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Abstract

The doctoral advisor—typically the principal investigator (Pl)—is often characterized as a singular or
primary mentor who guides students using a cognitive apprenticeship model. Alternatively, the “cascading
mentorship” model describes the members of laboratories or research groups receiving mentorship from
more senior lab members and providing it to more junior members (i.e., Pls mentor postdocs, postdocs
mentor senior graduate students, senior students mentor junior students, etc.). Here we show that PIs’
laboratory and mentoring activities do not significantly predict students’ skill development trajectories, but
the engagement of postdocs and senior graduate students in laboratory interactions do. We found that
the cascading mentorship model accounts best for doctoral student skill development in a longitudinal
study of 336 Ph.D. students in the United States. Specifically, when postdocs and senior doctoral
students actively participate in laboratory discussions, junior Ph.D. students are over 4 times as likely to
have positive skill development trajectories. Thus, postdocs disproportionately enhance the doctoral
training enterprise, despite typically having no formal mentorship role. These findings also illustrate both
the importance and the feasibility of identifying evidence-based practices in graduate education.

Significance Statement

Conventional wisdom in the laboratory sciences suggests that Ph.D. students develop their research
skills as a function of mentorship from their faculty advisors (i.e., principal investigators [Pls]). However,
no prior research has identified empirically a relationship between specific Pl practices and the
development of research skills. Here we show that Pls’ laboratory and mentoring activities do not
significantly predict students’ skill development trajectories, but the engagement of postdocs and senior
graduate students in laboratory interactions do. These findings support the practice of “cascading
mentorship” as differentially effective and identify a critical but previously unrecognized role for postdocs
in the graduate training process. They also illustrate both the importance and the feasibility of identifying
evidence-based practices in graduate education.

Main Text

Introduction

Developing a highly skilled scientific workforce through doctoral training is critical to the advancement of
science, but faculty who supervise these students consistently articulate reliance on their own
experiences as students, rather than evidence-based practices, to inform their approaches to training (1-
3). The doctoral advisor—typically the principal investigator (Pl)—is often characterized as a singular or
primary mentor who guides students using a cognitive apprenticeship model (4). Alternatively, the
“cascading mentorship” model (5) describes the members of laboratories or research groups receiving
mentorship from more senior lab members and providing it to more junior members (i.e., Pls mentor
postdocs, postdocs mentor senior graduate students, senior students mentor junior students, etc.).
However, it is unclear how successful each model may be in fostering the development of doctoral
students’ research skills.



Understanding research skill development requires attention to both the growth of specific skills (e.g.,
experimental design, data analysis) and collective profiles that reflect consistent patterns of growth within
and across skills over time. For example, discrete graduate training experiences such as teaching (6) or
coauthoring with a faculty mentor (7) are associated with growth in certain research skills. Other analyses
have documented differences in rates of skill development overall as a function of small differences in
initial skill level (8). However, little is known about the sustained effects of programmatic features of
doctoral training that predict collective skill development over the course of multiple years.

Despite the popularity of the classic, single-mentor model in characterizations of graduate training and its
positive association with scholarly productivity (9), no studies to date have linked the quality of mentorship
to differential learning or skill outcomes. Likewise, the cascading mentorship model has been described
as a “signature pedagogy” of laboratory-based sciences (5), but no studies have tested the efficacy of
that structure.

In this 4-year longitudinal study, we measured research skills of a cohort of 336 Ph.D. students in the
biological sciences who began their programs of study in Fall 2014, drawn from 53 universities across the
United States (see Materials and Methods for details regarding participant recruitment). Specific sub-
disciplines included cellular and molecular biology, developmental biology, microbiology, and genetics.
Research skills were measured annually using sole-authored writing samples (e.g., draft manuscripts,
qualifying or comprehensive examinations, dissertation proposals) that proposed or reported the results
of empirical studies. Each writing sample was scored on all target skills by two blind raters using a
validated rubric (0.818 < ICC < 0.969; see S| Appendix, Table S1).

