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Abstract

Ornaments used in courtship often vary wildly among species, reflecting the evolutionary
interplay between mate preference functions and the constraints imposed by natural selec-
tion. Consequently, understanding the evolutionary dynamics responsible for ornament
diversification has been a longstanding challenge in evolutionary biology. However, compar-
ing radically different ornaments across species, as well as different classes of ornaments
within species, is a profound challenge to understanding diversification of sexual signals.
Using novel methods and a unique natural history dataset, we explore evolutionary patterns
of ornament evolution in a group—the birds-of-paradise—exhibiting dramatic phenotypic
diversification widely assumed to be driven by sexual selection. Rather than the tradeoff
between ornament types originally envisioned by Darwin and Wallace, we found positive
correlations among cross-modal (visual/acoustic) signals indicating functional integration of
ornamental traits into a composite unit—the “courtship phenotype.” Furthermore, given the
broad theoretical and empirical support for the idea that systemic robustness—functional
overlap and interdependency—promotes evolutionary innovation, we posit that birds-of-par-
adise have radiated extensively through ornamental phenotype space as a consequence of
the robustness in the courtship phenotype that we document at a phylogenetic scale. We
suggest that the degree of robustness in courtship phenotypes among taxa can provide new
insights into the relative influence of sexual and natural selection on phenotypic radiations.

Author summary

Animals frequently vary widely in ornamentation, even among closely related species.
Understanding the patterns that underlie this variation is a significant challenge, requiring
comparisons among drastically different traits—like comparing apples to oranges. Here,
we use novel analytical approaches to quantify variation in ornamental diversity and
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richness across the wildly divergent birds-of-paradise, a textbook example of how sexual
selection can profoundly shape organismal phenotypes. We find that color and acoustic
complexity, along with behavior and acoustic complexity, are positively correlated across
evolutionary timescales. Positive links among ornament classes suggests that selection is
acting on correlated suites of traits—a composite courtship phenotype—and this integra-
tion may be partially responsible for the extreme variation in signal form that we see in
birds-of-paradise.

Introduction

Adaptive radiations are driven by ecological differences that promote processes of diversifica-
tion and speciation [1]. In contrast, phenotypic radiations, which occur in the absence of clear
ecological differentiation, are less well understood. One commonly investigated mechanism
for phenotypic diversification among ecologically similar taxa is variation in social and sexual
selection pressures promoting signal or ornament diversification. Ornamental radiations may
come about as a consequence of variation in signaling environment [2,3], sensory capabilities
[4,5], or pseudorandomly via mutation-order selection [6,7] or Fisher-Lande-Kirkpatrick pro-
cesses [8-11]. Most studies investigating patterns of ornamental diversification have focused
on individual trait classes and simplified axes of variation; however, sexual selection does not
act on single traits in isolation. A more complete understanding of the processes driving orna-
mental diversification is possible only by investigating evolutionary relationships between the
full suites of ornamental traits under selection.

Many animals rely on multiple ornamental traits to attract mates. Advantages of multiple
ornaments may include increased information transfer (multiple messages), increased reliabil-
ity (redundancy), increased flexibility (ensuring information transfer across contexts and envi-
ronments), and increased memorability/discriminability [12-16]. Multiple ornaments may be
more common when costs associated with the display or evaluation of those ornaments are
low [17], as is likely the case in lekking species [12]. Though we now have broad empirical sup-
port for many of the proposed adaptive benefits of multiple signals at the level of individual
species, how these specific hypotheses map onto our understanding of phylogenetic patterns
of ornament evolution is less clear. Gaining insights into the macroevolutionary patterns of
multiple ornament evolution is challenging, in part, owing to the difficulties of comparing
highly divergent phenotypic traits across species. For instance, even focusing on evolutionary
patterns of a single trait (e.g., plumage color in birds) across species can be difficult when traits
possess different axes of variation (e.g., red versus blue). Though ingenious new methods have
been devised to compare highly divergent ornaments of a single signal type (e.g., plumage
color [18], electrical signals [19], or song [20]), comparing ornamental complexity across sig-
nal types presents yet an additional layer of complication. However, understanding the interre-
lationships of different classes of ornaments across phylogenetic scales can potentially provide
valuable information about the evolutionary processes of communication, phenotypic radia-
tion, and speciation that cannot be gathered from single-trait or single-species studies.

Following the evolution of multiple ornaments, selective pressures may favor different
interrelationships among signal types. If ornamental investment is governed by evolutionary
tradeoffs, investment in one class of ornaments will come only at the expense of investment in
another. Evidence suggests that signal tradeoffs manifest as a negative correlation among orna-
ment types across evolutionary time [21-27], reflecting strong, consistent constraints imposed
by ecology, physiology, and natural selection [28,29]. Alternatively, instances in which
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ornamental traits show no evolutionary relationships [30-35] suggest long-term patterns of
independent evolutionary trajectories. In such cases, signals are functionally independent and
may even have evolved for use in different contexts (e.g., territorial defense versus mate attrac-
tion). When might we expect positive correlations among ornament classes across species?
Theoretical [12,36] and empirical [37,38] work suggests that positive correlations among sig-
nals across species may reflect consistent selection acting similarly on separate axes of orna-
mental evolution. Strong, consistent intersexual selection could generate these positive
correlations (sensu [37]), especially if the signals convey separate information [36], resulting in
functional integration among ornament elements [39,40]. In such cases, positive correlations
among signals across species would arise when selection favors an “integrated whole” of orna-
mental traits [41,42], which we call the “courtship phenotype.” The courtship phenotype is the
composite expression of all ornamental classes evaluated during courtship and may represent
the composite target of selection. Evolution may favor integrated, holistic mate evaluation
strategies because of advantages that sensory overlap and redundancy offer (e.g., increased
accuracy) [12-16].

