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A B S T R A C T

Research in the life sciences has traditionally relied on the analysis of clear morphological phenotypes, which are
often revealed using increasingly powerful microscopy techniques analyzed as maximum intensity projections
(MIPs). However, as biology turns towards the analysis of more subtle phenotypes, MIPs and qualitative ap-
proaches are failing to adequately describe these phenotypes. To address these limitations and quantitatively
analyze the three-dimensional (3D) spatial relationships of biological structures, we developed the computational
method and program called ΔSCOPE (Changes in Spatial Cylindrical Coordinate Orientation using PCA Exami-
nation). Our approach uses the fluorescent signal distribution within a 3D data set and reorients the fluorescent
signal to a relative biological reference structure. This approach enables quantification and statistical analysis of
spatial relationships and signal density in 3D multichannel signals that are positioned around a well-defined
structure contained in a reference channel. We validated the application of ΔSCOPE by analyzing normal axon
and glial cell guidance in the zebrafish forebrain and by quantifying the commissural phenotypes associated with
abnormal Slit guidance cue expression in the forebrain. Despite commissural phenotypes which display disrup-
tions to the reference structure, ΔSCOPE was able to detect subtle, previously uncharacterized changes in
zebrafish forebrain midline crossing axons and glia. This method has been developed as a user-friendly, open
source program. We propose that ΔSCOPE is an innovative approach to advancing the state of image quantifi-
cation in the field of high resolution microscopy, and that the techniques presented here are of broad applications
to the life science field.
1. Introduction

Since Robert Hooke identified cells in a piece of cork, biologists’
search for patterns has been informed by qualitative observations. As
microscopy and imaging techniques have advanced and generated larger
and more complex data, our qualitative abilities are proving to be inad-
equate to extract all the information these data may hold (Mitra and
Pesaran, 1999; Smith et al., 2018; Smith and Nichols, 2018). The field of
biology now faces a problem in which the complexity and granularity of
current data collection methods has surpassed the ability of researchers
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to fully conceptualize all of the data collected. Moreover, the challenges
of many of the phenotypes being studied in the modern era, whether
slight changes in neuronal positioning in an autism spectrum disease
model or the significant perturbations in the size of the brains of children
infected with Zika, require greater statistical rigor to detect and quantify
(Schuler-Faccini, 2015; Del Campo et al., 2017; Riddle et al., 2017;
Redcay and Courchesne, 2005). To overcome these challenges, we need
new computational tools to process, quantify, and statistically analyze
complex 3D image-based data.

There are several prominent obstacles to analyzing 3D image datasets
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that need to be overcome to facilitate the acquisition of quantitative and
statistical metrics. First, biological specimens within the same species
and age group exhibit morphological variation (Smith and Nichols,
2018). Second, all image data contains a subset of positive pixels, such as
background noise or off target labeling that can create ambiguity in
isolating the true signal of the sample (Mitra and Pesaran, 1999). Addi-
tionally, 3D image data has historically been visualized using maximum
intensity projections (MIPs), which collapse the third dimension of the
data in order to present the image in a form that is easier to visualize and
conceptualize. Unfortunately, this compression leads to a loss of infor-
mation that may be critical to detecting both coarse and subtle pheno-
types. Advances in data visualization software and computational power
have begun to enable a shift away from MIPs and towards analyzing the
whole 3D data sets. However, these techniques often rely on either ma-
chine learning, which lacks descriptive ability, or on a process that warps
the data to fit a model, both of which have the potential to introduce new
errors (Bennett et al., 2009; Smith and Nichols, 2018; Mitra and Pesaran,
1999; Smith et al., 2018). Finally, experimental variability during image
collection can further complicate phenotype interpretations (Smith and
Nichols, 2018). Taken together, the variation contributed by both the
natural biological and experimental preparations paired with the loss of
data from image projections have traditionally made obtaining mean-
ingful statistical metrics of biological phenomena intractable.

Since the emergence of the light microscope, a range of advances in
biological imaging have occurred, enabling the acquisition of high res-
olution data sets of 3D biological structures. These advances, however,
have intensified the need for more powerful methods to measure changes
within and between samples. Currently there are three main classes of
image-based analysis: visualization, filter-based analysis and machine
learning classification (Sbalzarini, 2016). Tools for visualization have
been critical to render 3D-volumetric data; however, 3D visualization
tools, such as Amira (Stalling et al., 2005) and Vaa3D (Peng et al., 2010,
2014), rarely extend beyond rendering the data and lack tools for sample
comparisons. Filter-based analysis has been dominated by the
open-source program Fiji due to its ease of use and applicability to a wide
variety of data types (Sbalzarini, 2016; Schindelinet al., 2008). While Fiji
provides a variety of tools and plugins for processing and enhancing
features of image data, it fails to provide rigorous options to compare
images between samples. Importantly, machine learning based pro-
grams, such as ilastik (Sommer et al., 2011), have excelled at classifying
objects and signal within individual images, but unfortunately are unable
to classify signals of whole images across an entire sample set. Other
attempts to overcome some of these challenges have included manually
assigning each image a score that corresponds to qualitative assessments
of phenotypic variation (Barresi et al., 2005), yet this approach is limited
by the error and bias inherent to the human eye. Moreover, such classi-
fication approaches are often performed on the MIP as opposed to
considering the whole image stack, thus these approaches rarely discern
subtle changes present in the data.

One such field that has come to rely heavily on image-based data is
neuroscience. In particular, attempts to map the circuitry of the adult
human brain have fostered the creation of some novel methods for 3D
analysis. For instance, applying linear and non-linear data trans-
formations enabled the superimposition of multiple samples of myelin
histology stained sections with digitized reference brain reconstructions
fromMagnetic Resonance Imaging (MRI) (Bürgel et al., 1999). Moreover,
such MRI data has been analyzed more recently with probabilistic trac-
tography to segment and compare the visual pathway affected in the
brains of individuals with multiple sclerosis (Wang et al., 2018).

It is however a different type of challenge to investigate the embry-
onic origins of these neuronal pathways during development of the
central nervous system (CNS). We are specifically interested in
commissure development, where tightly bundled fascicles of axons cross
the midline to form commissures, which offers a model to study how the
two halves of the CNS of bilaterally symmetric organisms become con-
nected (Kaprielian et al., 2001; Silver et al., 1982a; Hjorth and Key, 2004;
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Barresi et al., 2005). Development of these stereotypical structures is
pioneered by pathfinding axons that grow towards and cross the midline
in response to local and global signaling cues. Overall, commissure
development represents a dynamic event with visible degrees of varia-
tion (Barresi et al., 2005; Hjorth and Key, 2004; Kaprielian et al., 2001).
Unfortunately, the expected degree of biological variation paired with
the additional experimental and image analysis challenges detailed
above have hampered the application of robust quantification and sta-
tistical approaches to the study of commissure development.

We have taken advantage of the accessible embryonic brain of the
zebrafish model system to characterize the first forming commissures
during forebrain development (Barresi et al., 2005; Hjorth and Key,
2004; Kaprielian et al., 2001). The post-optic commissure (POC) is the
first commissure to form, with pioneering axons projecting across the
diencephalic midline as early as 23 h post fertilization (hpf) (Bak and
Fraser, 2003), and the POC becomes tightly bundled by 30 hpf (Fig. 1).
The navigation of the first midline crossing axons is mediated by pre-
cisely positioned extracellular guidance cues as well as essential axon to
glial cell guidance interactions (Barresi et al., 2005, 2010; Silver et al.,
1982a; Shu and Richards, 2001). This complex array of long- and
short-range factors functions to combinatorially guide pathfinding
commissural axons across the midline and onward to their final synaptic
target cells.

Reminiscent of the corpus collossum in the mammalian brain, the
wild type zebrafish POC is composed of many tightly adhered axons that
form a fascicle spanning the midline of the forebrain (Bak and Fraser,
2003). In addition to axon-to-axon adhesion, fasciculation of the POC is
achieved in part by both the actions of repellent guidance cues, such as
Slit 2 or Slit 3 ligands, that serve to limit the region of allowable space for
axon exploration (Brose et al., 1999; Holmes et al., 1998; Barresi et al.,
2005). At 30hpf, the final shape of the POC resembles a curving band of
axon fascicles that is 2–3 μm thick as it stretches from one side of the
diencephalon to the other. Developing prior to and concomitantly with
the POC is a midline spanning swath of astroglial cells, termed the “glial
bridge” (Barresi et al., 2005). These glial cells are most commonly
identified by their expression of Glial fibrillary acidic protein (Gfap),
which is an intermediate filament found broadly in astroglial cells (Eng
et al., 2000; Kim et al., 2008; G€otz and Barde, 2005; Cole and Lee, 1997)
(Fig. 1). These glial cells are known to function as both the main stem
cells of the developing nervous system (known as radial glia cells) and as
a supportive cellular substrate for migrating cells and pathfinding axons
(Bak and Fraser, 2003; Lewis and Eisen, 2003; Barresi et al., 2005; Hjorth
and Key, 2004; Kaprielian et al., 2001). Although researchers have begun
to identify the factors important for the guidance of commissural axons,
little is known about how these factors may influence glial bridge
development nor what may be required for axon-glial cell interactions
during commissure formation.

In order to study the development of and relationship between POC
axons and the cells of the glial bridge, we have employed immunocyto-
chemistry (ICC) to label the two structures using antibodies against
acetylated tubulin (anti-AT, axons) and Gfap (anti-Gfap, astroglia)
(Fig. 1). Imaging with confocal microscopy enabled us to collect high
resolution 3D data sets of the labeled structures within the zebrafish
forebrain. Quantification of these imaged structures has previously been
limited due to wide degrees of variation in the elaboration of their final
forms as well as the inconsistencies inherent to the methodology. Further
complicating this analysis was the amorphous distribution of Gfap la-
beling, which defied confidence in any qualitative inspection. To over-
come these challenges we have created a new computational method we
call ΔSCOPE (Spatial Cylindrical Coordinate Orientation with PCA Ex-
amination). This method aligns the gross morphology of each biological
sample in 3D space before assigning a new set of relational coordinates.
This new coordinate system then serves to directly represent the bio-
logical data contained within an image relative to a model of the imaged
structure, consequently enabling statistical comparisons to be performed.
We validate the use of ΔSCOPE as a tool to quantify biological structures



Fig. 1. Post-optic commissure formation in zebra-
fish embryos. The post-optic commissure (POC) is
formed by midline crossing axons (AT) in concert with
a structure of glial cells called the glial bridge (Gfap).
A) Frontal MIP of the zebrafish forebrain at 20 hpf
labeled with anti-acetylated tubulin (AT) (green) and
anti-Gfap (red). Gfap signal is distributed across the
whole forebrain with the glial bridge beginning to
condense in both the telencephalon (top half) and
diencephalon (bottom). The first pioneering axons are
visible in the diencephalon, where they will construct
POC. B) Frontal MIP of the zebrafish forebrain at 24.5
hpf labeled with AT and Gfap. Axons (green) are
observed pioneering the diencephalic midline, form-
ing the POC, in concert with the glial bridge which has
condensed around the forming commissure. C) Frontal
MIP of the zebrafish forebrain at 36 hpf labeled with
AT and Gfap. Both the diencephalic POC and telen-
cephalic anterior commissure have been successfully
constructed and positioned at the midline in concert
with their respective glial bridges. D) Model of the
commissure (green) and glial bridge (blue) positioning
in the zebrafish forebrain with respect to the eye and
dorsal and ventral clusters.
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by quantitatively describing the relationship of POC axons and glial
bridge cells during commissure formation, and differences between wild
type commissures and mutants lacking normal axon guidance cue
expression. Lastly, we show how ΔSCOPE analysis revealed a subtle role
for Slit1a in facilitating POC axon-glial interactions during commissure
formation. We conclude that ΔSCOPE provides a novel approach for the
quantification of biological structures that we propose will be of broad
application across the life sciences.

2. Materials and methods

2.1. Zebrafish husbandry

Fish lines were maintained in the Smith College Animal Quarters
according to Smith College Institutional Animal Care and Use Committee
(IACUC) and AAALAC regulations. Groups of 12–15 fish were housed in
1 L tanks on an Aquaneering engineered fish facility with recycling water
at a standard conditions including 1300 μS, pH of 7.2, a temperature of
28.5–30.0�C and a 12 h light-dark cycle with a 1 h 50% transition period
before each light change. Adult zebrafish were maintained on a diet of
dry fish food (Gemma micro 300; skretting) and live brine shrimp
(Artemia International, Fairview, TX).