The specific research skills measured for this study were: introducing/setting the study in context (INT),
appropriately integrating primary literature (LIT), establishing testable hypotheses (HYP), using
appropriate controls and replication (CTR), experimental design (EXP), selecting data for analysis (SEL),
data analysis (ANA), presenting results (PRE), basing conclusions on results (CON), identifying
alternative explanations of findings (ALT), identifying limitations of the study (LIM), and discussing
implications of the findings (IMP). These planks were selected through a review of relevant literature and
iterative development of criteria (10) as well as analyses from previous studies (6-8). We acknowledge
that there are other important skills that likely contribute to expertise in the biological sciences, which
were not measured in this study (e.g., bench skills). Written research products that make a scientific
argument are an end-goal of research. Thus, they represent authentic and ecologically valid
embodiments of skill with the potential to directly impact scientific career trajectories (11, 12).

We applied latent profile transition analysis (13) (LPTA) to examine year-over-year growth in all research
skills by identifying discrete patterns of performance amongst the target skills that were common across
subgroups of participants within and across years. LPTA is a longitudinal, person-oriented technique for
modeling change and stability in subgroup membership (i.e., latent class) across time. Following cross-
sectional latent profile analyses that identified discrete participant subgroups of the sample based on
constellations of twelve research skills within each year, LPTA estimated the transitions of participants
between these subgroups from year to year. Based on a comparison of model fit criteria (see full
description in Materials and Methods and S| Table 7), results showed three latent subgroups among our
sample of doctoral students with regard to their scores in a set of research skills: low-, medium-, and high-
skill groups within each year (Fig. 1). The collective scores within each subgroup increased their average
skill mean values over time in differing amounts on a 3-point scale: the low group increased its mean by
0.096, the medium group increased by 0.283, and the high group increased by 0.522 (Fig. 2), reflecting
similar patterns to those reported in (8). Students transitioned among these subgroups across time with
the following transitions being considered positive: low- to medium-skill, low- to high-skill, medium- to
high-skill, and high- to high-skill. From Year 1 to 2, Year 2 to 3, and Year 3 to 4, 37%, 24%, and 7% of
students had positive transitions, respectively.

To capture the overall trajectories of skill growth across the four years of data collection, we examined
latent growth curves (LGCs; 14) within a structural equation modeling framework that included all
measured skills. We identified four distinct LGCs, with one reflecting positive linear growth over time



(n=75; 35.4% of the sample), one reflecting decreasing then increasing growth (n=39; 13.1% of the
sample), and two reflecting flat or slightly decreasing trajectories (n=153; 51.5% of the sample) (Fig. 3).
Participants with positive transitions at any transition point were between 2.28 (95% CI = [1.48, 3.51]) and
4.62 (95% CIl =[2.93, 7.29]) times as likely to have a positive linear LGC over 4 years than any of the
other three LGC trajectories, showing that positive transitions between years were substantially
associated with general positive growth across all years.

Next, we tested the extent to which different features of participants’ doctoral training differentially
predicted their year-over-year LPTA transitions and 4-year LGC trajectories. To do this, we collected
survey data from participants on an annual basis to elicit details of their interactions with faculty as
mentors and information about the roles that various individuals (i.e., Pl, other faculty, postdocs, senior
graduate students, junior graduate students, undergraduates, lab technicians) took on in the context of
their laboratory. We used data from the second year of participants’ Ph.D. programs as predictors
because students began permanent lab placements with a designated faculty Pl at the outset of their
second year (15).

Using logistic regression models, we examined predictors of positive LPTA transitions and LGC
trajectories (coded as 1), contrasted with all other transition and trajectory patterns (coded as 0). First,
we tested whether lab roles during year 2 predicted positive transitions. The Year 1 to Year 2 transition
was excluded from analysis, because data related to permanent lab features and faculty mentor
interactions were not available prior to Year 2. All lab roles for all possible lab members were included as
predictors of positive transitions and trajectories. In addition, we interviewed n=82 participants (24.4% of
the total sample) on an annual basis to explore contemporaneous descriptions of participants’
experiences and interactions within their respective laboratories.

