrors to O4 (k) theories will often involve orbifolds whose fixed point locus does
intersect the critical locus, and so it will be necessary to consider twisted sector contributions.
Furthermore, the mirrors to the dualities of [4] will often relate untwisted sector vacua on
one side of the duality, to a combination of untwisted and twisted sector vacua on the other
side of the duality. Global symmetries in one theory become quantum symmetries [5] in the
other. This is part of the reason why we described the vacuum counting and comparisons as
a rather intricate test of the nonabelian mirror proposal: to get the number of vacua right
is a very sensitive test of whether we have utilized the correct orbifold in the mirror theory.

We begin in section [2| by reviewing the nonabelian mirrors proposal, and describing its
extension to gauge theories with gauge groups O4 (k). We also very briefly review the notion
of regularity, defined in [4], as the dualities we will test later relate regular gauge theories in
that sense, and we include a table (taken from [4]) listing the number of vacua expected in
each (regular) gauge theory pertinent to the dualities explored here. Later in this paper we
will see mirror computations reproducing every entry of that table.

In section [} we then test the dualities described in [4] relating SO and O gauge theories,
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by computing the number of vacua in the mirrors to the gauge theories on either side, and
verifying that the number of vacua in the mirrors match on either side of the duality, and
also match the number of vacua in the original gauge theory. (As the original gauge theories
are related in the IR, so too do we expect the mirrors to match in the IR.) In the mirrors
to the O gauge theories, the fixed-point locus will often intersect the critical locus of the
superpotential, so that there can be twisted sector contributions to the vacua, resulting
in a rather intricate computation. To assist the reader, rather than just giving general
arguments, we also examine in detail a prototypical special case: the mirror to the duality
O4(2) «» SO(2). It is our hope that the details in this special case are easier to follow
explicitly, and so we include it to improve readability of the paper.

In addition to counting vacua, for cases in which the theory is expected to flow to a
nontrivial SCFT, we also check that the central charge one computes from the Landau-
Ginzburg mirror matches that one expects for the IR SCF'T. That central charge comparison
applies to a variety of cases, so we only describe it once.

In section 4] we perform the analogous computations and verifications for the gauge
dualities in [4] relating O_ gauge theories to other O_ gauge theories. In each case, we
compute mirrors to the gauge theories on each side of the duality, and verify that the number
of vacua in the mirror matches the number of vacua of the original gauge theory as well as in
the mirror to the dual gauge theory. Here also, the fixed-point locus of the Landau-Ginzburg
orbifold of the mirror can intersect the critical locus, and so again this results in an intricate
intermixing between untwisted and twisted sector contributions.

In sections 5] 6| we check some additional claims about gauge theories in [4] using the non-
abelian mirror construction, such as supersymmetry breaking in cases with too few vectors,
and dualities between gauge theories with symplectic gauge groups. These computations do
not specifically involve O mirrors, and for the most part can be performed using just the
original nonabelian mirror construction for connected gauge groups [1]. We include them
here as this seems the natural place to discuss mirrors of these other results from [4].

Finally, in appendix [A] we briefly make some observations about mirrors to chirals rings.

2 Proposal

2.1 Basics

In [1], it was proposed that the mirror to a (2,2) supersymmetric GLSM with connected
gauge group G, with matter in some representation R and with twisted masses m;, is a
Weyl-group-orbifold of a Landau-Ginzburg model with fields



e (dimR) chiral superfields Y;, each of periodicity 27i, mirror to the matter fields,
e (dim G — rank G) chiral superfields X,

e (rank GG) chiral superfields o,

and a superpotential

r N n—r
W= o, (Zpgyi — ) otlnX; - ta>

N n—r
=Y+ Y exp (=Y + Y X (2.1)
, P
generalizing the construction of mirrors to abelian GLSMs in [2], where the p¢ are the weight

vectors for the representation R, and the aj are root vectors for the Lie algebra of G.

The purpose of this paper is to extend this proposal to cases in which the group G is not
connected. Specifically, in this section we will propose the form of mirrors to theories with
gauge group O (n), which we will check by comparing mirrors of the dual SO, O theories
discussed in [4]. (In addition, we will also discuss a handful of other results in [4] which
do not involve OL mirrors, but which will enable us to test the nonabelian mirror proposal

of [i].)

The mirrors to theories with gauge group O (n) for n even will have a somewhat different
form from mirrors to O4(n) gauge theories with n odd. We discuss each case in turn below.

2.2 Oi(even)

First, let us recall the details of the Weyl group orbifold action on the mirror that already
exists for the mirror of SO(2k). The Weyl group W of SO(2k) is an extension

l — K — W — 5, — 1, (2.2)

where K is the subset of (Zs)* with an even number of generators. The action on fields is
as follows (in the notation of [1][sections 9, 10]):

e Elements of Sy, permute the o, and also permute corresponding blocks {Y; 2,1, Y24}
(in mirrors to vector-valued fields),

e Elements of K act by sign flips on ¢’s:

Oaq > €404, (2.3)
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where €, € {1}, and €165+ -+ € = +1. At the same time, for each sign flip on a oy,
one also exchanges

Y;,Qa—l <~ }/72,20,7
X%Qafl < X”,Qa for n < 2a — 17
Xog—1, & Xog, forv > 2a.

We propose that the mirror to O(2k) is defined by an additional Z, orbifold. We can
think of this as one that acts as oy — —oy, with a corresponding action Y; or—1 <> Y or (for
mirrors to vector-valued fields), as well as X, 251 ¢> X}, 2. More invariantly, we can think
of combining this with the Weyl group of SO(2k) to form a W’ orbifold where

1 — (Zo)F — W — S — 1. (2.7)
In essence, we drop the constraint on K, and allow all elements of (Zy)".

Now, strictly speaking, there are two different O(2k) gauge theories, distinguished by
whether the extra Z, orbifold is 7 or 7(—)¥, and this choice distinguishes O, (2k) from
O_(2k), in the notation of [4]. We will carefully define and distinguish 7 from 7(—)* in sec-
tion [2.6] when we discuss details of twisted sector contributions. Briefly, in our conventions,
for a single free chiral superfield, 7 flips the sign of the RR Fock vacuum, whereas 7(—)"
leaves it invariant.

Now, we need to specify which of these two extra Zs orbifolds, 7 or 7(—)¥, appears in the

mirror. To further confuse matters, when one speaks of Hori-Vafa-type mirror constructions,
sometimes one takes the mirror superpotential to be a twisted superpotential depending upon
twisted chirals, and sometimes one takes it to be an ordinary superpotential depending upon
ordinary chirals, and these two matters are linked, essentially because this distinguishes
complex from twisted masses, which can have different numbers of twisted sector ground
states. Our proposal for the extra Zs orbifold above is as follows:

e In conventions in which the mirror superpotential is an ordinary superpotential, de-
pending upon ordinary chiral superfields, we take the extra orbifold appearing in the
mirror to be 7(—)F.

e In conventions in which the mirror superpotential is a twisted superpotential, depend-
ing upon twisted chiral superfields, we take the mirror of the orbifold to be just 7.
(It may be helpful for the reader to recall that T-duality performs an analogous swap of Zss,

see for example [6].)

In this paper, we will take the mirror superpotential to an O, (2k) gauge theory to be
an ordinary superpotential, a function of ordinary chiral superfields. In this convention, the



extra Zy will be 7(—)", in the notation of [4]. Similarly, we take the mirror to the O_(2k)
gauge theory to be an ordinary superpotential, depending upon ordinary chiral superfields
with the extra Z, given by 7.

We have just argued that in the mirror of an O(2k) gauge theory, we essentially orbifold by
the Weyl group of SO(2k 4 1). This then begs the question, how do we describe the mirror
of O(2k +1)7

Another puzzle in describing this case arises from the fact that it includes O(1) = Z, as a
special case. As discussed in [7H11], orbifolds with trivially-acting Zy’s ‘decompose’ into two
copies of one underlying theory (a notion that generalizes to other two-dimensional gauge
theories whose gauge groups have nontrivial finite centers). Our mirror proposal for O(odd)
gauge theories needs to account for the possibility of such decompositions.

Finally, the difference between O4(odd) gauge theories depends upon both a choice of
orbifold (7 or 7(—)¥), as well as the number N of vectors in the gauge theory.

With the questions above in mind, we propose that the mirror of an O (k) gauge theory
for k£ odd, for generic twisted masses, is either one or two copies of the mirror to the cor-
responding SO(k) gauge theory (with the same matter), depending upon the + as well as
upon whether N is even or odd. The precise dictionary we give in the table below:

‘ N even N odd
O, (odd) | 2 copies 1 copy
O_(odd) | 1 copy 2 copies

As a consistency check, this correctly reproduces relations between vacua in O(odd) and
SO(odd) gauge theories listed in [4][table (4.20)], computed for generic nonzero twisted
masses, and we will check extensively that it is also consistent with (mirrors to) dualities of
two-dimensional theories later in this paper.

In particular, for O, (odd) gauge theories with NV even, and O_(odd) gauge theories with
N odd, our proposal is that the mirror decomposes into two disjoint theories, which suggests
that, at least for generic nonzero masses, the original gauge theories also decompose into
a disjoint union of simpler theories, much as in [11]. We will not pursue this predicted
decomposition of certain O(odd) gauge theories here, but instead leave it for future work.



2.4 Regularity

The dual gauge theories described in [4] are all assumed to be ‘regular.” This term is defined
in that reference, and for completeness, we repeat that definition here. Briefly, an (S)O(k)
gauge theory with /N chirals in the vector representation is regular when

e N — k is odd and the mod 2 theta angle is turned off, or

e N — k is even and the mod 2 theta angle is turned on.

2.5 Number of vacua

In much of this paper we will duplicate results for the number of vacua in SO(k) and
O (k) gauge theories via mirror computations. Results for the original gauge theories are
listed in [4][table (4.20)]. Because we will refer to this table extensively, to make this paper
self-contained, and also to visually illustrate the complexity of the vacuum computations
we are duplicating in our mirror construction, we reproduce here the vacuum counts of

[][table (4.20)].

Specifically, consider a regular SO(k) or O (k) gauge theory with N vectors. For N >
k — 1, the number of vacua is as listed in table [l We will reproduce the listed number of
vacua in each case in mirror computations later in this paper. (For non-regular theories,
vacuum counts are not listed.)

kKON Number of vacua kN | Number of vacua
O.(k) | even even ( ]/j//22 ) odd even 2( ]j/f) /2 )
O, (k) | even odd <( k_l /2) < k/g 1_/12) odd  odd ( —_11 //22)
O_(k) | even even (];f//;) odd even ( le /2>
O (k) | even odd ( ,%32/ 2) odd odd 2( N/211 s )
SO(k) | even even 2( /2> odd even ( L /2)
SO(k) | even odd 2( (N];/;)/Q) + (((]Z/g)l_)/l?) odd odd ( (k __11)//22)

Table 1: Results for number of vacua of regular SO(k) and O (k) gauge theories, taken
from [4][table (4.20)].



2.6 Orbifold vacua

One of the important results we will use later concerns the number of vacua in various orb-
ifolds in which the orbifold group only acts on massive matter, not massless matter. Despite
the fact that it only acts on massive fields, it nevertheless can alter the vacuum structure
of the theory, as discussed in [7H11]. The precise version we need here is in [4][section 2.2].
Applying it, one should bear in mind that the twisted masses m; of the original gauge theory,
are complex masses in the mirror, as they arise as superpotential terms.

As we will frequently use these results in this paper, let us quickly review the results
of [4][section 2.2]. Consider a single chiral superfield (¢, 1) of some nonzero mass, either
complex (appearing in a superpotential) or twisted. Following [4], we distinguish two Z,
orbifolds:

e T,

° T(—l)F.

When acting on a single chiral superfield with components (¢, 1), they both map

(¢7 wi) = <_¢7 _wi)u
and are distinguished by their action on the vacuum.

In the RR sector, let |€2) pp denote the untwisted ground state of the theory of a single
chiral superfield with complex mass m, and |Q2) gr denote the untwisted ground state of the
theory of a single chiral superfield with twisted mass m, so that [4][section 2.2]:

Qrr = |0) + %@@_o\on, (2.8)
Wrr = 000 + l%@_o\on. (2.9)

Under the action of the orbifolds above, we define and distinguish 7 and 7(—)* as follows:

e 7 flips the sign of |Q)gg, but leaves \Q)RR invariant,

o 7(—)F leaves |Q)rr invariant, but flips the sign of |Q) zx.