Here, we examine broad evolutionary patterns of ornamental signal investment and com-
plexity across the wildly diverse [43,44], monophyletic [45] birds-of-paradise (Paradisaeidae)
“...in which the process of sexual selection has gone to fantastic extremes” [46] (Fig 1A). We
focus on the birds-of-paradise because this family exhibits extreme variation across species in
multiple ornamental axes [43] (e.g., color [47-49] and behavior [50,51]) while possessing
broadly similar life histories and mating systems [43,44]. Consequently, insights about the
strength, direction, and diversification of ornamental phenotypes in this group may shed light
on key processes of sexual selection and its power to generate phenotypic radiation when natu-
ral-selection-imposed constraints are minimized. In this study, we use a unique natural his-
tory dataset to quantitatively evaluate behavioral, acoustic, and colorimetric ornamentation
across 40 species of birds-of-paradise, as well as relationships between signals and display
environment.

Results
An approach to quantify courtship complexity among divergent ornaments

Comparisons across signal types are inherently challenging for evolutionary biologists given
that such signals are necessarily measured in different ways. Additionally, comparisons within
color, acoustic, and behavioral repertoires across taxa that vary widely (e.g., the birds-of-para-
dise) present an additional methodological challenge: how does one compare phenotypes that
may share no obvious overlapping characters? We addressed this obstacle with a two-pronged
approach to quantify ornamental complexity for behavior, color, and sounds in the birds-of-
paradise. First, we broke down each ornament into a taxonomically unbounded character
space that allowed classification of subunits across all species. Second, we used the specific
attributes of a given ornament for each individual for each species to categorize the ornament
components before quantifying two conceptually aligned measures of complexity for each sig-
nal type. Specifically, we evaluated richness (the number of unique elements) and diversity
(using an index dependent on the number and relative contribution of each element type)
using phylogenetic comparative approaches (see Methods for additional details).

For behavioral analyses, we first broke down the courtship behaviors of all species into dis-
tinct subunits shared across species (e.g., S1 Video). We then analyzed composite behavioral
sequences across time using sliding-window analyses to compare maximally diverse behavioral
repertoires for a set duration across species (Fig 1B). For colorimetric analyses, we relied on
visual modeling of multispectral images to quantify the number and relative abundances of
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Fig 1. Birds-of-paradise exhibit extreme diversity in colors, sounds, and behaviors used during courtship displays, necessitating novel methods to quantitatively
evaluate the evolution of their complexity. (A) Sixteen exemplar species (purple tips) are shown with their phylogenetic relationships to highlight variation in plumage
color, acoustic signals, and courtship display behavior. (B) Behavioral subunits were scored from field-captured videos of displaying males (S3 and S4 Tables). Behavioral
subunits were combined to create composite behaviors describing any behavior across species and facilitating sliding-window analysis of behaviors and behavioral
sequences. (C) UV and visual spectrum images were taken of museum specimens (S7 Table) and used to generate avian visual model-informed image stacks. Color
values were clustered with respect to modeled avian discriminability, enabling whole-specimen quantification of color richness and diversity. (D) All bird-of-paradise
sounds were placed into a multidimensional acoustic space defined by principal components analysis. Sounds were then given identities based on locations within
acoustic space, facilitating a sliding-window analysis of sounds and acoustic sequences (S8 and S9 Tables). Iws, long-wavelength sensitive; mws, medium-wavelength

sensitive; sws, short-wavelength sensitive; UV, ultraviolet; uvs, ultraviolet sensitive.

https://doi.org/10.1371/journal.pbio.2006962.9001
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perceptually distinct color types across individuals and species. Though different colors may
have different underlying production mechanisms, our analyses simply focused on the number
and distribution of distinguishable colors (Fig 1C). Similar to our behavioral analysis pipeline,
we used acoustic properties and agglomerative clustering to classify distinct sound types used
by birds-of-paradise in courtship contexts before employing a similar sliding-window analysis
to identify maximally diverse acoustic sequences, facilitating comparisons across species (Fig
1D).

In total, we analyzed 961 video clips, 176 audio clips, and 393 museum specimens. From
these analyses, we obtained quantitative diversity and richness metrics of ornamental complex-
ity across the birds-of-paradise (Fig 2), which allowed us to rigorously evaluate patterns of cor-
related character evolution, as well as facilitating our investigation of the influence of breeding
system and display environment on ornamental complexity.

Integrative evolution of courtship complexity across modalities

Using multiple phylogenetic generalized least squares (mPGLS) analyses, which allowed us to
control for the nonindependence of species due to their shared evolutionary history, as well as
the potentially confounding influences of display environment (both display height and prox-
imity to courting conspecific males), we uncovered positive correlations between color and
acoustic diversity (Fig 3A), as well as between behavioral and acoustic diversity (Fig 3B), con-
sistent with the hypothesis that selection has acted similarly on these axes of ornamental com-
plexity. Interestingly, however, there was no significant relationship between color diversity
and behavioral diversity, indicating independent evolutionary trajectories for these visually
encoded aspects of courtship ornamentation (S1 Table and S1 Fig). Analyses of ornamental
richness revealed the same pattern to those uncovered for ornamental diversity (S2 Table).
Specifically, behavioral richness and acoustic richness were correlated, as were color richness
and acoustic richness (as was the case for both relationships involving ornamental diversity).