Results

Latent profile transition analysis results

Our results indicate that the latent profiles yielded by the latent profile analyses tended to differ from each
other mostly by skill level rather than by difference in shape. Specifically, participants in Latent Class 1
scored relatively high on all of the twelve research skills, and were accordingly referred to as high-skill
students, comprising 13%, 21%, 21%, and 9% of the sample for Years 1, 2, 3, and 4, respectively.
Participants in Latent Classes 2 and 3, on the other hand, scored moderately or low on all research skills
relative to the rest of the sample. We therefore referred to these latent classes as medium-skill students,
comprising 23%, 41%, 31%, and 35%, and low-skill students, comprising 63%, 38%, 48%, and 56%, of
the full samples for Years 1, 2, 3, and 4, respectively (see Figs. 1 and 2).

The LPTA model examined how students transitioned among skill levels from year to year. Students
showed positive, negative, and no transitions among latent classes across time as shown in SI Appendix,
Fig. S1. For example, 20% of students in the high-skilled student researchers latent class in year 1

moved to the moderate-skilled student researchers latent class in year 2, indicating negative movement;
23% of students in the low-skilled student researchers latent class in year 2 moved to the moderate-
skilled student researchers latent class in year 3, indicating positive movement; and 67% of students in
the low-skilled student researchers latent class in year 3 remained in the low research skills latent class in
year 4. The percentages given are based on the most likely latent class at each time point for each
student. Means and standard deviations for the performance-based research skills measures across time
are shown in S| Table 2.

Results show that senior graduate students engaging with primary literature strongly predicted positive
LPTA transitions for study participants in Years 2 to 3 (Odds ratio [OR] = 3.85; 95% CI =[1.07, 13.89]),
and both postdocs and senior graduate students participating in lab discussions strongly predicted
positive LPTA transitions in Years 3 to 4 (OR = 5.14; 95% CI =[1.69, 15.60]; OR = 4.50; 95% CI = [1.39,
14.58]).



Latent growth curve results

Results from the LGC trajectory logistic regression likewise showed that postdocs participating in lab
discussions strongly predicted the likelihood of participants belonging to the linear positive growth LGC
(OR =4.20; 95% CI =[1.59, 11.10]). Other predictors, including demographic characteristics, presence
of postdocs in lab (independent of activities), faculty interactions, and peer interactions were
nonsignificant in predicting either positive LPTA transitions or LGC trajectories (S| Tables 3-5). Positive,
significant predictors of positive transitions and trajectories are shown in Fig. 4.

Qualitative results

Of the interviews conducted (n=82, drawn from the larger study sample), 48.8% of interviews conducted
with study participants yielded at least one characterization of postdocs as valued mentors and instructors
within the laboratory context. Four themes emerged related to how students interact with and receive
support from postdocs. Specifically, we found that postdocs provide hands-on instruction in the lab
(n=18), give professional and academic feedback (n=17), model how an academic career may look for
the graduate student (n=13), and provide personal/emotional support (n=13). Representative quotes are
provided in Sl Table 6.

Discussion

These findings indicate that Ph.D. students in the biological sciences are 4.50 times as likely to have
positive year-to-year LPTA transitions when senior graduate students are active participants in lab
discussion. They are also 5.14 times as likely to have a positive year-to-year LPTA transitions when
postdocs are active participants in lab discussion. Similarly, they are 4.20 times as likely to have positive
LGC growth trajectories when postdocs are active participants in lab discussion. Further, the qualitative
data indicate that postdocs mentor doctoral students in myriad ways, most commonly by being present in
the lab to provide on-going and hands-on instruction and professional guidance. Notably, Pl activities and
reported faculty mentorship measures do not predict positive year-to-year transitions or overall positive
trajectory. In combination with the extensive set of variables found to have no effect on positive
transitions and growth trajectories, our results suggest that active engagement in collective laboratory
discussion by senior peers (i.e., senior graduate students and postdocs) better predict Ph.D. students’
skill development than the mentoring or laboratory activities of faculty mentors. As such, the cascading
model of mentorship is not only a descriptive norm of doctoral student support in university-based
laboratory environments (5), but also a differentially beneficial practice that uniquely predicts positive
research skill development.

