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Abstract 

The doctoral advisor—typically the principal investigator (PI)—is often characterized as a singular or 
primary mentor who guides students using a cognitive apprenticeship model. Alternatively, the “cascading 
mentorship” model describes the members of laboratories or research groups receiving mentorship from 
more senior lab members and providing it to more junior members (i.e., PIs mentor postdocs, postdocs 
mentor senior graduate students, senior students mentor junior students, etc.).  Here we show that PIs’ 
laboratory and mentoring activities do not significantly predict students’ skill development trajectories, but 
the engagement of postdocs and senior graduate students in laboratory interactions do. We found that 
the cascading mentorship model accounts best for doctoral student skill development in a longitudinal 
study of 336 Ph.D. students in the United States. Specifically, when postdocs and senior doctoral 
students actively participate in laboratory discussions, junior Ph.D. students are over 4 times as likely to 
have positive skill development trajectories. Thus, postdocs disproportionately enhance the doctoral 
training enterprise, despite typically having no formal mentorship role.  These findings also illustrate both 
the importance and the feasibility of identifying evidence-based practices in graduate education.  

Significance Statement 

Conventional wisdom in the laboratory sciences suggests that Ph.D. students develop their research 
skills as a function of mentorship from their faculty advisors (i.e., principal investigators [PIs]).  However, 
no prior research has identified empirically a relationship between specific PI practices and the 
development of research skills.  Here we show that PIs’ laboratory and mentoring activities do not 
significantly predict students’ skill development trajectories, but the engagement of postdocs and senior 
graduate students in laboratory interactions do.  These findings support the practice of “cascading 
mentorship” as differentially effective and identify a critical but previously unrecognized role for postdocs 
in the graduate training process. They also illustrate both the importance and the feasibility of identifying 
evidence-based practices in graduate education. 

 
 
Main Text 
 
Introduction 
Developing a highly skilled scientific workforce through doctoral training is critical to the advancement of 
science, but faculty who supervise these students consistently articulate reliance on their own 
experiences as students, rather than evidence-based practices, to inform their approaches to training (1-
3). The doctoral advisor—typically the principal investigator (PI)—is often characterized as a singular or 
primary mentor who guides students using a cognitive apprenticeship model (4). Alternatively, the 
“cascading mentorship” model (5) describes the members of laboratories or research groups receiving 
mentorship from more senior lab members and providing it to more junior members (i.e., PIs mentor 
postdocs, postdocs mentor senior graduate students, senior students mentor junior students, etc.). 
However, it is unclear how successful each model may be in fostering the development of doctoral 
students’ research skills.  
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Understanding research skill development requires attention to both the growth of specific skills (e.g., 
experimental design, data analysis) and collective profiles that reflect consistent patterns of growth within 
and across skills over time. For example, discrete graduate training experiences such as teaching (6) or 
coauthoring with a faculty mentor (7) are associated with growth in certain research skills. Other analyses 
have documented differences in rates of skill development overall as a function of small differences in 
initial skill level (8). However, little is known about the sustained effects of programmatic features of 
doctoral training that predict collective skill development over the course of multiple years.  

Despite the popularity of the classic, single-mentor model in characterizations of graduate training and its 
positive association with scholarly productivity (9), no studies to date have linked the quality of mentorship 
to differential learning or skill outcomes. Likewise, the cascading mentorship model has been described 
as a “signature pedagogy” of laboratory-based sciences (5), but no studies have tested the efficacy of 
that structure. 

In this 4-year longitudinal study, we measured research skills of a cohort of 336 Ph.D. students in the 
biological sciences who began their programs of study in Fall 2014, drawn from 53 universities across the 
United States (see Materials and Methods for details regarding participant recruitment). Specific sub-
disciplines included cellular and molecular biology, developmental biology, microbiology, and genetics.  
Research skills were measured annually using sole-authored writing samples (e.g., draft manuscripts, 
qualifying or comprehensive examinations, dissertation proposals) that proposed or reported the results 
of empirical studies.  Each writing sample was scored on all target skills by two blind raters using a 
validated rubric (0.818 ≤ ICC ≤ 0.969; see SI Appendix, Table S1). 