Embryos were maintained in embryo media (EM) (5 mM NaCl, 0.17
mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4 and 0.00003% methylene
blue) at 28.5�C and under a 12 h light-dark cycle according to standard
procedures (Kimmel et al., 1995). The following genetic strains were
used: wild type (AB and TU; ZIRC) and you-too (gli2-DR, yot) (Karlstrom
et al., 1999). Homozygotic yot embryos were identified based on tail
curvature, chevron shaped somites, and unresponsiveness to touch,
which was then confirmed with genotyping as was previously described
(Barresi et al., 2005).

2.2. Immunocytochemistry

Immunocytochemistry procedures were carried out as previously
described (Barresi et al., 2005; Johnson et al., 2014). Briefly, embryos
were fixed at 27.5–28 hpf (hours post-fertilization) with 4% formalde-
hyde diluted in 0.025 M phosphate buffer (PB) for 2 h or 16 h at room
temperature or 4�C, respectively. Tissue penetration steps included
treatment with 100% acetone for 4 min with a rehydration methanol
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series. Embryos were washed and buffered with 2% v/v triton x-100
(PBS-Tx). Embryos were blocked for 1 h at room temperature in PBS-Tx
with 2% w/v bovine serum albumin fraction V, 1% v/v dimethyl sulf-
oxide, and 10% v/v normal goat serum (block), and then followed by
primary and secondary antibody incubations for 2 h at room temperature
or overnight at 4�C. Primary antibodies used included anti-rabbit glial
fibrillary acidic protein (GFAP, Sigma, 1:400), mouse anti-Zrf1 (Gfap;
IgG1; ZIRC 1:20) and mouse anti-acetylated tubulin (AT; IgG2b; Sigma
1:800). Secondary were all raised in goat and included anti-rabbit con-
jugated to Alexa 488 (Invitrogen, 1:200), anti-mouse IgG1 conjugated to
Alexa 488 and anti-mouse IgG2b conjugated to Alexa 647. Labeled em-
bryos were stored and imaged in 70% glycerol made up in 30% PBS.
Samples used for comparative experiments were collected from the same
clutch of embryos and immunocytochemistry was performed on all em-
bryos at the same time. Immuno batch effects which lead to differential
labeling of structures have been noted in anti-AT immunocytochemistry,
which may lead to artificial detection of differences in signal due to real
changes in immunolabeling. We have specifically noted that changing
antibody concentrations or the length of incubation can result in signif-
icant changes in POC signal amount and distribution.

2.3. Confocal microscopy

To visualize the POC, immunolabeled embryos were decapitated and
heads mounted in 70% glycerol with the ventral forebrain oriented
closest to the glass coverslip. Appropriate and consistent mounting was
critical to prevent anisotropy in pixel resolution from influencing the
pixel count in bins around the commissure. Samples were imaged on a
Leica SP5 scanning confocal microscope at leica HC apochromat (CS2)
63X oil objective (0FN25/E) with a numerical aperture of 1.4 with a 1.5
optical zoom. Each image was collected at a 1024 by 1024 pixel reso-
lution with an additional line averaging of 4. Z-stacks of the POC region
were collected for each embryo with an optical step size of 0.21 μm,
resulting in stacks ranging in thickness from 20 to 35 μm. Z step size was
chosen to minimize anisotropy, with x and y pixel dimensions set at
0.169 μm, 0.21 μm was chosen approach isotropic voxel size without
oversampling in the z dimension. Laser power was maintained at the
following percentages for all experiments: the argon laser at 25% with a
12% intensity, the 594 nm laser at 80%, and the 633 nm laser at 20%.
Image acquisition was captured bidirectionally at 600 hz.



Table 1
List of samples used in ilastik training ilastik training was performedmanually
by marking on a training image to denote where definitive signal and noise
within the image was contained. Sample names of images used in ilastik training
as they are found in the supplementary data section are included.

AT wild type AT you-too AT tg(slit1a yot) Gfap wild type

120 335 16 109
112 332 12 102
109 21 11 101
101 3 8 114
– 1 6 –

– 340 5 –

– 337 2 –
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2.4. Pre-analysis data processing

Following imaging on the confocal microscope, images were saved in
LIF files. Each sample was opened in Fiji (Schindelin et al., 2012) using
the Bio-Formats plugin (Linkert et al., 2010), cropped to eliminate
background in X and Y, and rotated around the Z axis to position anterior
as up. Each channel was isolated and saved as an individual HDF5 (.h5)
file using the HDF5 plugin for Fiji (The HDF Group, 1997).

Image analysis was determined to require image pre-processing to
reduce noise, both biological, from AT labeled cilia, and experimental,
from sample collection. We first have evaluated the use of simple
thresholding of the signal intensity in raw images of 28 hpf wild type
embryos labeled with anti-acetylated tubulin to remove background
signal and improve the signal to noise ratio. We tested intensity thresh-
olds at the 0, 25, 50, 75, and 100th percentiles of the intensity observed
in each image to evaluate how the removal of background signal could
improve the overall signal to noise ratio. Using the python SciPy modules
labels (pixel distance ¼ 3) and region props, we evaluated the number of
discrete objects and the area of those objects at each intensity threshold
(Fig. 2). The 100th percentile signal intensity threshold dramatically
reduced small area objects, like cilia, but also reduced large objects like
portions of axons. In fact this thresholding approach eliminated a ma-
jority of the structure of the POC and many points of spurious non-axonal
signal still remained (Fig 2 A, C-G). The inability to reduce unwanted
labeling prompted us to turn to machine learning methods, like the
program ilastik (Sommer et al., 2011), to perform image pre-processing.

ilastik combines user input and a machine learning algorithm to
assign a probability to each pixel that the signal observed at that point
was signal of interest. For processing, an ilastik file (see S1 Data and S2
Data) was generated for either AT or Gfap processing. Training was
performed using two labels, one for signal, and one for background, on a
subset of samples contained within the data set of images (for samples
used in training see Table 1) until the output of both labels at 80%
confidence generated separation (background with no signal) between
axonal filaments, signal in fine and faint axonal processes, and eliminated
the majority of cilia. AT and Gfap experiment samples for all ages were
processed using batch processing provided by the 28 hpf wild type ilastik
AT and Gfap files. This was done to limit alternate training effects and
Fig. 2. Comparison of image processing techniques and optimal threshold ilas
when compared to different pixel intensity thresholds of raw microscopy data. A) R
tensity of the image. Using the SciPy module label and region props, the areas of ob
thresholds was plotted. B) Results of thresholding the probability that the pixel is bac
label and region props, the areas of objects and the number of objects at each area fo
0% (All signal) Purple, 25% Orange, 50% Green, 25% Red, 100% (top percentile sig
images bordered by corresponding graph colors with C:Purple (0%)- G:Blue (100%). C
images bordered by corresponding graph colors with C:Purple (No Statistically signifi
signal is background).
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make signal intensity comparisons comparable. Additional training for
AT was required on you-too sample sets as the sparse labeling in these
samples resulted in the inability of the ilastik program to detect any
remaining axon signal. To enable visualization of this data and enable
computation of the defasciculation metric, individual AT ilastik files
were generated for data sets in a you-too background and trained on a
subset of samples (for samples used in training see Table 1). This likely
results in an over-reporting of signal in these data sets, but as the loss of
signal was so dramatically apparent in these samples, quantification of
loss of signal was deemed to be less critical than quantification of
defasciculation and axon patterning. Probability images were exported
and compared to the originals to ensure fidelity of signal and success in
noise removal.

ilastik distinguishes signal from noise by generating a probability
value ranging from 0 to 1 for each pixel indicating the probability that
the pixel is not background. (Fig. 7 A). This method was chosen over
utilization of a simple threshold of the collected images for several rea-
sons: 1) The application of a simple threshold to the data resulted in
significantly more points being included in the computation when
compared to ilastik (Fig. 2 A.), and also resulted in increased processing
time. 2) Thresholding the data tended to linearly decrease all structural
signal, resulting in the loss of real axonal signal (structures with large
area), cilia (structures with small area), and background (Fig. 2 B). In
contrast, ilastik preferentially reduced the number of very small objects
while preserving larger objects, and further, when 0.25 < p < 0.75, it
tik processing reduces small area objects while preserving large area structures
esults of thresholding raw microscopy data using the percentile of the pixel in-
jects and the number of objects at each area for wild type data sets at different
kground signal from ilastik processed microscopy data. Using the SciPy module
r wild type data sets at different thresholds are plotted. Thresholds of intensities:
nal) Blue. C-G) Maximum Intensity Projections of thresholded raw microscopy
-G) Maximum Intensity Projections of thresholded by p-value ilastik microscopy
cant probability (P < 1) that pixels are signal)- G:Blue (P < 0.01 probability that



Fig. 3. Correction of alignment errors After PCA, images can be misaligned in four different ways. Subfigures A-D illustrate the relevant corrections. A) Rotation
around the X

0
-axis. B) Rotation around the Y

0
-axis. C) Incorrect assignment of the Y

0
- and Z

0
-axis. D) Inverted orientation around the Z

0
-axis.

Fig. 4. Calculation of cylindrical co-
ordinates. Given a data point Pðxp; yp; zpÞ
and a model of the commissure Mðxm; 0;
ax2m þ bxmÞ, we calculated a cylindrical co-
ordinate system that defined the position of
P relative to M. A) First, we must identify the
xm value which defines the point MðxmÞ that
was closest to P. Since M lies in the X

0
Z

0

plane where all y ¼ 0, we can consider P as
it lies in the X

0
Z

0
-plane, P

0 ðxp; 0; zpÞ. The
distance between M and P

0
(dp) was calcu-

lated by finding the Euclidean distance be-
tween the two points. We then used an
optimization function to find the value of xm
that minimizes dp. B) Given MðxmÞ that
minimizes dp, the arclength distance be-
tween M and Vð0;0;0Þ at the midline (αp)
was found by calculating the integral of M
between MðxmÞ and V. C) Given MðxmÞ that
minimizes dp, the Euclidean distance (Rp)
between M and P could be calculated in 3
dimensions. D) Finally, given dp and Rp, the
angle of PðθpÞ could be calculated according
to trigonometric rules.
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reduced the number of small objects several fold while preserving more
large area structures, in comparison to raw thresholding. 3) Visual in-
spection of the processed images shows that severe thresholding of raw
data tends to eliminate large portions of the POC while not removing the
most intense cilia, while ilastik processing at p ¼ 0.5 preserved POC
structure while exhibiting appreciable visual reductions of ciliary label-
ing, consistent with the small area reduction observed in Fig. 2. Based on
these metrics, we elected to apply a 0.5 probability cutoff to select a set of
points representative of true signal for each channel, as 0.5 was
119
intermediate between and roughly equivalent with the bounds of
0.25–0.75 in terms of reducing small area labels while preserving larger
ones. This probability-based threshold enabled confident selection of
points by relying on statistical significance as opposed to intensity
thresholds (which can exclude real signal in fainter images).

Each probability file was read in Python by H5Py and saved as a
NumPy 4D array ([zyxc]) with the fourth dimension containing two
channels: signal and background (Collette, 2013; Oliphant, 2007). In
order to distinguish between channels, we assumed that the channel that



Fig. 5. Alpha bin size calculation for landmark generation. Within a sam-
ple, the smaller the distance between any two points, the more likely that those
two points would be similar and exhibit lower variance. Calculations of variance
of R between adjacent bins using differing bin sizes between 2 bins per sample
and 50 bins per sample for all samples were calculated and averaged (dark blue).
Between samples of the same type, the larger the area queried, the more likely
they were to be similar and exhibit lower variance. R distance of each bin in
each sample was calculated and variance between sample bins for bin sizes 2 to
50 were graphed (green). These two metrics were then optimized to minimize
these two sources of variance (light blue).