Courtship complexity related to display height

Behavior richness and acoustic richness, but not color richness, were influenced by stratum of
the forest in which species display (Fig 4A-4C). Specifically, we found that behavioral richness
exhibited a negative relationship with display height among birds-of-paradise, such that spe-
cies that display on the forest floor had the largest behavioral repertoires (52 Table and Fig 4B).
Species that display on the forest floor are typically operating with lower-light environments,
and consequently, these species appear to rely more heavily on complex dance sequences to
attract mates. Additionally, birds-of-paradise show increased acoustic (Fig 4C) richness as
their display locations increase in height (S2 Table), a result that partially corresponds to the
predictions of sensory drive [52,53] whereby the openness of the upper canopy favors increas-
ingly complex acoustic displays.

Similar to the patterns we uncovered for signal richness, we also found that behavioral
diversity and acoustic diversity were influenced by display height (S1 Table). Species displaying
in the forest understory exhibiting a marginally significant (p = 0.051) trend for greater acous-
tic diversity relative to ground displaying species, and the behavioral diversity for ground-dis-
playing species was higher than for both understory and canopy species (S1 Table). However,
color diversity was not significantly influenced by display height.

Courtship complexity related to spatial distribution of displaying males

Birds-of-paradise that display in classic leks have greater color richness (Fig 4D and S2 Table),
corresponding to the increased strength of sexual selection on males to “stand out” visually
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https://doi.org/10.1371/journal.pbio.2006962.9002

when being evaluated simultaneously in lekking contexts. However, neither behavioral nor
acoustic richness were significantly associated with the spatial distribution of displaying males.
Furthermore, none of the diversity metrics (color, behavior, sound) were significantly associ-
ated with the breeding system structure (S1 Table).
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Underlying data for Fig 3 can be found in S1 Data. Exp lek, exploded lek; mPGLS, multiple phylogenetic generalized
least squares; my, million years.

https://doi.org/10.1371/journal.pbio.2006962.9003

Discussion

Our study provides evidence that selection has favored correlated levels of ornamental diver-
sity across multiple signals among the birds-of-paradise. This pattern of positive correlation
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https://doi.org/10.1371/journal.pbio.2006962.g004

among distinct ornament classes across evolutionary timescales and species suggests strong
sexual selection on functionally integrated courtship phenotypes. The degree to which pheno-
typic traits are coexpressed and functionally dependent upon one another can be referred to as
functional integration [54] or interdependence [40]. Courtship phenotypes with greater func-
tional integration are therefore composed of ornaments that are typically expressed at similar
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levels and that are mutually interdependent in order to influence mate choice [39,41,42]. Cor-
relations among the signals that comprise the courtship phenotype also suggest a previously
undescribed robustness in bird-of-paradise courtship phenotypes that may have played a key
role in the extreme ornamental radiation exhibited by this taxon (Fig 1).

Evolutionary biologists dating back to Mayr [55] and even Darwin [56] have recognized the
potential evolutionary implications of functional redundancy (two or more structures per-
forming the same function). Functional redundancy, including “true” redundancy (i.e., struc-
turally identical components with identical functions) and degeneracy (i.e., structurally
distinct components with similar functions) [57], facilitates evolutionary innovation (i.e.,
increases “evolvability”) by increasing robustness. Robust systems are those in which the over-
all structure and interconnectedness of parts provide protection from environmental or muta-
tional instability [58] such that a given function is not lost if a single component fails.
Robustness increases evolvability by enabling elements to react to selection independently and
diverge while maintaining original functions [57,59]. All redundancy (both “true” redundancy
and degeneracy) provides a measure of robustness, but robust systems are not necessarily
redundant [60]. Given the broad theoretical [59,61,62] and empirical [63-65] support for the
idea that robustness can promote evolvability across a wide array of biological domains, we
posit that the correlations among signal types within birds-of-paradise courtship phenotypes
are at least partially responsible for the dramatic diversification and radiation of courtship sig-
nals displayed by birds-of-paradise. If female birds-of-paradise make mate choice decisions
based on sensory input from the multiple signals that comprise a composite courtship pheno-
type and information from those channels is correlated, then novel mutations changing the
structure or form of a given ornament may occur without “necessary” information being lost
[66]. Consequently, over evolutionary time, we suggest it is the inherent functional overlap
(redundancy/degeneracy) and structural interdependency (robustness) of courtship pheno-
types that leads to increased phenotypic diversification (evolvability) in birds-of-paradise.

Phenotypic radiations in the absence of clear ecological differentiation may arise stochasti-
cally [67,68] and be heavily influenced by the specific intricacies of female choice [7,10,69,70].
Birds-of-paradise clearly exhibit some ecological differentiation [43], but broadly speaking,
they tend to be heavily frugivorous and predominantly polygynous [71]. They do not, however,
all display to potential mates in the same contexts or microenvironments. Some species display
high in the canopy, some down on the forest floor, and others in the understory in between.
Likewise, some species display in large, cacophonous leks, some species in exploded leks (exp
leks) in which males can hear but not see one another, and other species display solitarily. Our
results suggest that these differences have shaped the specific courtship and signaling strategies
of each species (Fig 4 and S1 and S2 Tables). Birds with richer acoustic repertoires display high
in the canopy, where there is less environmental interference (e.g., from cluttered branches),
increasing the likelihood that females will be able to detect and discern numerous, elaborate
sounds [53]. Likewise, more behaviorally complex birds tend to display near the forest floor
where there is less light (and ability to perceive subtle variation in color) but more area avail-
able for a courtship stage or “dance floor.” Birds that display in true leks have more colorful
plumage, perhaps because females need to identify attractive individuals based on relatively
unchanging traits, allowing them to compare among multiple displaying males simulta-
neously. Display site and display context thus influence the specific forms of ornamentation
possessed by individual species [72], and taking them into account from an analytical perspec-
tive allows us to better understand patterns of signal coevolution and the potential importance
of a functionally integrated courtship phenotype.