In this context, our findings have substantial implications for both programmatic doctoral training in the
biological sciences and the conceptualization of the value that postdocs contribute to the larger research
enterprise. As the practice of science has shifted toward larger team enterprises and an increasing pace
and volume of workload, the nature of the PI's role has shifted to one that often entails less direct contact
with students (16, 17). Postdocs and others within the lab may step into the gap that is created, with
unexpected dividends. In this context, our findings suggest that adoption of a cascading mentorship
model which encourages active engagement of postdocs within the laboratory as mentors to Ph.D.
students may be beneficial to student skill development. Accordingly, it is possible that providing training
to postdocs in effective mentoring practices may further enhance the benefits to graduate students
identified in this study.

Recent analyses of the postdoctoral role within the research enterprise indicate that postdocs are
underpaid relative to the value they contribute to scholarly productivity (18). However, their total value
within the laboratory may be substantially more than currently recognized based on their skill
development contributions. Conversely, postdocs may realize value in terms of their own development
from engaging in informal mentoring of graduate students. Previous research has identified benefits for



graduate students’ research skill development from a combination of teaching and research activities over
research as a sole focus (6). It may be that postdocs benefit similarly from their roles as mentors in the
laboratory. Exploratory studies suggest that postdoctoral mentoring of student researchers may facilitate
further thinking and risk-taking on postdocs’ topics of research, along with the development of other skills,
such as teaching and the use of scientific communication skills (19). Opportunities to develop such skills
align with current recommendations for postdoctoral training (20, 21).

Materials and Methods

Participant Recruitment

Study recruitment materials instructing prospective participants to contact the research team were
disseminated in two phases. First, we contacted program directors and department chairs of the 100
largest PhD programs in the biological sciences across the United States as well as public flagship
universities and minority serving institutions (i.e., historically Black colleges and universities and Hispanic-
serving institutions) with PhD programs in the biological science subfields of interest. All program
directors and department chairs were given information about the purpose of the study and asked to
share recruitment materials with incoming PhD students in fall of 2014. Next, the research team sent
recruitment emails to several listservs, including those of the American Society for Cell Biology and the
Center for the Integration of Research, Teaching, and Learning Network for broader dissemination. All
students who responded to these emails were entering PhD programs that we contacted in the first phase
of recruitment, suggesting that recruitment efforts approached saturation at the institutional level. All
prospective participants who contacted the research team were then screened to ensure that they met
the criteria for participation and understood the expectations for participation. Participants signed
informed consent per the requirement by the Utah State University Institutional Review Board (IRB) for
human subjects research under protocol #5888. To incentivize study participation, students received a
$400 annual incentive. The full procedure for this study was approved by the IRB.

In total, we recruited 336 participants from 53 institutions across the United States. Of the
institutions represented, 42 are classified as R1 (highest research activity), seven institutions are R2
(higher research activity), and the remaining four institutions fall in other Carnegie categories.

Data Collection

Data for the present study were obtained through web-based surveys and the collection of single-
authored writing samples via email. Both survey data and writing samples were collected annually during
the first four years of the doctoral program.

After removing cases with missing data on all key variables and accounting for attrition (both from
the study and the doctoral program), the present study relies on a longitudinal sample of n=297 students.
Most participants were female (n=183), continuing-generation (n=210), from majority racial/ethnic groups
(n=240), or were domestic students (n=237). Fewer participants were male (n=114), first-generation
(n=83), from under-represented racial/ethnic minority groups (n=53), or were international students
(n=57). Four students did not provide data on their generation status nor racial/ethnic identity, and three
did not provide data on international student status.

Measures

Background Variables. During the first year of the study, students completed a demographic
questionnaire that included questions about their race/ethnicity, gender, parents’ education level, and
international student status.

Race. Students indicated their race/ethnicity by selecting one or more of the following: American
Indian or Alaska Native; Asian or Asian American; Black or African American; Latino/a; Native Hawaiian
or Other Pacific Islander; White. Students’ responses were aggregated to create a measure of under-
represented racial/ethnic minority (URM) status (O=majority; 1=URM) where students who selected only a
White and/or Asian identity were coded as majority; all other students were coded as URM.

Gender. As a proxy for gender, students reported their sex as female or male (female=0;
male=1).



