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Background

In 1999-2000: Frequency combs were invented

“The excitement surrounding the rapid evolution in these fields
since 1999 gives us a hint of what it must have been like
after 1927 when the first ideas of quantum mechanics were

introduced. . .”
—J. L. Hall and T. W. Hadnsch, 2005 Nobel prize winners in Physics
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The key advance was electronically locking fceo and fiep! UMBC
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Background

@ Frequency and time measurement was revolutionized
@ Many new applications opened up'
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'S. Diddams, J. Opt. Soc. Am. B 27, 51 (2010).
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Motivation

@ Advances have all been through “cut-and-try” experimentation

@ Theoretical tools for analyzing and designing frequency combs
are primitive
» “Brute force” simulations or rough analytical approximations

* Adequate for post-hoc analysis; inadequate for design
* yield limited insight into the sources of instability

Key theoretical questions:
@ Where in the adjustable parameter space are combs stable?
@ What is the noise performance?

@ How can we optimize the comb?
» high output power and/or large bandwidth and/or low noise

UMBC
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Approach

Combine: 400 years of dynamical systems theory
+
modern computers and algorithms
(linear algebra + root-finding)

Evolutionary approach vs. Dynamical approach
A simple example: The damped pendulum

Nonlinear evolution equation:

dx dy__ o
a—y, ar = Asinx —ay
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The Damped Pendulum: Evolutionary Approach

@ Pick an initial condition
@ Solve the evolution equation

@ Look for convergence to steady-state
= Stable stationary solution exists

—Tr s

Our example:

Solution converges to (0, 0)
= (0, 0) is a stable stationary solution UMBC
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The Damped Pendulum: Dynamical Approach

@ Find stationary solution directly (root-finding problem)
Our example:

dx dy
at Y= g

= both (0,0) and (7, 0) are stationary solutions

=—Asinx—ay =0

@ Linearize the evolution equations.
Our example:

0 1
FA a

Ax:
Ay|

ov_ d [ax
dt  dt |Ay
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The Damped Pendulum: Dynamical Approach

@ Find eigenvalues of the operator L.

Our example:

1/2
a?

1/2 >
——A] ;o(m0) A =—

(64
T-I-A

o
: = ——=+
(0,0) : A 5

a

+
2

4

Dynamical spectrum:

Im(A)  ynstable
Im\)  stable

° Re(X)
Re(M)

» If any real parts are positive, the stationary state is unstable
» As A — 0, one real root equals zero, and the stable solution

becomes unstable UMBC
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The Damped Pendulum: Noise Impacts

Our example: Calculate ((Ax)?)

ddAtX‘ = Ay; —dﬁy = —AAx —aly+R; (R(HR(t)) = o?5(t — 1)

@ Find the left and right eigenvectors

1 . — T
Wi—m[—ki,1:|, V:t—[1,>\:|:]

normalized so that w.v4 = 1; noting: wvy =0
© Write the auto-correlation function of Ax

v=a,vy+av._ =Ax=a,+a.,

((Ax)?) =(a}®) +2(ara ) +(a?) UMBC
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The Damped Pendulum: Noise Impacts

Our example: Calculate ((Ax)?)

ddAtX‘ = Ay; —dﬁy = —AAx —aly+R; (R(HR(t)) = o?5(t — 1)

@ Find the left and right eigenvectors
© Write the auto-correlation function of Ax
© Find the solution to the Langevin equations:

da
d—ti = Xya+ + W:t[o, R]T = \yas +

)\i_>\:‘:,

1 t ,
T /oo Rexp [A(t—t')]

= atr =

UMBC
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The Damped Pendulum: Noise Impacts

Our example: Calculate ((Ax)?)

A A
dd—tx — Ay, dd—ty — _AAx—alAy +R; (R(HR(L)) = o28(t — 1)
@ Find the left and right eigenvectors
© Write the auto-correlation function of Ax
© Find the solution to the Langevin equations

© Calculate expectations

o2 1 o2 1

S TEs VR G A S W i - W

(a?) =

© Combining yields

o2

(&0 =2 UMBC
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Origins of the Dynamical Approach

These dynamical ideas are very old!

