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The mechanical analog of optical frequency combs, phononic frequency combs, has recently been
demonstrated in mechanical resonators and has been attributed to coupling between multiple phonon
modes. This paper investigates the influence of mode structure on comb generation using a model of
two nonlinearly coupled phonon modes. The model predicts that there is only one region within the
amplitude-frequency space where combs exist, and this region is a subset of the Arnold tongue that
describes a 2:1 autoparametric resonance between the two modes. In addition, the location and shape
of the comb region are analytically defined by the resonance frequencies, quality factors, mode
coupling strength, and detuning of the driving force frequency from the mechanical resonances,
providing clear conditions for comb generation. These results enable comb structure engineering for
applications in areas as broad as sensing, communications, and quantum information science.

Optical frequency combs have received considerable interest due to the stable broadband comb
structure that can be generated, which has been a powerful tool in many applications, including optical
clocks, spectroscopy, and microwave frequency synthesis [1,2]. Like optical resonators, mechanical
resonators have also been shown to be capable of generating equally spaced vibrational frequencies due to
mechanical mixing and mode coupling [3-14]. Early demonstrations [3-6] revealed that by electrically
driving coupled mechanical resonators or multiple modes in a single resonator using multiple drive
frequencies simultaneously, a comb-like structure can be generated in the frequency domain. However,
since multiple drive frequencies were used in these experiments, the combs appear to be the result of both
electrical and mechanical mixing. Furthermore, in some cases, the combs had broad, periodic resonances
rather than the discrete narrow frequencies that are typically found in optical frequency combs. Recently,
it was shown that a phononic frequency comb with well-defined frequency structure can be generated with
a single mechanical resonator that is driven with a single frequency [7]. In this case, length extensional and
flexural vibration modes are coupled through mechanical nonlinearities, providing a mechanism for mode
coupling that generates phononic frequency combs when the amplitudes of the coupled modes saturate.
Additional experimental observations of phononic frequency combs with a single drive frequency have
since been reported that support the results in [7], including comb generation in a nanomechanical beam
resonator [8], a coupled translational-rotational resonator [11], and a membrane resonator [12]. The
parametric mode coupling seen in [8-14] provides a path for engineering the comb structure and will likely
find applications in sensing, communications, and quantum information science, similar to optical
frequency combs.

Despite the growing number of experimental observations of phononic frequency combs in mechanical

resonators, it is still largely unclear how the resonance frequencies and quality factors of the interacting
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modes influence the generation and properties of the comb. The Fermi-Pasta-Ulam framework has
previously been used to prove that a comb can be generated with a single drive frequency for a mechanical
coupled-mode system [15]. This analysis presented time-domain results that show that the comb can be
phase coherent and that generation can be achieved through a wide range of nonlinearities and the number
of coupled modes. More recently, a nonlinear friction mechanism has been shown analytically to be capable
of generating a comb using just a single vibrational mode in a nanomechanical resonator [16]. In this paper,
we analyze the effect of the resonance frequencies and quality factors of the coupled modes on the
amplitude-frequency behavior of the comb. We apply the slowly varying envelope approximation to two
coupled mechanical modes with a 2:1 autoparametric resonance and derive analytical existence conditions
for phononic frequency combs. Using the derived existence conditions, the position and shape of the comb
region relative to resonance are also presented. This analysis provides guidelines for tailoring phononic
frequency combs in mechanical resonators.

The generation of phononic frequency combs in the mechanical resonator described in [7,9,10,13] and
shown schematically in Fig. 1a involves two steps. First, mode 1, which is a length extensional vibration
mode, excites mode 2, which is a flexural vibration mode, when increasing the drive amplitude F above a
certain threshold (see Fig. 1b). Second, mode 2 feeds back into mode 1 until the amplitudes of both modes
oscillate and there is a continuous exchange of energy between the two modes. This is similar to a
phenomenon found in optical parametric oscillators (OPO) where the idler is generated from the pump by
increasing the pump power over a threshold [17,18]. When further increasing F, modes 1 and 2 experience
a temporal oscillation, similar to the slow time scale in Kerr combs. This corresponds to a Hopf bifurcation
of two eigenmodes that are symmetric to the real axis. These eigenmodes transition from stable to unstable
for specific drive, or pump, conditions, resulting in phononic frequency combs. This behavior is described
by two coupled phonon modes with quadratic coupling nonlinearities and a 2:1 autoparametric resonance.
The coupling is a result of a nonlinear strain relationship between the length-extensional and flexural modes
[19], and the equations of motion can be written as

¥ 4 2y1%, + w?xy + ayyxs = Feos(wpt) (1)

Fy + 2Y2%, + W3x, + agpx1x, = 0 )
Here, w; and w, are the resonance frequencies where w; = 2w,, y; and y, are the damping rates, and
@5,x% and a;,x,x, are the nonlinear coupling terms. This system is driven by Fcos(wpt), where F is the

drive amplitude and wp is the drive frequency. Solutions for x; are assumed to be x; =
(ujei“)Dt + u}‘e‘i“)Dt)/Z for j =1, 2, where u; are slowly varying envelopes [20,21]. After substituting
these solutions into eqs (1) and (2), the equations of motion can then be written in terms of the complex

amplitudes, u; ,
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The generation of phononic frequency combs is indicated by the periodic modulation of the complex
amplitudes u;, where the modulation is slow compared to the carrier frequencies, resulting in pulsing
between the two modes. In order to study these slow dynamics, the appropriate assumptions for the slowly
varying envelope approximation are applied to egs. (3) and (4) (see Supplementary Information for details
on all derivations), providing two first-order differential equations that describe the normalized amplitudes

of the two modes, 11 and 1,, when driven by a single frequency near the resonance of mode 1 (i.e., wp =

w1).
Y . . .
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To understand the conditions for comb generation within these slow dynamics, the stationary points have

been investigated. Assuming steady-state conditions (i.e. % = % = 0), egs. (5) and (6) have two sets of

stationary points. The first setis Yy, = —f/(—j + A1), P, = 0. These stationary points are stable when 1’
is small and provide the same expected amplitudes as the case where egs. (1) and (2) are linear (i.e., a1, =
a5, = 0). The second set of stationary points, P1p and P,p, are defined by the following quadratic

relationship,

1
[Pop|* + (Vo1 — DA [WY2p]* + Z(l +AD5 +05)—f2=0 (7)

and [1p|? = (¥2, + A3)/4. When ,p and ,p are stable, there is a 2:1 autoparametric resonance, or
internal resonance, in which energy flows from mode 1 to mode 2, resulting in vibration of both modes
with constant steady-state amplitude. Interestingly, 1p is not a function of f because the amplitude is

saturated and an increase in f will only increase 1, p. Stability of Y1 p and ¥, p requires that the discriminant
of eq. (7) be positive, f = %lymA1 + A, |, which is shown in parameter space (f vs. A;) in Fig. 2 (black

line). This condition sets the boundary for autoparametric resonance, often referred to as an Arnold tongue,
where 4, and 1, are stable below the line and ) p and Y,p may be stable above the line. The transition

between the stability of ¥4, and Y,;, and ¥, p and 1, p is a Hopf bifurcation.



