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Background

In 1999–2000: Frequency combs were invented

“The excitement surrounding the rapid evolution in these fields
since 1999 gives us a hint of what it must have been like
after 1927 when the first ideas of quantum mechanics were
introduced: : :”
— — J. L. Hall and T. W. Hänsch, 2005 Nobel prize winners in Physics
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The key advance was electronically locking fceo and frep!
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Background

Frequency and time measurement was revolutionized
Many new applications opened up1

1S. Diddams, J. Opt. Soc. Am. B 27, 51 (2010).
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Motivation

Advances have all been through “cut-and-try” experimentation
Theoretical tools for analyzing and designing frequency combs
are primitive

I “Brute force” simulations or rough analytical approximations
F Adequate for post-hoc analysis; inadequate for design
F yield limited insight into the sources of instability

Key theoretical questions:
Where in the adjustable parameter space are combs stable?
What is the noise performance?
How can we optimize the comb?

I high output power and/or large bandwidth and/or low noise
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Approach

Combine: 400 years of dynamical systems theory
+

modern computers and algorithms
(linear algebra + root-finding)

Evolutionary approach vs. Dynamical approach

A simple example: The damped pendulum
Nonlinear evolution equation:

dx
dt

= y ;
dy
dt

= �A sin x � �y
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The Damped Pendulum: Evolutionary Approach

Pick an initial condition
Solve the evolution equation
Look for convergence to steady-state
) Stable stationary solution exists

Our example:
Solution converges to (0, 0)
) (0, 0) is a stable stationary solution
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The Damped Pendulum: Dynamical Approach

Find stationary solution directly (root-finding problem)
Our example:

dx
dt

= y = 0;
dy
dt

= �A sin x � �y = 0

) both (0, 0) and (�, 0) are stationary solutions

Linearize the evolution equations.
Our example:

dv
dt

=
d
dt

[
∆x
∆y

]
=

[
0 1
�A �

][
∆x
∆y

]
� Lv;

[
(0, 0)! �A;

(�, 0)! A

]
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The Damped Pendulum: Dynamical Approach

Find eigenvalues of the operator L.
Our example:

(0, 0) : �� = �
�

2
�

[
�2

4
� A

]1=2

; (�, 0) : �� = �
�

2
�

[
�2

4
+ A

]1=2

Dynamical spectrum:

stableIm(�)

Re(�)

unstableIm(�)

Re(�)

I If any real parts are positive, the stationary state is unstable
I As A! 0, one real root equals zero, and the stable solution

becomes unstable
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The Damped Pendulum: Noise Impacts

Our example: Calculate h(∆x)2i

d∆x
dt

= ∆y ;
d∆y
dt

= �A∆x � �∆y + R; hR(t)R(t 0)i = �2�(t � t 0)

1 Find the left and right eigenvectors

w� =
1

�� � ��

[
���, 1

]
; v� = [1,��]T

normalized so that w�v� = 1; noting: w�v� = 0

2 Write the auto-correlation function of ∆x

v = a+v+ + a�v� ) ∆x = a+ + a�,

h(∆x)2i = ha+
2i+ 2ha+a�i+ ha�2i
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The Damped Pendulum: Noise Impacts

Our example: Calculate h(∆x)2i

d∆x
dt

= ∆y ;
d∆y
dt

= �A∆x � �∆y + R; hR(t)R(t 0)i = �2�(t � t 0)

1 Find the left and right eigenvectors
2 Write the auto-correlation function of ∆x
3 Find the solution to the Langevin equations:

da�
dt

= ��a� + w�[0, R]T = ��a� +
R

�� � ��
,

) a� =
1

�� � ��

∫ t

�1

R exp
[
��(t � t 0)

]
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The Damped Pendulum: Noise Impacts

Our example: Calculate h(∆x)2i

d∆x
dt

= ∆y ;
d∆y
dt

= �A∆x � �∆y + R; hR(t)R(t 0)i = �2�(t � t 0)

1 Find the left and right eigenvectors
2 Write the auto-correlation function of ∆x
3 Find the solution to the Langevin equations
4 Calculate expectations

ha�2i =
�2

(�+ � ��)2
1

2��
; ha+a�i = �

�2

(�+ � ��)2
1

�+ � ��

5 Combining yields

h(∆x)2i =
�2

2A
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Origins of the Dynamical Approach

These dynamical ideas are very old!