@ The pendulum clock:
(Galileo — 1632; Huygens — 1673; Euler — 1736)

@ Stability of the solar system:

» Two body problem: Newton — 1686
» Three body problem:
In general, not solvable, but . ..
stable fixed points found by Lagrange — 1772 (observed 1906)

@ Application to continuous systems . ..
(described by partial differential equations)
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Origins of the Dynamical Approach

Before Maxwell’s Equations (1861) . ..
Before the Maxwell-Boltzmann distribution (1865) . ..
Maxwell explained the stability of Saturn’s rings (1859)

STABILITY OF THE MOTION

SATURN’S RI NGS.

AN ESSAY,
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Numerous Applications

@ Control of satellite orbits
@ Electronic system design

@ Plasma systems (tokamaks, ionosphere,. . )
@ Mechanical, chemical, and fluid systems

@ Biological systems (heart, animal populations)
@ Economic systems

@ Lasers/other optical resonators

» but mostly in highly simplified, almost analytical approximations!

STMCOS 2018



Nonlinear Schrédinger Equation

@ First used to describe optical beams
[Chiao et al., Phys. Rev. Lett. 14, 1056 (1965)]

@ Appears as a “lowest-order" envelope equation
» in optics (lasers, optical fibers, beams, resonators)
» in plasma, fluid systems
» Bose-Einstein condensates

u = Eexp(ikz)

'd
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Nonlinear Schrédinger Equation

Why lowest order?

@ Neglects higher-order dispersion
Fu  du
dz®' dz*’
@ Neglects higher-order in-band nonlinearity

el
dz

|ul*u

Requires: Narrow bandwidth; weak nonlinearity
Qualitatively describes many systems.
Quantitatively describes none!
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Frequency Comb Systems

Fiber Lasers

Fast Saturable Absorber! Slow Saturable Absorber?

Polarization-
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Controller [

Pumplsignal
multiplexer

000
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controller

m
Negative-Dispersion L
Standard Fiber
4 (-0.022 ps’/m)
Loop Oufput
Mirror

ve-Dispers
Erbium Fiber
(+0.10040.01 ps’m)

113m

K. Tamura et al., Opt. Lett. 18, 1080 (1993). UMBC

2|, A. Gomes et al., IEEE J Sel. Top. Quantum Electron. 10, 129 (2004).
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Frequency Comb Systems

Passively modelocked lasers (slow saturable gain):

2 1" 22
oT 2 2020 ) 2 208P

ivlul® — fa(ul) | u,

g(ul) = go [1 + wo/(Psat TR)]

cubic-quintic model (fast saturable absorber)’
fsa (Ul) = 5|U|2 - 0|U|4
SESAM model (slow saturable absorber)?

P on(t, T) 1—n |u(t,T)|
fsa(|u|)— 2n(t' T)' aT - TA Wa n

'S. Wang et al., J. Opt. Soc. Am. B 31, 2914 (2014). UMBC

23. Wang et al., Opt. Lett. 42, 2362 (2017).
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Saturable Absorption
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The loss is saturated by the incoming pulse and then recovers
@ almost instantaneously with fast absorbers
@ slowly compared to the pulse duration with slow absorbers UMBC
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Frequency Comb Systems

Microresonators

The Lugiato-Lefever Equation:®

o Py . . -
E—/W—/|’l/}|¢+(1+la)¢—F—O

System Parameters:

a : frequency detuning (—5 to 10)
F: pump amplitude (0 to 4)
L : microresonator length (25 to 200)

UMBC

3Z. Qi et al., Conf. Lasers Elect.-Opt. (2018), paper SF2A.6.
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Dynamical Systems Methods

Standard, “brute-force” approach

@ Solve the evolution equations for many roundtrips
@ Use a noisy initial condition
@ Convergence < existence + stability
@ Change parameters; repeat

Advantages:
@ Easy to program
@ Intuitive (mimics experiments)

Disadvantages:

@ Computationally slow
@ Ambiguous near a stability boundary
@ Limited insight into sources of instability

This approach is better for analysis than synthesis! UMBC
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Dynamical Systems Methods

Our Approach

@ Solve the evolution equations once to find a stationary solution
» in a highly stable case

@ Determine the stationary solution as parameters vary by solving a
root-finding problem

@ In parallel, find the eigenvalues of the linearized evolution equation
» The dynamical spectrum
» A stable solution has no eigenvalues with positive real parts

@ Find parameters where one or more eigenvalues hit the imaginary axis
@ Track the stability boundary

STMCOS 2018



Atlas of Dynamical Spectra

Classical NLS Spectrum Soliton Laser With locking
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modes UMBC
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Dynamical Systems Methods

Advantages
102 — 10° times faster than brute-force solutions

Unambiguous determination of stable operating parameter

regimes

Allows rapid mapping and optimization of solution properties
» bandwidth, power, noise. ..