In the case of autoparametric resonance, the oscillatory amplitudes 1, and ¥, are at steady state (i.e.
the amplitudes remain constant over time). However, in the case of phononic frequency combs, we have
previously shown that the amplitudes, 1; and ,, are modulated as a function of time such that periodic
pulses are generated in the time domain, thereby resulting in frequency combs around the two modes (Fig.
1(b) of [7]). This indicates that comb generation requires the slow dynamics to be unstable for some values
of 1,p and P,p. Therefore egs. (5) and (6) are linearized about these stationary points, such that small

amplitude perturbations are defined as 6y, and &y,, and Y; = Y,p + 6P, and Y, = Yyp + 5Y,.

Substituting into eqs. (5) and (6) and applying steady-state conditions, % = % = 0, the linearized
dynamics can be written as follows.
ad1y . .
5= —(L+ A6 + 2j1papd9, ®)
a5y . . e Lo
612 = —(V21 +JB2)8Y; + 2jh1p65 + 2j3P5p6Y, )

In order to study the stability of the linearized dynamics, it is assumed that 5y, = b;e*1t; 51} = b,e"1t;
8y, = bze™1tand Sy} = be?1t and modulations 5, and 81, can only grow in strength if A is both
real and positive. After applying the Routh-Hurwitz criterion [22] to analyze the stability of the linearized

dynamics, eqgs. (8) and (9), we obtain the following condition.

_V21(1 +AD[1 + A% + 4y, (1 + ¥21)]
4(1 4 v21)%(1 + A% + 2y, + 20447)

[Y2pl% =

(10)

This condition dictates the minimum value of |, p|? that is required for non-zero values of §¢; and §1,.
Only such non-zero amplitude modulations can ensure the generation of side-bands in the frequency
domain, which in turn yields the frequency comb spectra. Hence, the energy exchange between modes 1
and 2 should be significant enough to enhance the value of |(),p| in order to generate frequency combs.
Similar to the autoparametric resonance, the transition from stable amplitudes to amplitude modulation is
also a Hopf bifurcation.

Since |y,p|? is always positive (i.e. [{,p] is real), we obtain a boundary condition for the existence of
phononic frequency combs as 2A;A, < —(1 + A% + 2y,,). This boundary forms the subset of the region
of autoparametric resonance, f = %IymAl + A,|, as shown in Fig. 2, where the red line represents the
threshold for instability of the linearized dynamics. While this analysis cannot prove that comb generation

is the only dynamic behavior found within this instability bound, the frequency dependence of phononic
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frequency combs in experimental results [7] matches with the analytical evidence that the existence zone

of phononic combs is bounded in drive frequency. Figure 2 shows that the phononic combs exist in the red-

detuned and blue-detuned sides of driven mode 1 for w, < % and w, > %, respectively, for the presented

model.

In order to verify that this bounded region describes the conditions for phononic frequency combs, we
conducted numerical simulations of eqgs. (5) and (6) within this region. Figure 3 shows typical simulation
results for mode amplitudes. The time domain responses (Figs. 3(a) and 3(b)) exhibit periodic oscillations
and the corresponding fast Fourier transforms (FFT) (Figs. 3(c) and 3(d)) clearly demonstrate the existence
of frequency combs. The fixed phase offset between the periodic evolutions of 1, and ¥, (Figs. 3(a) and
3(b)) indicate phase coherence among the different lines in the frequency comb, and the periodic
modulation of the amplitudes for both modes qualitatively matches with published experimental results
(Fig. 1 of [7]).

Having established a description of the region in which combs exist, we now investigate how the
resonance frequencies and quality factors of modes 1 and 2 affect the location and shape of this region
relative to the boundary describing the Hopf bifurcation to autoparametric resonance. To this end, the

existence condition, eq. (10), is considered. From the resulting boundary line, the parameter w, =

%(w Dmin T @ D,max) is defined as the center frequency of the comb region (Fig. 2). It has been derived in

the supplementary information that w, = % Bw;y + 2w,), withw, = % For any value of w,, the threshold
for autoparametric resonance is always minimum when wp equals w;. We now want to understand the
minimum detuning from w; that is required to excite phononic frequency combs. We know that phononic
combs only exists in a specific frequency band. Depending on whether w, > % or w, < %, w4 will be

closer to either the left or right edge of phononic comb boundary. The difference between w, and the edge

of the existence boundary for combs corresponds to the minimum detuning that is required for generating

w1
V20102

is reduced, which in turn reduces the drive amplitude threshold for generating phononic combs. In other

frequency combs, which is § = |a)D,edge - w1| = . By increasing the quality factors, Q; and 0>, §

words, higher gain in the phononic combs can be obtained for smaller §. This analysis also shows that

phononic combs can be generated only if the quality factor Q, is set above a critical value of Q,, =

-2
Qi( - 2&)&) , as shown in Fig. 4a. The system parameters used in Fig. 4 were selected based on the
1 1

experimental results in [7] so that the connection between the quality factors can be more easily understood.
The frequency range R corresponding to the existence band of phononic combs is found to increase with

(e
V@102

w
QzaSR=|0)2_71

), which then asymptotes at |a)2 - %| for large values of Q. Similar to Q,,



> g, the frequency

there also exists a critical value for |w2 — 71

L 2 w
, whichis g = 2w . For |w -
g 1\/ Q:Q2 Z 2

£1| as shown in Fig. 4b. The above conditions can be used to design

range R scales linearly with |w2 -

mechanical resonators that have sufficient quality factor and placement of resonance frequencies to
systematically generate phononic frequency combs.

Equation (10) shows that there is only one boundary zone for phononic frequency combs in a two-mode
system, which either lies on the red-detuned or blue-detuned side of mode 1 (i.e. either wp < w; or wp >
wq). There is an interesting discrepancy between this model and the experimental results shown in Fig. 4
of [7]. These results show that there are two boundary zones for phononic frequency combs and these zones
lie on both sides of the resonance frequency (i.e., wp < w; and wp > w4). The mode shapes for these two
regions have been measured, Figures 4(b) and 4(c) of [7], revealing that the mode coupling on either side
of resonance is with two different modes. Referring to these as modes 2 and 3, the boundary zone that
corresponds to wp < wq can be explained by coupling between modes 1 and 2, and the zone corresponding
to wp > wq is due to coupling between modes 1 and 3. Hence, independently coupling a driven mode 1 to
two different phonon modes leads to two bands of phononic frequency combs. Equation (10) can be directly
employed to capture this more complex behavior, where the existence boundary for phononic combs
resulting from the interactions of mode 1 and mode 2 is 2A;A, < —(1 + A% + 2y,,) and between modes 1
and 3 is 24, A5 < —(1 + A% + 2y39).