First-Generation College Status. Students were asked to indicate the highest degree obtained
by their parent(s), students who had no parent with a 4-year college degree were coded as first-
generation (O=continuing generation; 1=first-generation).

International Student Status. Students also self-reported whether or not they are an
international student (0=No; 1=Yes).

Performance-Based Research Skills. To measure research skills, students submitted a sole-
authored research product each year immediately following the spring semester of their doctoral training.
Expectations that 1) documents were written within the preceding 4 months and 2) were not to have been
edited or contributed to by others were clearly communicated. Consequently, writing samples were
typically unpublished manuscripts, which may or may not have later been published in subsequent
collaboration with others. Two independent reviewers rated each document on twelve research skills
according to clearly defined rubric criteria. Rubric criteria draw heavily from prior studies (6, 10). Skills
included:

Introducing/setting the study in context (INT)
appropriately integrating primary literature (LIT)
establishing testable hypotheses (HYP)
using appropriate experimental controls and replication (CTR)
experimental design (EXP)
selecting data for analysis (SEL)
data analysis (ANA)
presenting results (PRE)
basing conclusions on results (CON)

10 identifying alternative explanations of findings (ALT)

11. identifying limitations of the study (LIM)

12. discussing the implications of the findings (IMP)
All raters reviewed criteria on a scale from 0 to 3.25. Interrater reliability as measured by intraclass
correlations (ICCs; two-way random effects) was good, 0.818 to 0.969. Exact ICC values are shown in SI
Table 1. Scores were averaged across raters to create a composite measure for each skill.

Lab Roles. Roles of other lab members were evaluated by asking students:

In your research experience during your PhD program so far, who participates in:
lab discussions to understand contemporary concepts in your field?
making use of the primary scientific research literature in your field (e.g., journal articles)?
identifying a specific question for investigation based on the research in your field?
formulating research hypotheses based on a specific question?
designing an experiment or theoretical test of hypotheses?
developing the “controls” in research?
collecting data?
statistically analyzing data?
interpreting data by relating results to the original hypothesis?

10 reformulating original research hypotheses (as appropriate)?
Students responded to each question by selecting all persons in the lab who participated in each task.
Possible responses included principal investigator(s), other faculty, research scientists/postdocs, senior
graduate students, junior graduate students, lab technicians, and undergraduate students. Affirmative
responses were coded as 1. Empty responses, as long as the student answered other questions, were
coded as 0. ltems that were seen by the participant but left unanswered, or items that were not seen by
the participant were considered missing data. Responses to lab roles from year 2, after students entered
a permanent laboratory, were included in the present study.

Faculty Interactions. We examined the role of student-faculty interactions, relying on previously
developed items (22). The occurrence of faculty interactions was measured using a composite variable
made up of 4 items from the annual surveys, asking students whether or not they do any of the following
with program faculty: engage in social conversation; discuss topics in his/her field; discuss other topics of
intellectual interest; and talk about personal matters. These items showed adequate reliability,
McDonald’s omega = .71. Items were added together to form a scale ranging from 0 (little to no
interactions) to 4 (many types of interactions).
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The quality of faculty interactions was computed using a 6-item composite variable where
students indicated their agreement with the following items: the faculty are accessible for scholarly
discussions outside of class; | feel free to call on the faculty for academic help; the faculty are aware of
student problems and concerns; | can depend on the faculty to give me good academic advice; | am
treated as a colleague by the faculty; the faculty sees me as a serious scholar. Students responded to
each item using a 5-point scale ranging from strongly disagree to strongly agree. These items showed
good reliability, McDonald’s omega = .85. Again, items were added together to form a scale, ranging from
6 (low quality interactions) to 30 (high quality interactions).

Peer Interactions. We also examined the role of the student-peer interactions using two
subscales (22). The social interaction with peers was measured using two items that asked students to
indicate (yes = 1, no = 0) whether they have interacted with peers in their department in the following
ways: engage in social conversation and talk about personal matters. The academic interaction with
peers was also assessed using two items that asked students to indicate (yes = 1, no = 0) whether they
have interacted with peers in the following ways: discuss topics in his/her field and discuss other topics of
intellectual interest. ltems were summed to create each of the two subscales. These items yielded
adequate to good reliability estimates, McDonald’s omega = .81 (academic) and .83 (social).