The twisted sector ground state is invariant under both orbifolds (since all fields are half-
integrally moded, so that there are no zero modes). As a result, in the RR sector, ground
states exist as follows:
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‘ Complex mass Twisted mass
T Twisted sector only Untwisted and twisted sector
7(=)F | Untwisted and twisted sector Twisted sector only

In a NS-NS sector, the analysis is precisely reversed: the untwisted sector ground state
is invariant for both complex and twisted masses, since the fields are half-integrally moded.
In the twisted sector, on the other hand, the fields have zero modes, and then the analysis
is identical to RR sector untwisted sectors. As a result, ground states in the NS-NS sector
exist as follows:

‘ Complex mass Twisted mass
T Untwisted sector only Untwisted and twisted sector
7(—)" | Untwisted and twisted sector Untwisted sector only

Following [4][section 2.2], we can derive similar results for multiple massive fields by
tensoring together the various ground states. In a system with n massive fermions, if the
ground state of a one-fermion system is not invariant under a given Z, orbifold but n is even,
the ground state of the n-fermion system will be invariant. For example, in a 7(—)¥ orbifold
of a system of n chiral multiplets with nonzero complex mass and m chiral multiplets with
nonzero twisted mass,

e if m is even, there will be an invariant ground state in both the twisted and untwisted

sectors for both RR and NS-NS,

e if m is odd, only the RR twisted sector and NS-NS untwisted sector will have an
invariant ground state.

By contrast, in a 7 orbifold,

e if n is even, there will be an invariant ground state in both the twisted and untwisted
sectors for both RR and NS-NS,

e if n is odd, only the RR twisted sector and NS-NS untwisted sector will have an
invariant ground state.

3 SO-0 duality

In [4][section 4.6], it was proposed that for N > k, there exist IR dualities
O(k) < SON —-k+1), (3.1)
SO(k) < OL(N—-k+1),
O_(k) + O_(N—-k+1),

11



where in each case

e the theory on the left has N massless vectors x1,--- , xy, with twisted masses m;, and

e the theory on the right has N vectors @', --- , 2", of twisted masses m;, along with
(1/2)N(N + 1) singlets s;; = +sj;, 1 < i,j < N, of twisted mass —m; — m;, and a

superpotential
W= sya -l (3.4)
(2%

The mesons in the two theories are related by
Sij = Xj - Tj. (35)

The dualities are only claimed to exist when all the theories in question are regular, in the
sense of [4] (and as reviewed in section [2.4)), which constrains the discrete theta angle.

In this section, we will examine the mirrors to each side of the first two dualities above,
using an extension of the nonabelian mirrors proposal of [1], and argue that the mirrors of
the duals are equivalent.

The general case of the O, (k) <> SO(N —k+1) duality will be discussed in subsection [3.2]
However, this section is rather technical, so to improve readability, we begin with detailed
discussions of the simplest case, the mirror to O, (2) with N = 3 and its dual, in subsec-
tion [3.1] and include a detailed review of pertinent orbifold twisted sector contributions that
will be utilized later in this paper.

The mirror to the SO(k) <> O4(N — k + 1) duality can be treated in a fairly similar
fashion. Because singlets appear asymmetrically in the duality, this is not quite identical to
the O, (k) <> SO(N — k + 1) duality, but it is sufficiently similar that we omit any detailed
analysis of this variation in this paper.

We perform the analogous analysis for the O_ — O_ duality in section [4]

3.1 Prototype: O.(2) +» SO(2)

In this section we will study the simplest duality proposed in [4][section 4.6], namely a duality
between

e an O, (2) gauge theory with three chiral multiplets z¢ in the doublet representation (i
a flavor index, i € {1,2,3}, a a color index, a € {1,2}), with twisted masses m,,

12



e an SO(2) gauge theory with three chiral multiplets Z** in the doublet representation,
of twisted mass —m; and R-charge 1, six singlets s;; = +sj;, of twisted mass m; + m;
and R-charge 0, and a superpotential

W= s;d 8", (3.6)

]

Our analysis of the mirror to this duality will serve as a prototype for our analysis of mirrors
to more general dualities. (Note also that since the groups are abelian, this is an exercise
in abelian mirrors |2] rather than nonabelian mirrors [1], though it will serve as a prototype
for work with the latter.)

3.1.1 Mirror to O, (2) gauge theory

Let us first consider the mirror to the O, (2) gauge theory with N = 3 doublets. In principle,
this is an orbifold of a U(1) gauge theory, but we will follow the same analysis here as for
O(k) gauge theories for larger k, so we will interpret the matter as being in a representation
of the complexification of the gauge group. As a result, we will speak of doublets under
SO(2), pairs of chiral fields in which one has charge +1 and the other has charge —1.

The mirror Landau-Ginzburg orbifold has six fields Y, as well as one o, with a superpo-
tential

3 3 3 3 3
W (-3 Y ) - D) + S (-) Yo ().
i=1 i=1 i=1 i=1 i=1
(3.7)
As discussed in section the disconnected component of O, (2) is realized in the mirror
by a Zs orbifold that acts as ‘ '
o~ —o, Y <Y, (3.8)
(Note that although the original gauge theory is an abelian gauge theory, the Z, orbifold
above restricts allowed values of the Fayet-Iliopoulos parameter to {0, wi}. For this example,
regularity in the sense of [4] implies that ¢ should vanish, but we include the possibility of a
nonzero t to better illustrate certain features of other O, (k) cases.)

Integrating out the o field, we get the constraint
Vi =>V+t (3.9)

At this point, it is conceptually useful to change variables to

. 1 . .
Vi = 5(Y1’+Y;), (3.10)
Vo= (YY), (3.11)

13



so that the constraint arising from the o field is

Y= —t)2. (3.12)

Note that the periodicity of Y7 is a bit different from the original Y fields: under Y}
Y + 271, for example, Y! +— Y{ + i, which effectively eliminates the square-root branch
cut ambiguity implied implicitly in “¢/2.”

Since we are changing variables, we should also check Jacobians, at least formally, to
determine if the true fundamental fields have changed, as in [1]. Here the pertinent Jacobian

is of the form ) )
1/2 1/2
det { 1 1/2] = 1/2, (3.13)

a constant. Since it is constant, we can ignore it — there is no meaningful change in the
fundamental fields — but in the next section, it will play a more important role.

Using this constraint to eliminatd’] Y3 as
V3= -Y!—Y? - /)2 (3.14)

the superpotential (3.7)) can be rewritten as

3 3 3
W= 2> mY{ + ) exp (=Y +Y') + > exp (=Y -Y'), (3.15)
i=1

i=1 i=1
3 2 2

= 2> Yl + > exp (=Y +Y) + ) exp (-Y - V)
=1 =1 =1

+ooxp (=YP V2 —V2—1/2) + exp (Y7 + Y24+ Y2 +1/2).  (3.16)

The (untwisted) critical locus of this superpotential is defined by the following equations:
exp (—Y] +Y7) + exp (Y2 +Y! + Y2 +¢/2)
= exp (—Yj — Yf) + exp (—Yf —Yyl-y?— t/2) fori=1,2,

exp (—Yj + Yj) + exp (—Yj — Yf) = —2m; fori=1,2,
exp (—Y] =Y = Y2 —1/2) + exp (-Y]+ V! +Y241/2) = —2ms.

1 We are eliminating a Y_ field, which is antiinvariant under Z,, instead of an invariant field because we
are also integrating out o, which also picks up a sign under Zs. The combination of ¢ and a Y_ can form a
Zo-invariant combination, which is surely what we want to integrate out of an orbifold.

14



Along the critical locus, define

X = %(eXp(—YiJrYj) —exp (=Y} -Y")) fori=1,2, (3.17)
= % (exp (=Y7 =Y —VZ2—1/2) — exp (Y7 +YI+Y2+1/2)), (3.18)

where we have used the first constraint above. It is then straightforward to verify that in
terms of X, along the critical locus,

3 3
i=1 i=1
3
= ¢ P [Jexp (-Y7), (3.20)
i=1

where ¢ = exp(—t). (Note that for the allowed values of ¢, ¢ = ¢~'.) For the remainder of
this section, we will restrict to the regular case, which in this case means ¢ = +1.

Now, equation (3.19)) is a cubic polynomial in X, that is symmetric under X — —X. It
has roots at 0 and =X, where

Xg = =) mm,. (3.21)
For simplicity, we will assume that Xy # 0, so that these three roots are distinct.

It is straightforward to check that the Z, orbifold (3.8]) acts as X — —X, exchanging
the two nonzero roots above, but leaving the zero root fixed. As a result, in this model, the

critical locus of the mirror superpotential does intersect an orbifold fixed point, namely at
X =0.

Expanding about that point, we find that all of the Y fields are massive. Specificaly,
we find that after evaluating along the critical locus, at X = 0, the only nonzero second
derivatives of the superpotential are

2

Yoy

PW

— = -2 2
2

oY’ oY

where 7,7 € {1,2}. As a result, for generic twisted masses, the five Y fields are all massive.

Now, we need to compute the number of twisted sector states. To make this more
interesting, the Z, orbifold is only acting on the two Y fields, which are massive. The

15



reader might well ask, how should an orbifold that acts only on massive states modify the
number of ground states?

This matter is addressed in section 2.6l Applying to the present case, the mirror of the
O, (2) gauge theory, described by ordinary chiral superfields and a 7(—)" orbifold, we find
that for our orbifold acting on chiral superfields of nonzero complex mass (mirror to chirals
of nonzero twisted mass), we see that there is an invariant ground state in both the twisted
and untwisted sectors for both RR and NS-NS, independent of the number of massive chirals.
As a result, there is a total of 2 + 1 = 3 vacua, in agreement with the number of vacua in
the original gauge theory, as listed in [4][table (4.20)] and table [1}

3.1.2 Mirror to SO(2) gauge theory

Next, we consider the mirror to the SO(2) gauge theory with three doublets, six singlets, and
a superpotential. This mirror has six chiral multiplets W% = exp <—(1 / 2)}%‘1>, six chiral

multiplets 7;;, and a superpotential
= —Z —In(W™)2 + In(W2)?) Zmz (In(W)? 4+ In(W*)?)
+ Z(W“)2 + Y (W)
=) (it my) Ty + Y exp(=Ty). (3.25)
1<j i<j

Because the original six fields 7 each have R-charge 1, the mirror has a (Z)® orbifold, in
which each Z, maps W — —WWie,

In principle, since the critical locus is defined by vanishing of a first derivative, and the
superpotential (when written in terms of Y@) has the same form as for the O, (2) model, so
the critical locus in the untwisted sector should have the same form as there. Nevertheless,
let us briefly walk through the highlights in the new variables W,

First, integrating out o gives the constraint

3 3

ST (W =Y I (W?)’, (3.26)

i=1 i=1

or more simply,

ﬁ(%:f " (3.27)



We define

WL = wWHw®, (3.28)
) Wil
| {A— WE (3.29)

in terms of which, the constraint from o becomes

3
(Wi)* = 1. (3.30)
i=1
We eliminate W3 as
9 1
(W2)” = R (3.31)
which has solutions {

In principle, we also need to compute the Jacobian of the coordinate transformation from
(W, W) to (Wi, W), to determine the true fundamental fields, as explained in [1]. Here,
the Jacobian is , ,

W12 Wzl
1/Wz2 _Wil/(WzQ)Q

hence the fundamental fields are slightly different. We can write

det —2We, (3.33)

(=)' dWidIn(WL)? = dW"dW™, (3.34)

and so after changing variables, we can take the fundamental fields to be W and In(W*)?2.
This will not change the critical locus or vacuum computation, which we will leave in terms
of WL, but will be important for e.g. central charge computations.

In principle, we should solve for critical loci for each of these two roots separately. For
the moment, we shall focus on the + root, for which

1
The superpotential (3.25)) becomes
2 . 2 ) 2 Wz
W= =3 il (WE)T —mgln (W) + S Wiwe 4+ 3
i=1 i=1 =1~
WB
+ WI—/IF/E + WiWﬁWE
=Y (it my) Ty + Y exp(=Ty). (3.36)

i<j i<j
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The critical locus is defined by the equations

Wiw: + W; = 2m; fori=1,2, (3.37)
WS
g T WEWIWZ = 2, (3.38)
P 6 w3 .
WiW: — Wz = WlI;/E — W2WIW?2 fori=1,2, (3.39)
exp(=Ti;) = —(m;+m;). (3.40)

The last equation completely determines exp(—71;;) on the critical locus. For the others, on
the critical locus, define

1 o W
X =3 (W;W@ — Wj) for i = 1,2, (3.41)
1 w3

(On the critical locus, these various definitions all match.) Then, it is straightforward to

show that ;

[Tx =) =[] (=X =) (3.43)

i=1 i=1

This has all been for the + root of the solution for W2. If we pick the other root,

1
W2 = = (3.44)
then after a very similar analysis, for
1 o W
W= 3 (WiWi - Wj) fori=1,2, (3.45)
1 w3

we again find

| (X —m;) = H(_X_mi)

3
=1 =1

describes the critical loci.