In summary, this paper derives the existence conditions for phononic frequency comb generation with
two coupled phonon modes in terms of drive frequency and amplitude. Using the boundary conditions, we
investigated the influence of modal properties, including the quality factors and resonance frequencies of
interacting modes on the conditions for comb generation. These include critical modal frequency separation,
critical quality factors, and critical detuning that are required to produce a phononic frequency comb. For a
system of two coupled phonon modes, the analysis revealed that there is only one existence zone for
phononic combs. However, by correlating these analytical results with published experimental results,
distinct existence boundaries of phononic frequency combs can be generated by independently coupling a
driven mode with several other phonon modes. The results of this work will accelerate the development of
mechanical devices with enhanced phononic comb properties for applications in sensing, communications

and quantum information science.
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FIG. 1. Micromechanical resonator and phononic frequency comb concept. (a) Micromechanical resonator design
used in [7] to generate phononic frequency combs. A length-extensional mode couples to a flexural mode through a
nonlinear strain relationship. (b) Visual description of the mode coupling concept that results in phononic frequency
combs, showing two modes where the resonance frequency of one mode is twice that of the other mode.
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FIG. 2. Regions for parametric resonance and phononic frequency combs as a function drive amplitude and frequency.
System parameters: % = 3.86 MHz, Q; = 1000, (2"—; = 1.9 MHz and Q, = 10; (:—; = 3.86 MHz, Q; = 1000, ;o—; =

1.96 MHz and Q, = 10.
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FIG. 3. Numerical simulation results for the mode amplitudes, eq. (9) and eq. (10), within the phononic frequency
. . A . .
comb boundary. Simulation parameters: A; = 5; k = —9; A, = 71 + K; Y5, =1; f =20. (a)-(b) Time domain

responses. (¢)-(d) Corresponding fast Fourier transforms (FFT) showing the existence of phononic frequency combs.
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FIG. 4. Regions for generation of phononic frequency combs. System parameters: % = 3.86 MHz, Q; = 4000 and
:’—; =192 MHz, % = 3.86 MHz, Q, = 4000; Q, = 50. (a) Quality factor of mode 2 vs. drive frequency. (b)
Resonance frequency of mode 2 vs. drive frequency.
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S1. Derivation of Boundary Line for Parametric Resonance and Phononic Frequency Combs

The equations of motion corresponding to two coupled modes are given by

¥y + 2y1%; + w2xy + aypx5 = Fcos(wpt) (1.1)
55.2 + 2)/25(2 + O)%xz + d1pX1Xy = 0 (12)

The modes are written as

1 . ,

X, = —(ule”"Dt +ujeJ@nt) (1.3)
1 Wp _:Wp

X, = Z(uze] 2! +use™2 t) (1.4)

The derivatives x;, X,, ¥; and ¥, and the coupling terms x; x, and x2 are obtained as

1 . , ; ;
X = E(ijuleJ“’Dt + 1, e/@nt —ja)Dule‘J‘“Dt + uje/ont) (1.5)
1 w WD .Wp .Wp .Wp
Xy =E(j7Duze] 2t el 2t ] > Doe 2t yze 2 t) (1.6)
i —1 ii, e/@nt i1l elopt — Jopt o ji*e=Jjwpt _ 2i.y qfe Jwpt
X = > (ule + 2jwpu,e wiu e + uje 2jwpuie (1.7)
— whuje/ont)
1 (.L)D .Wp a)z .Wp .Wp .Wp
. ] ] t D j—=-t ok  — ==t . cx —j—t
X use "+jwpiye ——uze’' 2 +uUe ' 2 —jwpuze ° 2
22<2 JwplU; i 2 JwplUy (1.8)
2
wp
* —]—t
—Luge
4 )
—3%D _®p 3%D
X1%; = Z(u{uée P L e Tt wguge 28+ uguge® 27) (1.9)
1 , .
x% = Z(u%eﬂ"l)t +u3’eIOpt 4 2|uy|?) (1.10)
. 1 . i
Now, by taking cos(wpt) = 5 (e/@pt 4 e=J@pt) eq. (1.1) and eq. (1.2) become
1 » Sjwpt H ’ jwpt 2 jwpt sx o —jwpt P o * ,—jwpt 2.,,% ,—jwpt
E(ule + 2jwpie — wiue +iije —2jwpiie —wiuje )
+ ¥ (jwpu,e/“rt + 1 e/nt —ja)Dule‘j‘“Dt + ujejont) (L11)
) :

+ w—(u eJ@nt 4 yjeJont) 4222 (u /@Dt 4 y2eIODt 4 2|y, |?)

= g(elwnt + e—lwnf)
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2
-j%p;  Wp *e—j%t>

1 wD w? Wp Wp
2t ex  — >t : g
ii,el2 +]a)Du2e1 2 —Tuze] 2 t+iise /2 —jwpuse 2" — 7
Wp 9D D w _i%D _i%D
. j t . j t . YD Jj t . % j t
+72 (]7“23 2 tuze’ ? AT tuze © 2 ) (1.12)
w3 wp
+7(u ej +u e -iP 2 )
24} 3wD (UD (UD 3wD
+—4 (uluze + ujuye +u1u2e2 +u1uze 2 ) 0

in eq. (1.12) to obtain the

We now collect the coefficients of e/“Pt in eq. (1.11) and coefficients of e’ 2

following relationships.
up (1.13)

[2y1 + 2jwpliy + [(wF — wd) + 2jy1wpluy + ayy — > = =F
_ . w3 iy .
+ 2y, + jwpli, + || w3 — e + jy,wp | up + Tuﬂiz =0 (1.14)

a12a2

92 ( L1z oz
(Zw%“ll[z(“)nf]w[<z—;>2—1+zf<1:>]5i2—?ﬁi)

d(wpt)? wp

N (wrzazz u2>2 _ <a_ )

2
2wp,

z(muz)
(1.16)

2
2wp,

o+ () ]+ | () -5 ()

Wp
Q12 )(V“lza’zz *> _
1J|l———u; | =0

tl——=u
<2w,§ 20 °

Now, we apply the following transformation and hence obtain eq. (1.18) and eq. (1.19)
X12

T = (I.)Dt F = ZwD
(1.17)

(1.18)

%P _ 0P ey o
—1+[2V1+2116—T1+[ 2—1+21V1]1/J1+¢%=F
(1.19)
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For slowly varying fields, we assume the following conditions and hence we obtain eq. (1.23) and eq.

(1.24).
aZ

aT?

(72)~0.(3) o

51—>1,52—>5

-0

G
2j—— a7 + 2j71, + Y5 =

Y,
J = 5T + V202 + P13 =0

We now multiply eq. (1.23) by 4%_/2 and eq. (1.24) by 2%72
1 1

] _ _ _
J (2_)711) _ 21 (W2 ? | F
— = | — |+ Jjl=—= —jl-—=
(7 T) 27, 27, 4yt
) _ -
-G (2))
d(y1T) 71/ \271 271/ \2n

Now, we make the following transformations.

F _ ®,-20,
t=yT;f = z: Y21 = % K= Ty

1
1-w, g—wz _

A1= ,A2= —_1+K

Y1
L=y = I L2 = ), = yyeitan

P, 0P, . _
T = A

P, 9P,
_re _ T2 jAT :
aT aT e’2 +]A27~/}2

In the limiting cases of A; = 0 and A, — 0, we obtain the following.