Yields insight into the sources of instability

Disadvantages
@ More difficult to program
@ The concepts are unfamiliar to many optical experimentalists

UMBC
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Dynamical Systems Methods

Two important caveats
@ Accessibility vs. stability

» Dynamical methods do not tell you how to access stable solutions
* Example: single solitons are hard to access in microresonators

UMBC
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Dynamical Systems Methods

Two important caveats
@ Accessibility vs. stability

» Dynamical methods do not tell you how to access stable solutions
* Example: single solitons are hard to access in microresonators

@ Unstable system evolution

» Dynamical methods do not tell you how an unstable solution
evolves

* Chaos, another stable solution, breathers are all possible

Dynamical and evolutionary methods are complementary!

UMBC
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Linear Stability (Cubic-Quintic Model)

@ The eigenmodes include:
radiation modes and discrete eigenmodes
» for soliton lasers, there are four discrete eigenmodes’

@ The system is linearly stable if all Re (\) <0

x Discre‘te
— Radiation
_ 15
S 0 Ay 1
0.5
0 .
0

Re()

"Haus and Lai, J. Opt. Soc. Am. B 7, 386 (1992).
STMCOS 2018
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Instability of the Amplitude Eigenmode

When Re (\3) — O:
@ A saddle-node bifurcation occurs
@ The corresponding pulse solution ceases to exist
@ A small signal blows up or evolves to different solution
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Instability of Radiation Modes

When Re (M) — 0
@ The radiation modes become unstable (Hopf bifurcation)
@ We always observe that the pulse envelope fluctuates

STMCOS 2018



Stability Boundaries
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Stability Boundaries

high amplitude
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Figure 2. The stability regions of the GHME with a cubic-quintic saturable absorber
fsacq(|ul). The stability boundaries are marked by three curves, Cy, C2, and C3. This figure

i Fig. 16 L [22] . . .
(11" 'No'stable pulse solution [2] low amplitude pulse solution
wilRrr i o, i\ SIDGIR bl oRUSRISIUEIRNN |2} rhighoamiplitude pulse solution
numefmjl pulse sofyiiens : Wﬁ]fgéﬁ'f ution (LAS) and a high-amplitude
solutiLn HAS). The Sﬁ%&%ﬁ@%@e— atche reg1§t11 that i$ marked with [2;] as shown
in ll:g 2, angd it bgcomes ypstable in region&%] (belo th_c] curve Ci), where the continuous
molldY & %&Mefdtﬁdﬁ)ﬁﬁaﬂ @axajlym instability [30]. The amplitude

eigenmode becomes unstable when we cross Cs from region [2;], which corresponds to a saddle-

node instability. Meanwhile, there also exists a second stationary solution [22], which we refer U MBC

to as The fiigh-amplitude solutio is stable in the red-hatched region which is

marked Kan BAO BBk s RAYE B8 eyl 38,8808, (803D hhich the amplitude
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The SESAM Modelocked Fiber Laser

@ The system is built using
» telecom grade polarization-maintaining (PM) components
highly-doped erbium-doped fiber
highly non-linear PM fibers
a semiconductor saturable absorber mirror (SESAM)

@ Output: highly stable 200 MHz combs with P, = 5 mW

v vy

PM Erbium fiber
~28cm

+ Simple, repeatable design
* 5mW output power

+ 220fs pulses.

+ 11 nm output spectrum

+ 200MHz

« Self-starting mode-locking

UMBC

'Sinclair et al., Opt. Express 22, 6996 (2014).
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Balance of Energy

@ The SESAM and the linear gain open a gain window that allows
the pulse to grow

@ A soliton wake instability will occur when go becomes sufficiently
large or B becomes sufficiently small

30

1.02

N
[==)
Net gain

—_
o

uo(t) (W'/2)

0.98
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Stable Operation

The stable pulse is close in shape to a sech pulse
(soliton solution of the nonlinear Schrédinger equation)

W)
5000 )
7-2500I|Ii05 VOJ ‘
A
04 0 0.4
t (ps)
Color indicates the pulse power Color indicates the

phase of the pulse UMBC
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Soliton Wake Instability

Quasi-periodicity is observed in the evolution

—_
o

Normalized units

o
o

z = 0 (roundtrips)

OF=====-=-=--~ o= 1.0

lu(t, s)I?