Signal efficacy and information content can exert strong influence on receiver preferences,
and understanding both elements is integral when examining the evolution of complex,
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multicomponent courtship phenotypes [14,70,73,74]. The influence of receiver preference is
difficult to overstate, particularly in birds-of-paradise, for which recent work indicates that
selection acting on female preferences controls the rate, extent, and phenotypic space available
for ornamental radiations [70]. Importantly, receiver preferences are influenced by the percep-
tual abilities [75,76] and psychology of signal receivers [77,78], as well as the environments
through which signals are transmitted [52]—all of which can markedly influence signal effi-
cacy. Additionally, the information content of multiple signals may increase the net amount of
information transferred (e.g., multiple messages [16]) or increase accuracy and reliability if
multiple signals communicate the same message (e.g., redundant signals [12,16]). The percep-
tual channels by which birds-of-paradise attract mates and those channels that are correlated
at a phylogenetic scale provide tantalizing, though tentative, insights into the processes of effi-
cient information transfer and receiver stimulation regulating mate choice in this group. Spe-
cifically, the fact that significant positive correlations exist between acoustic and color signals
(auditory, visual), and between acoustic and behavioral signals (auditory, visual), but not
between color and behavioral signals (visual, visual) aligns with psychometric literature on
information and sensory input. When multiple sources of information are provided, informa-
tion may be maximized if that information comes from separate channels (e.g., acoustic,
visual) and lost when arriving through a single sensory channel [79] (but see [80]). What
exactly this “information” might be in birds-of-paradise (quality [81], attractiveness [69], moti-
vation [82], etc.) is not clear, but this result provides an interesting starting point for future
investigations.

Phylogenetic comparative investigations of animal signals hold the potential to answer
important questions about the evolutionary trajectories of communication over time [83,84].
However, the data used to tackle key questions of signal evolution necessarily place upper and
lower bounds on the confidence and interpretations one can make from such comparative
studies. It is our hope that the novel approaches we have developed to quantify color, sound,
and behavior will be useful to other researchers interested in understanding signal variation at
different scales. Though our primary aim was to generate methodological pipelines that facili-
tated comparisons among the highly divergent birds-of-paradise, the basic framework we
describe here may also be useful for comparisons of more similar taxa—including studies of
intraspecific variation in signaling effort (e.g., through sliding-window analyses focused on
bouts of maximal complexity) or investment (e.g., by using receiver visual models to identify
the number and perceptual similarity of color patches across individuals). Consequently, we
feel that our approaches complement recent suggestions for incorporating a systems biology
approach to the study of animal communication [57], wherein more comprehensive, higher-
resolution data will only improve the validity and interpretability of analyses incorporating fit-
ness surfaces and communication networks.

Evolutionary tradeoffs—increases in trait expression linked to reductions in another—are
ubiquitous: “If there were no tradeoffs, then selection would drive all traits correlated with fit-
ness to limits imposed by history and design” [85]. Tradeoff thinking can inform our interpre-
tations of both the marked interspecific variation in overall signal complexity (Fig 2) and the
finding that the ornaments of birds-of-paradise are positively correlated at phylogenetic scale
(Fig 3). Firstly, interspecific variation in overall signal complexity suggests tradeoffs between
investment in courtship and some other, unmeasured, variable that differs across species (e.g.,
microenvironment, paternal care, resource competition, etc.). Secondly, the absence of trade-
offs among signal types indicates an absence of differential costs on acoustic, behavioral, and
chromatic signals. Further, the correlation among ornamental classes suggests that selection is
acting on functionally integrated courtship phenotypes for birds-of-paradise, a finding that
indicates female birds-of-paradise make mate choice decisions incorporating holistic,
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multicomponent information sets comprised of the various ornaments possessed by males of
their species. Rather than being unique to birds-of-paradise, however, we suggest that this phe-
nomenon is widespread among animals—though it is by varying degrees constrained,
impeded, or obfuscated by conflicting and constraining processes and limitations imposed by
ecology and natural selection. The degree to which selection has facilitated the evolution of
integrated, robust courtship phenotypes may in fact serve as a proxy for the overall strength
and consistency of female-driven sexual selection in any taxa, for which the integration and
correlation among ornaments comprising the courtship phenotype may shed important light
on the history and strength of sexual selection in that particular group.

Methods
Ethics statement

The study was focused on vertebrates (birds-of-paradise) but used museum specimens (physi-
cal and media), so no IACUC protocol was required.

Behavioral complexity

We quantified the behavioral complexity of courtship display behaviors for the birds-of-para-
dise by scoring field-recorded video clips of 32 (80%) paradisaeid species, primarily from the
Macaulay Library at the Cornell Lab of Ornithology (macaulaylibrary.org, S3 Table). In total,
we watched 961 clips from 122 individuals totaling 47,707.2 s (approximately 795.12 min;
mean clip duration = 49.64 s). Courtship display behavior is highly variable among bird-of-
paradise species, necessitating broad behavioral categories to facilitate investigations of behav-
ioral evolution. Specifically, one of us (CDD) blindly evaluated video clips of male birds-of-
paradise displaying species-typical courtship behaviors [43] using a customized ethogram of
behavioral units that enabled us to quantify all state and event behaviors exhibited by all spe-
cies of Paradisaeidae (S4 Table).