;p;?t=l/)1 1/)157 1/)2—1/12

o1 I
e +JjA Y
09, 61/)2

97 - o Tihev:
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(1.20)

(1.21)
(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)
(1.28)
(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)



Hence, we re-write eq. (1.25) and eq. (1.26) as
0y

5 —jf = @ +jA)Y; + Y3 (1.35)
0
% = —(Y21 + AV, + 2j11; (1.36)

. . .9 a
The stationary values are obtained by setting % and % to zero.

—jf = (L + jADY; +jip5 =0 (1.37)
—(y21 +jAY, + 215 =0 (1.38)

The eq. (1.37) and eq. (1.38) possess a trivial solution of eq. (1.39), and a non-trivial solution of eq.
(1.40).

- —f
Yy = — A (1.39a)
Yo =0 (1.39b)
_—f+Ydp
Y1p RACESTY) (1.40)

By substituting eq. (1.40) in eq. (1.38), we get

—(¥21 +JA)P2p — 2(1+—jA1)
= — (21 +jA2) (1 + jAD)Y2p + 2f3p — 2[1h2p|*Pop = 0
= [(y21 +jA2) (1 +jA) +2?|¢2P|2]¢2P =2fY5p
= Wzr = [(y21 +7A)(A +]2'A1) + 2| ,p1?] Var (1.41)
. i ,
= Werl = e A AT 80 + 25 Pl — A = jA) + 21pl?] V27!

1
= 7 [(V21 + A (A 4 jAy) + 2|2p 21 [ (Va1 — jA) (A = jA;) + 2|ppl?] = f2

* — A A 2 L angz v - r2=0
= |Yapl* + (Va1 18)[2pl +4( +AD (5 +A3) — f

The solution for ¥; p can be obtained by rewriting eq. (1.41) as

—(¥21 +jA)W2p + 2jp1pP5p = 0
2j1pP3p = (V21 + jA)P2p (1.42)
2jipap = (V21 — jAY3p )
4|1pl? = (¥5, + A3)

For real solutions of |¢,p|?, the discriminant must be non-negative. Hence, we obtain the following

condition.
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(V21 —A1A2)% — (L + AD)(y3, + 45) +4f2 >0
> —2y210:10; — 507 — A5 +4f2 >0

= f2

\Y
N[~ D=

(V2141 + 85)? (1.43)

Y
\,’
\Y

V2141 + A,

The minimum value of [,p|?should also be non-negative, and hence we obtain another condition.

—AA
_(V21 1 2)20

2 (1.44)
A1A; = Yo

Now, by taking fluctuations around the stationary solutions of eq. (1.41) and eq. (1.42), we redefine the

fields as

Y1 =P1p + 8¢, (1.452)
Yo = Pop + 69, (1.45b)

Here, the stationary solutions ¥;p and Y,p satisfy eq. (1.37) and eq. (1.38) and therefore we have the

following.

—jf = (A +jADY1p + jP5p =0 (1.46)
—(¥21 +jADW2p + 2jp1pYP5p = 0 (1.47)

By substituting eq. (1.45), eq. (1.46) and eq. (1.47), we re-write eq. (1.35) and eq. (1.36) as

26
al_fl = —(1+ jA) Y1 + 2jpb1h, + j(51h3)? (1.48)

We ignore second-order fluctuations and rewrite eq. (1.48) as

a5y,
ot

= —(1+4jA)6Y, + 2jp61, (1.49)

Similarly, we also obtain a dynamical equation for §1,.

a5,
ot

= —(¥21 +JA2) Y, + 2j1p6Y5 + 2jP5p 8, (1.50)

17



The dynamical equations for §y; and §1; can also be written as

a6yY;
P (1= 8089 — 2j303 (151)

= —(¥21 — jA2) Y3 — 2jp1pSP, + 2j1P,p0Y] (1.52)

a5
ot

We can now make the following assumptions to eq. (1.49), eq. (1.50), eq. (1.51) and eq. (1.52) and hence
obtain eq. (1.57), eq. (1.58), eq. (1.59) and eq. (1.60).

Sy, = bet* (1.53)
Sy = byet* (1.54)
8, = bye’? (1.55)
Sy; = bye’” (1.56)

Ablelt = _(1 +jA1)ble/1T + Zjlpzpb3e/1r
2j,p

b =——F"""— 1.57

= b A+@+ja) 3 (1.57)

Abyett = —(1 = jA)be?™ — 2jip;pbse’
—2j3p

Taoih (1.58)

= b, =

Abze?t = —(yy, +jA2)_b3e’“ + Zj_l/)leéleM + 2jpspbie?t
= Abz + (Y21 +jA)bs — Zjlp;pbl = 2j1pby

2
= Abs + (21 +jby)bs - zj'zp;p#j’}mm = 2jtp1pbs
- A+ (21 + A+ (1 +jAD} + 4[5 ?
A+ (1 +jAy)
2jip1p{A+ (1 + A1)}

T+ (21 FADHA+ (14 jA)) + 4lP2pl?

(1.59)

by = 2jy1pby

= by b,

/1b4e)‘t = -2 —]'Az)bzte/nt - Zjlpzpbzelt - Zjlpipb?,eu
) —2j3p
2 A )
+ Jll)zpll -/ b,
. 2j1p{A + (1 +jAy)}
+ ZjlplP {/1 + ( . . 2
Y21 +JjA)HA + (1 + jA)} + 4 ,p]
N A+ (y21 —JADHA+ (1 — jAD} + 4l2p)?
A+ (1—jA)
_ 4|Y1p1*2 + (1 + A1)}
A+ (Y21 +jADHA+ (A +jAD} + 4lY2pl?

= Aby + (Y21 — jA2)bs

by =0 (1.60)

18



{4+ (a1 —JADMA+ (1 = jAD} 4 4[2p P1H{A + (21 +JADHA+ (1 + jAD} + 412 7]
= 4lpP A+ (A +jADHA+ (1 —jA)}
= {22 4 [(y21 —jA2) + (1 = jADIA + (ya1 — jA) (A — jA;) + 4[1h,p|* 322
+ (1 +702) + (L +JADIA + (ya1 +jA) (1 + jAy) + 4l,p %}
= 4|Pp|2 {12+ 21+ 1 in}
A
(21 —jA) + (1 = jA) + (a1 +jAR) + (1 +jADIA® (1.61)
[ (Y21 —jA2) + (1 — jAD][ (21 +jA2) + (1 + jAq)] ]/12
+(¥21 = jA) (1 = jA) + (V21 +jA) (A + jAr) + 8|p|? — 4l 1h4p?
+[4[(y21 — jB2) + (1 = jA) + (Y21 +jhz) + (1 + jAD]|2p]* — 8lp1p[%]2
+[16]Y2p]* + 8[1h2p|*[¥21 — AA;] + (1 + AD(¥E1 + A5 — 4l1p1)]

Y
I
o

/’14
+[2(1 + ¥, )14
= +[1+ A% +y3; + A5 + 4yp1 + 8lapl® — 4l11p]2]2° =0 (1.62)
+[8(1 + v2)W2p1? + 2(¥3, + A3) + (2y21) (1 + AT) — 8[h4p]%]2
+[16],p|* + 8lY2p > (Y21 — A142) + (1 + D) (y31 + A5 — 4l1p|?)]