M.S. Schwartz et al. Developmental Biology 460 (2020) 115–138
contains more points with a probability of greater than 0.1 would
represent the true signal channel. Each point was then saved to a Pandas
data frame as a row with x, y, and z values obtained from the point’s
position in the array (McKinney, 2010). At this time, each point’s xyz
position was scaled to account for the size of the voxel collected by the
microscope, typically 0:16� 0:16� 0:21μm. Finally, a threshold was
applied to the data frame to select only points with a probability of less
than 0.5. This final set of points served as the representative data of the
POC structure. Wild type AT samples generally contained less than half a
million points, while the corresponding Gfap sample ranged from 300,
000 to less than 100,000 points (Fig. 13).
2.5. Sample alignment

The position of each point in the ilastik-generated binary dataset of
true signal was scaled by the dimensions (um) of the voxel. In order to
prevent fine structures, such as wandering axons, from interfering with
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the core morphology of the commissure (and primary structural chan-
nel), we applied a median filter twice to smooth the structure and remove
fine processes (Fig. 8 A). PCA identified the orthogonal set of axes in the
dataset that captured the widest range of variability in the data (Fig. 8 B);
therefore, the median filtering we applied serves to smooth out outlier
signal and convolve individual fascicles into a singular structure. Selec-
tion of median filter size was dependent on the thickness of the structural
signal, and thus required adjustment to best suit the sample set.

Since biological structures frequently maintain consistent pro-
portions, PCA can use the median filtered data to isolate three orthogonal
axes that are consistent between samples (Fig. 8 C). Importantly, we only
used the median filtered data to align channels but did not use it for data
analysis. After PCA, each image was visually inspected to ensure that the
structure was appropriately fit to each axis. ΔSCOPE comes complete
with a set of alignment tools to make informed corrections to the PCA
alignment.

The relative X-axis of our raw microscopy images of the POC
consistently spanned the medial-lateral dimension of the embryo and
consequently contained more variability than the other dimensions,
therefore PCA identified the original Cartesian X-axis as the first principal
component, though small adjustments to this alignment were achieved
by PCA to compensate for errors in collection or sample orientation
(Fig. 8 C). For samples in which most of the signal in the microscopy
collected X-axis was lost however, errors PCA axis assignment were
evident, which was overcome by manually assigning the image X-axis as
the first PCA component. Additionally, the anatomical dorsal to ventral
axis of the forebrain commissures at the embryonic stages examined were
collected in the relative Z-axis, which typically had a greater range of
values as compared to the anatomical anterior to posterior axis that was
assigned to the Y-axis, however, this was not definitive, and did not affect
PCA axis assignment.

In order to ensure that all samples were in the same position following
the alignment process, we then fit a polynomial model to the data and
identify a centerpoint for translation to the origin. We mathematically
described the shape of the POC with a parabola, such that the vertex of
the parabola signifies both the center of the data and the position of the
origin. Following PCA alignment, the commissure lies entirely in the XZ
plane with the midline of the commissure positioned at the origin (Fig. 8
C). The same transformation and translation completed on the structural
channel was then applied to the secondary channel.

Sample alignment was performed only on the fluorescent channels
that describe the basic structure (structural channels). In our data,
acetylated tubulin (AT) served to label the basic structure of the POC.
Any subsequent fluorescent channels, such as Gfap, were aligned ac-
Fig. 6. ΔSCOPE workflow for biological
structural analysis and quantification. In a
clockwise manner, ΔSCOPE processing involves:
1) collecting and immunostaining samples, 2)
generating confocal stacks of immunostained
samples with close to isotropic voxels, 3) pro-
cessing confocal stacks with ilastik, 4) performing
principal component analysis on the resultant
data, 5) changing the coordinate system of the
data to be biologically appropriate, 6) calculating
bin sizes and then binning signal into landmarks,
and 7) performing statistical tests.



Fig. 7. ilastik workflow to reduce noise from 2D and 3D images. (A) ilastik’s machine learning pixel classification work flow enables the selection of a binary set of
points that represent true signal after eliminating noise and variable intensity. (B) ilastik processes images to reduce contamination of secondary signal from cilia while
retaining axonal labeling.
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cording to the transformation of the structural channel. An additional
two pre-processing steps were conducted on the structural channel in
order to ensure that sample alignment was not negatively impacted by
sub-cellular structures or remaining noise. First, a new data frame was
created as described above, yet with a more stringent threshold of 0.25 in
order to select points with the highest probability of being true signal.
Second, the Scikit-Image median filter (radius 20) was applied to the
thresholded data twice in order to smooth out noise on the surface of the
structure (van der Walt et al., 2014). For wild type samples, principal
component analysis (PCA) from Scikit-Learnwas applied to the processed
data using all three original dimensions (X’, Y’, and Z’) (Pedregosa et al.,
2011). Following transformation of the structural channel, the first
principal component was assigned to a new X axis, the second to Z and
the third to Y. The same transformation matrix that was calculated for the
structural channel was also applied to any secondary channels. In
contrast, the components used to align yot mutants were different due to
the nature of the severity of POC phenotypes in this mutant. To reduce
error in alignment, the X’ axis was held constant while PCA was applied
to the Y’ and Z’ axes, which were reassigned from the first and second
principal components, respectively.

2.6. Alignment correction

After PCA alignment, some samples contained minor errors in
orientation, which prevented direct comparison across multiple samples.
The four error types are produced by rotation of the sample around each
axis. Some samples experience rotation around the X’ axis, which means
that the parabola of the commissure no longer lies exclusively in the X’Z’
plane (Fig. 3 A). In order to correct this error, a line was fit to the data in
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the Y’Z’ plane and its slope (m) was used to calculate the necessary angle
of rotation

θ¼ arctanðmÞ

around the X
0
axis.

In order to correct rotation around the Y 0 axis, we identified two
points in the dataset that marked the extremes of the commissure (Fig. 3
B). The first endpoint was assigned based on the maximum or minimum z
value in the sample. In order to determine if the maximum or minimum
should be used, the concavity of the commissure was calculated based on
a best fit parabola z ¼ ax2 þ bxþ c. A concave up commissure (a > 0)
uses the maximum z value, while a concave down commissure(a < 0)
uses the minimum z value. After the z value of the endpoint was identi-
fied, its corresponding x value could be found in the dataset. To identify
the second anchor point, we calculated the distance between the first
anchor point and the minimum or maximum x value in in the commis-
sure. The x value that maximizes the distance to the first anchor point
was set as the second anchor point and its corresponding z value was
found in the dataset. Given two anchor points ðx1; z1Þ and ðx2; z2Þ, the
slope of the line between the two points was used to calculate an angle of
rotation

θ¼ arctan
�
z2 � z1
x2 � x1

�

around the Y
0
axis that will position both anchor points at equal Z

0
values.

In some samples, the principal components were incorrectly assigned
such that the Y

0
and Z

0
axes were exchanged (Fig. 3 C). This error was



Fig. 8. Median filter processing and principal
component analysis for sample alignment. (A)
Axons of the POC tend to wander and deviate
from the central core of the commissure. While
axons preserved in the probability MIP on the left
were biologically relevant, they could interfere
with the alignment process. On the right, dupli-
cate application of a median filter to the axon
data extracted the core structure of the commis-
sure while eliminating fine processes that could
interfere with alignment. (B) PCA was applied to
n-dimensional data to identify axes that captured
the most variability in the data. 1) In this two
dimensional example, the first principal compo-
nent (PC) was identified and the second PC is
oriented perpendicular to the first. 2) The data
was rotated so that the first PC was horizontal
and the second PC was vertical. 3) Finally, the
data was shifted so that the center of the data was
at the origin. (C) After applying PCA to a single
POC sample, the arc of the commissure lied in the
new XZ plane with the midline positioned at the
origin. In each 2D projection, the intensity of
each point corresponded to depth in the third
dimension.
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corrected by applying a 90� rotation around the X
0
axis. Finally, the last

error occurs when the commissure was flipped upside down in the X
0
Z

0

plane (Fig. 3 D). This error was corrected by rotating the data by 180�

around the X
0
axis.

2.7. Sample centering

PCA alignment results in a consistent image orientation between
samples, however it failed to account for the position of the POC in 3D-
space. In order to center each sample accurately at a common origin, a
polynomial model was used to represent the underlying shape of the data
and to identify a consistent center point. After alignment, the POC lied in
the X

0
Z

0
plane and formed a parabolic structure. We fit a quadratic or-

dinary least squares regression model,

z¼ ax2 þ bxþ cþ ε;
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to the structural channel by minimizing the squared error, where εe
Nð0; σεÞ and σε is a fixed constant (Oliphant, 2007). The x-coordinate (in
the X

0
Z

0
plane) of the parabola’s vertex is vða; b; cÞ ¼ � b

2a. Letting y
denote the average value of y, we translated the coordinates of the data
such that the point ðv; y; zðvÞÞ was moved to the origin. The necessary
translation was calculated based on the structural channel and applied to
all secondary channels.

2.8. Cylindrical coordinates

Calculating a parabola as a representative model of the POC provided
the foundation of a cylindrical coordinate system. We converted the xyz
coordinates of each point into a cylindrical coordinate system defined by
α, θ and R. For any point Pðxp; yp; zpÞ, we identified its projection in the
X

0
Z

0
-plane P

0 ðxp;0;zpÞ, and a point M
0 ðxm;0;zðxmÞÞ, where the Euclidean

distance between P
0
and M

0
,
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dp ¼
������P0 �M

0 ���j22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xp � xm

�2 þ �
zp �

�
ax2m þ bxm þ c

��2q
�� �

was minimized (Fig. 4 A).
Each point Pðxp; yp; zpÞwas considered in the XZ plane P

0 ðxp;0; zpÞ and
a secondary point Mðxm; 0; ax2m þbxmÞ was identified on the parabolic
model that minimizes the euclidean distance between the point and the
model

dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xp � xm

�2 þ �
zp �

�
ax2m þ bxm

��2q
(Fig. 4 A). In order to identify the value of xm, the optimization

function minimize from SciPy was used to minimize dp as a function of xm
(Jones et al., 2001). In other words, given a point Pðx;y;zÞ, find a value xm
such that the distance between the projection of P to the X 0Z0 -plane and
the point Mðxm;0; zðxmÞÞ was minimized. αp was defined by calculating
the distance along the model between M and the vertex Vð0; 0;0Þ,

αp ¼
Z xm

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2axm þ bÞ2

q

(Fig. 4 B). Given the minimal Euclidean distance between P and M
along the curve, Rwas then calculated as the Euclidean distance between
P and M in 3D space,

Rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xp � xm

�2 þ y2p þ
�
zp �

�
ax2m þ bxm

��2q
(Fig. 4 C). θp was finally calculated as follows:

θp ¼ arctan
�

yp � 0
zp � zðxmÞ

�

(Fig. 4 D).
After transforming the data to cylindrical coordinates, the dataset was

saved to a PSI file according to PSI Format 1.0. Each point was assigned
an ID number and the following values were saved: x, y, z, α, R, θ. The
Cartesian coordinates correspond to the position of the data following
sample alignment.

2.9. Landmark calculation

In order to perform statistical comparisons between samples, we
reduced the sample data to a set of representative landmark points. The
POCwas divided into eight wedges around θ, each spanning 45�, and into
nα slices along α. In particular, θ bins were calculated relative to the plane
of the parabola and assigned individually the same way to each sample,
so that the data for all samples was similarly oriented and binned in the θ
dimension. This however requires that during acquisition of subsequent
data processing, that the data be transformed so that the anterior-
posterior and dorsal-ventral dimensions were roughly aligned in 3D
space, prior to PCA, so that PCA may a perform fine tuning of alignment.
For each sample 1 � s � n, the number of points in each wedge (after
calculation of α) for each individual sample was calculated. The 50th

percentile (median) of the R values for all data points within a sample αθ
wedge, for all such wedges within a sample, and across all samples, was
then determined.

Let wij be a wedge, for integers 1 � i � nα and 1 � j � 8. Then nsðwijÞ
was the number of points in the ijth wedge in sample s, and r�s ðwijÞwas the
median value of R among all points in wedge wij in sample s.

In order to identify the size of an α bin that maximized the amount of
data gleaned from the analysis while minimizing sample noise, we
calculated two measures of variance. First, the variance was calculated
for each bin and its adjacent neighbors. This type of variance between
bins decreased as the number of α bins increased. In order to counter this
trend, we calculated the variance between samples for each bin, which
increased as the number of α bins increased (Fig. 5). By selecting the
number of α bins that minimized both types of variance, we were able to
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identify the appropriate number of bins for the sample. This number was
dependent on the type of signal under examination, the number of
samples being tested, the resolution of the data, and the success of the
alignment steps.

The number of bins nα was optimized by minimizing both the vari-
ance in median R values across samples (i.e., global variance) and across
adjacent bins (i.e., local variance).