Data collection. To record courtship display behaviors, we used a customized version of
an open-source behavior logging program [86]. Additionally, we created a customized key-
board that allowed us to quickly and accurately record the start/stop times of all duration
behaviors, as well as the instances of all event behaviors. The combinations of different behav-
ioral categories throughout each clip allowed us to generate sequence data of distinct behav-
ioral elements.

Measures of sexual display behavior complexity. Courtship displays can be broken
down into distinct behavioral elements and the transitions between these elements. We inves-
tigated the number of unique behavioral elements (behavioral richness) in a given time period,
as well as the Shannon entropy [87] of these behaviors (behavioral diversity). Shannon entropy
provides a measure of “information” encoded in the behavioral displays, and we converted
Shannon entropy scores to their numbers equivalents [88,89]. Shannon indices were chosen
specifically because they are the only measures that “give meaningful results when community
weights are unequal” [88]. As previously described [88], the numbers equivalent for Shannon
entropy values has the readily interpretable property whereby a value of 2x would indicate a
behavioral sequence with twice as many equally well-represented behaviors as a sequence with
a value of x. In the context of behavioral displays, birds that use many unique behaviors and
spend roughly equal amounts of time performing each display element (increased evenness as
a proportion of time) will have higher diversity scores.

Sliding window analysis. The number of courtship recordings available was highly vari-
able across species of birds-of-paradise (S3 Table). To reduce the influence of sampling inten-
sity on our overall behavioral analyses, we used a sliding-window analysis to evaluate similar
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time windows for courtship display complexity across species. Specifically, we used a sliding
50 s window, chosen as the minimum duration resulting in relatively stable individual behav-
ioral complexity scores (S2 Fig) across all clips for a given individual to identify the specific 50
s period of maximal display complexity for that individual, and incorporated the resultant
complexity scores for this interval in our analysis. Individual scores were then averaged to
obtain species-level estimates of signal complexity. Collectively, our approach minimizes the
influence that variation in recording time and clip duration has on species-level behavioral
comparisons. Our results and interpretations are robust to the choice of different window sizes
between 10 and 60 s (S3 Fig, S4 Fig, S5 Table, and S6 Table).

Color complexity

Image collection. We collected images from 393 bird-of-paradise museum specimens
(S7 Table) housed at the American Museum of Natural History. Specifically, we took RAW
format images of adult males from 40 bird-of-paradise species under standardized condi-
tions using a Canon 7D camera (Tokyo, Japan) with full-spectrum quartz conversion and fit-
ted with a Novoflex Noflexar 35 mm lens. [llumination was provided from two eyeColor arc
lamps (Iwasaki, Tokyo, Japan) diffused through polytetrafluoroethylene sheets 0.5 mm
thick. These arc lamps are designed to simulate International Commission on Illumination
(CIE)-recommended daylight (D65) illumination (though they come standard with a UV-
blocking coating, which we removed prior to use). Additionally, for every specimen position
(see below), we used filters (Baader, Mammendorf, Germany) to take two photos, one cap-
turing only UV light (300-400 nm) and one capturing wavelengths between 400 and 700
nm.

To simulate a variety of viewing angles and increase the likelihood of capturing relevant col-
oration from bird specimens, we took photographs of each specimen from three viewing
angles: dorsal, ventral, and ventral angled. Specifically, each specimen was photographed from
above while it was flat on its belly (dorsal view), flat on its back (ventral view), and angled 45°
on its back (rotating the frontal plane along the vertical axis while keeping the head oriented in
the same direction as the previous two photographs). The angled photograph was taken to
increase the likelihood of capturing some of the variation made possible by iridescent
plumage.

Image processing. UV and visible spectrum images were used to create standardized (i.e.,
channels were equalized and linearized [90]) multispectral image files for each specimen/posi-
tion using the Image Calibration and Analysis Toolbox [91] in Image] [92].

a. Avian color vision
After estimating the color sensitivity of our camera/lens combination [90,91], we generated
custom mapping functions to convert image colors to stimulation values corresponding to
an avian visual space. Birds-of-paradise are inferred to have a violet-sensitive (VS) visual
system [93], and the curl-crested manucode (Manucodia comrii) and magnificent riflebird
(Ptiloris magnificus) have the same amino acid sequence in spectral tuning positions 84-94
[93] as the jackdaw (Corvus monedula) [94], which is inferred to have a peak sensitivity of
its (VS-type) SWS1 cone at 408 nm. This sensitivity is similar to that of another species with
a VS visual system, the pigeon Columbia livia (SWS1 peak sensitivity = 404 nm [95]). Con-
sequently, we converted our full-spectrum photographs into the perceptual space of pigeons
using physiological data [96], spectral sensitivity curve functions [97,98] (implemented in
the R package pavo [99]), and multispectral imaging software [91] in Image]. Additionally,
we evaluated color using a visual model from a UV-sensitive passerine species (the blue tit
[100]) and found our results qualitatively unchanged. Prior to subsequent clustering (see
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below), we performed a median pixel blur to eliminate aberrant pixel values (owing to dust
on the sensor, temporary dead pixels, etc.).