By substituting eq. (1.42) in eq. (1.62), we get

24
( +[2(1 +y,)]23 ]
= +[1 + A% + 4y, + 8|P,p|2]42 =0 (1.63)
+[8(1 + v20)IY2p1* + 2y21) (1 + AD]A
+[16]12p1* + 8l1h2p * (Y21 — A145)]

Eq. (1.63) can be written as

A4 + Clﬂ3 + Czlz + Cgﬂ + C4, = O (164)
where
c1 =21 +v21)
c; = 1+ A% + 4y, + 8lih2pl?
cs = 8(1+ ¥, l2p? + (2r21) (1 + A2) (1.65)
g = 16[yp|* + 8lY,p|2 (V21 — A1)

According to Routh-Hurwitz criterion,

c1=0,c=20,c3=0,c4 =0,

€163 —¢c3 =0 (1.66)
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c3(cicy —c3) —c2cy, =0

Here, ¢; =2 0,¢c5 =2 0,c3 =2 0,c1c, — c3 = 0 is always satisfied. The condition ¢, = 0 is satisfied when
[y,p|? is always positive. We now simplify the expression c3(c;c, — ¢3) — c?c4 = 0 to obtain a condition
for |¢2p|2-
c3(cicy —c3) —c?cy, = 0
= [8(1 + v20)[¥2pl® + 2721 (1 + AD)] [2(1 +¥20) (1 + A% + 4y,q + 8lYp1?)

—[8(1 + y2)[¥2pl? + 2y, (1 + A%)]]

—4(1 4 y21)%[16]2p|* + 8l2p > (y21 — A142)]1 = 0
= [8(1 + ¥20)W2pl? + 2y21 (1 + AD][2(1 + y21) (1 + A% + 4y51) — 27,1 (1 + AD)]

—4(1 + ¥21)2[8lY2p 1% (Yo1 — A182)] + 16¥21 (1 + ¥21) (1 + AD) [z ]?
=0

= [8(1+V20)lPpl? + 2721 (1 + A1 [2 (1 + 82 + 4721 (1 + 120) )|

— 41+ ¥21)%[8lY2p 12 (V21 — A185)] + 1621 (1 + y21) (1 + A% [2p]?
>0

= |16(1 +¥21) (1 + A% + 421 + 4v3) [ Y2p)?

4275, (1 89 [2 (14 8 + 4751 +720) )] (167

- 2
—16(1 +¥21)%(2y21 — 2A1A2)|¢2P| +16y51(1 + ¥21) (1 + AD[,p?
>0

= [16(1 +¥21) (1 + A% + 4y21 + 4v5) Y25

+4y21(1+83) (14 8% + 475, (1 +720) )|

—16(1 + ¥21) (1 + ¥21) (2y21 — 28105 [Y2p]?
+16y,1(1 + ¥21) (1 + AD)|p]> = 0

= [16(1 + 21) (1 + 82 + 4y51 + 4y3) Iz |2

+4y,1(1 + A%) (1 + A% + 4y, (1 + V21))]

—16(1 + ¥21) (1 + ¥21) (2y21 — 28105 [Y2p]?
+16y,1(1 + ¥21) (1 + AD)|p]> = 0
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= [16(1 +y21) (1 + 82 + 4y + 4vE) 2o |2

+ 47211+ 83) (14 82 + 4,1 (1 +721) )|

—16(1 4 ¥21)(2y21 — 28185 + 2y31 — 2Y210185) [,p |
+ 16y (1 + y,1) (1 + AD)[P,p|> = 0

= [16(1 +¥21)2(1 4 A% + 2y51 + 20,0)) 252

+ 4721 (1+ 83 (14 82 + 41,1 (1 +720))| 2 0

Y21 (1 + A7) (1 + A% + 4y, (1 + Y21))
4(1+ 2021 + A% + 2y, + 2444,)

= [Papl* = —

|Y2p|? can only be positive if 1 + A7 + 2y,; + 2A;A, < 0, which in turn sets the frequency matching

condition for phononic frequency combs.

S2. Parameters relating to the existence boundaries of phononic frequency combs
S2-1. Center frequency of existence band of phononic frequency combs

The frequency matching condition for phononic frequency combs is governed by eq. (2.1).

(1+A%2+2y+204,) <0 2.1

. Ay | . :
Since A, = 71 + &, we have the following expression.

A
(1+A§+2y+2A1(71+z€>)so (2.2)
(202 + 28,7+ (27 + 1)) <0 2.3)
—k—JkZ - —k+ k2 —202y + 1
K \/K 22(2)/+1)SAls K+\/K - 2y +1) (2.4)

The center frequency of existence band of phononic frequency combs is calculated as follows.

K
A1,center = _E
N Wp,center — W1 _ W1~ 2w, (2.5
Y1 4y,
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3wy + 2w,

= Wp center = 4

S2-2. Range of existence band of phononic frequency combs

The range of existence band of phononic frequency combs is calculated as follows

A1,max - A1,min = \/’22 - 2(2)/ + 1)
2 o (@1 = 2w3)%  2Q2y, +71)
= (wD,max — Wp min) =71 -

4yf V1
o R = (a)1 — 207)% = 8(2y1y, + V1)>

4

20w w?
-4 + 4 8( L 2+—1)
w02 + 403 =870, 407 (2.6)
4

2
= R? = w3 — )w1w2 1 (1—i>
Q1Q2 4 Qf
2 2
W 4w w, w3
:>R2=<w2—wa) +—1>—( : )—( )
Lo e Q10 / \20f
2
For Q2 » 2,21 >> 7 Hence, Fcan be neglected from eq. (2.6).
1
w? 4w, w
R?=|w}— ww +—1>—( 12)
< S Q:0Q;

.7)
=1 RZ = ((j)% - (1)1(1)2( Q:I-Qz) + &>

The quadratic on w, in the RHS of eq. (2.7) can be written as

() (vt - \
R?=| w, —w;

2

2.8)

N

2=( . I \
. \a)z 2 <+Q1Q2) Q1Q2 Q1Q2/
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For 0,0, » 2, —— » 2

16 .
——. Hence, the term —— can be neglected in eq. (2.8).
Q2 7 Q703 Qf e} 8 9 28)

R “ifpp % 48
= wy — —
22 Q:0,  J010Q;

N

(2.9)

For Q;Q, > 2, /% » Hence, the term *_ canbe neglected in eq. (2.9).
1%2

Q1Q2 Q1Q2

2
w 8
R? = w2—71 1+ ’QQ (2.10)
1¥2

An expression for range can hence be obtained as follows.

w1 \/E(Ul

© 2 /0,0

R=|w

2.11)

S2-3. Critical detuning for the generation of phononic frequency combs

For w, — % < 0, the right bound of regime of phononic frequency combs is closer to w; 1.€. Wp center +

R
>
4 R 3wy +2w, w; w w;
Wpedge = Wpcenter T =, 5 T T ¢
| | S NN

0 (2.12)