For a given wedge wij in a particular sample s, we define the local
variance in median radius across the neighboring wedges as:

VarLði; j; sÞ¼Var
�
r�s
�
wi;j�1

�
; r�s

�
wi;j

�
; r�s

�
wi;jþ1

��
;

where the j’s were taken modulo 8. The average local variance for a
particular choice of nα was thus,

VLðnαÞ¼ 1
8nnα

X
i;j;s

VarLði; j; sÞ :

At the same time, we defined the global variance in median radius
across samples for a particular wedge wij to be:

VarGði; jÞ¼Var
�
r�1
�
wi;j

�
;…; r�s

�
wi;j

�
;…; r�n

�
wi;j

��
:

The average global variance for a particular choice of nα was thus,

VGðnαÞ¼ 1
8nα

X
i;j

VarGði; jÞ :

The optimal value for nα was identified as the value that minimizes
VLðnαÞ and VGðnαÞ (Fig. 5).

We observed that the optimal number of α bins, located at the local
minimum of the optimization curve of was slightly above 21, depending
on experimental group (24 for you-too experiments, 21 for glial bridge
experiment). For even values, we rounded to the next highest odd
number to capture the midline.

The calculation of biological landmarks was done on a sample by
sample basis, with the midline landmark assigned the vertex of the
parabola, which was assumed to be the midline of the commissure. The
ability of subsequent statistical tests to detect variation from the mean
depended on the appropriate assignment of the midline, and hence,
samples which cannot be reliably assigned this center point were
removed from testing, as they would poorly influence the results. The
micron distances between the central landmark and more lateral land-
marks were calculated by dividing the largest alpha value in the land-
mark calculation data set by one less than half the alpha bins. All other
data from all other samples in the data set were then binned by this alpha
micron distance. Rather than scaling the data by a relative alpha bin
number, so that all data from all samples was evenly distributed across all
alpha bins we elected to use absolute micron distances. As not all com-
missures were imaged to the same maximal z-depth, and thus the furthest
extent of the commissure was not always captured, using relative alpha
distances would tend to introduce data distortion artifacts. Moreover,
relative alpha bin values would only benefit our calculations if significant
differences in brain or commissure size were 1) evident and common and
2) were likely to result from or be experimentally related to a treatment
under consideration. While implementation of relative alpha bin
assignment was possible, the overall size of the brain has been observed
to be neither evident nor common and did not appear to vary in lateral
extent significantly during the period of development (22 hpf-30 hpf) or
in response to Slit perturbation. We anticipated that small variances in
size which were expected to occur in equal proportion in all experimental
sample sets, may increase the variance of the data sets, but that this
variance was likely to be limited to more lateral landmarks. In contrast,
scaling of all embryos was determined to be more likely to result in the
creation of artifacts, especially since not all samples were equally easy to
image to their full extent, and scaling could result in the artificial
detection of these differences as differences in signal distribution. We
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further limited our calculations and examinations to the middle third of
landmarks in you-too analysis to further reduce the impact size variance
might have on landmark evaluation, to focus our investigation onmidline
commissure formation and glial bridge development, and to limit the
number of statistical tests and conclusions drawn from sample sets.

In order to identify landmarks that exhibited statistically significant
differences in median radius experimental data sets, we tested whether
the means of similar bins between experimental groups had the same
mean using the non-parametric Kruskal-Wallis H-test analysis of vari-
ance, using the stats.kruskal function offered by within the python SciPy
module, which does not assume equal variances or normality around the
group mean. While this test may lack statistical power for experimental
groups which are normally distributed, it was determined that imple-
mentation of a non-parametric test which did not make assumptions
about the data distribution would be more extensible. The results of the
set of statistical differences between sample sets were then evaluated by
the multipletest module of the python statsmodels module, using a two
stage Benjamini-Hochberg correction at an α of 0.01 for you-too and slit1a
analysis and at 0.05 for glial bridge comparisons where fewer samples
were able to be collected due to the difficulty of mounting. Bins were
then evaluated using the adjusted p values provided by the multitest
module, and were then considered statistically significant at the same α
value. In this way, the likelihood of a false positive bin appearing was
kept to 1–5% probability, and as we have evaluated only structural fea-
tures with multiple adjacent statistically different bins, the likelihood of
false positive features should significantly less than 1%.

A table of key resources used in generation of microscopy data and
ΔSCOPE program, including repositories of the data and code base
generated in the development of ΔSCOPE is provided as a supplemental
table (KRT table).

3. Results

3.1. Development of ΔSCOPE – analysis of biological structures

Quantitative image analysis of commissure formation in the verte-
brate brain has been impeded by four major challenges that include
image noise, experimental variation due to biological and sample based
misalignment, loss of sample dimensionality, and a lack of statistical
power when comparing between images. We developed ΔSCOPE, a new
3D image analysis program designed to overcome these challenges. The
premise of ΔSCOPE centers on the registration of the data around a
common biological structure. We focused our analysis on the structural
components of the POC during embryonic forebrain development in
zebrafish.

The POC is structurally composed of bundled axons derived in part
from neurons of the ventral rostral cluster in the diencephalon (Wilson
et al., 1990; Wilson and Easter, 1991; Hjorth and Key, 2004; Bak and
Fraser, 2003). POC axons were visualized with immunocytochemical
procedures using antibodies that recognize Acetylated Tubulin (AT),
which establishes the primary structural channel for our analysis. Sec-
ondary structural markers, such as anti-Gfap antibodies used to label
astroglial cells, were registered and processed relative to the primary
structural channel (the POC in our case).ΔSCOPEwas designed to 1) take
in confocal image stacks of the POC and secondary structures, 2) output
quantitative comparisons between sample types of both primary and
secondary structures, and 3) quantify and identify statistically significant
biological differences and distributions between the primary and sec-
ondary structures between sample sets (Fig. 6).

3.2. Image pre-processing

Before Δ SCOPE analysis could be performed, image pre-processing
was necessary to isolate true structural signal from experimental and
biological noise. A further complication in the isolation of the POC as
the primary structural signal, was the additional labeling of tubulin
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found within cilia of cells that densely line the ventricle walls of the
brain (Spassky and Meunier, 2017). To segment the labeling of axons
from cilia, we first determined that simple thresholding of signal in-
tensity would not be feasible. Although thresholding dramatically
reduced small area objects, like cilia, it also reduced large objects like
portions of axons in the POC (Fig. 2). Therefore, we next tested an
existing interactive machine learning program called ilastik to identify
an isolate axonal labeling in our images. In brief, ilastik relies on user
input to create a training dataset consisting of images labeled for
signal and background, and outputs an image composed of probability
values for each pixel being true intensity value, as opposed to back-
ground noise (Sommer et al., 2011). We hypothesized that ilastik,
which features user guided adaptive image processing features, would
reduce the number of data points while improving the resolution of the
interrogated structures better than simple thresholding of the data (see
ilastik section in Methods).

We trained ilastik on 28 hpf wild type samples (see ilastik section in
Methods for training procedure), and evaluated the ability of ilastik to
reduce the count of small area objects while preserving large scale
structures. Ilastik image processing is based upon probabilities instead of
intensities, and we determined that p values between p ¼ 0.25 and 0.75
were equally effective at reducing small objects, while preserving objects
larger than individual axons at 20 pixels. The midpoint probability of p¼
0.5 was chosen for all ilastik image pre-processing, which preserved the
qualitative structure of the POC while significantly reducing ciliary la-
beling (Fig. 7).
3.3. Principal component analysis aligns samples on biological axes

For any comparison of biological samples to be possible, the
structures being analyzed must be consistently oriented in 3D space.
The uniform alignment of samples enables direct measurements of
structural differences between samples. However, the position and
shape of biological structures, like the POC, exhibit variability due to
natural variation in biological samples and inconsistencies in experi-
mental preparations and microscopic image acquisition. These varied
inconsistencies can cause differences in how an individual sample is
oriented in 3D space, which presents a problem for accurate sample to
sample alignment and any possibility for robust statistical comparisons
between experiments. To overcome these problems, mathematical
transformations of the image data to fit a wild type reference brain
have been used in past studies, however this approach also captures
normal variation in a structure between individuals as significant
differences (Bürgel et al., 1999). To surmount this limitation, we chose
an alignment process that centered on the analysis of a single discrete
structure and its associated components, which enabled analysis on a
sample-by-sample basis before computing averages of a sample set.
This enabled detection of significant shifts in signal distribution and
intensity across all imaged axes in a sample set without distorting the
data to fit an arbitrary reference sample.

We applied principal component analysis (PCA) to isolate consis-
tent and unbiased sets of biologically meaningful axes from anisotropic
3D samples (where each dimension is proportionally different in size).
Our use of PCA in ΔSCOPE relied on a primary structural channel to
calculate the PCA transformation matrix, which in our study was the
axon labeled channel (anti-acetylated tubulin). Any secondary chan-
nels such as astroglia (anti-Gfap) were similarly transformed according
to the matrix calculated for the structural channel. A median filter was
applied to smooth the ilastik pre-processed data, which served to
eliminate outlier signal and convolve the structure of the POC. PCA
was then applied to this data to identify 3 new Cartesian axes across all
sample sets. A center point focused at the POC midline and a parabola
were fit to the data using a best fit parabolic curve to define the model
of each individual POC (Please see PCA section in Methods for more
details).
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3.4. Cylindrical coordinates define signal position

Following PCA alignment, each point was still described by x, y, and z
Cartesian coordinates; however, these coordinates were not directly
related to the structure itself and thus limited in their applicability to the
analysis of the structure in question. In order to facilitate direct com-
parison of specific structures in 3-dimensional space, we implemented a
cylindrical coordinate system that was defined relative to the biological
components of the structure itself. Due to the parabolic structure of the
POC relative to the image stack itself, conversion of the image stack to a
polar or cylindrical coordinate system by choosing an axis and origin
point is inherently faulty, because wrapping the data around that point
failed to capture the structure or relationship of the POC with its envi-
ronment at all points other than where the POC and origin coincidentally
overlap. Thus, capturing the structure of the POC required inventing a
coordinate system that was inherently dependent on the fluctuating po-
sition of the POC in the image stack and then using that position to
calculate the positions of signal relative to the POC itself. In this way, our
use of an adaptable cylindrical coordinate system reduced the detection
of biological variation while making it more sensitive to changes in the
actual structure of the POC.

To calculate these new coordinates required an assumption that the
primary structure being analyzed had a stereotypical shape that was
consistent between samples, and in our case, could be represented with a
parabola fit to anti-AT labeling, though other models could be used. We
defined a set of relative cylindrical coordinates oriented around a single
POC parabolic axis in 3D space. Each point in the data was assigned three
new values that described its position relative to the parabola as the
central axis: distance from the model (R), angular position around the
model (θ), and distance from the midline along the model (α) (Fig. 9).
These new coordinates served as parameters that contained biologically
meaningful information about the shape and composition of the struc-
ture. α described the position of points relative to the midline or pe-
riphery of the commissure. Depending on the embryonic stage being
analyzed, θ captured the dorsal-ventral or anterior-posterior position of
the point. Finally, R described how far a point was from the commissure,
which was informative to the degree of axon fasciculation observed in the
commissure or the distribution of secondary channel signal around the
commissure (glia in this study). By re-defining how the data was orga-
nized, ΔSCOPE was able to convert all image data to a 3D cylindrical
coordinate point cloud system. We observed that anti-AT signal (S1
Movie) and anti-Gfap signal (S2 Movie) were consistent between the raw
data and the 3D system, and also observed that the relationship between
AT labeling (Green) and Gfap labeling (Red) (S3 Movie) was preserved
without warping or manipulating the data.