The pendulum clock:
(Galileo – 1632; Huygens – 1673; Euler – 1736)

Stability of the solar system:
I Two body problem: Newton – 1686
I Three body problem:

In general, not solvable, but : : :
stable fixed points found by Lagrange – 1772 (observed 1906)

Application to continuous systems : : :
(described by partial differential equations)
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Origins of the Dynamical Approach

Before Maxwell’s Equations (1861) : : :
Before the Maxwell-Boltzmann distribution (1865) : : :

Maxwell explained the stability of Saturn’s rings (1859)
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Numerous Applications

Control of satellite orbits
Electronic system design
Plasma systems (tokamaks, ionosphere,: : :)
Mechanical, chemical, and fluid systems
Biological systems (heart, animal populations)
Economic systems
Lasers/other optical resonators

I but mostly in highly simplified, almost analytical approximations!
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Nonlinear Schrödinger Equation

i
@u
@t
�
�2

2
@2u
@x2 + 
juj2u = 0

First used to describe optical beams
[Chiao et al., Phys. Rev. Lett. 14, 1056 (1965)]

Appears as a “lowest-order" envelope equation
I in optics (lasers, optical fibers, beams, resonators)
I in plasma, fluid systems
I Bose-Einstein condensates
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Nonlinear Schrödinger Equation

Why lowest order?

Neglects higher-order dispersion
d3u
dz3 ,

d4u
dz4 , : : :

Neglects higher-order in-band nonlinearity

u
djuj2

dz
, juj4u, : : :

Requires: Narrow bandwidth; weak nonlinearity

Qualitatively describes many systems.

Quantitatively describes none!
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Frequency Comb Systems

Fiber Lasers

Fast Saturable Absorber1 Slow Saturable Absorber2

1K. Tamura et al., Opt. Lett. 18, 1080 (1993).
2L. A. Gomes et al., IEEE J Sel. Top. Quantum Electron. 10, 129 (2004).
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Frequency Comb Systems

Passively modelocked lasers (slow saturable gain):

@u
@T

=

[
g (juj)

2

(
1 +

1
2!2

g

@2

@t2

)
�

l
2
�i
�00

2
@2

@t2 + i
juj2 � fsa(juj)
]
u,

g (juj) = g0
[
1 + w0=(PsatTR)

]�1

cubic-quintic model (fast saturable absorber)1

fsa (juj) = �juj2 � �juj4

SESAM model (slow saturable absorber)2

fsa (juj) = �
�

2
n(t , T ),

@n(t , T )

@T
=

1� n
TA

�

∣∣u(t , T )
∣∣

wA
n

1S. Wang et al., J. Opt. Soc. Am. B 31, 2914 (2014).
2S. Wang et al., Opt. Lett. 42, 2362 (2017).
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Saturable Absorption

Round trips

The loss is saturated by the incoming pulse and then recovers
almost instantaneously with fast absorbers

slowly compared to the pulse duration with slow absorbers
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Frequency Comb Systems

Microresonators

The Lugiato-Lefever Equation:3

@ 

@t
�i
@2 

@x2 � i j j2 + (1 + i�) � F = 0

System Parameters:

� : frequency detuning (�5 to 10)
F : pump amplitude (0 to 4)
L : microresonator length (25 to 200)

3Z. Qi et al., Conf. Lasers Elect.-Opt. (2018), paper SF2A.6.
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Dynamical Systems Methods

Standard, “brute-force” approach
Solve the evolution equations for many roundtrips
Use a noisy initial condition
Convergence() existence + stability
Change parameters; repeat

Advantages:
Easy to program
Intuitive (mimics experiments)

Disadvantages:
Computationally slow
Ambiguous near a stability boundary
Limited insight into sources of instability

This approach is better for analysis than synthesis!

Menyuk STMCOS 2018 22 / 56



Dynamical Systems Methods

Our Approach
Solve the evolution equations once to find a stationary solution

I in a highly stable case

Determine the stationary solution as parameters vary by solving a
root-finding problem

In parallel, find the eigenvalues of the linearized evolution equation
I The dynamical spectrum
I A stable solution has no eigenvalues with positive real parts

Find parameters where one or more eigenvalues hit the imaginary axis

Track the stability boundary
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Atlas of Dynamical Spectra

Classical NLS Spectrum Soliton Laser With locking

Im(�)

Re(�)

!