Now, we have to take into account the Z, orbifolds that act by signs on each W?. Those
orbifolds exchange the + and — roots of the solution for W2, so we see that we do not need
to consider the other root in detail.
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Furthermore, note that for generic twisted masses, the critical loci cannot intersect the
fixed points of these Z, orbifolds. For example, from (3.37), we see that W # 0 along the
critical locus, so long as m; # 0. Similarly, from '@, we see that W3 # 0 along the critical
locus, so long as m3 # 0. Similarly, from @ , neither W' can vanish so long as mj is
finite. As a result, since the critical loci do not intersect the fixed points of the Z, orbifolds,
there should not be any twisted sector ground states to consider.

To summarize, in this theory, the mirror to the SO(2) theory, the ground states are
defined by the solutions to the equation

much as in the mirror to the O, (2) theory. This has three solutions, at X = 0 and X = £X,,
where
X3 = =) mmy

Although there are six Zy orbifolds, they leave X invariant. For example, from the def-
initions (3.28)), (3.29), W will be anti-invariant if and only if W’ is antiinvariant, hence

combinations such as W!W* and W /W' are invariant.

3.1.3 Comparison of vacua

Now, let us compare the vacua in the mirror to the O, (2) theory and the mirror to the dual
SO(2) theory. They both have the same quantum cohomology relation,

3

H (X —my) = H (=X —my), (3.47)

i=1 i=1

but in one case there is an orbifold whose fixed points intersect critical loci and generates
a twisted sector state, whereas in the other, orbifolds leave the vacua invariant, and their
fixed points do not intersect critical loci.

e In the mirror to the O, (2) theory, we have two untwisted sector states, corresponding
to X =0 and X = £X,. The two nonzero solutions are exchanged by the Z, orbifold.
Sitting over X = 0 is one twisted sector state.

e In the mirror to the dual SO(2) theory, we have three untwisted sector states, corre-
sponding to X = 0 and X = +Xj. There is a global symmetry sending X — —X, but
this is not gauged, it does not correspond to an orbifold group action.

In addition, there is a global Zy symmetry in both theories:
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e In the mirror to the O, (2) theory, there is a Zs quantum symmetry [5], which acts by
a sign flip on the twisted sector state. Under the quantum symmetry, the states

| X = 0, untwisted) £ |X = 0, twisted)
are exchanged.
e In the mirror to the dual SO(2) theory, the critical locus is invariant under a global

Zo that maps X — —X. This symmetry exchanges the states X = +X|.

Based on the global symmetries above, we believe that the ground states
| X = 0,untwisted) £+ |X = 0, twisted)

of the O, (2) theory are dual to the X = +X states of the SO(2) theory, and that the single
+ X state of the O, (2) theory is dual to the X = 0 state of the SO(2) theory. Thus, in this
example, the proposed mirror is compatible with the gauge theory duality.

3.2 Oi(k) <> SO(N — k+ 1) duality
In this section, we will discuss mirrors to each side of the duality relating

e an O, (k) gauge theory with N vectors xy,--- ,zy of twisted masses m;, and

e an SO(N — k + 1) gauge theory with N vectors z!,---  ZV of twisted masses 7,
along with (1/2)N(N + 1) singlets s;; = +s;; of twisted masses —m; — m;, and a
superpotential

W= syd - @ (3.48)
(]

We will compute the mirrors to either side of the duality, and check that the mirrors have
the same number of vacua as the original theories, and each other. We will also compare
central charges of the corresponding IR SCFTs in the special case that the twisted masses
all vanish.

3.2.1 Mirror to O, (k) gauge theory

In this section we will compute the mirror to an O, (k) gauge theory with N > k massless
vectors xy, - - -, xny with twisted masses +m;. This mirror will be closely related to the mirror
of SO(k) — for k even, it will have a slightly more complicated orbifold group, and for & odd,
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it will be either one or two copies of the SO(k) mirror, as discussed in sections [2.2] 2.3} We
will therefore begin by describing the mirror to the SO(k) gauge theory with N > k massless
vectors and twisted masses as above.

Basics for £ both even and odd

Following [1][sections 9, 10], the mirror is an orbifold of a Landau-Ginzburg model with
fields

L4 maaie{la"' 7N},Oé€{].,"' 7k}7
o X, =exp(—Z.,), X=X}, wwe{l, -k} (excluding Xo,_124),

v

e g,,a€{l,--- M} where for k even, k = 2M, and for k odd, k =2M + 1,

with superpotential

Zaa (przﬁyﬁ + Z Oé,uzxul/’ wv t)

iaf u<lvp! v’
+ Z exXp _Y;’a) + Z
Qo n<v

— ) Y. (3.49)

There is no continuous FI parameter, but we retain ¢ to allow for the possibility of a discrete
theta angle. In the superpotential above, we take

Ping = Oa2a-1082a — 08,2a-100,2a (3.50)
aZV,u’V’ = 6VV’ (5u72a—15u’,2a - 5u,2a5u’,2a—1)
+ 6##’ (51/,2a—151/’,2a - 5v,2a611’,2a—1) . (351>

We can analyze the untwisted sector of this theory in the same fashion as [1][sections 9,
10]. For completeness, we outline the highlights here. Integrating out the o,, we have the
constraints

N X X
}/; Y — Z - 2a—1,v 1 w,2a—1 —_— 59
> (= Yiaew) + 3o ( )+ 3 (—X (3.52)

v>2a pn<2a—1

To eliminate fields in a fashion somewhat consistent with the orbifold, we define

1

YZJZ = B (Yioa+ Yioa—1), (3.53)
1

Yia = B (Yioa — Yiza-1), (3.54)
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and then use the constraints above to eliminate Yy ,:

_ _ X2a—1,1/ 1 X;L,Qa—l t
Yye = — ZY ——Zln(sz>—§ > 1n(m>+§. (3.55)

v>2a pn<2a—1

We define

3
Q
Il
@
s
o)
2"<
N

(3.56)

v>2a 2a,v pn<2a—1 Hr20

x 1/2 x 1/2
. 2a—1,v n,2a—1
(H < ) ( 11 ~ ) , (3.57)

where ¢ = exp(—t). As in the previous section, the square root branch cut ambiguities are
absorbed by the periodicities of Y*.

The superpotential then reduces to

N—-1 M
(exp (=Y = Yio) + exp (ZYL +Y0))

i=1 a=1

)

—|—Zexp Y]\fa Ta—l—Tgl)

+ > X - ZsziYi;

pu<v i=1 a=1

+ { Zi\; exp (—Yiom+1) — Zi\il m;Y;ony1 K odd,

0 else. (3.58)
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The critical locus is then given by

Y:,C-L : eXp( Y-‘r Y;’—a) + exp (_Y:; + Y;;) = —2m; for 7 < N, (359)

YNa: exp (—Y]\Ta) (To +71,") = —2my, (3.60)
Yoo exp (=Y -V, — exp (=Y +Y;,)

i,a

= exp (=Yy,) (Ta—17,") fori<N, (3.61)
}/;’72M+1 . exp (—}/;‘72]\/[_;,_1) = —’ﬁli for k Odd, (362)
X 2Xsem = exp (=Y3,) (Yo — —1) + exp (=Yy,) (To—0,"),  (3.63)
2X5400-1 = €xp (—Y]\J{a) (Ta ) + exp (—Y]\}L’b) ( T, + 71, ) ,(3.64)
2X5q-12 = exp (=Yy,) (=74 +T ) + exp (=Yy,) (To— T, ") ,(3.65)

2X9q 1261 = €xp (—inzr,a) (— )
+ exp (=Yy,) (— Tb + T Y, (3.66)
2X2a,2M+1 = exp (_Y]if‘—a) (Ta Tal) for k Odd7 (367)
2Xoq-12m41 = exp (=Yy,) (—Ta+T,") for k odd. (3.68)

On the critical locus, define

o, = %exp (=YL -Y.) - %exp (=YL +Y;,) foranyi<N, (3.69)
= %exp (—YJ\JEQ) (To = Y,1). (3.70)

(The fact that these expressions are all equal is a consequence of critical locus equation (3.61]).)
Since exp(—Y) # 0, we have from the first two critical locus equations that

o, F My, (3.71)
for all 7. Since X, # 0, we find for a # b that
Oa # Eop, (3.72)
and in the special case that k is odd,
o, # 0. (3.73)

It is also straightforward to demonstrate that on the critical locus,
N N
[ (0 =) = (—)Fq]] (~0a — ). (3.74)
i=1 i=1

Before moving on, we should also observe that the operator mirror map described in [1]

relates the quantity we have labelled “o,” in the algebra above, to the g, of the original
theory; our notation was deliberately chosen to encode the operator mirror map.
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Now that we have reviewed the basics of the mirror to an SO(k) gauge theory, we will
discuss the mirror of O (k).

k even:

Let us first consider the case that k is even, k = 2M. In this case, the orbifold group
for the mirror of O, (k) is effectively the Weyl group of SO(2M + 1). This has a subgroup
corresponding to the Weyl group of SO(2M), which as discussed in |1][section 9], has fixed
points which do not intersect the critical loci, and so does not generate any twisted sector
contributions to ground states. The remainder is generated by a Z, which can be taken to
act as

ov = —ou, Yion—1 < Yion, Xuom—1 < Xuowm. (3.75)
(This also encodes the action on the critical locus of the map Y; apr <+ Y;2p-1.) This orbifold

has a fixed point locus at

oa = 0, (3.76)

and since k is even, this is not on the excluded locus. Furthermore, for k£ even, depending
upon the number N of vectors and the value of ¢, this fixed point locus can also be on the
critical locus, hence we have twisted sector contributions to the ground states. In fact, after
combining this Z, with other elements of the Weyl group of SO(2M), for ¢ = +1 and k
even, we have intersections of orbifold fixed points and critical loci where

ou = 0 (3.77)

for all a. If any one of these combinations vanishes, for any one value of a, then other
combinations for other a cannot also vanish, from the excluded locus condition . Fur-
thermore, since the Sy, in the Weyl group of SO(2M) exchanges these quantities, there is at
most one vacuum defined by such an intersection of the orbifold fixed point with the critical
locus.

Let us back up a step and count the number of possible vacua more systematically.

First, consider the case that ¢ = +1. For N even (and even k), the Coulomb branch
relation (3.74)) reduces, for even k, to the polynomial

(Z m) oM+ ( > milmizmi3> N =0, (3.78)
7 11 <t2<i3

This equation is symmetric in o — —ao, so all nonzero roots will come in positive/negative
pairs. This equation has N — 1 roots, of the form

g = 0,:':5'1, Tty :t5(N—2)/27 (379)

with (for generic m;) none vanishing. In terms of vacua, any two signs +¢ are related by
the action of one of the Zy subgroups of the orbifold group, and so define the same vacuum.
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Since there are M = k/2 o,, and the corresponding o are all distinct (including signs)
from condition (3.72)), exchanged by the action of an Sy orbifold, we see that in this case,

there are ( (N — ?/H 1 ) _ ( ];f//22 ) (3.80)

untwisted vacua in the system. (Since N > k = 2M, we see that N/2 > M, and so the
expression above is well-defined.) The root at ¢ = 0 intersects the fixed-point locus of the
orbifold, and so there can be additional ground states arising in the twisted sector.

As mentioned in section [2.2] our convention is to treat the mirror superpotential as an
ordinary superpotential, depending upon ordinary chiral superfields, and so the extra Zs is
realized in the mirror by 7(—)¥. In this case, since the fields have complex masses (instead
of twisted masses), there will be invariant ground states in both the untwisted and twisted
sectors for both RR and NS-NS, regardless of the number of massive fields, following the
analysis of section [2.6| and [4].

We can combine a twisted sector ground state with untwisted sector vacua corresponding
to nonzero roots, to get a total of
(N —2)/2
( kj2 — 1 (3.81)
twisted sector vacua, and a grand total of
N/2 (N —2)/2
(s )+ (522 (352)
untwisted and twisted sector vacua.
For completeness, using the identity
a a a-+1

it is easy to show that the number of vacua above equals

< <Nk—/§>/2 ) L < (];z/g E){z ) | s

Finally, this particular theory (the mirror of O (k) with k even, N even, and ¢ = +1, is
not regular in the sense of [4], and so is not listed in [4][table (4.20)] or table

For N odd (and ¢ = +1), the Coulomb branch relation (3.74)) reduces, for even k, to the
polynomial

O'N + (Zﬁ”mﬁj> O'N_2 + ( Z milmi2mi3ﬁli4> O'N_4 + - = 0. (385)

1<j 11 <19<i3<14
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As before, this equation is symmetric in ¢ — —o, so all nonzero roots will come in posi-
tive/negative pairs. The Coulomb branch relation has N roots of the form

o =0, %5y, -, £6v_1)2 (3.86)

with (for generic m;) none of the ¢ vanishing (except the first root in the list above). For
each nonzero root ,, the two signs +¢, are exchanged by a Zs subgroup of the orbifold
group, and so define the same vacuum. The root at ¢ = 0 is more interesting. This root
intersects the fixed-point locus of the orbifold, and so there can be an additional ground
state arising in the twisted sector.