The specific research skills measured for this study were: introducing/setting the study in context (INT), 
appropriately integrating primary literature (LIT), establishing testable hypotheses (HYP), using 
appropriate controls and replication (CTR), experimental design (EXP), selecting data for analysis (SEL), 
data analysis (ANA), presenting results (PRE), basing conclusions on results (CON), identifying 
alternative explanations of findings (ALT), identifying limitations of the study (LIM), and discussing 
implications of the findings (IMP).  These planks were selected through a review of relevant literature and 
iterative development of criteria (10) as well as analyses from previous studies (6-8). We acknowledge 
that there are other important skills that likely contribute to expertise in the biological sciences, which 
were not measured in this study (e.g., bench skills). Written research products that make a scientific 
argument are an end-goal of research. Thus, they represent authentic and ecologically valid 
embodiments of skill with the potential to directly impact scientific career trajectories (11, 12). 

We applied latent profile transition analysis (13) (LPTA) to examine year-over-year growth in all research 
skills by identifying discrete patterns of performance amongst the target skills that were common across 
subgroups of participants within and across years. LPTA is a longitudinal, person-oriented technique for 
modeling change and stability in subgroup membership (i.e., latent class) across time. Following cross-
sectional latent profile analyses that identified discrete participant subgroups of the sample based on 
constellations of twelve research skills within each year, LPTA estimated the transitions of participants 
between these subgroups from year to year. Based on a comparison of model fit criteria (see full 
description in Materials and Methods and SI Table 7), results showed three latent subgroups among our 
sample of doctoral students with regard to their scores in a set of research skills: low-, medium-, and high-
skill groups within each year (Fig. 1). The collective scores within each subgroup increased their average 
skill mean values over time in differing amounts on a 3-point scale: the low group increased its mean by 
0.096, the medium group increased by 0.283, and the high group increased by 0.522 (Fig. 2), reflecting 
similar patterns to those reported in (8). Students transitioned among these subgroups across time with 
the following transitions being considered positive: low- to medium-skill, low- to high-skill, medium- to 
high-skill, and high- to high-skill. From Year 1 to 2, Year 2 to 3, and Year 3 to 4, 37%, 24%, and 7% of 
students had positive transitions, respectively.   

To capture the overall trajectories of skill growth across the four years of data collection, we examined 
latent growth curves (LGCs; 14) within a structural equation modeling framework that included all 
measured skills.  We identified four distinct LGCs, with one reflecting positive linear growth over time 
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(n=75; 35.4% of the sample), one reflecting decreasing then increasing growth (n=39; 13.1% of the 
sample), and two reflecting flat or slightly decreasing trajectories (n=153; 51.5% of the sample) (Fig. 3).  
Participants with positive transitions at any transition point were between 2.28 (95% CI = [1.48, 3.51]) and 
4.62 (95% CI = [2.93, 7.29]) times as likely to have a positive linear LGC over 4 years than any of the 
other three LGC trajectories, showing that positive transitions between years were substantially 
associated with general positive growth across all years.  

Next, we tested the extent to which different features of participants’ doctoral training differentially 
predicted their year-over-year LPTA transitions and 4-year LGC trajectories.  To do this, we collected 
survey data from participants on an annual basis to elicit details of their interactions with faculty as 
mentors and information about the roles that various individuals (i.e., PI, other faculty, postdocs, senior 
graduate students, junior graduate students, undergraduates, lab technicians) took on in the context of 
their laboratory. We used data from the second year of participants’ Ph.D. programs as predictors 
because students began permanent lab placements with a designated faculty PI at the outset of their 
second year (15).    

Using logistic regression models, we examined predictors of positive LPTA transitions and LGC 
trajectories (coded as 1), contrasted with all other transition and trajectory patterns (coded as 0).  First, 
we tested whether lab roles during year 2 predicted positive transitions. The Year 1 to Year 2 transition 
was excluded from analysis, because data related to permanent lab features and faculty mentor 
interactions were not available prior to Year 2. All lab roles for all possible lab members were included as 
predictors of positive transitions and trajectories.  In addition, we interviewed n=82 participants (24.4% of 
the total sample) on an annual basis to explore contemporaneous descriptions of participants’ 
experiences and interactions within their respective laboratories. 
 