!
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Dynamical Systems Methods

Advantages
103 – 105 times faster than brute-force solutions
Unambiguous determination of stable operating parameter
regimes
Allows rapid mapping and optimization of solution properties

I bandwidth, power, noise: : :

Yields insight into the sources of instability

Disadvantages
More difficult to program
The concepts are unfamiliar to many optical experimentalists
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Dynamical Systems Methods

Two important caveats
Accessibility vs. stability

I Dynamical methods do not tell you how to access stable solutions
F Example: single solitons are hard to access in microresonators
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Dynamical Systems Methods

Two important caveats
Accessibility vs. stability

I Dynamical methods do not tell you how to access stable solutions
F Example: single solitons are hard to access in microresonators

Unstable system evolution
I Dynamical methods do not tell you how an unstable solution

evolves
F Chaos, another stable solution, breathers are all possible

Dynamical and evolutionary methods are complementary!
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Linear Stability (Cubic-Quintic Model)

The eigenmodes include:
radiation modes and discrete eigenmodes
I for soliton lasers, there are four discrete eigenmodes1

The system is linearly stable if all Re (�) � 0

0

0

Re(λ)

Im
(λ
)

λλf λφ

λt
a

Discrete
Radiation

−5 0 5
300

6000

0.5

1

1.5

z
t

1Haus and Lai, J. Opt. Soc. Am. B 7, 386 (1992).
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Instability of the Amplitude Eigenmode

When Re (�a)! 0:
A saddle-node bifurcation occurs
The corresponding pulse solution ceases to exist
A small signal blows up or evolves to different solution

�a

0
−5 0 5

200
400
600

0.5

1

1.5

z
t
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Instability of Radiation Modes

When Re (�k )! 0
The radiation modes become unstable (Hopf bifurcation)
We always observe that the pulse envelope fluctuates

�k

��k
0

−5 0 5
300
600
900

0.2

0.4

0.6

zt
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Stability Boundaries

δ

σ
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P

Figure 2. The stability regions of the GHME with a cubic-quintic saturable absorber
fsa,cq(|u|). The stability boundaries are marked by three curves, C1,C2, andC3. This figure
reproduces Fig. 16 of ref. [22]

When σ 6= 0, the solution in Eq. (11) does not hold any more, and we have found two stable
numerical pulse solutions of the GHME: a low-amplitude solution (LAS) and a high-amplitude
solution (HAS). The LAS is stable in the blue-hatched region that is marked with [2l ] as shown
in Fig. 2, and it becomes unstable in region [1] (below the curve C1), where the continuous
modes become unstable via a Hopf bifurcation or an essential instability [30]. The amplitude
eigenmode becomes unstable when we crossC3 from region [2l ], which corresponds to a saddle-
node instability. Meanwhile, there also exists a second stationary solution [22], which we refer
to as the high-amplitude solution (HAS). The HAS is stable in the red-hatched region which is
marked with [2h], and its stability region is lower-bounded by C2, below which the amplitude
eigenmode becomes unstable via a saddle-node bifurcation. The LAS and the HAS coexist
and remain stable in region [3] which is bounded by C2 and C3. A region like that of region
[3] in which the LAS and the HAS coexist has recently been experimentally confirmed [31].
The LAS and the HAS merge into one single solution in region [2h/l ] in which it remains
stable. The HAS does not exist for the HME, which is the reason the behavior of the GHME is
qualitatively different from the HME. We also find that the HAS remains stable until δ increases
up to ∼9.51, which is almost a factor of 280 greater than the HME’s stability limit [22]. For a
given δ , the HAS also remains stable for any value of σ as long as σ > 0, although the stable
equilibrium pulse becomes increasingly peaked and narrow as σ approaches zero [32]. We
summarize which solution becomes unstable on the curves C1, C2, and C3 and the instability
mechanism in Table 2.

Curve Solution Instability Mechanism

C1 LAS Essential

C2 LAS Saddle-node

C3 HAS Saddle-node

Table 2. Instability mechanisms of the GHME shown in Fig. 2, where LAS represents the
low-amplitude solution, and HAS represents the high-amplitude solution.