b. Color clustering
Following conversion to avian color vision and noise filtering, we used a novel custom-
written agglomerative hierarchical clustering algorithm to reduce each multispectral image
down to a perceptually relevant number of color clusters. This clustering algorithm was
developed from a more basic algorithm used previously [101] that did not integrate lumi-
nance or thresholds when combining clusters. At the first step of the clustering process,
each pixel is its own cluster. Each cluster is then compared to its neighboring clusters in the
XY plane of the image within a given radius (1 pixel initially), and composite distances are
calculated based on an equal weighting of chromatic [102] and achromatic [103] Just
Noticeable Distances (JNDs) (using the log model). Specifically, chromatic and luminance
JND values are divided by the chromatic JND threshold and luminance JND threshold,
respectively, so that they are weighted equally based on the chosen threshold, and then the
Euclidean distance of these two scaled values is calculated. Following distance calculations,
each cluster is combined with its nearest (in composite JND distance) neighboring cluster if
the composite difference is below the threshold for both luminance and chromatic JNDs.
Nodes can have multiple clustering events at each pass, e.g., if cluster A is closest to B, but B
is closest to C, and all distances are below the threshold, then all three will be clustered,
meaning whole strings or neighboring regions can be clustered. In practice, each cluster
tends to be combined with two or three clusters on each pass. On each pass, the updated
mean cone catch values for each cluster are calculated, ready for the next pass. Additionally,
the XY distance search radius increases with each pass, so as clusters get larger, they can
also combine with neighboring clusters further away, which has the desirable effect of also
keeping the processing for each pass relatively constant (i.e., there are fewer clusters on
each pass, but each one must be compared to a larger number of neighbors). Clustering
therefore takes place across n + 2 dimensions (# colors plus x and y space). The code used
for this clustering is provided as supplementary material (S1 Code), and we have included a
sample image illustrating the output of the clustering process (S5 Fig).

¢. Measures of color complexity
Following color clustering, we quantified plumage color complexity using analogous indices
to those we employed in our behavioral analysis. Namely, we quantified color richness (the
number of distinct clusters) and color diversity (the numbers equivalent of Shannon index)
for each view (dorsal, ventral, angled) and averaged these values to obtain individual, speci-
men-level metrics of color complexity. In terms of color, specimens with higher richness
scores have more unique colors, and species with higher diversity scores have more, evenly
distributed colors.

d. Influence of specimen age on color complexity measures
Aging can influence the coloration and appearance of some kinds of avian plumage
[104,105], though such effects are often relatively small [106]. To evaluate the possibility
that specimen age might influence our estimates of species’ level plumage elaboration, we
conducted a linear mixed-effect model with two measures of color complexity (color rich-
ness, color diversity) as the dependent variable, collection year as the independent variable,
and species as a random effect. Analyzing these models revealed no significant influence of
collection year on either color richness (standardized = 0.032, 95% CI —0.036 to 0.099,
t=0.930, p = 0.353) or diversity (standardized = 0.033, 95% CI —0.012 to 0.080, t = 1.437,
p=0.151).
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Acoustic complexity

As with display behaviors, we quantified the acoustic complexity of courtship sounds produced
by analyzing field-recorded audio/video clips of 32 (80%) bird-of-paradise species. In total, we
analyzed sound from 176 clips from 59 individuals totaling 24,670.9 s (approximately 411 min;
mean clip duration = 140.18 s; S8 Table). Though birds can generate sounds (both vocally and
mechanically) in numerous contexts, we focused our analysis on recordings from known dis-
play sites or those matching written descriptions of courtship sound production [43].

Data collection. From each video clip used to quantify display behavior, we identified a
focal individual and all of the sounds it produced. Spectrograms of the audio were viewed with
a frequency resolution of 43.1 Hz and time resolution of 2.31 ms, and all sounds were marked
in the sound analysis software RavenPro v. 1.5 [107]. Individual sounds were defined as tem-
porally separated sound elements. Using the robust measurements in Raven, we measured the
duration, maximum and minimum frequency, bandwidth, peak frequency, and peak fre-
quency contour of each call. We measured the disorder, lack of organized or tonal structure, in
a call with aggregate entropy and average entropy measures in Raven.

Following detailed analysis of the acoustic parameters for all notes, we used a two-step semi-
automated classification analysis to assign note identity. In the first step, we conducted a princi-
pal component analysis (PCA) using 15 summary acoustic variables (S9 Table) followed by
agglomerative hierarchical clustering to assign partial note identity (i.e., note classification based
on location in PCA-based sound space). In the second step, each note was given a categorical
identifier depending on the combination of four qualitative variables manually scored as yes/no
(frequency modulation, nonharmonic structure, impulsive, stochastic). Full note identity was
achieved by merging the clustered note identity with the combined qualitative categorization.

Measures of acoustic complexity. After assigning identities to all notes in our dataset, we
measured acoustic richness (number of distinct note types) and acoustic diversity (Shannon
index of notes) within a given time period (see Sliding window analysis below). As with behav-
ior, we used the numbers equivalent of Shannon index values to facilitate more direct compari-
sons among samples and species.

Sliding window analysis. The duration and number of available courtship-specific acous-
tic recordings was highly variable across birds-of-paradise (S8 Table). To reduce the influence
of this variation on species-level acoustic comparisons, we used a sliding-window analysis,
similar to our behavioral analyses, to evaluate and compare similar time windows for acoustic
display complexity across species. To identify the time period of maximal acoustic complexity
for an individual in our analysis, we used a sliding 10 s window, chosen as the minimum dura-
tion resulting in relatively stable individual complexity scores (S6 Fig), across all clips for a
given individual. Individual scores were then averaged to obtain species-level estimates of sig-
nal complexity. Relative complexity measures are robust to the choice of different window
sizes between 5 and 50 s (S7 Fig and S8 Fig).

Phylogenetic analyses

Tree. We regenerated a phylogenetic hypothesis from a recent molecular phylogeny for
Paradisaeidae [45] using the function phylo.tracer in the R package physketch [108]. This ultra-
metric, timescaled tree was used for all downstream comparative analyses following one modi-
fication of tree topology. Specifically, we placed Lophorina superba as the outgroup to Ptiloris
to accommodate a revised taxonomic hypothesis [109].