Supplementary video related to this article can be found at https://
Fig. 9. Biological cylindrical coordinate system for biological structure
realignment and quantification. Creating a cylindrical coordinate system
around the POC. To enable analysis of data points relative to a biological
structure, points were transformed from a Cartesian coordinate system (x, y, z)
into a cylindrical coordinate system (α,θ,R) defined relative to the structure of
the commissure. This new coordinate system provided biologically relevant
metrics of position.
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3.5. Building landmarks to compare samples

The conversion of our image data into cylindrical coordinates enabled
each point to encode biological information relevant to the development
of the POC. We next binned the data by establishing regularly spaced
landmarks – a method of analysis commonly used in morphological
studies, which permits comparisons and statistical tests to be performed
between similarly positioned bins (Johnston et al., 1991). Although
historically landmarks were often assigned by an expert with domain
knowledge of the structure, we took an alternative approach that elimi-
nated human decision making by mathematically calculating a set of
regularly distributed landmarks across the structure. To do this, we
divided the commissure into a set of bins in the α and θ axes (Fig. 10),
within which two representative metrics were calculated to describe the
nature of the signal: 1) the median R distance of the signal and 2) the total
number of points of signal. We divided the θ dimension into eight evenly
spaced bins, each of π/4 radians in order to enable visualization of signal
around the entire commissure without oversampling. The number of bins
along the α dimension was empirically determined (Fig. 5) to minimize
sample-to-sample and bin-to-bin variance. These landmarks were then
computed for each independent experiment (See Landmark section in
Methods for details on calculation of bin sizes and statistical methods).
Upon successful conversion of raw data (e.g. S1 Movie-S3 Movie) into
landmark representations of the data, we observed that landmarks were
tightly clustered where AT signal was most abundant and more dispersed
at the periphery where AT signal was less fasciculated (S1 Movie vs S4
Movie). This trend also held true with Gfap signal, where we also
observed greater apparent R distances, consistent with Gfap data (S2
Movie vs S5 Movie). This observation is even more apparent when
comparing landmarks of AT and Gfap data (S6 Movie), for which the
greater R distance of Gfap over AT was clearly different. This data sug-
gested that both the cylindrical coordinate conversion and subsequent
landmark assignment was working as intended.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.ydbio.2019.11.014.

3.6. Interpreting ΔSCOPE landmark results

ΔSCOPE was designed to leverage the use of biological replicates,
which serves to reduce overall noise while enabling detection of changes
in signal morphology. The position and density of the post-optic
commissure was defined by the pathfinding fidelity and quantity of
axons spanning the diencephalon. Our interpretations of ΔSCOPE anal-
ysis of POC development were based on two key assumptions. 1) The
more axons present within a set landmark wedge would represent a
higher positive pixel count at that landmark. 2) A highly fasciculated
commissure would be represented by lower radial distance values at the
midline, which consequently would also show more pixels found nearest
to the modeled POC parabola. Using these metrics, we evaluated the
utility of ΔSCOPE as a new methodology for image quantification, as
applied to the comparative analysis of post-optic commissural develop-
ment over time and for the assessment of both gross and subtle pheno-
typic differences.

3.7. Validation of ΔSCOPE processing

In order for ΔSCOPE to serve as a reliable computational method to
detect differences between experimental data sets, it was necessary to
first validate that sample-to-sample variation within identically collected
sample sets would not detect false significant differences. To this end, we
collected wild type data sets (n ¼ 32), and randomly assigned 16 images
to the control group and 16 images to the out group. These two groups
were then compared to one another using ΔSCOPE to evaluate whether
false positive detections arose in the workflow. As predicted, no

https://doi.org/10.1016/j.ydbio.2019.11.014
https://doi.org/10.1016/j.ydbio.2019.11.014
https://doi.org/10.1016/j.ydbio.2019.11.014
https://doi.org/10.1016/j.ydbio.2019.11.014


Fig. 10. Calculation of biological landmarks.
Calculation of biological landmarks. In order to facil-
itate direct comparisons between samples, we subdi-
vide the data into a set of representative landmarks. 1)
The POC was divided into equal slabs along α. 2) Each
α slab was divided into eight θ wedges of 45�. 3) The
set of points in each wedge consists of a set of R values
that can be visualized in a histogram. In order to
reduce a set of points to one representative point, we
calculated the median R values in the wedge. 4) Each
landmark point could be plotted and visualized ac-
cording to the average α and θ values for the wedge
and the median of the R values in the wedge.
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significant differences were detected between these two groups,
demonstrating that ΔSCOPE was not overly sensitive to minor variation
between groups (Fig. 11). Although, multiple metric and intra-group
comparisons were possible, we determined they were not appropriate
analyses due to the presence of non-biologically relevant variation like
differential embryo depth, size and collected orientation, and the
inability to conduct 1D statistical tests on such metrics. Instead, ΔSCOPE
Fig. 11. ΔSCOPE does not detect significant differences in similarly processed ex
either the control or out group to determine whether ΔSCOPE would detect spurious
half of the corresponding radial plot, and bottom to the bottom. Significant differenc
the radial distance of axon signal were observed in any of the α or R positions E-H) No
midline though some non-significant variation was observed at the periphery. Des
deviation in signal amount.
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affords the user the ability to select an R percentile, as well as limiting the
sampling of pixel number to a given R distance, based on knowledge of
the data. After confirming ΔSCOPE was not overly sensitive, we next
sought to determine whether ΔSCOPE could detect significant differ-
ences in commissure formation in mutants and transgenic fish lines that
have previously been shown to exhibit POC defects.
perimental groups.Wild type samples were collected and randomly assigned to
differences between sample sets. The top of the data plots correspond to the top
es of p< 0.01 are denoted by black filled circles. A-D) No significant increases in
significant changes in AT signal were observed in the dorsal posterior axis at the
pite this variation, ΔSCOPE did not consider this variation to be a significant
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3.8. Validation of ΔSCOPE through analysis of known mutant phenotypes

We approached the validation of ΔSCOPE by analyzing several
different degrees of commissure manipulation from a severe loss of
midline axon crossing to more subtle errors in axon and astroglial cell
positioning. We first tested the accuracy of Δ SCOPE to quantitatively
describe the severe POC and glial bridge defects previously reported in
the you-too (gli2-DR; yot) mutant (Barresi et al., 2005). Homozygous yot
mutants express a dominant repressive form of the Gli2 transcription
factor, which functions to repress the Hedgehog signaling pathway in
those cells normally expressing the gli2 gene (Karlstrom et al., 2003). We
have previously shown that loss of Hedgehog signaling in the yotmutant
causes the misexpression of the Slit family of guidance molecules that
play essential roles in directing POC axons across the diencephalic
midline of the zebrafish forebrain. More specifically, yot mutants exhibit
expanded expression of slit2 and slit3 throughout midline regions where
they were normally absent. In contrast, slit1a was found to be reduced in
the forebrain of yot mutants compared to controls (Barresi et al., 2005).
Slit2 and Slit3 are accepted to function as axon guidance repellents, thus
their expanded expression was hypothesized to be responsible for the
reduced midline crossing seen in yot mutants (Barresi et al., 2005). The
function of Slit1a is currently unresolved. The consensus on the quali-
tative severity of POC loss in the yot mutant provided a valuable refer-
ence phenotype to validate the utility of Δ SCOPE to accurately describe
this known POC defect. In addition, we sought to extend our under-
standing of commissure formation in yot mutants by analyzing glial cell
position in combination with POC axons, and together this analysis
presents the first quantitative assessment of yot commissural phenotypes.

Prior to our comparative assessment of POC formation in yotmutants
and wild type siblings, we had to tailor our ΔSCOPE pre-processing for
the type of labeling exhibited in yot mutants. Due to the severe lack of
POC axons in yot mutants, the secondary labeling of cilia and deeper
axons recognized by the anti-AT antibody posed a potential source of
artificially signal contamination of the signal representing the structural
axon channel (Fig. 12). Therefore, we first trained the machine learning
pre-processing of ilastik on yot mutants to reduce the influence of the
ciliary tubulin or deeper axon labeling.

We show that applying ilastik’s pixel classification algorithm as part
of the ΔSCOPE methodology effectively reduced ciliary labeling and
significantly reduced contributions from signal derived from deeper
Fig. 12. The you-too mutant POC exhibits a loss of commissure formation.
The you-too mutant (gli2-DR) experiences a loss of commissure formation (AT)
(Green) as compared to WT and disruption to the glial bridge (Gfap) (Red).
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positioned non-commissural axons (Fig. 13). Visual observation of MIP’s
from pre- and post-ilastik processed wild type and you-too embryos
revealed clear reductions in non-POC signal. With this successful pre-
processing and the isolated true POC axonal signal we next
commenced with ΔSCOPE’s analysis of PCA-based sample alignments
and landmark calculations.

To conduct PCA alignment we first pre-processed both wild type and
yot mutant samples with a median filter of 20 pixels. Although this
filtering level was sufficient for PCA alignment of wild type samples, it
resulted in a loss of most of the data at the midline of yotmutant samples.
This reduced labeling was due to the known reduction of midline
crossing of axons in yotmutants. ΔSCOPE requires a minimum amount of
signal for the PCA alignment and proper parabola modeling; therefore,
we empirically determined that a median filter of 10 pixels was sufficient
to reduce noise while still enabling alignment of the sparse axonal
commissures seen in the yot mutant.

3.9. ΔSCOPE analysis of POC axons in you-too mutants

Landmarks were next assigned to the aligned samples of wild type and
yot mutant POC axons, which are graphically represented by two
opposing wedges of landmarks along the modeled parabola (Fig. 14). To
quantify whether POC axons were significantly mis-positioned in yot
mutants, we analyzed the defasciculation metric (the median radial
distance (R)) of axons from the modeled POC parabola. Our analysis
revealed significant increases in the radial distance of signal in homo-
zygous yot mutants at the midline and along the whole tract of the
commissure as compared to homozygous wild type siblings (Fig. 14).
More specifically, we observed that signal lies between 3 and 5 μm from
the calculated model in all radial axes of wild type commissures (Fig. 14,
light green line, top panel). In contrast, anti-AT signal in yot mutants
ranged in distance from 5 to 15 μm from the modeled POC parabola, with
the greatest deviations observed at the midline (Fig. 14, dark green line,
top panel). Furthermore, the greatest magnitude of difference was
observed along the ventral anterior (Fig. 14 A) and dorsal anterior axes
(Fig. 14 C and D). The average distance of anti-AT signal in yot mutants
from the midline was 15 μm (yot, R ¼ 15 μm) as compared to the tighter
fasciculated wild type commissure (wt, R ¼ 3 μm). Little divergence was
observed along the dimensions of the posterior axes (dorsal-posterior
(Fig. 14 A and B): WT R¼ 2 μm; yot R¼ 8 μm; ventral-posterior (Fig. 14 C
and D); WT R ¼ 2 μm; yot R ¼ 14 μm). Biologically, these data suggest
that commissural axons in yot mutants are distributed more dorso-
ventrally (towards the pre-optic area or yolk sac respectively) and that
wandering axons in yot are preferentially located more superficially near
the pial surface of the forebrain as opposed to pathfinding deeper into the
forebrain.

To confirm that fewer POC axons were crossing the midline in yot
mutants as previously described in Barresi et al. (2005), we usedΔSCOPE
to quantify the number of anti-AT pixels at and around the midline. We
observed significant reductions in positive pixel number at the midline in
yot mutants, which were most pronounced along the dorsal and
dorsal-posterior axes (Fig. 14 E–G). ΔSCOPE also detected significant but
intermittent reductions in the number of anti-AT pixels (axons) in the
ventral and ventral-posterior axes along the commissures’ periphery
(Fig. 14 F–H). Reductions in the amount of signal in the periphery of yot
mutants could be due to fewer axons projecting towards the midline
(ispilateral side) and/or fewer axons extending away from the midline
following crossing (pathfinding on the contralateral side).

3.10. ΔSCOPE analysis of the glial bridge in you-too mutants

Qualitative characterization of the diencephalic glial bridge has
suggested that loss of gli2 leads to a spreading out of these cells along the
dorsal/anterior to ventral/posterior dimensions of the forebrain (Barresi
et al., 2005). However, the fibrous and compositionally amorphous
pattern of anti-Gfap labeling of astroglial cells in the zebrafish forebrain



Fig. 13. Representative ilastik results after processing wild type and yot anti-AT and anti-Gfap signal. Raw collections from the confocal microscope were
processed by ilastik following training based on 5–10 representative samples. The resulting probability images contain the probability that each pixel was signal or
background. Finally a threshold was applied to the probability image in order to extract a set of binary points. Following ilastik processing, faint axons were enhanced
and preserved while points of ciliary labeling were eliminated. Faint Gfap signal was greatly enhanced in both wild type and mutant samples.