In Fig. 3, we show an example of the pulse profiles of both the LAS and the HAS when
σ = 0.004 and δ = 0.036, which is at the point P in Fig. 2. We write the stationary pulse profile

Two stable solutions coexist in a certain parameter regime:1
I Low-amplitude solution (LAS)
I High-amplitude solution (HAS)

The boundaries of the stability regions are labeled C1, C2, and C3

C1 LAS Hopf (essential) instability
C2 HAS saddle-node instability
C3 LAS saddle-node instability

1S. Wang et al., J. Opt. Soc. Am. B 31, 2914 (2014).
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Stability Boundaries
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Figure 2. The stability regions of the GHME with a cubic-quintic saturable absorber
fsa,cq(|u|). The stability boundaries are marked by three curves, C1,C2, andC3. This figure
reproduces Fig. 16 of ref. [22]

When σ 6= 0, the solution in Eq. (11) does not hold any more, and we have found two stable
numerical pulse solutions of the GHME: a low-amplitude solution (LAS) and a high-amplitude
solution (HAS). The LAS is stable in the blue-hatched region that is marked with [2l ] as shown
in Fig. 2, and it becomes unstable in region [1] (below the curve C1), where the continuous
modes become unstable via a Hopf bifurcation or an essential instability [30]. The amplitude
eigenmode becomes unstable when we crossC3 from region [2l ], which corresponds to a saddle-
node instability. Meanwhile, there also exists a second stationary solution [22], which we refer
to as the high-amplitude solution (HAS). The HAS is stable in the red-hatched region which is
marked with [2h], and its stability region is lower-bounded by C2, below which the amplitude
eigenmode becomes unstable via a saddle-node bifurcation. The LAS and the HAS coexist
and remain stable in region [3] which is bounded by C2 and C3. A region like that of region
[3] in which the LAS and the HAS coexist has recently been experimentally confirmed [31].
The LAS and the HAS merge into one single solution in region [2h/l ] in which it remains
stable. The HAS does not exist for the HME, which is the reason the behavior of the GHME is
qualitatively different from the HME. We also find that the HAS remains stable until δ increases
up to ∼9.51, which is almost a factor of 280 greater than the HME’s stability limit [22]. For a
given δ , the HAS also remains stable for any value of σ as long as σ > 0, although the stable
equilibrium pulse becomes increasingly peaked and narrow as σ approaches zero [32]. We
summarize which solution becomes unstable on the curves C1, C2, and C3 and the instability
mechanism in Table 2.

Curve Solution Instability Mechanism

C1 LAS Essential

C2 LAS Saddle-node

C3 HAS Saddle-node

Table 2. Instability mechanisms of the GHME shown in Fig. 2, where LAS represents the
low-amplitude solution, and HAS represents the high-amplitude solution.

In Fig. 3, we show an example of the pulse profiles of both the LAS and the HAS when
σ = 0.004 and δ = 0.036, which is at the point P in Fig. 2. We write the stationary pulse profile

[1] No stable pulse solution [2l ] low amplitude pulse solution
[2h=l ] A single stable pulse solution [2h] high amplitude pulse solution
[3] Two stable pulse solutions

Hypothesis verified experimentally:1

1C. Bao et al., Phys. Rev. Lett. 115, 253903 (2015).
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The SESAM Modelocked Fiber Laser

The system is built using
I telecom grade polarization-maintaining (PM) components
I highly-doped erbium-doped fiber
I highly non-linear PM fibers
I a semiconductor saturable absorber mirror (SESAM)

Output: highly stable 200 MHz combs with Pav = 5 mW

1Sinclair et al., Opt. Express 22, 6996 (2014).
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Balance of Energy

The SESAM and the linear gain open a gain window that allows
the pulse to grow

A soliton wake instability will occur when g0 becomes sufficiently
large or �00 becomes sufficiently small
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Stable Operation

The stable pulse is close in shape to a sech pulse
(soliton solution of the nonlinear Schrödinger equation)
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Soliton Wake Instability

Quasi-periodicity is observed in the evolution
N
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Soliton Wake Instability

Quasi-periodicity is observed in the evolutionLetter Optics Letters 3

Fig. 3. The evolution profile of the wake mode instability (a) in
the time domain, and (b) in the frequency domain, (see Visual-
ization 1), and the pulse amplitude profile at (c) T = 823, (d)
T = 948, (e) T = 1073, and (f) T = 1198. The locations of profiles
(c), (d), (e), and (f) are marked by white lines in (a).

the boundary tracking algorithms that are described in [21, 26].
In this approach, we find a stationary solution [u0, φ, ts] of Eq. (1),
which corresponds to a modelocked pulse. We then linearize
Eq. (1) about this solution, and we determine the eigenvalues
(dynamical spectrum) and eigenvectors of this linearized equa-
tion. Determining this dynamical spectrum is mathematically
analogous to finding the eigenvalues and eigenmodes of an
active waveguide.