! 10.5

t (ps) UMBC
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Soliton Wake Instability
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Dynamical Spectrum

@ As gy increases:
» a pair of eigenvalues ¢, Ay emerge from the radiation modes
(edge bifurcation)
@ Re[)\g], Re[\;] become positive, leading to instability
(Hopf bifurcation)’

° >le,,
/Xg / )

'S. Wang et al., Opt. Lett. 42, 2362 (2017).

UMBC
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Stable Region

@ Continuous modes become unstable when the gain is too low

@ The wake mode instability occurs when

» the unsaturated gain becomes large
» the group delay dispersion becomes small

T T T T T ]
unstable
4 (due to wake modes)
80 [ Stable N
| - unstable
—[ (due to radiation modes)
V= === === === === ===
—0.03 —0.02 —0.01 0

B (ps?)
Once the stable region is known, optimization is possible!

UMBC
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S LU P e e |
The Wake Mode Sidebands,

Figie 3. An1 of unwrappg
We show in Fig. 5 the obtained display trace of the spectrum analyzer in experiments. We
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Figure 4. The display of lhe spcclrum analyzer as the pump power increases and our
is excellent.

As the pump power increases:
3. optimizing IRE4NAGRItude and the offset frequency of sidebands grow

The lumped model accurately captures the behavior of each cavity componenl and thus provides
good 10 further imizati itudy However the 1 results we have shown UMB‘
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Parameter Studies

Our algorithms make 3D parameter space optimization possible'

80

[ < Unstable due |
P <—_to wake modes:
| Stable = < i

80

foe = 10% g

B (pSZ)

We perform parameter studies by
@ finding the stability boundary

» when the output coupling ratio t,; increases
» the unsaturated gain decreases
» the group delay dispersion decreases

UMBC

's. Wang, PhD Dissertation, UMBC (2018).
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Optimal Pulse

0 T T T T T
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LE 15F 13
< 1™\ 2
= =
8 10 ' A -]
E] =
= R
50 1&
&9
~ ) % -2t
'-l"‘ L "-.
-600 0 600 s
t (fs)

Frequency (MHz)

To obtain higher output power and smaller wake mode sidebands:'2
@ increase the output coupling ratio
and then

@ maximize the cavity gain
@ decrease the group delay dispersion

'S. Wang, PhD Dissertation, UMBGC (2018). UMBC

2s. Wang et. al., paper SF1C.2, CLEO 2017.
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Evaluating Noise Levels

@ To characterize the laser noise levels
» The Haus-Mecozzi model is widely used

* Qualitatively useful for soliton lasers, but inaccurate
* Not reliable for non-soliton lasers
(e.g., lasers that operate with normal dispersion)

» Monte Carlo simulations can be prohibitively expensive
» The dynamical method is far more computationally rapid
@ We develop the dynamical method and compare the
computational efficiency to Monte Carlo simulations

STMCOS 2018



Evaluating Noise Levels

Our approach

@ Characterize the noise input

» amplifier noise (modelocked lasers)
» laser pump noise; thermal noise (microresonators)

@ Calculate the noise contribution to each (right) eigenvector
» Use the inner product with left eigenvectors

@ Calculate the autocorrelation function for statistical quantities of
interest
» SESAM laser:
central frequency (f;), pulse energy (w), RF phase error (1)
@ Calculate their power spectra densities
(Fourier transform of autocorrelation functions)
> Sw(f), S, (), Sy ()

UMBC
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Computational Efficiency

Monte Carlo method vs. Dynamical method'’

Experiment | # of cores Time cost Memory usage Storage
MC runs 256 20 min/core 314 MB/core 1.7 MB/core
Dynamical 1 < 4min 900 MB 144 MB

We integrate the system for 2 x 10° roundtrips in each run of the Monte Carlo
simulations.

The computational efficiency is improved by a factor > 103!