Interviews

To provide a more nuanced interpretation of the findings, we used qualitative analysis to explore
contemporaneous descriptions of postdocs’ interactions with graduate student participants. Specifically,
we analyzed interview data from 82 participants who were recruited from the larger sample. The
qualitative sample was largely representative of the quantitative survey sample; URM students and first-
generation college students each represented nearly a third (29.3%) of participants, and women made up
68.3% of the sample. All 82 participants completed an hour-long, semi-structured phone interview with a
member of the research team during the summer after their fourth year in the doctoral program. The
interview protocol focused on students’ experiences over the course of their doctoral program and
included questions about experiences in the lab, along with probing questions asking specifically about
interactions with Pls, faculty, postdocs and other research staff. All interviews were recorded and
transcribed verbatim.

Statistical Analyses

All quantitative analyses accounted for students nested within university. Quantitative analyses
were conducted in Mplus v8.1. Response variable rubric scores had 31% missing data at the first time
point, up to 57% missing data at the fourth time point. A missing values analysis [x2(312) = 346.41, P =
0.09] showed that the missing data met the assumption for missing completely at random (MCAR; 23).
Missing data were handled more conservatively under missing at random (MAR; 24) assumptions by
using a maximum likelihood estimation algorithm robust to nonnormally distributed data (MLR).

The potential heterogeneity of doctoral student skill development was evaluated using two
different methods: latent profile transition analysis and latent class growth analysis. Multinomial logistic
regression analyses were conducted to examine positive transitions and positive growth. To account for
family-wise error due to multiple sets of logistic regression analyses, a false discovery rate was applied to
results (25).

Latent Profile Transition Analysis. Latent profile transition analysis (LPTA) is an extension of
latent profile analysis (LPA) to longitudinal measures. LPA is a person-oriented technique used for
identifying unobserved subgroups in a sample based on the patterns of means (and variances) of
observed variables within a given time point. LPTA additionally evaluates the stability and mobility of
subgroup memberships over time by evaluating the probabilities of individuals transitioning from one
latent class at time f to another latent class at time +1 (13). This analysis allowed us to examine discrete
transitions of individuals moving from one skill profile to another skill profile between consecutive time
points.

Prior to conducting LPTAs, we first performed LPAs to identify distinct latent subpopulations
among doctoral students who were scored on a set of 12 indicators of research skills at each assessment
point (Y1-Y4). Our analysis estimated LPA solutions with one through five latent classes, and were
estimated using 500 starting values. We inspected different model fit criteria (Bayesian Information



Criterion [BIC] and Entropy) across solutions for selecting the best-fitting solution (Sl Table 7). BIC is
recommended as the most powerful measure for evaluating competing models to determine the optimal
number of latent classes, with lower values representing better model fit. Entropy is an indicator of the
precision with which individuals are assigned to each latent class, with values close to 1 representing
more accurate latent class assignments. Based on these measures, our results showed that the 3-class
LPA model was the best fit to the data for all four assessment points. Although the values of BICs
continued to decrease without actually reaching the minimum value, the plots of these values showed that
the slope plateaued between three and five latent classes, indicating that the 3-class solution was better
than other solutions. The 3-class model also had very high entropy (0.95, 0.94, 0.94, 0.96 for Y1, 2, 3, 4
respectively). Accordingly, we chose the 3-class LPA model as the measurement model for the
subsequent LPTA models.

After evaluating the profiles of skills within time, we examined how students transitioned between
profiles across time, using LPTA. Two different LPTA models were evaluated: a model without
assumptions about the model structure across time and a model that assumed measurement equivalence
across time. Confirmation of measurement equivalence would indicate that the skill profiles are the same
across time (e.g., high skills at time 1 are the same as high skills at time 2, etc.). The model without
measurement equivalence across time best fit the data (S| Table 8).