In Fig. 4, we show the dynamical spectrum near the origin of
the complex plane for the SESAM laser. Resembling the dynam-
ical spectrum of classical soliton perturbation theory [35], the
spectrum has two branches corresponding to continuous wave
perturbations, as well as four discrete eigenvalues that corre-
spond to perturbations of the stationary pulse’s central time (λt),
central phase (λφ), central frequency (λ f ), and amplitude (λa),
respectively. However, there are two additional discrete eigen-
values λw+ and λw− that correspond to the wake modes [21], as
shown in Fig. 4.

If any eigenvalues in the dynamical spectrum have a positive
real part, then the stationary pulse is unstable [26]. Both λt and
λφ remain at the origin due to the time and phase invariance
of Eq. (1). We see from Fig. 4 that when g0 = 7.74, the real
parts of the continuous spectrum are negative and the discrete
eigenvalues λ f and λa are both negative. In addition, the wake
mode eigenvalues λw± = −7.75× 10−4 ± 0.352i, as shown in
Fig. 4. Hence, the system is stable and close to the stability
boundary in the parameter space. The wake modes are bounded
modes with a very slow decay rate in T [21].

The stationary pulse becomes unstable when the unsaturated
gain g0 becomes sufficiently large. In Fig. 4, we use dashed
arrows to show how the dynamical spectrum shifts when g0
increases up to 13.5. We find that all eigenvalues have negative
real parts except the wake mode eigenvalues, for which λw± =
9.09× 10−3 ± 1.19i. The positive real part of λw± indicate that
the wake modes will grow, destablizing the stationary pulse.

Fig. 4. The variation of the dynamical spectrum when the un-
saturated gain g0 increases from 1.90 to 2.70. We find that
λw± = −7.75 × 10−4 ± 0.352i when g0 = 7.74 and λw± =
9.09 × 10−3 ± 1.19i when g0 = 13.5. The dashed arrows in-
dicate how the spectrum shifts as g0 increases from 7.74 to 13.5.
The eigenvalue λa < −0.90 is not shown here.

In Fig. 5, we show the stable regions in the (g0, β′′) parameter
space. When the group delay dispersion coefficient β′′ varies
from −0.03 ps2 to zero, there exist two stability boundaries. For
a given value of β′′, when g0 becomes sufficiently small, the
pulse becomes unstable due to the background radiation (con-
tinuous modes) [26], i.e., the system gain is below the mode-
locking threshold. When g0 becomes sufficiently large, the pulse
becomes unstable due to the wake modes. The instability thresh-
old for g0 decreases as the system approaches zero dispersion.
When β′′ = 0, the pulse is in principle stable in a very narrow
range of g0, 1.14 < g0 < 1.18. In practice, this range is so narrow
that a laser that operated in it would be destablized by noise and
other perturbations. In addition, the pulse width of the station-
ary pulse is τ0 > 3 ps, which is longer than the SESAM recovery
time, τA = 2 ps. This operating state of the SESAM is inefficient
because the saturable absorption that the pulse experiences is
strongly offset by the lower-level population recovery.

Fig. 5. The stability boundaries in the parameter space of the
unsaturated gain g0 and the group velocity dispersion β′′. The
points (i) and (ii) indicates the cases g0 = 7.74 and g0 = 13.5,
respectively, with β′′ = −0.0144 ps2.

The real parts of the dynamical spectrum that we show in
Fig. 4 indicate the growth rate of the eigenmodes, while the
imaginary part of the spectrum indicates their phase shift per
round trip with respect to the stationary pulse. In the presence
of noise, the eigenmodes with non-zero imaginary eigenvalues
introduce a frequency modulation of the modelocked spectrum,
which can be observed in the power spectrum as sidebands.
We have shown the profile of the sidebands in [20] when ob-
served using a radio frequency (RF) spectrum analyzer. These
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Dynamical Spectrum

As g0 increases:
I a pair of eigenvalues �e,��e emerge from the radiation modes

(edge bifurcation)

Re[�e], Re[��e] become positive, leading to instability
(Hopf bifurcation)1

�e

��e

0
�e

��e

0

1S. Wang et al., Opt. Lett. 42, 2362 (2017).
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Stable Region

Continuous modes become unstable when the gain is too low
The wake mode instability occurs when

I the unsaturated gain becomes large
I the group delay dispersion becomes small

(due to radiation modes)

(due to wake modes)

Once the stable region is known, optimization is possible!
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The Wake Mode Sidebands

Even when stable, the wake modes generate sidebands1

Lumped Averaged

which the response is instantaneous, and thus the optical field is directly converted to the output
current Ip ,

Ip (T ) = η |u(T ) |2, (1)

where η is the conversion efficiency of the photodetector.