Including the zero, the number of untwisted sector ground states is

() (e, 57

Next, we consider twisted sector states. As mentioned earlier, in our conventions, the mirror
of an O(2M) gauge theory involves a Landau-Ginzburg orbifold by 7(—)" (combined with the
Weyl group orbifold). In the same conventions, we are treating the mirror superpotential as
a function of ordinary chiral superfields, with complex masses, so there are invariant ground
states in both the untwisted and twisted sectors for both RR and NS-NS, regardless of the
number of massive fields, following section and [4]. We can combine a twisted sector
ground state with untwisted sector vacua corresponding to nonzero roots, to get

( U]X /g P{Q ) (3.88)

twisted sector vacua.

Putting this together, for N odd and ¢ = +1, there are

(N+1)/2 (N-1)/2\ [ (N-1)/2 (N—-1)/2
< k)2 T\ ko1 )T k)2 T2\ ke (3.89)
untwisted and twisted vacua. This theory is regular in the sense of |4], and the result above
matches an entry in [4][table (4.20)] and table [1]

Now let us turn to the case ¢ = —1, for k even.

For N —1 even (N odd), the Coulomb branch relation (3.74]) reduces to the degree N —1
polynomial (3.78]). This equation has N — 1 roots, of the form

g = Z|:5'1, e, i&(]\/’,l)/g, (390)

with (for generic m;) none of the ¢ vanishing. In terms of vacua, as before, any two signs
40 are related by the action of one of the Zy subgroups of the orbifold group, and so define
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the same vacuum. Since there are M o,, and the corresponding o are all distinct (including
signs) from condition (3.72)), exchanged by the action of an Sy orbifold, we see that in this

case, there are ( (N R/[1)/2 > _ ( (N;;/;)/Q ) (3.91)

vacua in the system, all in untwisted sectors. Since N > k = 2M and N is odd, we have
that N — 1 > 2M, hence (N — 1)/2 > M, and so the expression above is well-defined. This
theory is not regular in the sense of [4].

Finally, we turn to the case that N — 1 is odd (N even), again for ¢ = —1 and k even. In
this case, the Coulomb branch relation reduces to the degree N polynomial . It has N
roots, of the form

o = £01, -+, £0n)2, (3.92)

where (for generic m;) the ¢ are all nonzero. None of these roots intersect the fixed-point
locus of the orbifold. As before, for each nonzero root 7,, the two signs +¢, are exchanged
by a Zs subgroup of the orbifold group, and so define the same vacuum. We count

N/2\ ([ NJj2
() = (i) 558
vacua in this case. This theory is regular in the sense of [4], and the number of vacua counted
above matches the number given in [4][table (4.20)] and table [1| for this case.

k odd:

Now that we have discussed the mirror to O (k) for k even, we turn to the case that k
is odd, k = 2M + 1. As discussed in section [2.3] if the number of vectors N is even, we take
the mirror to be two copies of the SO(k) mirror, and if N is odd, we take the mirror to be
one copy of the SO(k) mirror.

First, consider the case that ¢ = +1. For N even (and odd k), the Coulomb branch
relation (3.74]) reduces to a degree N polynomial, with roots

g = :]:5'1,"' ,i&N/g. (394)

The mirror to SO(k) with N even therefore has

(5) = (o) 59

vacua, and since the mirror of O, (k) with an even number of vectors is two copies of the
mirror of SO(k), we find that in this case the mirror to the O, (k) gauge theory has

(02 80
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vacua. This theory is regular in the sense of [4], and the number of vacua computed above
matches the corresponding entry in [4][table (4.20)] and table [1]

Next, consider the case that ¢ = +1 and N is odd. In this case, the Coulomb branch
relation (3.74]) reduces to a degree N — 1 polynomial, with roots

g = :|:6'1,"‘ ,:i:&(N_l)/Q. (397)
The mirror to SO(k) with N odd therefore has
(N-1)/2\ ([ (N—-1)/2
( Iy = %_1)) (3.98)
vacua, and since the mirror of Oy (k) with an odd number of vectors is the same as the
mirror of the SO(k) gauge theory, we find that in this case the mirror to the O, (k) gauge

theory has
(N —1)/2
(W) (399

vacua. This theory is not regular in the sense of [4].

Next, consider the case that ¢ = —1. For N even (and odd k), the Coulomb branch
relation (3.74]) reduces to a degree N — 1 polynomial, with roots

o = 0,461, , £5(xn_2)2- (3.100)

For the mirror to SO(k), the zero root lies along the excluded locus, so we see that the

SO(k) mirror for N even has
(N = 2)/2

vacua. The mirror to O (k) with an even number of vectors is two copies of the mirror to
the corresponding SO(k) gauge theory, so we see that the mirror to Oy (k) has

N —2)/2
2 < <(k - 1))//2 ) (3.102)

vacua. This theory is not regular in the sense of [4].

Finally, consider the case that ¢ = —1 and N is odd. In this case, the Coulomb branch
relation (3.74) is a degree N polynomial, with roots

o = 0,461, -, £5xn_1)2- (3.103)

The zero root lies along the excluded locus, so we see that the SO(k) mirror for N odd and

q = —1 has
(N—-1)/2
(&1 ) .
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vacua. The mirror to O, (k) with NV odd is one copy of the mirror to SO(k), so we see that

the O, (k) mirror in this case has
(N —-1)/2
(&1 ) 10

vacua also. This theory is regular in the sense of [4], and the number of vacua matches the
corresponding entry in [4][table (4.20)] and table

3.2.2 Mirror to SO(N — k + 1) gauge theory

In this section we will compute the mirror to an SO(N — k + 1) gauge theory with N > k
vectors 7', -+ | #V of R-charge 1 and twisted mass +m;, (1/2)N(N + 1) singlets s;; = +s;;
of R-charge 0 and twisted mass —m; — m;, and a superpotential

W= @@, (3.106)

If N—k+1iseven, N—k+1=2M, then the mirror [1] is given by a Landau-Ginzburg
orbifold with fields

Wit —exp (~(1/2)7), i € {1, N}, a € {1+ N = k+1},

X =exp(=Zu), Xop =X, v € {1,--- N — k4 1} (excluding X5;_1 9;),

o4, a€{l,--- M},

and superpotential

M
W = Zaa <—Zp?a6 In (Wiﬁ>2 _ Z Ay M Xy, — f)
a=1

i,a,8 p<vipl v’
ia)2
- Z(W ) + ZXW/ + Zexp(—ﬂj)
ia u<v 1<j
+ ) 2 W+ Y (i + ) Ty, (3.107)
i i<j
where
p?ozﬁ = 60&,211*155,2(1 - 55,2a715a,2a7 (3108)
aZu,u’y’ = 51/1/’ <5u,2a—15u’,2a - 5#,2a5u/,2a—1)
+ 5,uu’ <5V,2a—1(sy’,2a - 5u,2a5V’,2a—1) . (3109)

29



(Our description is modelled on the closely related mirror described in [1][section 9].) Al-
though there is no continuous FI parameter, we retain ¢ above to allow for the possibility of
a discrete theta angle.

We orbifold this model by the Weyl group W of SO(2M), where W is the extension
l - K — W — Sy — 1, (3.110)

where K is the subgroup of (Zy)™ with an even number of nontrivial generators. We also
orbifold by additional Zys, one for each W, mapping W s —WW,

The case N —k+1 odd is described in a formally identical fashion (compare e.g. [1][section
10]). Here, we define M by N —k+1=2M + 1, and in the description of the Weyl group,
the kernel K is taken to be all of (Zy)™. Its action on the fields is identical to the case
N — k + 1 even — meaning, for example, that WN=k+1 — Wi2M+1 i5 invariant under the
Weyl group orbifold.

Proceeding as in [1][sections 9, 10], we integrate out the o, to get constraints

22a71
2a—1,v X,2a,—1 g
I e S € P ML ) IELSE

v>2a p<2a-1
We define
Wit = ety (3.112)
i Wi,Za—l
Wi = T (3.113)

in terms of which the constraint becomes

Zln W) + 3 I (X;(“’”) + > I (—X;Q‘“) = 1. (3.114)
2a,v n,2a

v>2a pn<2a—1

We use this constraint to eliminate WY

ln< ) Zln (USSP (%) Y ( 20— 1) + 1 (3.115)

v>2a pn<2a—1

(In principle, there are two roots for W but as we saw previously in the discussion of the
SO(2) mirror, there is a Zs orbifold that relates the two signs.) Since we will no longer treat
W as a propagating field, we shall rename it to T, following the pattern of the discussion

of the O, (k) mirror:
T, = whe (3.116)

N—1 —1 ¥ 1/2 Do 1/2
_ ~—1/2 1,0 2a,v w,2a 11
: ( W) (HX) (H_ —X) e




where § = exp(—t).

In passing, just as in the previous discussion of the SO(2) mirror, if we check the pertinent
Jacobian, we find that the fundamental fields are W1* and In W>“. This will not modify the
vacuum computation, but will be relevant for the central charge computation.

The superpotential can now be written

N—-1 M . ‘ 1 M
w=zzm¢W+wﬁﬂwwm+m>
a=1

i=1 a=1 -
N M o
EY K 2l (9)
pu<v i=1 a=1
+ Y exp(=Ty) + Y (i + 1) Ty
i<j 1<j
N i, 2 N - i, 2 .
N ZZ_:1 (W 2M+1) + 22:1 7, In (W 2M+1) N —k+1 odd, (3.118)
0 else.
The critical locus is then given by
,a 1,a 1 ~ .
Wi (W + ia) = —2m,; fori< N, (3.119)
W2
WY (Yo + 1.1 = —2my, (3.120)
. . 1
wie (Wﬁa — W) = WY (T, —T,') fori<AN, (3.121)
exp (—=Ty;) = 10, + 10, (3.122)
2Xoaoy = W' (=Ta+ 1.0 + WP (=T + 1,1, (3.123)
2Xoao-1 = Wi (=To+ YY) + W (T —=1,Y),  (3.124)
2Xou 120 = WP (Ta— 711 + WY (=T + 1,1, (3.125)
= —2X9u0-1, (3.126)
2Xo0 11 = W' (To =10 + WP (T, -1, 1), (3.127)
= —2Xp.9, (3.128)
and for N — k + 1 odd,
(Wi~ (3.129)
2Xoaonri1 = W (=Ta+ 7Y, (3.130)
2Xoa_1om1 = Wi (Yo =100, (3.131)
= —2Xy00041. (3.132)



On the critical locus, define

1 ; 1
. = WY W — — fi < N, 3.1
o S WH ( Wf“) or any i < (3.133)
1
= §vaa (To—7."). (3.134)

(These expressions match due to expression (3.121]).) Furthermore, from the operator mirror
map, as discussed in [1], it is straightforward to see that the “o,” defined above is mirror to
the o, of the original theory. We chose the notation to implicitly reflect the operator mirror
map.

It is straightforward to verify that on the critical locus, one has the Coulomb branch
relation

[[(ow =) = () ][ (~ou — ). (3.135)

The excluded locus computed from the critical locus relations for the W fields above is
then

0o # ;. (3.136)
From the X fields, for a # b,
o, # *oy, (3.137)
and for N — k£ + 1 odd, we also have
oo # 0. (3.138)

Now, let us quickly review the orbifold group actions, to assist us in counting vacua
later. Briefly, we claim the orbifold group will exchange roots, but the critical locus will not
intersect the fixed point locus of the orbifold in this mirror, so in this particular mirror we
do not have to consider any twisted sector ground states.

For N — k4 1 odd, the Weyl orbifold group will act on os by signs, exchanging positive
and negative roots, and leaving zero roots fixed. However, from the excluded locus condi-
tion in this case, we see that no zero roots are allowed. It will also interchange the
various solutions for different o,.

For N — k + 1 even, the Weyl group orbifold will exchange signs of pairs (o,,03), a # b,
and so on the fixed-point locus of this part of the orbifold, o, = 0, = 0 for a # b, which
is disallowed by excluded locus condition . Any one o, can vanish along the critical
locus, but not multiple o, simultaneously. The fact that signs of ¢’s are flipped only in pairs
means there is a two-fold degeneracy relative to the case of N — k + 1 odd. For example,
for SO(2), given two nonzero roots +oy, there is no second element to exchange, so both
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roots count separately. For SO(4), the orbifold group identifies elements of two equivalence
classes of nonzero o:

(‘HTl,—HTQ) ~ (—0'1,—0'2),
(+o1,—02) ~ (—01,+02).