Fig. 14. Landmark analysis comparing the structure and distribution of wild type and yot POCs.
Analysis of changes in amount of axon signal (A–D) and distance of axon signal from POC model (E–H) in WT (n ¼ 37) and yot (n ¼ 33) 28 hpf embryos. Top of data
plots correspond to the top half of the corresponding radial plot, and bottom to the bottom. Significant differences p< 0.01 are denoted by black filled circles. A-D)
Significant increases in the radial distance of axon signal were observed in all α and R positions in yot embryos. We observed an increase in average R distance of 3–5
μm in wild type embryos to 5–15 μm in yot embryos. E-G) Significant reductions in AT signal were observed in the dorsal posterior axis at the midline. F–H) Significant
reductions in the ventral-posterior axis were observed in yot embryos.
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has made quantitative characterization of their positioning difficult and
inadequate to date. Continuing to use the modeled POC parabola as a
structural anchor for sample comparisons, we applied ΔSCOPE to the
analysis of the secondary anti-Gfap channel to uncover whether the more
obscure phenotypes in the glial bridge could be detected and quantified.
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In contrast to our qualitatively deduced expansion of the glial bridge in
yot�/�, we found that ΔSCOPE detected sporadic Gfap signal closer to
the POCmodel in yotmutant embryos as compared to wild type embryos.
These reductions in the distance of Gfap signal from the POC model were
found in both the ventral and dorsal posterior axes (Fig. 15 A–D).



Fig. 15. Landmark analysis comparing the structure and distribution of Gfap signal in wild type and yot. Analysis of changes in the amount of Gfap signal
(A–D) and distance of the Gfap signal from the POC model (E–H) in WT (n ¼ 37) and yot (n ¼ 33) 28 hpf embryos. The top of the data plots correspond to the top half
of the corresponding radial plot, and the bottom to the bottom. Significant differences p< 0.01 are denoted by black filled circles. A-D) Significant reductions in the
radial distance of Gfap signal were observed in midline dorsal posterior α and R positions bins in yot embryos. We observed a reduction in average R distance from 10-
25 μm in wild type embryos to 10–20 μm in yot embryos. E-H) Significant reductions in Gfap signal were observed in the dorsal posterior axis at the midline in
yot embryos.
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Concomitantly, we also observed reductions in the amount of Gfap signal
detected in yot mutants along these same posterior axes, with the most
significant reductions found in the commissure periphery (Fig. 15 E–G).
Intriguingly, these same posterior axes correlate with the locations which
also lacked significant anti-AT (axon) signal in both WT and yot mutant
commissures (Fig. 14). These data taken together suggest that in yot
mutants, Gfap þ astroglial cells or their cell processes are reduced in the
same locations where commissural axons are normally found in wild type
embryos, namely the dorsal posterior axes (compare (Fig. 14 A,B with
(Fig. 15 A and B) and in the periphery of the ventral-posterior axes
(compare (Fig. 14 G,H with (Fig. 15 G and H). No significant reductions
were observed in Gfap signal along the ventral/anterior axes. We note
that both the amount and positioning of Gfap signal was not significantly
different in anterior or anterior ventral positions (Fig. 17 A, B, D-F, H).
When also considering the significant dorsal/posterior reductions of
signal underneath the commissure, we interpret these data to suggest
that the only remaining midline signal lies primarily in the ven-
tral/anterior axis. We propose that this results in the apparent redistri-
bution of the remainder of the Gfap signal appearing in the ventral axis,
consistent with previous reports (Barresi et al., 2005).
3.11. Quantification of the development of the POC

Demonstration of ΔSCOPE to successfully quantify both axon and
glial phenotypes in the yotmutant led us to next ask whetherΔSCOPE can
also quantitatively describe how axon-glial interactions change over the
course of commissure development. However, the earliest embryonic
time point when sufficient commissural axon signal (anti-AT) in zebrafish
for ΔSCOPE structural alignment to work is at 22 hpf. Thus we can only
start to use ΔSCOPE to study POC formation just after its initiation.

Using antibodies that recognize AT and Gfap, we analyzed POC and
glial bridge development specifically between 22 and 30 hpf, which
captured both the pioneering midline crossing events as well as the
fasciculation and thickening of the POC. For each time point, we quan-
tified the number of positive pixels and their median radius from the
modeled POC parabola. Between 22 and 30 hpf, we observed significant
increases in the number of positive pixels of anti-AT signal at the midline,
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which was indicative of progressive axon fasciculation over time
(Fig. 16). Interestingly, between 24 and 26 hpf we observed a large in-
crease in anti-AT signal occurred between (Fig. 16 E–P), which was also
paired with significant reductions in the distance of signal from the
modeled POC parabola in all radial bins (Fig. 17 E–P). This compre-
hensive axonal condensation around the modeled POC parabola was
preceded by an earlier statistically significant reduction in the radial
distance of the anti-AT signal along the dorsal-anterior axis between 22
and 24 hpf (Fig. 17 D). Importantly, during this same early time period
(22–24 hpf) the amount of axon signal did not change; however, by 26
hpf, asymmetric increases in anti-AT signal were quantified along the
anterior-posterior and ventral axes (Fig. 16 E–H). We interpret the bio-
logical relevance of these data to suggest that the early reductions in
median R distance with no corresponding change to the number of points
represents axons undergoing a period of error correction as they pathfind
across the midline. However, soon after this first period of midline
crossing, the number of points increased as median R distance continued
to decrease, suggesting a period of mounting commissural fasciculation,
consistent with previous descriptions of POC development (Barresi et al.,
2005).
3.12. Quantification of glial bridge development

Having quantitatively described the development of POC axons dur-
ing commissure formation, we next sought to determine how the cells of
the glial bridge may be changing relative to the assembly of the POC.
Using the modeled POC parabola as the primary structural channel, we
applied ΔSCOPE to the Gfap labeling of the secondary channel. This
analysis detected significant reductions in Gfap radial distance in ventral-
posterior bins at the beginning moments of commissure development
(24hpf) (Fig. 18 E–H). During this same time period, we also observed
significant increases in Gfap signal within ventral-anterior bins (Fig. 19
E–H). Although over the remaining time course, we observed a cyclical
behavior in Gfap radial distance, which showed a change from the
condensed configuration at 24hpf to a visibly and statistically significant
expansion in Gfap position from the parabola at 28hpf that then returned
to shorter radial positions at 30hpf. These movements were largely



Fig. 16. Landmark point analysis of POC development and anti-AT signal. A-D) Statistical comparison of the number of positive pixels in 22 hpf (n ¼ 13) and 24
hpf (n ¼ 20) POCs. No statistical differences were observed. E-H) Statistical comparison of axon positive pixels between 24 hpf (n ¼ 20) and 26 hpf (n ¼ 18).
Significant changes observed in anterior ventral positions. I-L) Statistical comparison of axon positive pixels between 26 hpf (n ¼ 18) to 28 hpf (n ¼ 17) POCs.
Increases in AT signal observed in all but dorsal-anterior bins. M-P) Statistical comparison of axon positive pixels between 28 hpf (n ¼ 17) and 30 hpf (n ¼ 17).
Significant changes observed in dorsal posterior bins.
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equivalent around the entire parabola. Interestingly, this cyclical pattern
of radial moment correlated with different changes in Gfap signal (pts)
that showed an inverse spatial relationship between the dorsal/anterior
and ventral/posterior quadrants of Gfap signal (Fig. 19 E–H; M-P vs
Fig. 18 E–H; M–P). More specifically, the moments of radial distance
reduction during these cycles were correlated with significant increases
in the amount of Gfap signal along the dorsal/anterior domains yet also
paired with stable (24–26 hpf) to reduced (28–30 hpf) signal within the
ventral/posterior domains. In contrast, during the period (26 - 28hpf)
when radial distance positions increased for Gfap, the opposite but
similarly inverse spatial changes in the amount of Gfap signal was
quantified as compared to the previous and later periods (Fig. 19 vs
Fig. 18). It is relevant to recall that these cycles in Gfap signal and radial
distance occurred in the absence of any detected changes in axon posi-
tioning between 26 hpf and 30 hpf, which argues against these quantified
changes in Gfap labeling as artifacts of poor positioning of the modeled
parabola (Fig. 17 I–P). When considering these data together we were
able to detect a behavioral relationship between the amount and position
of POC axons with astroglial cells over the course of commissure for-
mation. POC axons quickly established a condensed commissure by 26
hpf, during which time glia showed a similar condensing movement
(Fig. 16 E–H vs Fig. 19 E–H and Fig. 17 E–H vs Fig. 18 E–H). In addition,
as the amount of POC axons (AT points) changed over time, there
appeared to be a similar response in glial cell movement. For instance,
the increased AT signal observed between 26 and 28 hpf was paired with
a dramatic spreading of Gfap position, and yet as the AT signal dropped
by 30 hpf glial cells were detected closer to the parabola (Fig. 16 I–P vs
Fig. 19 I–P and Fig. 17 I–P vs Fig. 18 I–P). These data of glial bridge
dynamics taken in consideration with POC axon behaviors largely sup-
ports remarkable correspondence in position and quantities between
130
these two structural labels. These data demonstrate that the glial bridge is
both present and similarly reactive to POC axons during development of
the post-optic commissure, which provides the first quantitative analysis
to suggest the glial bridge may provide contact-mediated structural
guidance support to POC pathfinding axons.

3.13. ΔSCOPE detects subtle commissural phenotypes

We have shown thatΔSCOPE can be used to describe and characterize
both normal commissure development and severely disrupted commis-
sural phenotypes in the yot mutant. However, one of the greatest chal-
lenges in studying the development of the nervous system is being able to
uncover subtle phenotypes that may escape qualitative identification but
still could have profound functional and behavioral deficits for the adult
organism. We next tested the detection sensitivity of ΔSCOPE by
applying its analysis to the effects of a misexpression of slit1a on POC
development, for which we show here for the first time, represents a
subtle commissural phenotype that has previously defied our ability to
accurately characterize.

Slit1a is a member of the Slit family of axon guidance cues (Holmes
et al., 1998; Brose et al., 1999), and was previously speculated that Slit1a
may function distinctly from its other known repellent family members,
Slit2 and Slit3 (Barresi et al., 2005). Knockdown of slit2 and/or slit3 re-
sults in defasciculation of the POC and expansion of the glial bridge in
wild type embryos and was remarkably capable of restoring midline
crossing of POC axons in the yot mutant background. In contrast,
knockdown of slit1a results in a loss of commissure formation and
demonstrating that slit1a is not capable of rescuing commissure forma-
tion in the yotmutant background. These and other expression data have
led to the hypothesis that Slit1a may function as an attractant for midline



Fig. 17. Landmark median radial distance analysis of POC development and fasciculation. A-D) Statistical comparison of the radial distance of axon signal from
the POC model in 22 hpf (n ¼ 13) and 24 hpf (n ¼ 20) POCs. Statistical reduction in radial distance was observed in dorsal-anterior positions. E-H) Statistical
comparison of the radial distance of axon signal from the POC model in 24 hpf (n ¼ 20) and 26 hpf (n ¼ 18). Significant reductions in radial distance was observed in
all positions. I-L) Statistical comparison of the radial distance of axon signal from the POC model in 26 hpf (n ¼ 18) to 28 hpf (n ¼ 17) POCs. No statistical significance
observed. M-P) Statistical comparison of the radial distance of axon signal from the POC model in 28 hpf (n ¼ 17) and 30 hpf (n ¼ 17). No significant
changes observed.
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crossing by POC axons (Barresi et al., 2005). If this were true, then
over-expression of Slit1a in the slit1a depleted yot mutant background
might be sufficient to rescue commissure formation.

To test this hypothesis, we used two transgenic lines, one to over-
express slit1a-mCherry (tg(hsp70:slit1a-mcherry), and a control transcript
of mCherry alone via the heatshock inducible promoter
tg(hsp70:mcherry), in both wild type and yot backgrounds. Qualitative
examination of MIPs of heatshock-induced mCherry controls showed no
difference between commissures of heatshocked and non-heatshocked
embryos (Fig. 20 A–D). In contrast, heatshock induction of Slit1a-
mCherry caused apparent defasciculation of the POC in wild type em-
bryos that was accompanied with a potential disruption in glial bridge
positioning (Fig. 20 E–H). Interestingly, overexpression of Slit1a-
mCherry in the yot background resulted in a significant proportion of
the embryos exhibiting an increase in axons projecting to and across the
midline (compare Fig. 20 I,J,M,N with Fig. 20 K and L,O,P). In addition,
there appeared to be similar disruptions in glial bridge organization in yot
mutants as qualitatively observed in the wild type embryos following
Slit1a-mCherry overexpression (Fig. 20). However, in both of these
experimental groups, sporadic axon wandering and defasciculation were
observed, which made our interpretations of these qualitative results
challenging. To more objectively analyze the results of these experi-
ments, we took advantage of ΔSCOPE using the POC as the anchoring
structural channel for the quantification of both POC axon and glial
bridge comparisons across all conditions.