Tw TR

u(t,T )
u(T )SESAM laser

Photodetector I (T )
Spectrum
Analyzer

Figure 3. An illustration of unwrapping the optical field u(t,T ) to u(T ), where Tw is the
computational time window and TR is the roundtrip time.

We show in Fig. 5 the obtained display trace of the spectrum analyzer in experiments. We
show the RF spectrum of the photocurrent I (t,T ) where the sidebands’ profiles are apparent. As
the pump power increases, in addition to the shifts of the offset frequency, the power of the wake
mode sidebands also increases. We have shown in prior computation a qualitative agreement [17].
The laser becomes unstable when the pump power Ppump > 255mW. When Ppump = 255mW,
the sidebands is centered at 19.5MHz, and the magnitude of the sidebands is about 13 dB above
the background noise.
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Figure 4. The display of the spectrum analyzer as the pump power increases and our
computational simulations. The agreement is excellent.

3. Optimizing the Laser Cavity

The lumped model accurately captures the behavior of each cavity component and thus provides
good reference to further optimization study. However, the computational results we have shown
in Fig. 5 is obtained using evolutionary approach, in which the computation time for each

As the pump power increases:
the magnitude and the offset frequency of sidebands grow

1S. Wang, PhD Dissertation, UMBC (2018).
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Parameter Studies

Our algorithms make 3D parameter space optimization possible1

We perform parameter studies by
finding the stability boundary

I when the output coupling ratio toc increases
I the unsaturated gain decreases
I the group delay dispersion decreases

1S. Wang, PhD Dissertation, UMBC (2018).
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Optimal Pulse
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To obtain higher output power and smaller wake mode sidebands:1,2

increase the output coupling ratio
and then

maximize the cavity gain
decrease the group delay dispersion

1S. Wang, PhD Dissertation, UMBC (2018).
2S. Wang et. al., paper SF1C.2, CLEO 2017.
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Evaluating Noise Levels

To characterize the laser noise levels
I The Haus-Mecozzi model is widely used

F Qualitatively useful for soliton lasers, but inaccurate
F Not reliable for non-soliton lasers

(e.g., lasers that operate with normal dispersion)
I Monte Carlo simulations can be prohibitively expensive
I The dynamical method is far more computationally rapid

We develop the dynamical method and compare the
computational efficiency to Monte Carlo simulations
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Evaluating Noise Levels

Our approach

Characterize the noise input
I amplifier noise (modelocked lasers)
I laser pump noise; thermal noise (microresonators)

Calculate the noise contribution to each (right) eigenvector
I Use the inner product with left eigenvectors

Calculate the autocorrelation function for statistical quantities of
interest

I SESAM laser:
central frequency (fc), pulse energy (w), RF phase error ( )

Calculate their power spectra densities
(Fourier transform of autocorrelation functions)

I Sw (f ), Sfc (f ), S (f )
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Evaluating Noise Levels
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Fig. 4. The comparison between the Haus-Mecozzi predictions and the Monte Carlo results

for the SESAM fiber laser, where σ∆w, σ∆fc , and σδtc are time-dependent variances of the

pulse energy w, central frequency fc, and the central time tc (or equivilently, the roundtrip

time). The results from Haus-Mecozzi predictions are derived from Eqs. (6) and (13) using

the computational stationary pulse solution.
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Fig. 5. The noise spectra of (a) the energy jitter, (b) the frequency jitter, and (c) the timing

phase jitter that we obtain from the Monte Carlo approach, the Haus-Mecozzi formulae,

and the spectral method. The agreements are excellent, and the results in (c) agrees with

Fig. 1 in [2].