For SO(6), again we have two equivalence classes of nonzero roots under the orbifold, which
we illustrate schematically below:

(+7+7+) ~ (+7_7_) ~ (_7+7_) ~ <_)_7+)7

(+7 +7 _) ~ (+7 ) +) ~ (_7 +7 +) ~ (_7 ) _)
It is straightforward to argue that the same pattern holds for any group SO(2M): the
orbifold group action (flipping pairs of signs, not individual signs) always results in precisely

two inequivalent nonzero o solutions. As before, the orbifold also interchanges the various
solutions for different o,.

Finally, in both cases, there are multiple additional Z, orbifolds, each acting as W5®
—Whe, However, all Wo® # 0 (excluded loci), hence these orbifolds do not have any fixed
points.

Now that we have established that there are no twisted sector ground states, we will next
count vacua, as distinct roots of the Coulomb branch relation.

k even:

First, consider the case that
(=¥ Mg = +1, (3.139)

for k even.

If N —Fk+1is even, then for k even, N is odd, and the Coulomb branch relation (3.135)
reduces to the degree N polynomial

O-N + (Z Thzﬁ’bj> JN_2 + ( Z mhmmmi;}mm) UN_4 + o= 07 (3140)
1<j 11 <i2<13<i4

where o = 11, + my. This equation is symmetric in ¢ — —o, so all nonzero roots will come
in positive/negative pairs. The N roots are of the form

g = 0, :|:5'1, sy, :i:a'(]\[_l)/g (3141)

with (for generic m;) none of the & vanishing (except the first root in the list above). For
N — k + 1 even, one zero root is allowed by the excluded locus conditions, and so we find

the number of vacua is
( (v 4];41)/2 ) + ( U\;W__l)l/z ) (3.142)
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(including possible zero roots), all in untwisted sectors. The second term above reflects the
two-fold degeneracy among nonzero roots arising from the fact that the Weyl orbifold only
flips signs of pairs of g,. (Since N > k, and N — k + 1 = 2M, it is straightforward to see
that the expression above is well-defined.) The original gauge theory in this case is regular
in the sense of [4].

Next we turn to the case that N — k4 1 is odd, so that (since k is even), N is even. In
this case, the Coulomb branch relation (3.135)) reduces to the degree N — 1 polynomial

(Zmz> oVt < Z milmigmi;;) oV 4 o=, (3.143)

11 <t2<i3

where again o = I, + my. As before, this equation is symmetric in ¢ — —o, so all nonzero
roots will come in positive/negative pairs.

Just as in the analysis of the last section, for N even, this equation has N roots, of the

form
o = :]:5'1, Tty :t&N/Q, (3144)

with (for generic m;) none vanishing. Given that the orbifold group will flip signs of os, and
that absolute values of different o, must differ, and finally given the Sy_;.1 portion of the

orbifold, we count
<]\J[\22> N ( <NJX/§>/2) (3.145)

vacua, all in the untwisted sector. Since N > kand N —k+1=2M + 1, N/2 > M, and so
the expression above is well-defined.

Now, we turn to the case that

(=) Mg = —L (3.146)

Consider the case that N —k+ 1 is even, so that (since k is even), N is odd. In this case,
the Coulomb branch relation (3.135) reduces to the degree N — 1 polynomial ([3.143). The
N — 1 roots are of the form

o = :|:5'1, ety :l:a'(N_l)/g, (3147)

with (for generic 7;) none of the & vanishing. As before, we count

) ( N2 ) _, ( (Nui;%/z ) (3.148)

vacua. (The factor of 2 arises because the Weyl group orbifold only flips signs of pairs of
0q.)
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Finally, we turn to the case that N — k + 1 is odd, so that (since k is even), N is even.
In this case, the Coulomb branch relation (3.135]) is a degree N polynomial, with roots

g = i&l, Tty :l:&N/Q, (3149)

where (for generic m;) the & are all nonzero. The number of vacua is

( ]\17\22 > B ( uﬂf)/z ) : (3.150)

The original gauge theory in this case is regular in the sense of [4].
k odd:
So far we have discussed results for k£ even. Now, we turn to k odd.

First, consider the case that
(=) Mg = +1 (3.151)

for k£ odd.

If N—k+1iseven, then for k odd, N is even, and the Coulomb branch relation (3.135)
reduces to a degree N — 1 polynomial, with roots

o = O,i&l,-~~ ,:]:5'(]\7_2)/2. (3152)

The number of vacua is

( (N —]\/g/i 1)/2 ) + ( (]\EJX;?{)Q/Q ) (3.153)

all in untwisted sectors. The second term reflects the two-fold degeneracy among nonzero
roots, arising from the fact that the Weyl group acts by pairs of sign flips. This theory is
not regular in the sense of [4].

If N —Fk+1isodd, then for k odd, N is odd, and the Coulomb branch relation (3.135)
reduces to a degree N polynomial, with roots

g = O,:l:&l,"' ,:]:5'(]\7_1)/2. (3154)

Since N — k + 1 is odd, the zero root is on the excluded locus. The number of vacua is

N—1)/2
(V12 ), (3159

using the fact that the Weyl orbifold now flips individual signs, not just by pairs. This theory
is regular in the sense of [4], and the number of vacua matches that given in [4][table (4.20)]
and table [
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Next, consider the case that
(=) g = -1 (3.156)

for £ odd.

If N—k-+1iseven, then for k odd, N is even, and the Coulomb branch relation (3.135)
reduces to a degree N polynomial, with roots

o = 461, +oN). (3.157)

Since N — k + 1 is even, the Weyl group acts by even numbers of sign flips, leading to a
two-fold degeneracy, so the number of vacua is

N/2
2 ( o k/+ 02 ) | (3.158)

This theory is regular in the sense of [4], and the number of vacua matches that given

in [4][table (4.20)] and table [1

Finally, if N — k + 1 is odd, then for £ odd, N is odd, and the Coulomb branch rela-
tion (3.135)) reduces to a degree N — 1 polynomial, with roots

o = 61, , G n_1) (3.159)

Since N — k + 1 is odd, the Weyl group acts by flipping individual signs, so the number of

vacua is (N 1)/
( (N = k)/2 ) . (3.160)

This theory is not regular in the sense of [4].

3.2.3 Comparison of vacua

Now, we shall compare vacua in the mirrors to the O, (k) and SO(N — k+ 1) gauge theories.
We shall compare regular theories (in the sense of [4], and will see that mirrors to dual
regular theories have the same number of vacua, as expected. Non-regular theories are not
related by the duality in the same fashion, and so do not exhibit matching vacua.

First, we shall assume £ even.

Consider the O, (k) gauge theory with N odd and ¢ = +1. We have seen that the mirror

has ((N;/ ;)/2) N (UZ/E i>{2) (3.161)
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vacua, the same number as the mirror of the corresponding SO(N — k + 1) gauge theory
with ¢ = +1. In the O, (k) mirror, the second set of vacua arise in twisted sectors, whereas
in the SO(N — k + 1) mirror, all of the vacua arise in an untwisted sector.

Much as in the prototype case, there is a Z, symmetry on both sides. In the O, (k)
mirror, there is a quantum Z, symmetry, acting by a sign on the

(N —-1)/2
k/2—1
states in twisted sectors. In the SO(N — k + 1) mirror, there is an ordinary global Z,
symmetry, flipping the sign of a single o, and the corresponding set of states (reflecting a

two-fold degeneracy amongst nonzero roots, as the Weyl orbifold only acts on pairs of os)
are again anti-invariant.

This case specializes to the O, (2) <+ SO(2) prototype matching, for k = 2, N = 3, and
q = q = +1. In this case,

(N+1)/2 (N-1)/2\ [ 2 1y
( /2 + k/2— 1 ={ )" 0 ) = 3. (3.162)
The comparison of Zy symmetries also specializes.

Next, for k even, consider the O, (k) gauge theory with N even and ¢ = —1. We have

seen that the mirror has y
N/2
(22) -

vacua, the same number as the mirror of the corresponding SO(N — k + 1) gauge theory
with ¢ = +1. In both cases, all of the vacua arise in an untwisted sector; in neither case are
there any twisted sector ground states.

The other theories with k even are not regular, and it is easy to check that the number
of vacua in mirrors to corresponding O, (k) and SO(N — k + 1) gauge theories do not match.
The lesson we take is that the duality is only meant to apply to regular theories, where
regularity determines the value of the discrete theta angle on either side of the duality.

Next, consider the case k odd. We have seen that the mirror of the O, (k) gauge theory

with NV odd and ¢ = —1 has
(N —-1)/2
< (k—1)/2 (3.164)
vacua, the same number as the mirror of the corresponding SO(N — k + 1) gauge theory
with ¢ = —1. In this case, all of the vacua arise in untwisted sectors.

Finally, for & odd, consider the O, (k) gauge theory with N even and ¢ = +1. We have

seen that the mirror has y
N/2
2 ( (k—1)/2 ) (3.165)
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vacua, the same number as the mirror of the corresponding SO(N — k + 1) gauge theory
with § = —1.

To summarize, we have verified that our mirror construction correctly reproduces the
O, (k) < SO(N —k+1)

duality between regular theories described in [4], at least at the level of vacua.

3.2.4 Central charges

In the case that all of the twisted masses vanish, these dual gauge theories are believed
to flow to a nontrivial SCFT in the IR. The central charge of that IR SCFT is computed
in [4)[equ'n (4.28)] to be
1
g = Nk — Sk(k—1). (3.166)

In this section, we will describe how the same result can be derived from the mirror theories,
as another consistency check on the mirrors.

Our computation is based on the fact that for a Landau-Ginzburg model with a quasi-
homogeneous potential, one can determine the central charge. Specifically, if the superpo-
tential is quasi-homogeneous in the form

W (A\%®;) = N2W (®), (3.167)
then it is believed that there is a nontrivial SCFT in the IR with central charge [12]
c
5= Z (1—q). (3.168)

As a consistency check, if a Landau-Ginzburg model has a massive field, then the super-
potential is of the form W = a2, which is quasi-homogeneous with ¢ = 1, but since it is
massive, it should not survive to the IR, and indeed from the formula above, its contribution
to the central chargeis 1 —1 = 0.

First, consider the mirror to the O, (k) theory, described in section [3.2.1, The superpo-
tential (3.58)), in the special case that all twisted masses m;, vanish, is quasi-homogeneous
under the following symmetry:

Y = Y —In)\? (3.169)
X = AX. (3.170)

This determines multiplicative charges ¢ and central charge contributions as follows:
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Field‘q c/3=1—-q¢q
Y 0 1
X 2 -1

To compute the central charge, we need to count the number of each type of field:

Yioa: (N —1)M fields,

K,2a71: NM ﬁelds,

Yiomsi1: N fields, in the case that k is odd,

Xuw: (1/2)k(k —1) — M fields.

Adding up these contributions, we get the following results for the central charge. First, for
k even, so that M = k/2, we get

1
gz(N—DM+NM—#M—U+M, (3.171)
:2NM—%Mk—U, (3.172)

1
= Nk —k(k—1), (3.173)

matching [4][equ'n (4.28)]. For k odd, so that M = (k —1)/2, we get

1
gz(N—UM+NM+N—#%—U+m, (3.174)
1
= 2NM+N = Sk(k—1), (3.175)
1
= Nk—sk(k—1), (3.176)

again matching [4|[equ'n (4.28)].

Now, let us turn to the mirror to the dual SO(N — k + 1) gauge theory, described in
section [3.2.2] again in the special case that all twisted masses vanish. Here, the fundamental
fields, their charges, and their contributions to the central charge are as follows:

Field R-symmetry ¢ ¢/3=1—¢q Number of fields
Wit W= XW 2 -1 NM
In W5 invariant 0 1 (N—-1)M
WM+l W AW 1 0 N if k is odd, 0 else
X X = \2X 2 -1 (1/2)(N —k+1)(N—-k)— M
T;; T—T+1In) 0 1 (1/2)N(N +1)



Summing the contributions, we get for the total central charge,

c 1
- = Nk—=-k(k—1 3.177

which matches the result for the dual theory, as well as [4][equ’'n (4.28)], as expected.

4 O_ — O_ duality

In this section, we will study mirrors to both sides of the duality [4][section 4.6]
O_(k) + O_(N—-k+1) (4.1)
for N > k. As in the SO — O dualities,

e the theory on the left has N massless vectors z, - -- , xy, with twisted masses m;, and
e the theory on the right has N vectors @', --- , 2", of twisted masses m;, along with
(1/2)N(N + 1) singlets s;; = +sj;, 1 < i,j < N, of twisted mass —m; — m;, and a
superpotential

W= sya-al. (4.2)
2%

The mesons in the two theories are related by
Sij = Xj - Tj. (43)

The dualities are only claimed to exist when all the theories in question are regular, in the
sense of [4] (and as reviewed in section [2.4]), which constrains the discrete theta angle.