 
Results 

Latent profile transition analysis results 
Our results indicate that the latent profiles yielded by the latent profile analyses tended to differ from each 
other mostly by skill level rather than by difference in shape. Specifically, participants in Latent Class 1 
scored relatively high on all of the twelve research skills, and were accordingly referred to as high-skill 
students, comprising 13%, 21%, 21%, and 9% of the sample for Years 1, 2, 3, and 4, respectively. 
Participants in Latent Classes 2 and 3, on the other hand, scored moderately or low on all research skills 
relative to the rest of the sample. We therefore referred to these latent classes as medium-skill students, 
comprising 23%, 41%, 31%, and 35%, and low-skill students, comprising 63%, 38%, 48%, and 56%, of 
the full samples for Years 1, 2, 3, and 4, respectively (see Figs. 1 and 2). 

 
The LPTA model examined how students transitioned among skill levels from year to year. Students 
showed positive, negative, and no transitions among latent classes across time as shown in SI Appendix, 
Fig. S1. For example, 20% of students in the high-skilled student researchers latent class in year 1 
moved to the moderate-skilled student researchers latent class in year 2, indicating negative movement; 
23% of students in the low-skilled student researchers latent class in year 2 moved to the moderate-
skilled student researchers latent class in year 3, indicating positive movement; and 67% of students in 
the low-skilled student researchers latent class in year 3 remained in the low research skills latent class in 
year 4. The percentages given are based on the most likely latent class at each time point for each 
student. Means and standard deviations for the performance-based research skills measures across time 
are shown in SI Table 2. 

Results show that senior graduate students engaging with primary literature strongly predicted positive 
LPTA transitions for study participants in Years 2 to 3 (Odds ratio [OR] = 3.85; 95% CI = [1.07, 13.89]), 
and both postdocs and senior graduate students participating in lab discussions strongly predicted 
positive LPTA transitions in Years 3 to 4 (OR = 5.14; 95% CI = [1.69, 15.60]; OR = 4.50; 95% CI = [1.39, 
14.58]).   
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Latent growth curve results 
Results from the LGC trajectory logistic regression likewise showed that postdocs participating in lab 
discussions strongly predicted the likelihood of participants belonging to the linear positive growth LGC 
(OR = 4.20; 95% CI = [1.59, 11.10]).  Other predictors, including demographic characteristics, presence 
of postdocs in lab (independent of activities), faculty interactions, and peer interactions were 
nonsignificant in predicting either positive LPTA transitions or LGC trajectories (SI Tables 3-5). Positive, 
significant predictors of positive transitions and trajectories are shown in Fig. 4. 
 
Qualitative results 
Of the interviews conducted (n=82, drawn from the larger study sample), 48.8% of interviews conducted 
with study participants yielded at least one characterization of postdocs as valued mentors and instructors 
within the laboratory context.  Four themes emerged related to how students interact with and receive 
support from postdocs. Specifically, we found that postdocs provide hands-on instruction in the lab 
(n=18), give professional and academic feedback (n=17), model how an academic career may look for 
the graduate student (n=13), and provide personal/emotional support (n=13). Representative quotes are 
provided in SI Table 6. 

 
Discussion  
 

These findings indicate that Ph.D. students in the biological sciences are 4.50 times as likely to have 
positive year-to-year LPTA transitions when senior graduate students are active participants in lab 
discussion.  They are also 5.14 times as likely to have a positive year-to-year LPTA transitions when 
postdocs are active participants in lab discussion. Similarly, they are 4.20 times as likely to have positive 
LGC growth trajectories when postdocs are active participants in lab discussion.  Further, the qualitative 
data indicate that postdocs mentor doctoral students in myriad ways, most commonly by being present in 
the lab to provide on-going and hands-on instruction and professional guidance. Notably, PI activities and 
reported faculty mentorship measures do not predict positive year-to-year transitions or overall positive 
trajectory.  In combination with the extensive set of variables found to have no effect on positive 
transitions and growth trajectories, our results suggest that active engagement in collective laboratory 
discussion by senior peers (i.e., senior graduate students and postdocs) better predict Ph.D. students’ 
skill development than the mentoring or laboratory activities of faculty mentors. As such, the cascading 
model of mentorship is not only a descriptive norm of doctoral student support in university-based 
laboratory environments (5), but also a differentially beneficial practice that uniquely predicts positive 
research skill development. 