Phylogenetic generalized least squares. For each of the six components of courtship phe-
notype (color richness and diversity, behavior richness and diversity, acoustic richness and
diversity), we conducted a single mPGLS regression evaluating the influence of the other

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006962 November 20, 2018 14/24


https://doi.org/10.1371/journal.pbio.2006962

@'PLOS ‘ BIOLOGY

Correlated complexity in birds-of-paradise

elements of courtship phenotype and two signal-environment variables predicted to influence
relative investment in separate axes of overall courtship phenotype. Specifically, we included a
categorical metric of display height in all models, in which each species was scored as display-
ing on the forest floor, in the understory, or in the forest canopy. Additionally, we included the
categorical metric of display proximity in all models, where each species was scored as display-
ing solitarily, in exp leks, or in true leks. In each model (see S1 Table and S2 Table), we
included only “like” phenotype measures (e.g., including behavioral and acoustic richness but
not behavioral or acoustic diversity when investigating the drivers of color richness). All court-
ship phenotype measures were log transformed prior to analyses, and analyses were performed
in the R computing environment [110] using the gls function in the nlme package [111] assum-
ing an Ornstein-Uhlenbeck (OU) covariance structure [112] using the corMartins function
from the ape package [113].

Imputation. We used the Rphylopars package in R [114] to impute character values for
taxa with missing data (e.g., species lacking behavioral/acoustic information, S1 Data). This
methodology has previously been found to perform well in predicting ancestral and missing
species’ values [115]. In our case, we evaluated the performance of several methods to estimate
missing values assuming i) a Brownian motion model of trait evolution, ii) an OU model
[112], iii) an “early-burst” model of trait evolution [116], iv) a Pagel’s lambda model of trait
evolution [117], and v) a multivariate OU model [118]. We compared model performance by
evaluating AIC scores and determined that the OU model performed best. Consequently,
character trait values imputed using this model were used in all subsequent analysis.

Though data imputation can increase statistical power [119], the instances in which it
might induce spurious findings are few, especially given the relatively small proportion of our
total dataset (20%) for which we imputed values (cf. [120,121]). In fact, bias tends to be lower
when missing data are imputed rather than omitted [115]. Regardless, to alleviate concerns
that imputed values may drive subsequent findings, we also conducted our phylogenetic least
squares (PGLS) analyses on the limited subset of species (n = 31) for which we have complete
data. In all cases, the findings were qualitatively identical to those reported in the main text
(S10 Table and S11 Table).

Supporting information

S$1 Video. Bird-of-paradise behavioral scoring demonstration. In this video, a male western
parotia Parotia sefilata performs a species-typical courtship dance for females perching
above. This video demonstrates the concordance between a subsample of our scored behaviors
and the actual performance of the bird in real-time. The behaviors represent BP1, BP2, SS1,
03, OPMH, OPMF, OPAH, and OPACI. Users who cannot download the video can also view
it here: https://youtu.be/MdqUO1RtbP0. BP1, body-position moving; BP2, changing direction
while moving; OPACI1, ornamental flank plumage accentuation by moving the torso; OPAH,
ornamental head plumage accentuation by moving the head; OPMF, ornamental flank plum-
age accentuation by moving those feathers; OPMH, ornamental head plumage accentuation
by moving those feathers; O3, bowing; SS1, shape shifting.

(MP4)

S1 Code. Image] plugin (java) for hierarchical clustering using chromatic and achromatic
JNDs. JND, Just Noticeable Distance.
(JAVA)

S$1 Data. Species-specific courtship phenotype estimates.
(XLS)
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S2 Data. Species-specific behavioral richness estimates from different sliding-window sizes
(10 s-60 s).
(XLS)

$3 Data. Species-specific behavioral diversity estimates from different sliding-window
sizes (10 s-60 s).
(XLS)

$4 Data. Species-specific acoustic richness estimates from different sliding-window sizes
(5 s-50s).
(XLS)

S5 Data. Species-specific acoustic diversity estimates from different sliding-window sizes
(5s-50s).
(XLS)

S1 Table. mPGLS analyses of communication-relevant influences on three axes of court-
ship phenotype diversity. Categorical comparisons of display site are made with respect to
ground-displaying birds, and breeding system comparisons are made with respect to solitarily
displaying birds. mPGLS, multiple phylogenetic generalized least squares.

(DOCX)

$2 Table. mPGLS analyses of communication-relevant influences on three axes of court-
ship phenotype richness. Categorical comparisons of display site are made with respect to
ground-displaying birds, and breeding system comparisons are made with respect to solitarily
displaying birds. mPGLS, multiple phylogenetic generalized least squares.

(DOCX)

§3 Table. Species sampled for courtship behavior, including the number of individuals
watched.
(DOCX)

$4 Table. Ethogram describing behavioral subunits scored while observing courtship dis-
play behavior of birds-of-paradise.
(DOCX)

S5 Table. mPGLS analyses of communication-relevant influences on three axes of court-
ship phenotype diversity conducted using behavioral complexity metrics from a 10 s and a
60 s time window. For comparison, the analyses presented in the main text focus on behav-
ioral complexity estimated from a 50 s time window. mPGLS, multiple phylogenetic general-
ized least squares.

(DOCX)

$6 Table. mPGLS analyses of communication-relevant influences on three axes of
courtship phenotype richness conducted using behavioral complexity metrics from 10 s
and 60 s time windows. The analyses presented in the main text focus on behavioral complex-
ity estimated from a 50 s time window. mPGLS, multiple phylogenetic generalized least
squares.