4.1 Prototype: O_(2) <> O_(N —1)

In this section, we will consider mirrors to the O_ — O_ duality in the special case k = 2,
relating

e an O_(2) gauge theory with N chiral multiplets in the doublet representation, of
twisted mass m;, and

e an O_(N — 1) gauge theory with N chiral multiplets Z',--- ,Z" in the vector repre-
sentation, of twisted mass m;, plus (1/2)N(N + 1) singlets s;; = +s;;, 1 <14,j < N, of
twisted mass —m,; — 1m;, and a superpotential

W= sya -l (4.4)
(]
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4.1.1 Mirror of O_(2) gauge theory

Here we consider the mirror to an O_(2) gauge theory with N chirals in the doublet rep-
resentation. This will be closely related to the O, (2) mirror discussed in section [3.1.1} but
with N not necessarily the same as 3. We will assume N is odd.

As the mirror superpotential is essentially identical to that of section [3.1.1} for brevity
we refer the reader there for a derivation of the critical locus, which is given by

N N

[[(c—mi) = [](~o—mi). (4.5)

i=1 =1

In this section we focus on the special case N is odd, so that the theory is regular for

q = +1. When N is odd, equation is a degree N polynomial, that is symmetric under
o +— —o. It has roots

0,%01, £09,- - , £0(N-1)/2- (4.6)

The orbifold relates o ~ —o, so there are only (N + 1)/2 distinct roots of the Coulomb
branch relation, in the untwisted sector. The root at ¢ = 0 intersects the fixed point locus
of the orbifold, and so there can be twisted sector ground states.

Here, we have N fields with complex masses (Y*) that are acted upon by the orbifold
(including YV, which we previously integrated out). (We do not include the o field in this
counting, as in the e* — oo limit, it is merely an auxiliary field.) From section and [4], in
a 7 orbifold, we know that since N is odd, only the RR twisted sector and NS-NS untwisted
sector will have an invariant ground state. As a result, the total number of vacua in this
theory, for N odd, both untwisted and twisted, is

(N=1)/2 + 1 = (N+1)/2. (4.7)

This matches the result for a regular O_(even) theory with N odd given in [4][table (4.20)]
and table [Il

4.1.2 Mirror of O_(N — 1) gauge theory

In this section, we discuss the mirror to the dual O_(N — 1) gauge theory with N chiral
multiplets of R-charge 1 and twisted mass m; and (1/2)N(N + 1) singlets s;; = +sj; of
twisted mass —m; — m;.

As in the O_(2) discussion, we assume that N is odd. For N odd, the mirror theory is
an orbifold of a Landau-Ginzburg model with fields

e Wie je{l,--- N}, ae{l, -~ ,N—1},
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L4 CTZ]:—F,-TYJH
o X, =X, pve{l, - N1},

e o,,ae{l,--- M= (N-1)/2},

with superpotential

M N . N 1\ 2 Xoa-1.)
W = ;ga<—ZIH(W’ ) +ZIH(W7 ) + ZIH(XQa,V>

i=1 i=1 v>2a

+ 3 g In (Whe)? + Z(mi_+ ;) T (4.8)

The first part of the orbifold group is the extension of the Weyl group discussed in section [2.2]
Here, to describe the O_ mirror rather than the O, theory, we take the extra Zsy to be 7, in
the conventions of that section. In addition, for each W%, there is an additional Z, orbifold
that maps Wo s —W5He,

The untwisted sector analysis then closely follows the same pattern as in section |3.2.2
for the mirror to an SO(N — k + 1) gauge theory, for N — k + 1 even. We only summarize
the pertinent results here. First, the Coulomb branch relation is

N N
1 (ca =) = ()" G ] (—oa — i), (4.9)
i=1 i=1
where the o, describe the critical locus, subject to the following excluded loci:
0. # Emy, (4.10)
o, # =o, fora#b. (4.11)

Repeating the analysis of section [3.2.2 if N is odd and (—)V~'¢ = +1, or more simply
G = +1, then the Coulomb branch equation has N roots of the form

g = 0,:':5'1,"' ,:l:é'(N_l)/Q, (412)

Precisely one zero root is allowed by the excluded locus conditions, which may or may not
have twisted sector contributions. For a 7 orbifold acting on n fields with nonzero complex
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masses, as discussed in section [2.6] if n is even, there will be invariant ground states in both
untwisted and twisted sectors, in both RR and NS-NS, whereas if n is odd, only the RR
twisted sector and NS-NS untwisted sector will have an invariant ground state.

In the present case, if we take the extra Z, extending Weyl to act on the ath o, then it
also acts as

Wi,2a—1 PN Wi,Za’ (413)
Xﬂ’ga_l e X“’ga for n < 2a — 1, (414)
X2a71,u — X2a,1/ for v > 2@, (415)

As a result, there are N W fields of eigenvalue —1 under the Z, (possibly including the
previously integrated-out W4?M) and 2(M — 1) X fields of eigenvalue —1. Since N is odd,
N 4+ 2(M —1) is always odd.

As a consequence, if N is odd, then we only get contributions from RR twisted and
NS-NS untwisted sectors, hence there are

( E%i%; ) = (N +1)/2 (4.16)

vacua. This particular case (N odd, kK = N — 1 even, § = +1) is regular in the sense
of [4], and the result above for the number of vacua in the mirror correctly matches an
entry in [4][table (4.20)] and table |1} As expected, this matches the result for the number of
vacua in the O_(2) mirror for N odd, as discussed in the last section, and so again we have
confirmed that the mirror proposal is consistent with the dualities in [4].

4.2 O_(k) <> O_(N — k+1) duality

In this section, we will compute the mirrors to either side of the duality between

e an O_(k) gauge theory with N massless vectors zy,- -+, zx, with twisted masses m,,
and
e an O_(N — k + 1) gauge theory with N vectors z!,--- ,#" with twisted masses m;,
singlets s;; = +s;; of twisted masses —m; — m;, and the superpotential
W= sya -l (4.17)
2%

As before, since the original gauge theories are only equivalent in the IR, we only expect
the mirrors to be equivalent in the IR, so we compare vacua for generic twisted masses, and
verify that the mirrors have the same number of vacua as one another and as the original
gauge theories.
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4.2.1 Mirror to O_(k) gauge theory

In this section we will give the mirror to an O_(k) gauge theory with N > k vectors.

Now, the mirror to the O_(k) theory is closely related to the mirror of an SO(k) theory
with the same matter. From sections [2.2] 2.3}

e If k is even, the O_(k) mirror is nearly the same as the O, (k) mirror, in which the
Weyl group has been extended by Zs, specifically a 7 orbifold.

o If k is odd, the O_(k) mirror will be one or two copies of the SO(k) mirror: one copy
if N is even, two copies if N is odd.

In any event, the starting point is the mirror to an SO(k) gauge theory with N vectors.
This is discussed in [1][sections 9, 10] and also reviewed in section [3.2.1] so we will focus on
vacua, referring readers to those references for further details. For the mirror to SO(k), the
critical loci of the mirror superpotential are defined by the Coulomb branch relation

N N

I1 (00— ) = (=) a]] (~0u — ). (4.18)

i=1 =1

where a € {1,--- , M} for k = 2M if even or 2M + 1 if odd, and with excluded loci

oy £ L, (4.19)
0. # *top, fora#b, (4.20)

and if k is odd, then in addition,
0o # 0. (4.21)

Next, we shall count vacua, in the case k is even. For brevity, we restrict to regular cases
in the sense of [4], meaning that ¢ = (—)N*! for k even.

If N is even (and k is even), then in the regular case, the Coulomb branch relation (4.18)
reduces to a degree N polynomial, with roots

o = :|:5'1,"' ,:I:&N/Q. (422)

The Weyl orbifold group, for O_(k), is extended to that of SO(k + 1), and so acts by
flipping the sigms of each ¢ individually, and by rearrangement of the o,. As a result, taking
into account the excluded locus requirement that different o, must be distinct, and the S

quotient, we see that there are
N/2
( . //2 ) (4.23)
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vacua, all in the untwisted sector, which matches the counting in [4][table (4.20)] and table([]

If N is odd (and k is even), then in the regular case, the Coulomb branch relation (4.18))
reduces to a degree N polynomial, with roots

o = O,:l:&l,"' ,:t&(N_l)/g. (424)

The Weyl orbifold group, for O_(k), is extended to that of SO(k+1), and so acts by flipping
the signs of each ¢ individually, as well as by rearrangement of the o,. However, since k is
even, the zero root is not excluded, and is on the fixed-point locus of the orbifold.

Specifically, the zero root lies in the fixed-point locus of the extra Z, orbifold, which from
section [2.2] is a 7 orbifold. As reviewed in section [2.6] the number of ground states that
survive a 7 orbifold projection depends upon whether the number of chiral multiplets with
nonzero complex mass is even or odd. In this case, if we think of the extra Z, as acting on
the ‘last’ componentEL then for generic m;, there are k — 2 massive X fields which are acted
upon nontrivially (the antiinvariant parts of X, ;1 <> X, ), which for £ even is always
even, and N massive Y fields which are acted upon nontrivially, which is odd. (We include
the Y field we integrated out, as it is an example of a massive field, but omit the o fields,
which in the limit € — oo are auxiliary fields.)

As a result, the number of fields with a complex mass in this (mirror) theory is odd,
so from the analysis of section 2.6, only the RR twisted sector and NS-NS untwisted sector
will have an invariant ground state. Combining twisted and untwisted sector ground states,
corresponding to different roots, we find a total of

( (le_/;)/2 ) + ( (]]:;[/;i){2 > = ( (N]j/;)/z ) (4.25)

vacua, which matches the appropriate entry in [4][table (4.20)] and table [1}

Next, we turn to the case that k is odd. For brevity, we restrict to regular cases in the
sense of [4], which means that ¢ = (—)". The mirror to O_(k) for k odd will be

e one copy of the SO(k) mirror if N is even,

e two copies of the SO(k) mirror if N is odd,

so we first analyze the SO(k) mirror.

If N is even (and k odd), the Coulomb branch relation (4.18) reduces to a degree N
polynomial, with roots
o = %61, k. (4.26)

2 The Weyl group makes this choice equivalent to any other.
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Since k is odd, the Weyl orbifold group acts by rearrangement and individual sign flips, so
the number of vacua of the SO(k) mirror is

() 2

Since the O_(k) mirror is one copy of the SO(k) mirror, we see that the O_(k) mirror also

(W2)) o

vacua, which matches the appropriate entry in [4][table (4.20)] and table [1]

If N is odd (and k odd), the Coulomb branch relation (4.18) reduces to a degree N
polynomial, with roots
o = O,i&l,--~ ,:]:5'(]\7_1)/2. (429)

Since k is odd, the Weyl orbifold group acts by rearrangement and by individual sign flips,
and furthermore the zero root lies on the excluded locus. As a result, the number of vacua

of the SO(k) mirror is
< ((]]X __11))//22 ) . (4.30)

The O_(k) mirror is two copies of the SO(k) mirror since N is odd, so we see that the O_(k)

mirror has
(N —-1)/2
2 < (k—1)/2 ) (4.31)

vacua, which matches [4][table (4.20)] and table

Next, we will analyze the mirror of the dual, and compare vacua.

4.2.2 Mirror to O_(N — k + 1) gauge theory

In this section, we will compute the mirror to the O_(N — k + 1) gauge theory with N > k
vectors &1, - -+ N of twisted masses m; and (1/2)N(N + 1) singlets s;; = +s;; of twisted
mass —m; — m;, with superpotential

W= sya-al. (4.32)
(]

Now, the mirror to an O_ (even) theory is merely the mirror to SO(even) with an enlarged
Weyl orbifold, and the mirror to an O_(odd) theory is merely copies of the mirror to SO(odd).
As a result, we can re-use the results of section on mirrors to closely related SO(N —
k + 1) gauge theories.
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In section [3.2.2] briefly, it was argued that the critical locus of the mirror superpotential
is given by the Coulomb branch relation

N N
(Ua - mz) = (_)N_k+1(jH (_Ua - mz) ) (433)
i=1 i=1
with excluded locus
oo # L, (4.34)
o, # o, fora#0b, (4.35)

and if N — k4 1 is odd, then in addition,
o, # 0. (4.36)
We shall restrict to cases in which the original gauge theory is regular, meaning ¢ = (—)*.
Now, we shall count vacua, beginning with the case that k is even.