ΔSCOPE examination of Slit1a-mCherry overexpression in wild type
showed a significant reduction in the number of anti-AT positive pixels
(axons) at the midline in both the anterior (Fig. 21 E and F) and dorsal-
ventral axes (Fig. 21 F and G). We further noted that all radial bins in
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Slit1a-mCherry overexpressed embryos exhibited significant expansion
in radial distances from the modeled POC parabola, suggesting signifi-
cant defasciculation (Fig. 22 I–L). When compared to wild type embryos,
Slit1a-mCherry overexpression in yot mutant embryos exhibited both
significant reductions in anti-AT signal as well as in the R distance in all
radial bins (Fig. 21 I–L, Fig. 22 I–L). Importantly, we acknowledge that
this quantification of axon patterning in yot mutants in response to slit1a
was not consistent with our earlier qualitative assessment that suggested
a potential POC rescue (Fig. 20 O and P). In fact, our ΔSCOPE analysis
indicates that slit1a-mCherry overexpression results in a greater loss of
anti-AT signal in all posterior axes when compared to non-heatshocked
yot controls (Fig. 22 Q–T). Likewise, more severe defasciculation was
quantified in yot mutants following Slit1a-mCherry overexpression as
compared to yotmutant controls (Fig. 21 Q,S). Indeed, overexpression of
Slit1a-mCherry in wild type resulted in phenotypes that were not sta-
tistically different from yotmutants alone (Fig. 21M–P, Fig. 22M–P). Our
prior slit1a morphant loss of function data suggested that Slit1a was
required for midline crossing, however we demonstrated here using
ΔSCOPE that the misexpression of slit1a alone was insufficient to rescue
midline crossing in yot mutants and rather caused even more deleterious
effects on POC development.

The disagreement of this new quantitative analysis of Slit1a function
by ΔSCOPE with our previous qualitative assessments, suggests the
guidance mechanisms of Slit1a may be more complex than our original
model posited. Interestingly, slit1a has been shown to be expressed by
cells of the glial bridge (Barresi et al., 2005). Moreover, we showed here
for the first time that the development of the glial bridge and POC axons
are inextricably linked, therefore we hypothesize that the primary role of
Slit1a may be in the positioning of astroglial cells. We found through



Fig. 18. Landmark median radial distance analysis of glial bridge development and distribution. A-D) Statistical comparison of the radial distance of Gfap
signal from the POC model in 22 hpf (n ¼ 13) and 24 hpf (n ¼ 20) POCs. No statistical difference observed. E-H) Statistical comparison of Gfap signal from the POC
model in 24 hpf (n ¼ 20) and 26 hpf (n ¼ 18). Significant reductions in radial distance was observed in all ventral posterior locations. I-L) Statistical comparison of the
radial distance of Gfap signal from the POC model in 26 hpf (n ¼ 18) to 28 hpf (n ¼ 17) POCs. Significant increases in radial distance noted in all radial bins. M-P)
Statistical comparison of the radial distance of Gfap signal from the POC model in 28 hpf (n ¼ 17) and 30 hpf (n ¼ 17). Significant reductions in radial distance
observed in all radial bins.
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ΔSCOPE quantification that slit1a-mCherry misexpression has a signifi-
cant effect on the distribution of Gfap in the forebrain. Although we
detected only slight reductions in Gfap signal in response to sli-
t1a-mCherry overexpression (Fig. 23), there was a positive correlation
with reductions in median R distance (Fig 24). Furthermore, we previ-
ously noted significant reductions of both median R distance and signal
of Gfap in you-too embryos. As such, we note that both increases and
decreases in Slit1a result in disruptions to the appropriate positioning of
the glial bridge (Fig. 23, (Barresi et al., 2005)). Our data suggests that
Slit1a may first function to condense the cells of the glial bridge, and that
disruptions to the proper patterning of the glial bridge results in the
weakening of a key supportive structure to the guidance of POC axons
across the midline.

4. Discussion

Unbiased tools to objectively analyze image-based data have not kept
pace with advances in microscopy. The development of analytical tools
which might enable image analysis have been largely hampered by the
inherent challenges associated with 3D image data: image noise, sample
variability, loss of dimensionality, and challenges in generating an
average structure from multiple samples. To overcome these challenges,
we built ΔSCOPE a new computational method to quantify 3D image-
based data, which we have applied to the study of axon-glial in-
teractions during commissure development in zebrafish. We demon-
strated that ΔSCOPE’s innovative structural anchoring and use of
principal component analysis enabled automated sample alignment to
register the 3D pixel data of all samples being tested into a cylindrical
coordinate system. With the data organized along this new coordinate
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system, we further showed how the integration of landmark analysis
could enable not only the statistical quantification of two discrete bio-
logical but also associated structures between several different compar-
ative conditions. Our application of ΔSCOPE to the analysis of axon and
glial cell behaviors during commissure formation in the zebrafish fore-
brain has quantitatively proved for the first time the direct association of
pathfinding POC axons with astroglial cell positioning during midline
crossing. Moreover, we validated the sensitivity ofΔSCOPE by examining
a zebrafish mutant and transgenic embryos with known severe and subtle
phenotypes in POC pathfinding and glial cell positioning, respectively.
Lastly, ΔSCOPE provided us the opportunity to report here for the first
time that the Slit1a guidance cue was sufficient to cause modest but
statistically significant commissural pathfinding errors as well as exert a
direct influence on glial bridge development. Our results taken together
suggest a model in which Slit1a may function to guide the organization of
the glial bridge that then provides the necessary structural support for
midline crossing POC axons.

4.1. ΔSCOPE provides a structure-based method for adaptable analyzes

In order to achieve sample-to-sample alignment for comparative and
statistical analyzes, we anchored ΔSCOPE around a common structural
element. Although this approach solved the problem of image registra-
tion it also introduced a restriction of requiring a relatively consistent
structure amongst all images being quantified. Thus, while ΔSCOPE was
successful in defining the parameters of glial bridge development during
POC formation (Figs. 18 and 19), it could not characterize the positioning
of these same glial cells prior to the emergence of POC axons that served
as the primary structural channel. Within the scope of this limitation, we



Fig. 19. Landmark point analysis of anti-Gfap signal and glial bridge development. A-D) Statistical comparison of the number of Gfap positive pixels in 22 hpf (n
¼ 13) and 24 hpf (n ¼ 20) POCs. No statistical increase in Gfap signal. E-H) Statistical comparison of Gfap positive pixels between 24 hpf (n ¼ 20) and 26 hpf (n ¼ 18).
Significant changes observed in ventral-anterior positions. I-L) Statistical comparison of Gfap positive pixels between 26 hpf (n ¼ 18) to 28 hpf (n ¼ 17) POCs.
Statistical increase in Gfap in ventral-posterior locations and a decrease in ventral-anterior. M-P) Statistical comparison of Gfap positive pixels between 28 hpf (n ¼ 17)
and 30 hpf (n ¼ 17). Significant increase in Gfap signal changes observed in anterior bins with a slight reduction in ventral-posterior locations.
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predict that ΔSCOPE’s use of PCA will be applicable to any definite
biological structure that exhibits consistently different signal distribu-
tions along the three dimensions. In other words, we anticipate that the
PCA function of ΔSCOPE will not perform well on an alignment channel
where signal is either randomly or evenly distributed across the field of
view, such that two axes share similar signal distributions. However, we
have also implemented manual PCA correction tools, including tools to
hold known axes from image acquisition as constant. When paired with
consistent image and structure acquisition, these tools can overcome
limitations in PCA alignment resulting from poor axis variability.
Moreover, image registration is currently of great interest to the field of
microscopy, and we anticipate that advances in machine learning
methods will provide new alternatives to PCA to ameliorate ΔSCOPE’s
dependence on a consistent anisotropic structure.

ΔSCOPE also successfully retains the three-dimensionality of our
data, which is rooted in the creation of a new cylindrical (biologically
oriented) coordinate system. This coordinate system is based on a model
of the biological structure of interest and transforms a Cartesian coor-
dinate signal into a signal that is registered to the structure of interest.
This approach reduced the impact of variation in sample positioning or
microscopy and instead isolated the actual biological variation. We
suggest that this new structure centric technique of evaluating data
provides the user with the opportunity to see, evaluate, and test biolog-
ical data in ways that have not been achieved in other coordinate or
alignment paradigms. In particular, as two biological specimens are
rarely structurally identical, Cartesian transformation tools often have to
warp microscopy data to fit a reference structure, a process which may
lead to the introduction of artificial variation. Of particular concern,
transformations to a reference structure can obscure subtle biological
differences between samples, which greatly limits the sensitivity of such
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techniques for the accurate assessment of subtle phenotypes. We have
demonstrated here that ΔSCOPE is able to detect, quantify and statisti-
cally analyze even subtle axonal pathfinding errors (Fig. 21). We propose
that using the biological structure itself to describe the distribution of
data affords a powerful new way to evaluate biological structures. We
specifically recommend that the application of this cylindrical coordinate
system would be similarly informative in the analysis of other 3D
structures where the signal can be mathematically described by a simple
algebraic equation and where a consistent centering point can be iden-
tified. For example, neuro-developmental structures, such as the spinal
cord and optic cup, could respectively be described with a line that runs
parallel or perpendicular to the structure.

ΔSCOPE leverages the program ilastik to remove noise while pre-
serving the signal best representative of the experimental data. We
acknowledge that this pre-processing step involved two aspects of data
alteration, of which one could introduce human bias. Although the ob-
jectivity of the machine learning methods of ilastik reduced the influence
of human biases, this approach first relied on expertly annotated training
sets of data with a wide range of images and image intensities. We have
observed that errors in training or the use of disparate image collection
parameters can result in processed images with significantly higher levels
of signal noise or alternatively completely blank data sets. From a sta-
tistical rigor perspective, it is fortunate that in both cases this tends to
result in greater image variation and thus decreased statistical power, as
opposed to a higher false positive rate. It is important to also acknowl-
edge that we must apply a signal threshold to this post-processed data to
generate a binary dataset for ΔSCOPE analysis. While we have observed
that a wide range of thresholds were both tolerated by ΔSCOPE and
anecdotally noted that varied thresholds do not significantly influence
the ultimate results, the same may not be true of all potential future



Fig. 20. slit1a over-expression affects POC formation in wild type and homozygous yot embryos. A,B) Non-heatshock control of hsp70:mcherry embryo. A) Color
composite MIP of frontal zebrafish forebrain showing POC and glial bridge, with cherry (red), Gfap (blue), AT (green), showing no red expression, and coincidence of
the glial bridge (blue) with the POC (green). B) Single channel MIP of AT showing normal commissure formation. C,D) Heatshock control of hsp70:mcherry embryo. C)
Color composite MIP of frontal zebrafish forebrain showing POC and glial bridge, with cherry (red), Gfap (blue), AT (green), showing red expression, and coincidence
of the glial bridge (blue) with the POC (green). D) Single channel MIP of AT showing normal commissure formation. E,F) Non-heatshock control of hsp70:slit1a-mcherry
embryo. E) Color composite MIP of frontal zebrafish forebrain showing POC and glial bridge, with cherry (red), Gfap (blue), AT (green), showing no red expression,
and coincidence of the glial bridge (blue) with the POC (green). F) Single channel MIP of AT showing normal commissure formation. G,H) Heatshock hsp70:slit1a-
mcherry embryo. G) Color composite MIP of frontal zebrafish forebrain showing POC and glial bridge, with cherry (red), Gfap (blue), AT (green), showing red
expression, and disturbed glial bridge (blue) with a defasciculated POC (green). H) Single channel MIP of AT showing aberrant and defasciculated commissure
formation. I,J) Non-heatshock control of you-too homozygous hsp70:mcherry embryo. I) Color composite MIP of frontal zebrafish forebrain showing POC and glial
bridge, with cherry (red), Gfap (blue), AT (green), showing no red expression, and disturbed glial bridge formation (blue) and loss of commissure formation (green). J)
Single channel MIP of AT showing loss of commissure formation. K,L) Heatshock control of you-too homozygous hsp70:mcherry embryo. J) Color composite MIP of
frontal zebrafish forebrain showing POC and glial bridge, with cherry (red), Gfap (blue), AT (green), showing red expression, and disturbed glial bridge formation
(blue) and loss of commissure formation (green). L) Single channel MIP of AT showing loss of commissure formation. M,N) Non-heatshock control of you-too ho-
mozygous hsp70:slit1a-mcherry embryo. M) Color composite MIP of frontal zebrafish forebrain showing POC and glial bridge, with cherry (red), Gfap (blue), AT
(green), showing no red expression, and disturbed glial bridge formation (blue) and loss of commissure formation (green). N) Single channel MIP of AT showing loss of
commissure formation. O,P) Heatshock you-too homozygous hsp70:slit1a-mcherry embryo. O) Color composite MIP of frontal zebrafish forebrain showing POC and glial
bridge, with cherry (red), Gfap (blue), AT (green), showing red expression, and disturbed glial bridge formation (blue) and some commissure formation (green). P)
Single channel MIP of AT showing partial commissure formation.
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structural images analyzed with ΔSCOPE. We further note however that
ΔSCOPE was sensitive to variations in sample labeling and intensity, as
noted by its ability to detect changes in commissure signal and distri-
bution (Figs. 16 and 17). This sensitivity requires that comparative
samples must be properly age matched and processed equivalently,
which is a requirement that should fall within the norm for most
experimental paradigms. Failure to account for experimental differences
may result in the detection of significant differences between experi-
ments that are due to real changes in label quality. Additionally, to assist
future users of ΔSCOPE, we provide code designed to evaluate and
determine the optimal threshold for the elimination of background or
non-structure real signal and safeguard against these potential intro-
duced biases. We conclude that ilastik processing generally results in
images with less noise and greater preservation of signal as compared to
using methods of raw intensity thresholding (Fig. 2).