Latent Class Growth Analysis. Latent class growth analysis (LCGA) is a longitudinal, person-
oriented analysis (14). The primary use of LCGA is to identify latent subgroups (or “classes”) of
participants based on similar latent growth curve (LGC) trajectories. Group membership is static and
unchanging in LCGA because the goal of LCGA is to identify latent trajectories rather than latent
transitions. This analysis is allowed us to examine skill frajectories across all time points.

LCGA models with one to six latent classes were evaluated. All models were evaluated using 500
starting values. Models were compared using BIC and Entropy (see Sl Table 9) to determine the number
of latent classes that best represented the skills trajectories data. Like the LPTA models, the BIC values
continued to decrease as the number of latent classes increased. Although these values decreased,
examining plots of the BIC showed that the BIC slope plateaued at the four-class solution, and this
solution was chosen as the best-fitting model.

To characterize doctoral student skill development across latent classes, we examined the mean
values of each skill at each time point within each latent class. Class 1 represented 26% of the sample
and showed decreasing skill levels across time. Class 2 represented 25% of the sample and showed
stable, low skill levels across time. Class 3 represented 13% of the sample and showed initially
decreasing then increasing skill levels across time. Class 4 represented 35% of the sample and showed
linear, increasing skill levels across time.

Multinomial Logistic Regression Analyses. Logistic regression analyses were used to
examine whether independent predictors impacted positive transitions as well as positive skill trajectory.
All variables (as shown in Tables 6-8), a total of n=78, were included as predictors of positive transitions
between years 2 and 3 as well as years 3 and 4. All variables were also included as predictors of the
positive latent growth curve skill trajectory. Analyses were evaluated in separate statistical models due to
the relatively low sample size. Confidence intervals were adjusted post-hoc using false discovery rate
(FDR) (28) to maintain a familywise error rate of .05. Results for all independent variables predicting
positive transitions between times 2 and 3, 3 and 4, and positive skill trajectories are presented in Si
Tables 6-8.

Qualitative Analyses. Data was analyzed using NVivo 12 software. Because we were
particularly interested in students’ experiences with postdocs and full-time research staff related to the
current paper, we purposely selected transcripts from all participants who mentioned their interactions
with postdoc(s) and other research staff as part of their interview. To identify these participants, we first
conducted exploratory analyses using a sample of 20 transcripts to identify the language used by
students to discuss relevant interactions in the lab. Based on this preliminary analysis, we used NVivo's
text search query function to search for interviews where participants used phrases containing any
variation of the following terms: "postdoc" OR "post doc" OR "post-doc" OR “lab manager” OR “research
scientist”. Notably, the query also detected instances where the identified terms were the stem of the
words used in the interview (e.g., if students discussed “postdoctoral researchers”, this would have also
been captured by the query). Finally, results from the query were reviewed to remove any



interviews/excerpts that were not relevant. After closely reviewing the query results, we identified 53
participants with relevant data.

All 53 transcripts were coded in a systematic, two-phase process (26). During the first phase, we
read and re-read each excerpt to identify emergent themes related to how students interact with postdoc
and other full-time research staff. Next, we developed a codebook with descriptions and examples of the
themes and used this codebook to analyze each transcript. Two members of the research team
independently coded 28% of the transcripts (n=15) to ensure reliability and trustworthiness. Additionally,
we met throughout the analysis process to participate in peer debriefing (27).

Data and Code Availability

The data generated and analyzed during the current study are available from the corresponding author on
reasonable request. The statistical code used to analyze the data during the current study is available
from the corresponding author on reasonable request.
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Figure Legends

Figure 1. High-, medium-, and low-skill latent profiles, showing estimated mean scores for each research
skill within each year according to the final LPTA model.

Figure 2. Latent profiles by time, showing minimum, maximum, means, and number of participants in
each profile.

Figure 3. Latent growth model results, reflecting common trajectories of skill development within each
latent class.

Figure 4. Odds ratios with 95% confidence intervals displaying significant predictors of positive transitions
(Year 2 to Year 3, Year 3 to Year 4) and skill trajectories (LGC), as well as contrasting nonsignificant
predictors. Odds ratios with confidence intervals containing 1 (indicated by vertical dashed line) are
nonsignificant.
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