If N is even (and k is even), then N — k+ 1 is odd, and in the regular case, the Coulomb
branch relation (4.33)), reduces to a degree N polynomial with roots

g = :i:CN)'l,"' 7ZE&N/2. (437)

The Weyl group orbifold of SO(N — k + 1) acts by flipping the signs of each ¢ individually,
so as a result, in the SO(N — k + 1) mirror, there are

( (N JX/Z)/? ) N ( ka//; ) (4.38)

vacua, all in the untwisted sector. Since N — k + 1 is odd, and N is even, the mirror of the
O_(N —k+1) guage theory is one copy of the SO(N —k+ 1) gauge theory, from section[2.3]
and so we see that the O_(N — k 4 1) gauge theory has

( ]Ij //22 ) (4.39)

vauca. This precisely matches the result for N even and k even for the O_(k) mirror, as
expected.

If N is odd (and k is even), then N — k + 1 is even, and in the regular case, the Coulomb
branch relation (4.33) reduces to a degree N polynomial with roots

o = O,:l:&l,"' ,:i:CNT(N_l)/g. (440)

The orbifold group for the O_ (N —k+ 1) mirror extends the Weyl group orbifold of SO(N —
k+1) to act by, for example, flipping signs of all o, not just pairs, in addition to rearrangment
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of the o,. In addition, the zero root is not excluded (since N —k+1 is even), and so represents
an intersection of the critical locus with the fixed-point locus, hence implies possible twisted
sector contributions.

For generic m;, there should be N — k£ — 1 massive X fields which are acted upon non-
trivially by the extra Z, (the antiinvariant part of X, y_p <> X, n_k41), which is always
even, and N massive Y fields which are acted upon nontrivially (the antiinvariant part of
YiN—k <> YiNn_k+1), which is odd. (As before, we include the Y field we integrated out, as it
is a massive field, but omit the o fields, which are auxiliary in the limit.)

As a result, there is an odd number of fields with nonzero complex mass which are acted
upon by the 7 orbifold in the mirror to the O_(NN — k + 1) theory, so from the analysis of
section [2.6] there will only be an invariant ground state in the RR twisted sector and NS-NS
twisted sector. Combining twisted and untwisted sector ground states, corresponding to
different roots, we find a total of

(D02) e (W) = (WER) e

vacua, which matches the result for N odd and k even for the O_(k) mirror, as expected.
Next, we turn to the case that k is odd.

If N is even (and k odd), then N — k + 1 is even, and in the regular case, the Coulomb
branch relation (4.33) reduces to a degree N polynomial, with roots

g = ﬂ:&l,"' ,j:(}N/Q. (442)

The Weyl group orbifold of O_(N — k 4 1) acts by flipping signs of individual o (a Zs
extension of the Weyl group of SO(N — k + 1)), so in the O_(N — k + 1) mirror, there are

( (N —]Z/—QF 1)/2 ) - ( (k ]Y/f)/z ) (4.43)

vacua. This precisely matches the result for N even and k odd for the O_(k) mirror, as
expected.

Finally, if N is odd (and k is odd), then N — k + 1 is odd, and in the regular case, the
Coulomb branch relation (4.33]) reduce to a degree N polynomial, with roots

g = O,:|:5‘1,'-' ,ﬂ:é‘(N,l)/Q. (444)

Since N — k + 1 is odd, the zero root is excluded, and for SO(N — k + 1), the Weyl group
acts by signs on individual s, so the number of vacua in the SO(N — k + 1) mirror is

< g B 11>)//22 ) : (4.45)
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Since N — k + 1 is odd and N is odd, the mirror of the O_(N — k + 1) gauge theory is two
copies of the SO(N — k + 1) mirror, from section , so we see that the number of vacua in
the mirror to the O_(N — k + 1) gauge theory is

N —1)/2
2( <(k_ 1)>//2 ) . (4.46)

This precisely matches the number of vacua of the mirror of the dual O_(k) gauge theory,
as expected.

Thus, we see that the mirror of the dual O_(N — k + 1) theory has the same number of
vacua as the mirror to the O_(k) theory, confirming our mirror construction.

5 Other properties of SO theories

5.1 Supersymmetry breaking: N <k — 2

It was argued in [4][section 4.4] that for SO(k) gauge theories with N < k — 2 vectors,
supersymmetry is broken. We can see that explicitly in the mirror. Briefly, applying the
SO(k) mirrors described in [1][sections 9, 10] and reviewed in section [3.2.1] the perturbative
vacua, in the untwisted sector, are defined by solutions to the Coulomb branch relation

[T(a=m) = (- T[ (~ou =m0 (5.1

subject to excluded loci

Oq 7é iml,
0. # =op fora#b,

and for k odd,
o. # 0. (5.4)

Put briefly, for N < k — 2, no solutions can be found that are not excluded, hence there
are no supersymmetric vacua.

Depending upon the value of ¢ and whether N is even or odd, the Coulomb branch
relation above will have N roots, at most one of which will vanish, for which a vacuum is
defined as a set of either k/2 (k even) or (kK —1)/2 (k odd) distinct values of o coinciding
with roots. Below is a table of possibilities for mirrors to SO(k), culled from the results in

section B.2.1}
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qg=+1 qg=-—1
N even N odd N even N odd
keven | 0, (N —2)/2|0,(N—-1)/2 N/2 (N—-1)/2
k odd N/2 (N —-1)/2 0,(N—-2)/210,(N—-1)/2

Entries including a ‘0’ have a zero root; the other number gives the number of nonzero
entries, up to signs.

For k even, to have a supersymmetric vacuum, we need at least k/2 distinct (after signs)
roots, to be consistent with the excluded locus conditions. However, since N < k — 2,
N/2 < (k/2) —1, it is straightforward to see that not enough distinct o can be found, hence
no supersymmetric vacua exist in the SO(k) mirror.

For k£ odd, to have a supersymmetric vacuum, we need at least (k — 1)/2 distinct (after
signs) roots, to be consistent with the excluded locus conditions. However, since N < k — 2,
we have N/2 < (k/2) — 1, and examining the table above we again see that not enough
distinct roots exist, hence no supersymmetric vacua exist in the SO(k) mirror.

Thus, for N < k—2, the mirror to an SO(k) gauge theory with N vectors does not admit
a supersymmetric vacuum, and so supersymmetry is broken.

5.2 N =k —1 and free field theories

Consider an SO(k) gauge theory with N chirals in the vector representation. For N = k —1,
according to [4], these theories flow in the IR to a free theory of (1/2)k(k — 1) mesons on the
Higgs branch. In this section, we will perform some consistency checks of this claim in the
mirror: we will find the free field mirrors in the structure of SO(2) and SO(3) theories, and
will check central charge computations for more general k. We will leave detailed verifications
for general SO(k) to future work.

5.2.1 Prototype: SO(2), N =1

As a simple model of later analyses, we consider the case that k = 2, namely the mirror to
an SO(2) gauge theory with N = 1 doublet. The mirror is described by three fields, o, Y3,
Y5, with superpotential

W =0lYo—Y1—1t) + exp(—Y1) + exp(—Ys). (5.5)

(We assume all twisted masses vanish.) As we are interested in generalizations to other
SO(k) groups, we take t € {0, 7i}.
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Integrating out o gives the constraint
Yo = Y1+t (5.6)
hence the resulting superpotential
W = exp(-Yi) + e 'exp(-Yi) = (1+e ") exp(-Yi). (5.7)

In the case that the original gauge theory is regular, ¢ = 0, and the superpotential W' o
exp (—Y}), which is the same as the mirror to a single free chiral multiplet [2,|13].

Thus, in this case, we see that the mirror to a regular SO(2) gauge theory with N =1
doublet is the same as the mirror to a free field theory of one chiral multiplet, consistent
with the expectation that the gauge theory flows to a theory of (1/2)k(k — 1) = 1 chirals.

5.2.2 Prototype: SO(3), N =2

As a slightly more complicated example, we next turn to the case that k& = 3, the mirror to an
SO(3) gauge theory with N = 2 vectors. This theory is predicted to have (1/2)k(k—1) =3
free fields in the IR. The mirror is described by the fields Y (a € {1,2,3}, i € {1,2}), Xi3,
Xo3, and o, and has the superpotential

2 2 3
W = o (Z (Y’zl _ Y‘ll) — In (X_%>) + X13 + X23 + Z Zexp (—Yal) . (58)
i=1 13 i=1 a=1

We assume the theory is regular, so we have set t = 0 for simplicity.

Now, we will first integrate out the X fields. Doing so will generate a measure factor we
should compute. It is straightforward to show that

W o O*W o OPW
2 T T 2o 5~ Ty =0, (5.9)
SO )
det W = —— 2 (5.10)
Xiy X35
which after taking into account the operator mirror map relation
X23 = 40 = —Xlg, (511)
implies that
1
det W = ——;, (5.12)
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and so we get the measure factor
(det PW) ™" = o2, (5.13)

After integrating out the two X fields, the superpotential becomes

2 3

W =o¢ (i (Vs —Y) — m’) + ZZeXp (-Y)). (5.14)

= i=1 a=1

Next, we will integrate out two Y fields, so as to generate a measure factor that will
cancel out the one obtained from integrating out X fields. Specifically, we will integrate out
Y2 and Y;2. We find, for the superpotential above,

ow ow

8_Y12 = —0 —exp (—le) , 8_Y22 = 40 —exp (—Y22) , (5.15)
so that along the critical locus we can identify
exp (-Y?) = —o, exp(-Yy) = +o. (5.16)
To get the measure factor, note that
oPwW 9 oPWw 9 oPWw
ov20v? = +exp (-Y7), WIOV? = +exp (-Y5), VOV? = 0, (5.17)
from which we compute
det O’°W = exp (=Y{)exp (-Y5) = —0o?, (5.18)

which precisely cancels out the measure factor resulting from integrating out the Y fields.

Now, solving for Yf2 along the critical locus, we find
VP = In(-0), Y7 = In(+o), (5.19)

so after integrating out these two Y fields, the superpotential becomes

g

W = o (Y21 —Y! +In (_—U) —7ri> + 0 —0 + exp(-Y]) + exp (-Y3)

+ exp (-Y3) + exp (-Y5), (5.20)

(VYY) + e (1) + exp (1))
+ exp (—Y3) + exp (=Y5). (5.21)
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From the last line of the equation above, we see that Y3 and Y7 already are visible as the
mirrors to two free fields, so it remains to make explicit the third.

Next, we integrate out o, which gives the constraint

Yy —Y! = 0. (5.22)
Define
vio= i), (5.23)
Vi = %(—Yf +Y;), (5.24)
then the constraint is simply
Y! = 0. (5.25)

Eliminating Y, the superpotential becomes
W = 2exp(-Y]) + exp (=Yy) + exp (-Y5). (5.26)

Modulo a field redefinition to rescale the first term, this is precisely the mirror superpotential
for three free fields, as expected for an SO(3) theory with N = 2.

5.2.3 Central charges

In this section, we will briefly perform a consistency check by computing the central charge
predicted by the mirror theory. Our analysis will be very similar to the central charge
computation in section [3.2.4] and so we will be very brief.

If one sets all twisted masses to zero, the mirror to an SO(k) theory, as discussed in
[1][sections 9, 10], has a superpotential which is quasi-homogeneous with respect to the
symmetry

T = NXu, Yia = Yie —In % (5.27)

As a result, these fields contribute to the central charge of a possible nontrivial IR limit as
follows:

Field‘q c/3=1—¢q
Y 0 1
X 2 —1.

Suppose first that k is even. In that case, there are
1 1 1
—k(k—1) — =k = <k(k—2
sk =1) = gk = Sk(k—2)
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X fields, and

k k 1 1
N—-1)= 4+ N=- = —k(k—2 —k(k—1
(N=1)3 + N5 = Sh(k=2) + sk(k— 1)
Y fields, so the total predicted central charge is
c 1
- = -1

which matches the predicted number of free mesons in the IR.

Next, suppose that k is odd. In this case, there are
1 1 1
“k(k—1) — =(k—=1) = =(k—1)?
CKE 1) = S(h—1) = S(k— 1)

X fields, and

(k —1) (k — 1) 1

A e (R () I |y

2 2
Y fields, so the total predicted central charge is

o L D(k-2) ¢ (k1) = k(1)

again matching the predicted number of free mesons in the IR.

6 Symplectic-symplectic duality

(5.28)

(5.29)

In [4][section 5.6], it was proposed for that N odd, N > 2k+3, the following two-dimensional

(2,2) supersymmetric gauge theories are dual in the IR:

e Sp(2k) gauge theory with N fundamentals x1, -, xy, with twisted masses m;,

e Sp(N — 2k —1) gauge theory with N fundamentals z!, - .-V

, with twisted masses m;,

and (1/2)N(N — 1) singlets a;; = —aj;, 1 <i,j < N, with twisted masses —m; — m;

and superpotential

Y]

(6.1)

(In the notation used here, Sp(2) = SU(2).) The mesons in the two theories are related as

[zi7;] = ai;.
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In the expressions above, the bracket notation indicates Sp-invariants:
(73] = JPE], (6.3)
where J% is the antisymmetric Sp symplectic form.