R
= Wpedge = Wp,center +-o=w;+
2 V2010,

For w, — % > 0, the left bound of regime of phononic frequency combs is closer to w; i.€. Wp center — g.
R 3wi+ 2w, w, + w1 + w1
Wpedge = Wpcenter — 5 =, 5, T, T —
2 4 2 47 20.0,
R w; (2.13)
= Wpedge = Wp,center to =W+t —
2 V20102

Hence, the minimum detuning from w, that is required for exciting phononic combs can be obtained as
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wq

8§ = |wpeage — w1| = W (2.14)
1%¥2

w1

S2-4. Critical separation of resonance frequencies |w2 for the generation of phononic
c

frequency combs

Since the condition for A in eq. (2.4) can assume real values only if
2>22y+1)

= (wg — 2w,)? = 8y, (2y; +11)

8w w, 4w?
= (L)% - 4(1)1(1)2 + 4(1)% 2 < Q11Q22 Q_21>
1

zwz—(1+i>ww +w_%<1 4>>0
? Q:Q2/ 17 4 Q3 _ (2.15)

= W2 2 % (1 * leQz) * \/<1 " (?12(?2)2 - (1 - QilZ)

<1+2JQ2 +Qle+1>

-2 Qle

For Q;Q, > Q%,1, we can neglect certain terms to obtain a simplified expression for the critical separation

of resonance frequencies g = |a)2 (‘;1
c
|a) - —1| > 2w !
: BN
(2.16)
) 1
=2w
775 [0
S2-5. Critical quality factor Q. for the generation of phononic frequency combs
An expression for the critical quality factor @, . can also be obtained as
k2>202y+1)
(w1 = 2w3)* 2 8y1(2y2 +v1)
(@, — 2w,) > 8w, (sz 4 wl)
—2wy)* = 2.17
* =20:\20, " 20, @17
16w,w, 8w?
(w1 — 2wy)?% > < +—
P 40:Q; 407
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8w? 16w,w
(w1 — 2(4)2)2 - = 12

407~ 4010
202 4w w,
(w1 —2wy)% —— =
T 02 T e,
[(wy — 2w2)2Q12 - 200%] > 4w w,
Q1 T Q
dwiw,04

2 = o — 20,202 — 2a7]

For Q; » 2, the term 2w? can be neglected in the denominator. Hence, we have

4w wy
Q22—
(w1 — 2w3)%0Q4
4w w,
Q=57
(w1 — 2w3)%0Q4
0, = 8w? (2.18)
2¢ 7 (g — Zzwz)le
Qz,c =

_ 1)
(1 sz) Q
S3. Derivation of Boundary Line for Parametric Resonance and Phononic Frequency Combs

jél + 2)/1.7.('1 + w%xl + a22x22 = FCOS((UDt)
.7‘&2 + 2)/2.7.6'2 + w%xz + A1X1Xy = 0

The equations of motion corresponding to two coupled modes are given by

¥+ 2y1% + w?x; + ayyx3 + az3x2 = Feos(wpt) 3.1
.7‘&2 + 2)/2.7.6'2 + w%xz + A12X1Xy = 0 (32)
563 + ZY3J.C3 + a)?Z,X3 + a13X1X3 = 0 (33)

By supposing that x; = x4 + X4 and F = F, + F},, we split eq. (3.1) into eq. (3.4) and eq. (3.5).

Frg + 2V1%1q + WPX1q + Appx2 = Fycos(wpt) (3.4
¥1p + 2y1%1p + 03xp + a33x5 = Fycos(wpt) (3.5)
Ky + 2%, + WXy + A12X 4%, = 0 (3.6)
Fy + 2y2%, + 03X, + apx1px; = 0 3.7)

We will now solve the coupled dynamics of (3.4) and (3.6).

Frg + 2YV1%1q + WPX1q + QX2 = Fycos(wpt) (3.8)
562 + 2)/2.7‘('2 + w%xz + alleaxZ = 0 (39)
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The modes are written as

1 . ,
X0 =3 (u1467Pt + uj e~ /@pt) (3.10)
1 W _.wp
Xy = E(uze]TDt +use™ ZDt) (3.11)

The derivatives X, 4, X, ¥1, and ¥, and the coupling terms x;,x, and xZ are obtained as

1 . . . .
v — H wpt y wpt ¥ —jwpt ° * —jwpt
X1q —E(ja)Dulaef Dt + 1y ,el°Pt — jwpu e ICPt + Ui e D) (3.12)
1, wp @p, ©p,  wp  _®p _;®p
3'c2=—(]—uze]2 +iel 2t —j—ue 2 e ]Zt) (3.13)
L 2 2 2
¥1q = E(ulaeijt + ijDulaeijt _ w%ulaej“”?t + ﬂ;ae_ijt _ ijDuIae—Jth (3.14)
2 —jwpt '
— wiuje /o )
1 W .Wp w% wD _.wp _.Wp
¥y ==|iie’ 2 2 "tiwpiye’ 2t —2uel 2t ije 2 —jwpuzel 2t
2 4 (3.15)
2
wh . _i@p,
‘T@“2>
1 Wp Wp Wp,
—39D¢ -Yp; 39D
X1gXy = Z(u{auEe 2" +ujuse 2 +ugule 2 P "4 ugqu,e®2 ) (3.16)
1 . .
2 _
x% = Z(u%ef“’Dt +uy e TOnt + 2|u,|?) (3.17)
. 1 . i
Now, by taking cos(wpt) = 5 (e/@pt 4 e=J@nt) eq. (3.8) and eq. (3.9) become
1 . jwpt 2 . jwpt 2 jwpt + .k —jwpt _ 2 . % —jwpt
E(ulae + Z2jwpuUqqe — WpUyqe Uqq€ JwpUige
—_ w%u;ae_ijt)
+¥1 (jwpus e/ Pt + 1y e/t —ja)Dulae‘J“’Dt +ujeent) (3.18)
w2
_ 2 _j
+—(u1 e/ont 4 yj e~/ont) + 222 (u elOnt 4 y3%e™JOnt 4+ 2|y, |?)
F . .
—_ ](DDt —_](L)Dt
=5 (e +e )
2
.Wp .Wp w .Wp .Wp w .Wp
. YD, . . @YD, D vy — 2Dt , Lk —jEDy D —j%¥Ds
E(uzej 2" + jwpiye’2 —Tuze] “vize 2 —jwpuse 2 —TuZe 72 >
w .Wp .(Wp
== = D —J5t kTt
+ v, (]—uze +u e 2 —j—= uze 2 " tuze 2 ) (3.19)

+7%(u e’w + uje P )

(24} 3wD th th) 0

+— (u{auze

2 + ujuze 2 +u1au§eZ + U use” 2

We now collect the coefficients of e/“Pt in eq. (3.18) and coefficients of e’ E in eq. (3.19) to obtain the

following relationships.
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uj

iiyq + [2y1 + 2jwplig + [(0F — wB) + 2jyiwpluse + @z, > = F, (3.20)
. . wz Aq2 "
+ [2y, + jwpli, + || w3 ~ + jy,wp | Uy +7u1au2 =0 (3.21)
We now multiply eq. (3.20) by and eq. (3.21) by V“ZZ‘“ .
2 (%12 a2
J <2w12) ula) Y1 w12 Y1 J <2w5 ula)
T ) a2 )
d(wpt) wp wp wp/]  9d(wpt) (3.22)
2
Va22012 _ [ @12
+ —zuz = —4Fa
2wy 2wy
92 (V“zza’lzu ) a(\/azzalzu )
203 2 £ 1. w\2 1. (72 20f 7
)| L2
a(th) Wp Wp 4 Wp a((l)Dt) (323)

<a12 )(vazzalz *>_
tlzSU || ———u|=0

2 2 2
2wp 2wy

Now, we apply the following transformation and hence obtain eq. (3.25) and eq. (3.26).