 
In this context, our findings have substantial implications for both programmatic doctoral training in the 
biological sciences and the conceptualization of the value that postdocs contribute to the larger research 
enterprise. As the practice of science has shifted toward larger team enterprises and an increasing pace 
and volume of workload, the nature of the PI’s role has shifted to one that often entails less direct contact 
with students (16, 17). Postdocs and others within the lab may step into the gap that is created, with 
unexpected dividends. In this context, our findings suggest that adoption of a cascading mentorship 
model which encourages active engagement of postdocs within the laboratory as mentors to Ph.D. 
students may be beneficial to student skill development.  Accordingly, it is possible that providing training 
to postdocs in effective mentoring practices may further enhance the benefits to graduate students 
identified in this study.   
 
Recent analyses of the postdoctoral role within the research enterprise indicate that postdocs are 
underpaid relative to the value they contribute to scholarly productivity (18). However, their total value 
within the laboratory may be substantially more than currently recognized based on their skill 
development contributions. Conversely, postdocs may realize value in terms of their own development 
from engaging in informal mentoring of graduate students. Previous research has identified benefits for 
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graduate students’ research skill development from a combination of teaching and research activities over 
research as a sole focus (6). It may be that postdocs benefit similarly from their roles as mentors in the 
laboratory. Exploratory studies suggest that postdoctoral mentoring of student researchers may facilitate 
further thinking and risk-taking on postdocs’ topics of research, along with the development of other skills, 
such as teaching and the use of scientific communication skills (19). Opportunities to develop such skills 
align with current recommendations for postdoctoral training (20, 21). 
 
 
Materials and Methods 
 
Participant Recruitment 

Study recruitment materials instructing prospective participants to contact the research team were 
disseminated in two phases. First, we contacted program directors and department chairs of the 100 
largest PhD programs in the biological sciences across the United States as well as public flagship 
universities and minority serving institutions (i.e., historically Black colleges and universities and Hispanic-
serving institutions) with PhD programs in the biological science subfields of interest. All program 
directors and department chairs were given information about the purpose of the study and asked to 
share recruitment materials with incoming PhD students in fall of 2014. Next, the research team sent 
recruitment emails to several listservs, including those of the American Society for Cell Biology and the 
Center for the Integration of Research, Teaching, and Learning Network for broader dissemination. All 
students who responded to these emails were entering PhD programs that we contacted in the first phase 
of recruitment, suggesting that recruitment efforts approached saturation at the institutional level. All 
prospective participants who contacted the research team were then screened to ensure that they met 
the criteria for participation and understood the expectations for participation. Participants signed 
informed consent per the requirement by the Utah State University Institutional Review Board (IRB) for 
human subjects research under protocol #5888. To incentivize study participation, students received a 
$400 annual incentive. The full procedure for this study was approved by the IRB.  

In total, we recruited 336 participants from 53 institutions across the United States. Of the 
institutions represented, 42 are classified as R1 (highest research activity), seven institutions are R2 
(higher research activity), and the remaining four institutions fall in other Carnegie categories.  
 
Data Collection 

Data for the present study were obtained through web-based surveys and the collection of single-
authored writing samples via email. Both survey data and writing samples were collected annually during 
the first four years of the doctoral program. 

After removing cases with missing data on all key variables and accounting for attrition (both from 
the study and the doctoral program), the present study relies on a longitudinal sample of n=297 students. 
Most participants were female (n=183), continuing-generation (n=210), from majority racial/ethnic groups 
(n=240), or were domestic students (n=237). Fewer participants were male (n=114), first-generation 
(n=83), from under-represented racial/ethnic minority groups (n=53), or were international students 
(n=57). Four students did not provide data on their generation status nor racial/ethnic identity, and three 
did not provide data on international student status. 
 

Measures 
Background Variables. During the first year of the study, students completed a demographic 

questionnaire that included questions about their race/ethnicity, gender, parents’ education level, and 
international student status.  

Race. Students indicated their race/ethnicity by selecting one or more of the following: American 
Indian or Alaska Native; Asian or Asian American; Black or African American; Latino/a; Native Hawaiian 
or Other Pacific Islander; White. Students’ responses were aggregated to create a measure of under-
represented racial/ethnic minority (URM) status (0=majority; 1=URM) where students who selected only a 
White and/or Asian identity were coded as majority; all other students were coded as URM.  