In this section we will compute the number of vacua of the mirrors to each side of the
duality above, and check that they match. Unlike previous cases, here on both sides of the
duality the gauge group is connected, so this will not be a test of mirrors of gauge theories
with non-connected gauge groups; nevertheless, as this is another duality in [4], this paper
does seem the appropriate place to test it.

6.1 Mirror to Sp(2k) gauge theory

The mirror to the first theory is discussed in [1][section 11]. For brevity, we refer the reader
to that reference for details of the mirror and its analysis.

It was shown in [1][section 11] that the critical loci are defined by the equation
N N
(00 — i) = [](—0a — i), (6.4)
i=1 i=1
and the excluded loci are defined by [1][section 11]

o, # 0,+m;,
o, # =top, fora#b.

The Weyl group orbifold W has the same form as for SO(2k 4 1): it is an extension
1 — (Z)" — W — S, — 1, (6.7)

where the symmetric group S, acts by exchanging o,, and each Zy acts by flipping signs of
04'S.

The Coulomb branch relation (6.4]) can be rewritten as
ot (Z mzmj) O ( 2 mmmm> o =00 (68)
1<j 11 <t2<t3<i4
which is symmetric under o — —o.
In this theory, NV is always odd, so this has roots

0 = 07 Zl:&l,"' 7:]:5-(N—1)/27 (69)

95



where for generic m;, none of the &; vanish. The zero root is not an allowed solution, as it
sits on the excluded locus. The Weyl group orbifold acts on each o, by sign flips, and also
exchanges different o,, so as a result, since there are no twisted sector contributions, we see

there are
( <N_kl)/2 ) (6.10)

vacua.

6.2 Mirror to Sp(N — 2k — 1) gauge theory

The mirror to the second theory is a Weyl-group orbifold of a Landau-Ginzburg model with
fields

o W =exp(-Y}/2),1<i<N,1<pu <N —2k— 1, mirror to the fundamentals 7,
which we take to have R-charge 1,

o A;; = —Aj;, mirror to the singlets a;;, which we take to have R-charge 0,

o X, n<v,1<puv<N-—2k—1, excluding Xs,_12, (which would be mirror to the
Cartan subalgebra),

e 0,1 <a<(1/2)(N —2k—-1),

with superpotential

W = ZU“ (—2Zp?uanfL - ZO&ZHIHX##
a (7 M
— Z(agb,gc In Xop e + 5y 1 9.1 10 Xop 1201

b<c

+0‘51)—1,% In Xop_1,2c + agm_l In X2b,261))
+ W+ 2) W,
i i

+ Z Xy + Z (Xoa20 + Xoa—120-1 + Xoa—1.20 + Xoa20-1)

a<b

+ Zexp(—Azj) + Z(m, —FTNTL]) Aija (611)

1<j 1<j
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where

p?,u = 5,u,2a - 5;4211—17 (612)
aZV = 5M,Qa - 5#,2(171 + 61/,2(1 - 511,26171' (613)

In addition to the Weyl orbifold, there is an orbifold by (Zy)NV=#=1) where the generator

of each Zs acts as ‘ '
WZL — _W;r (6.14)

The extra superpotential term of the dual theory defines R-charges for the fields, but does
not otherwise appear in the mirror.

Integrating out the o, gives the constraints

N - 2
WZ* X2 —1I/X 2a—1
1 —Za”l 1 a- vz Kea = 0. 6.15
H(H W5a> i H<H Xoaw  Xp2 ) (619

i=1 pu<v

We define
Wit = Wil (6.16)
wh = % (6.17)

in terms of which the constraint becomes

In ﬂW + In Koot Auzam1) _ (6.18)
p<v X2a1/ Xu,Za

=1

We use this constraint to eliminate W@

MG % = L

u<v

To make our notation consistent with earlier sections, define

T, = whe (6.20)
N1 -1 1/2
; X2a1/ X 2a
= whe ’ = . 6.21
(H > [}E XQa—lVXu2a 1] ( )
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The superpotential now becomes

N-1
wo= ) > W (W + W1> W (Ta+ 1)
=1 a - a
N
+ 3575 i (Wi’
=1 a

+ Z Xup + Z (Xoa,26 + Xoa—1,20-1 + Xoa—1.20 + Xoa26-1)

a<b

+ Z exp(—Ai;) + Z (m; +m;) Agj.

1<J 1<j

The critical locus is then given by

1,a

Wi, Wit (WE“ + ) = —2m; fori< N,

Wres WY (T, + 1Y) = —2m,
1
whe

Ajj: exp(—A4;y) = m+my,
X Xogoa = WP (=To + 71,1,
X2g-12a-1 = Wiv’a (Ta — Tgl) = —Xo24,2a;
2X2000 = Wf’a (Ta — Tgl) - Wf’b (Tb — Tb_l) for a < b,
2Xo020-1 = Wiv’a (Ta - Tgl) + Wfrv’b (—Tb + Tb_l) ,
2Xoa—120 = Wiv’a (—Ta + Tgl) + Wiv’b (Tb — Tgl)
= —2Xo420-1,
2Xo0 1261 = W° (=To+ 71"
+ Wi\]’b (—Tb + T;l) for a < b,
= —2X242-

Wi W (W — ) = WY (Y, - Y,Y), fori<N,

On the critical locus, define

1. - 1
a = = e b — . for i N;
o QT/VJr <W Wi’“) or i <
1
- §Wf’a (To— 71, 1).

These expressions match due to the third critical locus equation above.

o8
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It is straightforward to verify the Coulomb branch relation

N N

[1 (00— =[] (=ou—m). (6.:37)

i=1 =1

The excluded locus is given by

g £ Lii, (6.38)
0. # =+o, fora<b, (6.39)

hence, for example, o, # 0.

Now, by assumption, NV is odd, so the Coulomb branch relation above reduces to a degree
N polynomial with roots
o = 0,:':5'1,"' ,:]:5'(]\7_1)/2. (640)

The zero root is excluded, and as the Weyl orbifold group exchanges vacua and flips signs of
individual o,, we find that the total number of vacua is

GRA} .

all in the untwisted sector, which matches our previous result for the number of vacua in the
mirror to the corresponding Sp(2k) gauge theory.

Thus, we see that at the level of vacua, the nonabelian mirror proposal is consistent with
the symplectic-symplectic duality of [4].

7 Conclusions

In this paper we have described an extension of the nonabelian mirrors proposal of [1], from
mirrors of two-dimensional (2,2) supersymmetric gauge theories with connected gauge groups
to include the gauge groups Oy. We have checked the proposal by comparing mirrors to
each side of the gauge theories dualities of [4]. Since the original gauge duality relates gauge
theories in the IR, the proposal here relates the mirrors in the IR, and so we compared the
number of vacua. For the groups O, unlike connected gauge groups |1], the orbifold group
acting on the Landau-Ginzburg mirror often has fixed points intersecting the critical loci of
the mirror superpotential, and so one must take into account twisted sectors. The mirror
dualities often relate untwisted sector vacua to twisted sector contributions, making for a
rather intricate test of the nonabelian mirror proposal. In cases with nontrivial IR limits,
we have also checked central charges, and in addition we have also checked mirrors to some
other unrelated properties discussed in [4].
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A Higgs branches and chiral rings

Most of this paper and previous work [1,3] has focused on understanding Coulomb branches
of gauge theories in mirror constructions. Briefly, we suggest in this section that the mirror
to a Higgs branch might be encoded in asymptotic limits of the fields, and based on that
idea, we will outline a proposal for mirrors to the chiral rings discussed in [4].

Gauge-invariant operators in a (2,2) GLSM can roughly be characterized into two types:

e Products of s, along a Coulomb branch. These correspond to equivariant cohomology
of the ambient space, as discussed in detail in e.g. [14][appendix A].

e Gauge-invariant combinations of matter fields, along a Higgs branch.

For a GLSM describing a compact space such as a hypersurface, the gauge-invariant
matter field combinations typically corresopnd to algebraic complex structure deformations.
For example, for the quintic hypersurface in P*, the gauge-invariant field combinations have
the form

Pf5(<l5);

and products thereof, where f5(¢) is a degree five polynomial in the charge-one matter fields.
If the target is a Calabi-Yau threefold, these can be identified with elements of H*!, modulo
the usual subtleties of overcounting and non-algebraic deformations.

For a GLSM with vanishing superpotential, the same gauge-invariant field combinations
merely correspond to functions on the target space. For example, for the GLSM with gauge
group U(1) and fields

the gauge-invariant field combinations are

pf2(x0,$1)a
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which simply correspond to the invariant function ring on C?/Z,: if we identify
T = pry, Yy = pri, Z = pIroTi, (A.1)
then the ring of gauge-invariant polynomials is
Clz,y, 2]/ (zy = 2°). (A.2)
As the GLSM itself is describing a resolution of C?/Z,, this is entirely appropriate.
In any event, due to the fact that for GLSMs describing compact spaces, the rings of
gauge invariant operators corresond to algebraic complex structure deformations, this ring of

GLSM operators is sometimes referred to as the GLSM “(c,c)” ring, generalizing the notion
of chiral rings in (2,2) SCFTs [15].

In the remainder of this section, we will briefly outline a suggestion for how to see such
chiral rings for (S)O(k) theories, from [4][section 4.7], in the mirror presented here, in the
special case k = 2. As discussed there, the chiral ring in the untwisted sector of an O(k)
theory is

Cl(ziz;)]/ )1, (A.3)
and the chiral ring of an SO(k) theory is
Cllzizy), [xi, -~ 23, )]/ (J1, T2, J3), (A.4)
where J; denotes relations of the form
(xioxjo> T ('ri(]'rjk)
det : : : (A.5)
(xikxjo) T (xlkx]k)
Jo denotes relations of the form
(xhle) T (xilxjk)
['ril o 'mik”le o 'xjk] = det ) (A6)
(Iikzjl) T ('Ilkx]k)
and J3 denotes relations of the form
k
> (P lwig -+ Ty - ) (i, 5) =0, (A7)
p=0
where
(zix;) = Z 230, (A.8)
ab
xlll 3;112 e lek
xa 'rlzz T ‘/L‘fk
xéfl ;EZ - xfk
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Formally, we will consider a region where all the Y* — co. As a result, defining
Y= (YY), (A.10)

Vi = - (Y3+Y)), (A.11)

N~ N~

we see that each Y] — oo, but we will take limits in such a way that each Y remains finite.

First, consider an O(2) theory. We make the ansatz that the mirror of (z;x;) is
(ziz;) <> exp (—Y') +exp (—Yf) +exp (+Y") + exp (+Yj) : (A.12)

It is straightforward to show that these quantities have relations in the ideal J;, which here
is generated by relations of the form

(3171‘0$j0) (ziozﬁ) ($i055j2)
det (33‘1'11‘]'0) ('Tille) (wilij) . (Al?’)

(:Ciz xjo) (33'1'2 Ljy ) (xizsz)

It is straightforward to check that the mirror operators have vanishing determinants of
3 x 3 matrices of the form above, meaning for example

R T T R e e R e Ve
det | mo+ay' +yi+uyr' zo+ay ety metay +ystyst | =0,
3+t tyrt wt st by st watay bys+yst

for z; = exp(—Y"), y; = exp(—Y7), but for example corresponding 2 x 2 matrices do not
have vanishing determinant:

I i e T S R S R T

det - L - °
x2+x21+y1—|—y11 $2+9321+yz+?/21

7£07

exactly as expected for the relations to be encoded in the ideal J;.

Next, consider an SO(2) theory. We claim the mirror map acts on chiral ring generators
as

(zizj) < exp(-Y') +exp (—Yf) , (A.14)
[wiz;] < i(exp (=Y") —exp (—Yf)) . (A.15)

It is straightforward to check that the mirror operators obey the relations in the ideals
Ji, Jo, J3. For example, for z; = exp(=Y"), y; = eXp(—Y,j), it is straightforward to show
that

T1+Y1 T1+Y2 T1tY3
det $2+y1 132+y2 I2+y3 = 0,
T3+ Y1 T3+Yz2 T3+ Y3
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but they do not obey relations encoded in determinants of smaller matrices, for example

det | L1 T Y1 1t £ 0.
To+ Y1 T2+ Y2

Hence, the mirror operators are in the ideal J;, but do not obey a smaller subset of those
relations. Similarly, it is straightforward to show that

1+ 3314‘92}

i — — = det
( 1 2)(?J1 92) |:x2—|—y1 To + Yo

which generates the ideal J;, and also
iz — x2)(xo +y) — i(zo — @2) (21 +y) + i(xo —x1)(22+y) = 0,
which generates the ideal J;.

We leave proposals for mirrors to chiral ring structures in (S)O(k) theories for k > 2 to
future work.
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