T=wp F,=22F

2w},
Piq = ali Uiq, Py = %glzuZ (3.24)
Gy =9 g, =
1 (‘-’D’ 2 wp
= _ "N - _ Y2
1~ (‘-’D’ 2 — wp
0% _ L 0P _ - =
sr2 27+ 21—t [0F — 1+ 2l + 9 = Fy (325)
*Ps Vo [, 1. 1. - -
372 + [27; +]]W + [a)% —Z‘HVZ]I/JZ + Y192 =0 (3.26)

For slowly varying fields, we assume the following conditions and hence we obtain eq. (3.30) and eq.

(3.31).
62
_ 0 _ a0
(=)= 0. (72=) > 0 (3.28)
By > 1,0, - (3.29)
lpla 3 30
2j +2j71 1 + P53 =F, (3.30)

oT
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P,
J 5= 3T + jV2ts + Y195 =0

We now multiply eq. (3.30) by 4%_/2 and eq. (3.31) by #
1 1

Pra i i
o(52) _ _(l/)1a>+j<ﬂ>2_](i)
(71 T) 27, 27, 4yf
o (P

-G (56
1) (771)<2771 EAVAIVA

Now, we make the following transformations.

P — . — AT, W2 5 jA
2_);(11_1»[)111 _lplae] 17 TZ_II)Z _1/}26] 2t

al/jla al:[)la JA1T

aT = aT +]Allp1a
P, _ 0y,

]A T
97 o7 2+ jhz),

In the limiting cases of A; —» 0 and A, — 0, we obtain the following.

Ya — = wla,_ By =,

2y1
0Y1a _ 0Y1a
a;:l a 1 ]Allpla
0, 3¢z

Hence, we re-write eq. (3.32) and eq. (3.33) as

Y . . .
o= —ifa = (L4 jAYg + i3
oY, . ) .

9 —(Y21 +JjAY, + 2145

. . . d a
The stationary values are obtained by setting 71‘1 and % to zero.

_jfa - (1 +jA1)¢1a +]l/)% =0
—(Y21 +jAY, + 2jh1aP3 = 0
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(3.31)

(3.32)

(3.33)

(3.34)
(3.35)
(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)
(3.45)



The eq. (3.44) and eq. (3.45) possess a trivial solution of eq. (3.46), and a non-trivial solution of eq.
(3.47).

_fa
=— 3.46
YiaL it A, ( a)
Yo, =0 (3.46b)
. _fa + lp%P
=j 22 e 3.47
ll)laP ] (1 +]A1) ( )
By substituting eq. (3.47) in eq. (3.45), we get
_fa + l/)%P
— +jA —2———Y5, =0
(Y21 +JA2)Y2p (1+jb,) Yap
= —(y21 +jB) (A + jADYp + 25 — 2[Y2p|*Ppp = 0
= (21 +JA) A+ jAy) + 21p | 1W2p = 2fa3p
a *
= = - ;
V2P = [0z + 8+ B T 2ie ] V2 (3.48)

4f7
(Y21 +7A)(A + jA1) + 2|2p 21[(Y21 — jA) (A — jA)) + 22p)?]

1
= 7 [(V21 +JA2) A+ jAy) + 2|2p 21 [ (Va1 — jA) (A = jAr) + 2|opl?] = fF

* — A A O o A C) g S
= |Yapl* + (Va1 18)[Y2pl +4( + A1) (y3y +43) — f4

I, |?

= [Pypl* = [

The solution for 1, ,p can be obtained by rewriting eq. (3.45) as

—(¥21 +jA)Y2p + 2j1apP2p = 0
2j1ap¥3p = (Y21 +JjA2)Y2p (3.49)
—2jYiap¥ap = (Y21 — jA)Y3p )
4|1ap)? = (3 + A3)

For real solutions of |y,p|?, the discriminant must be non-negative. Hence, we obtain the following

condition.

(V21 —8108)* — (L + A5, +A5) +4f2 =0
> —2y,100; —y5HAF — A5+ 4f2>0

1
>fl =2 Z(V21A1 +45)? (3.50)

1
> fa= §|V21A1 + A,|

The minimum value of [,p|?should also be non-negative, and hence we obtain another condition.
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_ (Y21 — A147) >0

2 B (3.51)
AAy = Y2

Now, by taking fluctuations around the stationary solutions of eq. (3.48) and eq. (3.49), we redefine the
fields as

Yia = Y1ap T 6Y14 (3.52a)
Yy = Pap + 6, (3.52b)

Here, the stationary solutions ¥;,p and ,p satisfy eq. (3.42) and eq. (3.43) and therefore eq. (3.53) is

valid.

~jfa— (L +jADY1ap + jtb3p = 0 (3.53a)
—(Y21 +JjADY2p + 2jP10pP3p = 0 (3.53b)

By substituting eq. (3.52) and eq. (3.53), we re-write eq. (3.42) and eq. (3.43) as

26
fiap = —(1+jB1)8W1ap + 212p0thz +j(592)? (3-59)

We ignore second-order fluctuations and rewrite eq. (3.54) as

95 _ .
a_[lap = —(1+jA)6Y1ap + 2j1P2p6Y, (3.55)

Similarly, we also obtain a dynamical equation for §1),.