Gender. As a proxy for gender, students reported their sex as female or male (female=0; 
male=1).  
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 First-Generation College Status. Students were asked to indicate the highest degree obtained 
by their parent(s), students who had no parent with a 4-year college degree were coded as first-
generation (0=continuing generation; 1=first-generation). 
 International Student Status. Students also self-reported whether or not they are an 
international student (0=No; 1=Yes).  
 Performance-Based Research Skills. To measure research skills, students submitted a sole-
authored research product each year immediately following the spring semester of their doctoral training. 
Expectations that 1) documents were written within the preceding 4 months and 2) were not to have been 
edited or contributed to by others were clearly communicated.  Consequently, writing samples were 
typically unpublished manuscripts, which may or may not have later been published in subsequent 
collaboration with others.  Two independent reviewers rated each document on twelve research skills 
according to clearly defined rubric criteria. Rubric criteria draw heavily from prior studies (6, 10).  Skills 
included: 

1. Introducing/setting the study in context (INT) 
2. appropriately integrating primary literature (LIT) 
3. establishing testable hypotheses (HYP) 
4. using appropriate experimental controls and replication (CTR) 
5. experimental design (EXP) 
6. selecting data for analysis (SEL) 
7. data analysis (ANA) 
8. presenting results (PRE) 
9. basing conclusions on results (CON) 
10. identifying alternative explanations of findings (ALT) 
11. identifying limitations of the study (LIM) 
12. discussing the implications of the findings (IMP) 

All raters reviewed criteria on a scale from 0 to 3.25. Interrater reliability as measured by intraclass 
correlations (ICCs; two-way random effects) was good, 0.818 to 0.969. Exact ICC values are shown in SI 
Table 1. Scores were averaged across raters to create a composite measure for each skill. 

Lab Roles. Roles of other lab members were evaluated by asking students: 
 In your research experience during your PhD program so far, who participates in:  

1. lab discussions to understand contemporary concepts in your field? 
2. making use of the primary scientific research literature in your field (e.g., journal articles)? 
3. identifying a specific question for investigation based on the research in your field? 
4. formulating research hypotheses based on a specific question?  
5. designing an experiment or theoretical test of hypotheses? 
6. developing the “controls” in research? 
7. collecting data? 
8. statistically analyzing data? 
9. interpreting data by relating results to the original hypothesis? 
10. reformulating original research hypotheses (as appropriate)? 

Students responded to each question by selecting all persons in the lab who participated in each task. 
Possible responses included principal investigator(s), other faculty, research scientists/postdocs, senior 
graduate students, junior graduate students, lab technicians, and undergraduate students. Affirmative 
responses were coded as 1. Empty responses, as long as the student answered other questions, were 
coded as 0. Items that were seen by the participant but left unanswered, or items that were not seen by 
the participant were considered missing data. Responses to lab roles from year 2, after students entered 
a permanent laboratory, were included in the present study. 
 Faculty Interactions. We examined the role of student-faculty interactions, relying on previously 
developed items (22). The occurrence of faculty interactions was measured using a composite variable 
made up of 4 items from the annual surveys, asking students whether or not they do any of the following 
with program faculty: engage in social conversation; discuss topics in his/her field; discuss other topics of 
intellectual interest; and talk about personal matters. These items showed adequate reliability, 
McDonald’s omega = .71. Items were added together to form a scale ranging from 0 (little to no 
interactions) to 4 (many types of interactions). 



 

 

8 

 

The quality of faculty interactions was computed using a 6-item composite variable where 
students indicated their agreement with the following items: the faculty are accessible for scholarly 
discussions outside of class; I feel free to call on the faculty for academic help; the faculty are aware of 
student problems and concerns; I can depend on the faculty to give me good academic advice; I am 
treated as a colleague by the faculty; the faculty sees me as a serious scholar. Students responded to 
each item using a 5-point scale ranging from strongly disagree to strongly agree. These items showed 
good reliability, McDonald’s omega = .85. Again, items were added together to form a scale, ranging from 
6 (low quality interactions) to 30 (high quality interactions). 
 Peer Interactions. We also examined the role of the student-peer interactions using two 
subscales (22). The social interaction with peers was measured using two items that asked students to 
indicate (yes = 1, no = 0) whether they have interacted with peers in their department in the following 
ways: engage in social conversation and talk about personal matters. The academic interaction with 
peers was also assessed using two items that asked students to indicate (yes = 1, no = 0) whether they 
have interacted with peers in the following ways: discuss topics in his/her field and discuss other topics of 
intellectual interest. Items were summed to create each of the two subscales. These items yielded 
adequate to good reliability estimates, McDonald’s omega = .81 (academic) and .83 (social).  
 