4.2. ΔSCOPE reveals the complexities of axon and glial cell guidance

The wiring of the vertebrate brain is based upon a stereotypical
pattern of neuron-to-neuron connections that are laid down during em-
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bryonic development through a process called axon guidance. Because of
the foundational role axon guidance plays in building the nervous sys-
tem, as well as repairing it during neural regeneration, there has been a
long history of research into the signaling mechanisms governing the
extracellular guidance information and the intracellular machinery
required to interpret those environmental cues (Kaprielian et al., 2001;
Zou and Lyuksyutova, 2007; Silver et al., 1982b; Stier and Schlosshauer,
1995; Fujiwara et al., 2006). This research has traditionally relied upon
the analysis of visual representations of axonal anatomy. However, while
a species may exhibit conserved patterns of axon pathways, no two em-
bryos of that same species are identical. Therefore, it has been a long-
standing challenge of the field to generate significant confidence in the
interpretation of axonal phenotypes, particularly when those changes
may be subtle in appearance. We present here,ΔSCOPE, a newmethod to
produce an unbiased, objective assessment of changes in axonal anat-
omy. To demonstrate its utility, we have leveraged ΔSCOPE to describe
and quantify the development of the post optic commissure in the
zebrafish forebrain.

It has been known that the loss of hedgehog signaling, in particular
through the dominant repressive effects of the you-too (gli2DR)mutation,



Fig. 21. The effect of slit1a overexpression on commissure formation. Comparisons of the number of AT positive points in radial bins. A-D) Comparison of WT (n
¼ 37) (green) and you-too (n ¼ 33) (orange) homozygous POC. Loss of AT signal in you-too was observed in all octants except the posterior quadrant. E-H) Comparison
of WT (n ¼ 37) (green) and heatshock slit1a (n ¼ 10) (purple) embryos. Significant reductions in AT signal in heatshock slit1a commissures was observed in dorsal
ventral octants. I-L) Comparison of WT (n ¼ 37) (green) and heatshock slit1a you-too (n ¼ 17) (red) homozygous embryos. Significant reductions were observed in all
octants of slit1a you-too commissures. M-P) Comparison of you-too homozygous (n ¼ 33) (orange) and heatshock slit1a (n ¼ 10) (purple) embryos. No significant
differences observed. Q-T) Comparison of you-too homozygous (n ¼ 33) (orange) and heatshock slit1a you-too (n ¼ 17) (red) embryos. Significant reductions in the
number of points in heatshock slit1a you-too embryos in both dorsal posterior and ventral posterior positions. U-X) Comparison of heatshock slit1a (n ¼ 10) (purple)
and heatshock slit1a you-too (n ¼ 17) (red) embryos. Significant reductions in the number of AT points in heatshock slit1a you-too embryos were observed in the
posterior quadrant.

Fig. 22. The effect of slit1a overexpression on commissure distribution and fasciculation. Comparisons of the radial distance of axon signal from the POC model.
A-D) Comparison of WT (n ¼ 37) (green) and you-too (n ¼ 33) (orange) homozygous POC. Significant expansion of the radial distance in you-too was observed in all
octants. E-H) Comparison of WT (n ¼ 37) (green) and heatshock slit1a (n ¼ 10) (purple) embryos. Significant expansion of the radial distance in heatshock slit1a was
observed in all octants. I-L) Comparison of WT (n ¼ 37) (green) and heatshock slit1a you-too (n ¼ 17) (red) homozygous embryos. Significant expansions of the radial
distance of AT signal in heatshock slit1a you-too was observed in all octants. M-P) Comparison of you-too homozygous (n ¼ 33) (orange) and heatshock slit1a (n ¼ 10)
(purple) embryos. No significant differences observed. Q-T) Comparison of you-too homozygous (n ¼ 33) (orange) and heatshock slit1a you-too (n ¼ 17) (red) embryos.
Significant expansions in radial distance of AT signal in heatshock slit1a you-too were observed in dorsal and dorsal anterior positions. U-X) Comparison of heatshock
slit1a (n ¼ 10) (purple) and heatshock slit1a you-too (n ¼ 17) (red) embryos. No significant changes observed.
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causes changes in gene expression of the slit family of guidance cues,
resulting in both axon pathfinding and astroglial cell positioning errors
(Barresi et al., 2005). This previous work by ourselves and colleagues was
dependent on obvious midline crossing defect phenotypes, and it there-
fore lacked the analytical approaches to characterize the
three-dimensionality of these phenotypes. We leveraged the current
knowledge of axon and glial cell phenotypes in the yot mutant as means
to first validate the sensitivity of ΔSCOPE, and then went further, to
analyze these defects in much greater detail. Through this more
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quantitative approach we were able to show that ΔSCOPE was capable of
detecting and identifying a statistically significant loss of midline
crossing axons in the same exact locations where astroglial cells were
similarly reduced particularly along the dorsal-posterior axes (compare
Fig. 14 A and B with Fig. 15 A and B). In fact, our analysis suggested a
much more refined understanding of POC axon phenotypes in yot, such
that those axons that were found to be wandering did so preferentially
closer to the pial surface as opposed to pathfinding deeper into the
forebrain.



Fig. 23. The effect of slit1a overexpression on glial bridge formation. Comparisons of the number of Gfap positive points in radial bins. A-D) Comparison of WT (n
¼ 37) (green) and you-too (n ¼ 33) (orange) homozygous glial bridge. Loss of Gfap signal in you-too was observed in dorsal anterior and octants and the lateral dorsal
anterior octant. E-H) Comparison of WT (n ¼ 37) (green) and heatshock slit1a (n ¼ 10) (purple) embryos. Significant reductions in Gfap signal in heatshock slit1a the
glial bridge was observed in the lateral-anterior and posterior octants. I-L) Comparison of WT (n ¼ 37) (green) and heatshock slit1a you-too (n ¼ 17) (red) homozygous
embryos. Significant reductions in Gfap signal were observed in anterior and posterior octants of slit1a you-too glial bridges. M-P) Comparison of you-too homozygous
(n ¼ 33) (orange) and heatshock slit1a (n ¼ 10) (purple) embryos. No significant differences observed. Q-T) Comparison of you-too homozygous (n ¼ 33) (orange) and
heatshock slit1a you-too (n ¼ 17) (red) embryos. A significant increase in the number of Gfap positive points in heatshock slit1a you-too embryos was observed in the
ventral octant of the glial bridge. U-X) Comparison of heatshock slit1a (n ¼ 10) (purple) and heatshock slit1a you-too (n ¼ 17) (red) embryos. No significant differences
were observed.

Fig. 24. The effect of slit1a overexpression on glial bridge condensation. The effect of slit1a overexpression on glial bridge formation. Comparisons of the radial
distance of Gfap signal from the POC model. A-D) Comparison of WT (n ¼ 37) (green) and you-too (n ¼ 33) (orange) homozygous POC. Significant reduction of the
radial distance of Gfap signal in you-too glial bridges were observed in all anterior octants. E-H) Comparison of WT (n ¼ 37) (green) and heatshock slit1a (n ¼ 10)
(purple) embryos. Significant reduction of the radial distance of Gfap signal in heatshock slit1a embryos was observed in all octants. I-L) Comparison of WT (n ¼ 37)
(green) and heatshock slit1a you-too (n ¼ 17) (red) homozygous embryos. Significant reductions of the radial distance of Gfap signal in heatshock slit1a you-too was
observed in all octants but the ventral and dorsal posterior octants. M-P) Comparison of you-too homozygous (n ¼ 33) (orange) and heatshock slit1a (n ¼ 10) (purple)
embryos. Significant reductions in the radial distance of Gfap signal in heatshock slit1a glial bridges were observed in the posterior quadrant. Q-T) Comparison of you-
too homozygous (n ¼ 33) (orange) and heatshock slit1a you-too (n ¼ 17) (red) embryos. Significant reductions in the radial distance of Gfap signal in heatshock slit1a
you-too glial bridges were observed in anterior and posterior quadrants. U-X) Comparison of heatshock slit1a (n ¼ 10) (purple) and heatshock slit1a you-too (n ¼ 17)
(red) embryos. No significant changes observed.
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By applying this now validated ΔSCOPE analysis to POC axon and
glial cell positioning over embryological time, we were able to generate
the first quantitative description of pathfinding axons and glial bridge
formation during commissure development. Our comparative measure-
ments for changes in pixel position (R) and quantity relative to the
modeled commissure and midline revealed an initial period of POC axon
remodeling as pathfinding axons approach and cross the midline fol-
lowed by a period of increasing commissure fasciculation. Most fasci-
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nating was the paired quantification of glial bridge condensation about
the modeled parabola, strongly suggesting a tight interaction between
pathfinding POC axons and midline spanning astroglial cells
(Figs. 16–19).

Lastly, we extended our ΔSCOPE analysis of axon guidance to shed
light upon the role that Slit1a may play during commissure formation.
Based on differing responses, it was previously suggested that Slit1a may
function distinctly from its known axon repellent family members Slit2
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and Slit3 (Barresi et al., 2005). We present here the first demonstration of
a temporally controlled misexpression of Slit1a just prior to commissure
formation. Interestingly, while the widespread misexpression of Slit1a
caused subtle but statistically significant indications of POC axon defas-
ciculation (Fig. 22), astroglial cell labeling appeared to respond differ-
ently by more tightly condensing around the modeled commissure (Fig
24). Such different axon and glial cell responses to the same guidance cue
in the same context suggests the existence of different intracellular ma-
chinery to mediate the guidance of POC axons and glial cells to Slit1a. We
interpret our data to suggest a model in which Slit1a first functions to
condense the cells of the glial bridge, which then serves a more
permissive role in the physical growth of POC axons across the midline.

As the amount and complexity of image-based data continues to grow,
so will the need for improved methods that can bridge the gap between
3D visual inspection of data and quantitative analysis of that data.
ΔSCOPE provides a new option for the quantification and statistical
analysis of 3D visual data. We purport that ΔSCOPE presents a new
paradigm for image analysis, representing a shift away from the use of
reference atlases or evaluation of MIPS. In particularΔSCOPE enables the
use of multiple embryos for generation of an averaged structure that
fosters quantitative and statistical analyses of the biology while reducing
the impact of normal biological variation which is frequently emphasized
in atlases and MIPs. Further, we present ΔSCOPE as an extensible, open
source software, which others can use, edit, and adapt to suit their needs
and biological question, allowing it to adapt to meet the “dimensions” of
future systems and questions.

4.3. Distribution and accessibility

The code base of ΔSCOPE is available online as a Python package
hosted on the https://pypi.org/project/deltascope/. The raw code re-
pository is available on https://github.com/msschwartz21/deltascope,
which records changes to the code and logs issues encountered by users
of the code. In order to facilitate ease-of-use, extensive documentation of
ΔSCOPE and its associated workflows is available on https://deltascope
.readthedocs.io/en/latest/.
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