UMBC

'S. Wang et al., J. Opt. Soc. Am. B 35, 2521 (2018).
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Cnoidal Waves in Microresonators

@ Solitons are a special case of a broader class of periodic wave
functions
» Referred to as:
Turing rolls, cnoidal waves
» “Cnoidal waves” is the most common nomenclature in the nonlinear
waves / dynamical system community

@ Cnoidal wave attributes:
On the one hand, they. ..

» have clean spectra with evenly spaced comb lines (like solitons)
» have analytical solutions that exist in the no-loss limit (like solitons)’
» can have a broad bandwidth (like solitons)

UMBC

Z.Qietal., J. Opt. Soc. Am. B 34, 785 (2017).
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Cnoidal Waves in Microresonators

@ Solitons are a special case of a broader class of periodic wave
functions

» Referred to as:
Turing rolls, cnoidal waves
» “Cnoidal waves” is the most common nomenclature in the nonlinear
waves / dynamical system community

@ Cnoidal wave attributes:

On the other hand, they. ..

» can be easily and deterministically accessed (unlike solitons)

» use the pump more efficiently and produce higher power comb
lines

BUT
with lines spaced farther apart
They have often been observed, but little remarked upon!

UMBC

STMCOS 2018 48 /56



Stable Regions

Stable regions for different F = normalized pump power
periodicities a = normalized detuning

@ Continuous waves are stable below the red-dashed line
@ Below oo = 41/30 ~ 1.37, cnoidal waves can be easily accessed by raising the
pump power

@ Cnoidal waves are stable in a U-shaped region in a-F space
@ Moving along this region, different values of Nj.. can be

deterministically accessed UMBC
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Stable Regions

Cnoidal Wave Solutions:

I T Y

[=>]

|F|2:  normalized input power
a @ normalized detuning
L: normalized circumference

UMBC

. Jaramillo-Villegas et al., Opt. Express 23, 9618 (2015)
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Stable Regions (L = 50)

Why are single solitons hard to access

2.7

| 7

= -continuous wave, )

—one-period

------ three-period
3 five-period 2.6

SN &,
A
2 N 2.5 —
AY
Ay
N
N
1 L= 2.4
-2 0 3 4.5
« «

@ Substantial overlap with other cnoidal waves
@ Almost complete overlap with continuous waves

By contrast the periodicity-8 cnoidal wave can be
deterministically accessed! UMBC
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Periodicity-8 Cnoidal Waves (L = 50)

Controllability and bandwidth

Py41/P, in dB*

|IH Hh

—10 10
« Mode number n

B, (dB)

@ With FSR =125 GHz; 30 dB down bandwidth = 24 THz
@ Uses the pump more efficiently than a single soliton

Large bandwidth can be obtained!

UMBC

*large nlimit (n = 4)
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Work in Progress

@ With A. Weiner and M. Qi (Purdue): Investigations of cnoidal
waves and molecules

@ With A. Coillet and Y. Chembo (CNRS): Secondary and
higher-order combs

@ With F. Li and P. K. A. Wai (HKPU): Dual-frequency Kerr combs
@ With O. Gat (Hebrew U.): Inclusion of temperature effects
@ With J. Zweck (U. T. Dallas): Periodically-stationary systems
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Conclusions

@ Powerful dynamical methods can be combined with modern
computer algorithms to:

rapidly determine where in the parameter space stable solutions lie

yield important insights into the sources of instability

rapidly determine the noise performance

optimize the system performance

vV v vy
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Conclusions

@ We have applied these methods to:
» The laser models with slow saturable gain

* |dentified parameters ranges where two stable solutions exist
* Compare the cubic-quintic model to other models

» SESAM laser

Characterized the wake mode instability
Determined where stable solutions exist
Explained the appearance of sidebands
Characterized the noise performance
Optimized the system parameters

» Microresonators

* Determined where cnoidal waves are stable
* Explained why single solitons are hard to access
* Found broadband, easily accessible cnoidal wave solutions

* % % %

*

UMBC
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Summary

These methods are an important complement to widely used
evolutionary methods and should be commonly used!

Our software is available at:
http://www.umbc.edu/photonics/software.html

See: “Dynamical method to evaluate noise. . .”
“Boundary tracking algorithms”

STMCOS 2018


http://www.umbc.edu/photonics/software.html

	Stable Regions
	Stable Regions
	Periodicity-8 Cnoidal Waves (L=50)
	Conclusions
	Conclusions
	Summary