Interviews 
To provide a more nuanced interpretation of the findings, we used qualitative analysis to explore 

contemporaneous descriptions of postdocs’ interactions with graduate student participants. Specifically, 
we analyzed interview data from 82 participants who were recruited from the larger sample. The 
qualitative sample was largely representative of the quantitative survey sample; URM students and first-
generation college students each represented nearly a third (29.3%) of participants, and women made up 
68.3% of the sample. All 82 participants completed an hour-long, semi-structured phone interview with a 
member of the research team during the summer after their fourth year in the doctoral program. The 
interview protocol focused on students’ experiences over the course of their doctoral program and 
included questions about experiences in the lab, along with probing questions asking specifically about 
interactions with PIs, faculty, postdocs and other research staff. All interviews were recorded and 
transcribed verbatim.  
 
Statistical Analyses  

All quantitative analyses accounted for students nested within university. Quantitative analyses 
were conducted in Mplus v8.1. Response variable rubric scores had 31% missing data at the first time 
point, up to 57% missing data at the fourth time point. A missing values analysis [χ2(312) = 346.41, P = 
0.09] showed that the missing data met the assumption for missing completely at random (MCAR; 23). 
Missing data were handled more conservatively under missing at random (MAR; 24) assumptions by 
using a maximum likelihood estimation algorithm robust to nonnormally distributed data (MLR).  

The potential heterogeneity of doctoral student skill development was evaluated using two 
different methods: latent profile transition analysis and latent class growth analysis. Multinomial logistic 
regression analyses were conducted to examine positive transitions and positive growth. To account for 
family-wise error due to multiple sets of logistic regression analyses, a false discovery rate was applied to 
results (25).  

Latent Profile Transition Analysis. Latent profile transition analysis (LPTA) is an extension of 
latent profile analysis (LPA) to longitudinal measures. LPA is a person-oriented technique used for 
identifying unobserved subgroups in a sample based on the patterns of means (and variances) of 
observed variables within a given time point. LPTA additionally evaluates the stability and mobility of 
subgroup memberships over time by evaluating the probabilities of individuals transitioning from one 
latent class at time t to another latent class at time t+1 (13). This analysis allowed us to examine discrete 
transitions of individuals moving from one skill profile to another skill profile between consecutive time 
points.  

Prior to conducting LPTAs, we first performed LPAs to identify distinct latent subpopulations 
among doctoral students who were scored on a set of 12 indicators of research skills at each assessment 
point (Y1-Y4). Our analysis estimated LPA solutions with one through five latent classes, and were 
estimated using 500 starting values. We inspected different model fit criteria (Bayesian Information 
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Criterion [BIC] and Entropy) across solutions for selecting the best-fitting solution (SI Table 7). BIC is 
recommended as the most powerful measure for evaluating competing models to determine the optimal 
number of latent classes, with lower values representing better model fit. Entropy is an indicator of the 
precision with which individuals are assigned to each latent class, with values close to 1 representing 
more accurate latent class assignments.  Based on these measures, our results showed that the 3-class 
LPA model was the best fit to the data for all four assessment points. Although the values of BICs 
continued to decrease without actually reaching the minimum value, the plots of these values showed that 
the slope plateaued between three and five latent classes, indicating that the 3-class solution was better 
than other solutions. The 3-class model also had very high entropy (0.95, 0.94, 0.94, 0.96 for Y1, 2, 3, 4 
respectively). Accordingly, we chose the 3-class LPA model as the measurement model for the 
subsequent LPTA models. 

After evaluating the profiles of skills within time, we examined how students transitioned between 
profiles across time, using LPTA. Two different LPTA models were evaluated: a model without 
assumptions about the model structure across time and a model that assumed measurement equivalence 
across time. Confirmation of measurement equivalence would indicate that the skill profiles are the same 
across time (e.g., high skills at time 1 are the same as high skills at time 2, etc.). The model without 
measurement equivalence across time best fit the data (SI Table 8). 