(DOCX)

§7 Table. Summary of specimens located at the American Museum of Natural History
used to quantify color complexity in the birds-of-paradise.
(DOCX)
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S8 Table. Species sampled for acoustic courtship complexity, including the number of indi-
viduals analyzed.
(DOCX)

§9 Table. Partial summary (PC1-PC3) of PCA of 5739 notes produced by 32 bird-of-para-
dise species. PC loadings for PC1-PC3 were used to plot notes in three-dimensional PCA
space prior to agglomerative hierarchical clustering based on Euclidean distances to categorize
notes. PC, principal component; PCA, principal component analysis.

(DOCX)

$10 Table. mPGLS analyses of communication-relevant influences on three axes of court-
ship phenotype diversity conducted only on species without imputed species level values.
mPGLS, multiple phylogenetic generalized least squares.

(DOCX)

S11 Table. mPGLS analyses of communication-relevant influences on three axes of court-
ship phenotype richness conducted only on species without imputed species level values.
mPGLS, multiple phylogenetic generalized least squares.

(DOCX)

S1 Fig. There is no evidence for correlated evolution between color and behavioral diver-
sity among birds-of-paradise. mPGLS regression reveals no significant relationship between
behavioral and color diversity when controlling for acoustic diversity, display height, and dis-
play proximity. This plot is a phylo-signal-space plot in which species ornamentation values
are plotted with colored circles corresponding to display environment and mating system and
are connected based on their phylogenetic relationships. Species’ locations represent tip values
for log transformed behavioral and color diversity. Underlying data for S1 Fig can be found in
S1 Data. mPGLS, multiple phylogenetic generalized least squares.

(DOCX)

S2 Fig. Accumulation of unique behaviors plateaus by time windows of approximately 50 s
for most species. Note, these are unique behaviors per individual (not per clip). This distinc-
tion is important because some individuals were recorded in several clips, but in the longer
clips they might not be doing much behaviorally (leading to the initially surprising drop in
unique behaviors at certain longer window sizes).

(DOCX)

S3 Fig. Pairwise comparisons of behavioral richness (number of unique behaviors) esti-
mates for windows between 10 and 60 s in duration. Within plots, each point represents a
species in the family Paradisaeidae, with species-specific values obtained from rphylopars
reconstructions incorporating intra- and interspecific variation. Best-fit lines in lower plots, as
well as F and P values presented in corresponding upper-diagonal squares, come from PGLS
analysis assuming OU error structure. Results are qualitatively identical assuming different
correlation structures (e.g., Pagel, Brownian). Underlying data for S3 Fig can be found in S2
Data. OU, Ornstein-Uhlenbeck; PGLS, phylogenetic generalized least squares.

(DOCX)

$4 Fig. Pairwise comparisons of behavioral diversity (Shannon indices of behaviors) esti-
mates for windows between 10 and 60 s in duration. Within plots, each point represents a
species in the family Paradisaeidae, with species-specific values obtained from rphylopars
reconstructions incorporating intra- and interspecific variation. Best-fit lines in lower plots, as
well as F and P values presented in corresponding upper-diagonal squares, come from PGLS
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analysis assuming OU error structure. Results are qualitatively identical assuming different
correlation structures (e.g., Pagel, Brownian). Underlying data for S4 Fig can be found in S3
Data. OU, Ornstein-Uhlenbeck; PGLS, phylogenetic generalized least squares

(DOCX)

S5 Fig. Dorsal view of raw (left side) and clustered (right side) images taken of a Wilson’s
bird-of-paradise. Following clustering based on chromatic and achromatic thresholds (see
Methods), every pixel in every image is assigned to a categorical color identity. The total num-
ber of colors in an image provides a measure of richness, and the numbers equivalent of the
Shannon diversity of the colors—taking into account the relative area covered by each class of
colors—provides a measure of color diversity. Individuals with higher richness scores have
more colors, and individuals with more colors, more evenly distributed in terms of their rela-
tive areas, have higher diversity scores.

(DOCX)

S6 Fig. Accumulation of unique notes plateaus at time windows of approximately 10 s for
most species.
(DOCX)

S7 Fig. Pairwise comparisons of acoustic richness (number of unique note types) estimates
for windows between 5 and 50 s in duration. Within plots, each point represents a species in
the family Paradisaeidae, with species-specific values obtained from rphylopars reconstruc-
tions incorporating intra- and interspecific variation. Best-fit lines in lower plots, as well as F
and P values presented in corresponding upper-diagonal squares, come from PGLS analysis
assuming OU error structure. Results are qualitatively identical assuming different correlation
structures (e.g., Pagel, Brownian). Underlying data for S7 Fig can be found in S4 Data. OU,
Ornstein-Uhlenbeck; PGLS, phylogenetic generalized least squares.
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S8 Fig. Pairwise comparisons of acoustic diversity (log transformed Shannon indices of
acoustic complexity) estimates for windows between 5 and 50 s in duration. Within plots,
each point represents a species in the family Paradisaeidae, with species-specific values obtained
from rphylopars reconstructions incorporating intra- and interspecific variation. Best-fit lines
in lower plots, as well as F and P values presented in corresponding upper-diagonal squares,
come from PGLS analysis assuming OU error structure. Results are qualitatively identical
assuming different correlation structures (e.g., Pagel, Brownian). Underlying data for S8 Fig can
be found in S5 Data. OU, Ornstein-Uhlenbeck; PGLS, phylogenetic generalized least squares.
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