22

We evaluate the noise level of the
SESAM fiber comb laser1

We have achieved excellent
agreement between the
dynamical method and the
Monte Carlo method
The Haus-Mecozzi equation
misses the wake mode
sidebands

1S. Wang et al., J. Opt. Soc. Am. B 35, 2521 (2018).
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Computational Efficiency

Monte Carlo method vs. Dynamical method1

Experiment # of cores Time cost Memory usage Storage
MC runs 256 20 min/core 314 MB/core 1.7 MB/core
Dynamical 1 < 4 min 900 MB 144 MB

We integrate the system for 2� 105 roundtrips in each run of the Monte Carlo
simulations.

The computational efficiency is improved by a factor > 103!

1S. Wang et al., J. Opt. Soc. Am. B 35, 2521 (2018).
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Cnoidal Waves in Microresonators

Solitons are a special case of a broader class of periodic wave
functions

I Referred to as:
Turing rolls, cnoidal waves

I “Cnoidal waves” is the most common nomenclature in the nonlinear
waves / dynamical system community

Cnoidal wave attributes:
On the one hand, they: : :
I have clean spectra with evenly spaced comb lines (like solitons)
I have analytical solutions that exist in the no-loss limit (like solitons)1

I can have a broad bandwidth (like solitons)

1Z. Qi et al., J. Opt. Soc. Am. B 34, 785 (2017).

Menyuk STMCOS 2018 47 / 56



Cnoidal Waves in Microresonators

Solitons are a special case of a broader class of periodic wave
functions

I Referred to as:
Turing rolls, cnoidal waves

I “Cnoidal waves” is the most common nomenclature in the nonlinear
waves / dynamical system community

Cnoidal wave attributes:
On the other hand, they: : :
I can be easily and deterministically accessed (unlike solitons)
I use the pump more efficiently and produce higher power comb

lines
BUT

with lines spaced farther apart

They have often been observed, but little remarked upon!

Menyuk STMCOS 2018 48 / 56



Stable Regions

Stable regions for different
periodicities

F = normalized pump power
� = normalized detuning

Continuous waves are stable below the red-dashed line

Below � = 41=30 ' 1.37, cnoidal waves can be easily accessed by raising the
pump power

Cnoidal waves are stable in a U-shaped region in �-F space
Moving along this region, different values of Nper can be
deterministically accessed
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Stable Regions

Cnoidal Wave Solutions:

jF j2: normalized input power
� : normalized detuning
L : normalized circumference

1J. Jaramillo-Villegas et al., Opt. Express 23, 9618 (2015)
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Stable Regions (L = 50)

Why are single solitons hard to access

Substantial overlap with other cnoidal waves

Almost complete overlap with continuous waves

By contrast the periodicity-8 cnoidal wave can be
deterministically accessed!
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Periodicity-8 Cnoidal Waves (L = 50)

Controllability and bandwidth

With FSR = 125 GHz; 30 dB down bandwidth = 24 THz

Uses the pump more efficiently than a single soliton

Large bandwidth can be obtained!

* large n limit (n & 4)
Menyuk STMCOS 2018 52 / 56



Work in Progress

With A. Weiner and M. Qi (Purdue): Investigations of cnoidal
waves and molecules
With A. Coillet and Y. Chembo (CNRS): Secondary and
higher-order combs
With F. Li and P. K. A. Wai (HKPU): Dual-frequency Kerr combs
With O. Gat (Hebrew U.): Inclusion of temperature effects
With J. Zweck (U. T. Dallas): Periodically-stationary systems

Menyuk STMCOS 2018 53 / 56



Conclusions

Powerful dynamical methods can be combined with modern
computer algorithms to:

I rapidly determine where in the parameter space stable solutions lie
I yield important insights into the sources of instability
I rapidly determine the noise performance
I optimize the system performance
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Conclusions

We have applied these methods to:
I The laser models with slow saturable gain

F Identified parameters ranges where two stable solutions exist
F Compare the cubic-quintic model to other models

I SESAM laser
F Characterized the wake mode instability
F Determined where stable solutions exist
F Explained the appearance of sidebands
F Characterized the noise performance
F Optimized the system parameters

I Microresonators
F Determined where cnoidal waves are stable
F Explained why single solitons are hard to access
F Found broadband, easily accessible cnoidal wave solutions
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Summary

These methods are an important complement to widely used
evolutionary methods and should be commonly used!

Our software is available at:
http://www.umbc.edu/photonics/software.html

See: “Dynamical method to evaluate noise: : :”
“Boundary tracking algorithms”

Menyuk STMCOS 2018 56 / 56
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