Latent Class Growth Analysis. Latent class growth analysis (LCGA) is a longitudinal, person-
oriented analysis (14). The primary use of LCGA is to identify latent subgroups (or “classes”) of 
participants based on similar latent growth curve (LGC) trajectories. Group membership is static and 
unchanging in LCGA because the goal of LCGA is to identify latent trajectories rather than latent 
transitions. This analysis is allowed us to examine skill trajectories across all time points.  

LCGA models with one to six latent classes were evaluated. All models were evaluated using 500 
starting values. Models were compared using BIC and Entropy (see SI Table 9) to determine the number 
of latent classes that best represented the skills trajectories data. Like the LPTA models, the BIC values 
continued to decrease as the number of latent classes increased. Although these values decreased, 
examining plots of the BIC showed that the BIC slope plateaued at the four-class solution, and this 
solution was chosen as the best-fitting model. 
 To characterize doctoral student skill development across latent classes, we examined the mean 
values of each skill at each time point within each latent class. Class 1 represented 26% of the sample 
and showed decreasing skill levels across time. Class 2 represented 25% of the sample and showed 
stable, low skill levels across time. Class 3 represented 13% of the sample and showed initially 
decreasing then increasing skill levels across time. Class 4 represented 35% of the sample and showed 
linear, increasing skill levels across time. 

Multinomial Logistic Regression Analyses. Logistic regression analyses were used to 
examine whether independent predictors impacted positive transitions as well as positive skill trajectory. 
All variables (as shown in Tables 6-8), a total of n=78, were included as predictors of positive transitions 
between years 2 and 3 as well as years 3 and 4. All variables were also included as predictors of the 
positive latent growth curve skill trajectory. Analyses were evaluated in separate statistical models due to 
the relatively low sample size. Confidence intervals were adjusted post-hoc using false discovery rate 
(FDR) (28) to maintain a familywise error rate of .05. Results for all independent variables predicting 
positive transitions between times 2 and 3, 3 and 4, and positive skill trajectories are presented in SI 
Tables 6-8. 

Qualitative Analyses. Data was analyzed using NVivo 12 software. Because we were 
particularly interested in students’ experiences with postdocs and full-time research staff related to the 
current paper, we purposely selected transcripts from all participants who mentioned their interactions 
with postdoc(s) and other research staff as part of their interview. To identify these participants, we first 
conducted exploratory analyses using a sample of 20 transcripts to identify the language used by 
students to discuss relevant interactions in the lab. Based on this preliminary analysis, we used NVivo’s 
text search query function to search for interviews where participants used phrases containing any 
variation of the following terms: "postdoc" OR "post doc" OR "post-doc" OR “lab manager” OR “research 
scientist”. Notably, the query also detected instances where the identified terms were the stem of the 
words used in the interview (e.g., if students discussed “postdoctoral researchers”, this would have also 
been captured by the query). Finally, results from the query were reviewed to remove any 
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interviews/excerpts that were not relevant. After closely reviewing the query results, we identified 53 
participants with relevant data.  

All 53 transcripts were coded in a systematic, two-phase process (26). During the first phase, we 
read and re-read each excerpt to identify emergent themes related to how students interact with postdoc 
and other full-time research staff. Next, we developed a codebook with descriptions and examples of the 
themes and used this codebook to analyze each transcript. Two members of the research team 
independently coded 28% of the transcripts (n=15) to ensure reliability and trustworthiness. Additionally, 
we met throughout the analysis process to participate in peer debriefing (27).   
 
Data and Code Availability 
 
The data generated and analyzed during the current study are available from the corresponding author on 
reasonable request. The statistical code used to analyze the data during the current study is available 
from the corresponding author on reasonable request. 
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Figure Legends 
 
Figure 1. High-, medium-, and low-skill latent profiles, showing estimated mean scores for each research 
skill within each year according to the final LPTA model. 
 
Figure 2. Latent profiles by time, showing minimum, maximum, means, and number of participants in 
each profile. 

Figure 3. Latent growth model results, reflecting common trajectories of skill development within each 
latent class. 

Figure 4. Odds ratios with 95% confidence intervals displaying significant predictors of positive transitions 
(Year 2 to Year 3, Year 3 to Year 4) and skill trajectories (LGC), as well as contrasting nonsignificant 
predictors. Odds ratios with confidence intervals containing 1 (indicated by vertical dashed line) are 
nonsignificant. 

 