95 _ . o
a_[z = —(y21 tJjA2)8Y, + 2j14p 005 + 2jh3p6Y1, (3.56)

The dynamical equations for §11, and 65 can also be written as

0591q

= —(1 —]'A1)51/’Ia - 2j¢;P61/); (3.57)

6y . - . .
2 = —(Y21 — JA2) Y3 — 2j1ap0t; + 2j1h2p 611, (3.58)

ot

We can now make the following assumptions to eq. (3.55), eq. (3.56), eq. (3.57) and eq. (3.58) and hence
obtain eq. (3.63), eq. (3.64), eq. (3.65) and eq. (3.66).
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81q = by’ (3.59)

5Yiq = bre?” (3.60)
Sy, = bse?® (3.61)
85 = be’? (3.62)

Abje* = —(1 +jA1)b.1e’” + 2jihopbse™
2jp,p

= 3.63
= by A+@+ja) 3 (3.63)
Abye?t = —(1 = jA)bye™ — 2ji3pbse?
—2j3p
L 3.64
= b= A ey (3.64)
Abze?t = —(yy1 + jAy)bse? + 2jipy gpbse? + 2j1p3pby et
= Abs + (Y21 +jAz)bs — 21'11’25_1311571 = 2j1apbs
. ok J ,
= Abs + (21 +jAz)bs — Zﬂl)zpmjl}ml& = 2jY14pbs
L O oy #7800+ (80} + 4l (3:69
A+(1+]A1) 3 ] laPV4
o b = 2j1aptA + (1 +jA)} b
T+ MDA+ (L4 A} + Alop? !
Abye = —(ypq1 — jA)bse™ — 2jih,pbye?t — 2jip pbse™t
. . —2j3
= Aby + (y21 — jA2)by + ZJ'PZPT_Z;AI) 4
, 2j1apiA + (1 +jA1)}
+ 2jY; - - b, =0
TViar 3 G + 1AV + (1% jBy)) + Al (3.66)
N A+ (y21 —JADHA+ (1 — A} + 4l2p)?
A+ (1 —jA)
_ 4|1ap P2+ (1 +jA))}
A+ (21 HjADHA+ (A +jAD} + 4lY,pl?
{2+ (Y21 —jADHA+ (1 = jADY} + 4lY2p IP1HA + (v21 +JADHA+ (1 + jAD} + 4l,p |2
= 4|1ap P2+ (1 +jADHA+ (1 — jAy)}
= {2+ [(ya1 — jA2) + (1 = jADIA + (21 — jA) (1 — jA;) + 4lp,p|*HA?
+ [(yo1 +J02) + (L + jADIA+ (Yo + 702X+ jAy) + 4l,p|?)
= 4|h14p?{A% + 22+ 1 + A3}
/14
H(ya1 —jA) + (1 = jA) + (yo1 +JjA2) + (1 4 jA)]A® (3.67)

+ [ [(Y21 —JA2) + (1 — jAD]I[(y21 +jAz) + (1 +jA))] ]lz
+(21 = JA)(1 = jA) + (Y21 +JjA)(1 + jA)) + 8lwp]? — 4lth1ap [
+[4[(r21 = jA2) + (1 = jA) + (Y21 +jB2) + (1 + jAD]W2p]* — 8lh16p[%]2
\ +[16|¢2P|4 + 8|Y2p % [ya1 — A10,] + (1 + A%)(V221 + A% — 4|1/J1ap|2)] J
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14
+2(1 +y,0)]23
N 1+ A% + y2, + A + 4y,y + 8lap|? — 4lh1ap|?]A2 -0

(3.68)
+[8(L +v2)[W2p|* + 2(¥31 + 83) + 2y20) (1 + AT) — 8lth1apl?]2
'|'[16|ll’2p|4 +8lY2p 2 (Y21 — A147) + (1 + A%)(Yzz1 + A% - 4|1/11ap|2)]
By substituting eq. (3.49) in eq. (3.68), we get
/14»
+2(1 + y,]A3
= +[1+ AT + 4y21 + 8lip2pl?]4? =0 (3.69)
+[8(1 + ¥V [Pap | + (2)’21)(1 + A%)]/1
+[16[,p|* + 8l12p * (Y21 — A147)]
Eq. (3.69) can be written as

A4 + ClﬂB + Czlz + C3A + C4, = 0 (370)

where

¢ =2(1+vyz)
c; = 1+ A% + 4y,1 + 8lypl?

c3 = 8(1 4+ o) [Yopl® + (2)’21)(1 + A ) (3.71)
g = 16[2p|* + 8|Yp |2 (V21 — A142)

According to Routh-Hurwitz criterion,

¢1=20,60=20,c3=0,c4 =20,

C]_CZ - C3 2 O (372)

c3(cicy —c3) —c2c, = 0

Here, ¢c; =2 0,c, =2 0,c53 =2 0,c1c, — c3 = 0 is always satisfied. The condition ¢, = 0 is satisfied when
[, p|? is always positive. We now simplify the expression c3(c;c, — ¢3) — cZc, = 0 to obtain a condition

for |1/}2P|2-

c3(c16, —c3) —cfcy 2 0 (3.73)
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= [8(1 + V) [Y2pl® + 2V21(1 + A%)] [2(1 +¥20) (1 + A + 4y, + 8lypl?)

- [8(1 + V2 2pl* + 2V21(1 + A%)]]
—4(1 +y20)?[16[2p]* + 8l1h2p|* (v21 — 8142)] 2 0
= [8(1 +y20) W2p® + 221 (1 + AD][2(1 + v21) (1 + Af + 4y21) — 25, (1 + AD)]
— 4(1+ y20)2[81Y2p1* (Y21 — A142)] + 16y21 (1 + ¥21) (1 + AD) |12 |?
>0
= [8(1+ V20)lP2pl? + 221 (1 + A1 [2 (1 + 83 + 4y21 (1 + v20) )|

—4(1 + ¥21)2[8lY2p 1% (Ya1 — A182)] + 16¥21 (1 + ¥21) (1 + AD) [2p 12
=0

= [16(1 + y21) (1 + AT + 4y,y + 4y3) [P2p 2

+ 27211+ D) [2 (14 8% + 4y, (1 + y21))”

—16(1 + ¥21)2(2¥21 — 281 8,)12p 1 + 16y51(1 + ¥21) (1 + AD[,p 2
>0

= [16(1 +¥21) (1 + A% + 4y21 + 4y [Y2p)?

+ 4721(1+ 83) (1+ 8% + 45, (1 +72) )|

—16(1 + y21) (1 4 v21) (2y21 — 28105 [2p]?
+16y,1(1 + y21) (1 + AD)|P2pl> = 0

= [16(1 +¥21) (1 + A% + 4y21 + 4v3) [Y2p)?

+ 4721 (1 + 83) (1+ 8% + 4y, (1 +720) )|

—16(1 + y21) (1 4 v21) (2y21 — 28105 [2p]?
+16y,1(1 + y21) (1 + AD)|P2pl> = 0

= [16(1 +¥21) (1 + A% + 4y + 4v3) [Y2pl?

+ 47211+ 83) (14 82 + 4y, (1 +721) )|

—16(1 4 ¥21)(2y21 — 28185 + 2y31 — 2721 0185) [ ,p |
+ 16,1 (1 4 y,1) (1 + A [p|> = 0

= [16(1 +¥21)2(1 4 A% + 2y51 + 20,0)) 252

+ 4721 (1+83) (14 8% + 4y, (1 +721))| 2 0
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Y21 (1 + A7) (1 + A% + 4y, (1 + Y21))
4(1+ 2021 + A% + 2y, + 2444,)

= ihypl* =

|Y2p|? can only be positive if 1 + A7 + 2y,; + 2A;A, < 0, which in turn sets the frequency matching
condition for phononic frequency combs. By solving the system of coupled modes 1 and 3, we will obtain

another set of conditions.

Y31 (1 + A7) (1 + A% + 4y, (1 + Y31))
4(1 +y31)2(1 + AT + 231 + 24,43) (3.74)

[Y3pl? =

14 A% +2y3, + 20103 <0
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