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Summary. We investigate three aspects of material behavior in this ninth install-
ment of the Cam-Clay series, namely, anisotropy, heterogeneity, and viscoplasticity.
The main focus of the paper is creep in shale and how this time-dependent deforma-
tion behavior may be quantified across the scales, from nanometers to millimeters.
Recognizing the highly heterogeneous nature of shale, we adopt a simplified repre-
sentation of this material as a mixture of softer matter representing organics and
clay, and harder matter representing the inorganic rock matrix. Due to the presence
of bedding planes in the rock matrix, anisotropy in both the elastic and inelastic
responses is assumed; however, the superimposed softer matter may be taken to be
isotropic unless experimental evidence indicates otherwise. Viscoplasticity is consid-
ered for the first time in this series of work, in which both the Duvaut-Lions and
Perzyna formulations are utilized. The two viscoplastic formulations are shown to
predict very similar time-dependent deformation responses. The framework is used
to interpret the results of multiscale triaxial laboratory creep tests in organic-rich
Barnett shale. Time-dependent strain localization in the form of dilative shear bands
is also shown to result from loading with varying strain rates, as well as from creep
processes that accommodate the multiscale heterogeneity of shale.
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1 Introduction

Shale is a highly heterogeneous sedimentary rock composed of softer materials
such as clay and organics, stiffer minerals such as quartz, feldspar, and pyrite,
and micron- to submicron-scale pores and fractures. Unlike crystalline rocks
that tend to fracture extensively under deformation [62, 63], shales can deform
in a more ductile manner and has the ability to heal fractures, making them
suitable for use as a seal rock [8]. For this reason, sequences of crystalline
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rocks and thick shale formations have long been considered as prime storage
sites for toxic waste containment, with the crystalline rock providing strength
and the shale serving as a seal [1]. Shales are also known to exhibit ductile
creep [58], and are found to be diverse in composition. Specifically, the type
of clay and organics vary among different shales, as does the presence of other
constituents, such as carbonates, smectite, pyrite, and other inclusions [8, 38,
51, 64].

Anisotropy is a prominent property of shales that is associated with the
parallel alignment of clay platelets in the direction of the bedding plane [8, 17,
18, 52, 54, 68, 72, 74]. The preferential orientation of particles is attributed to
deposition, compaction, and/or diagenetic processes [5, 27, 34, 39, 43, 45, 65].
Shales also tend to be very fissile in that they fracture along a smooth surface
aligned with the bedding plane [5, 25, 26, 34, 45]. Fissility is a shale property
that further promotes anisotropy, particularly with respect to fluid flow [19,
72]. Stress-induced anisotropy, in which bedding-parallel microcracks induce
significant differences in strength and stiffness depending on the directions of
the principal stresses, has been noted by numerous investigators [22, 36, 46,
66].

Laboratory experiments on different types of shale reveal that this rock
also exhibits pronounced viscous creep behavior under isotropic compression
and/or triaxial stress conditions [20, 31, 55, 56, 58, 67]. Sone and Zoback [58]
carried out a series of triaxial laboratory tests to study the elastic moduli,
ductile creep behavior, and brittle strength of shale-gas reservoir rocks. They
found that viscoplastic creep strain is linear with the applied differential stress
and has a strong correlation with the volume of clay plus kerogen. They also
reported that the tendency to creep is well correlated with the static Young’s
modulus, and explained it by appealing to the stress partitioning that occurs
between the softer components of shale (clay and kerogen) and the stiffer com-
ponents (quartz, feldspar, pyrite, and carbonates). In addition, the reduction
in sample volume during creep suggested that creep was accommodated by
pore compaction [6, 7].

Creep in shale is an important factor in the assessment of land subsi-
dence [21] and wellbore stability [33]. Shales that creep exhibit significant
secondary consolidation whose magnitude may be compared to that induced
by primary consolidation in soils [9, 16, 42, 71]. In hydraulic fracturing, shales
that exhibit significant creep may be too viscous to stimulate by brittle frac-
turing, and thus promote proppant embedment to keep the fractures from
closing [48]. In general, creep testing of shale is one of the most challenging
laboratory problems in rock engineering due to the significance of load direc-
tions and slow pore pressure transients [28]. It is also made more complicated
by the fact that shales are highly heterogeneous, and that creep deformations
occur at multiple scales.

Very recently, the first author’s research team [11, 23, 24] has attempted to
explain creep as a manifestation of secondary compression in multiple-porosity
media, in which fluids are expelled from micron- to submicron-scale pores at
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much longer time scales than they are expelled from millimeter-size pores.
Whereas such explanation is meaningful when fluids are present in the pores,
it does not help explain why shale continues to creep even when fluids are not
present in the pores. In this paper, we capture such inelastic viscous response
using viscoplasticity in the context of critical state theory. This approach is
more meaningful than the more commonly used viscoelasticity, given that
creep deformation in shale is both viscous and inelastic. Further, to keep the
model sufficiently simple but robust, we accommodate the effect of hetero-
geneity in composition by considering shale as a mixture of softer matter and
harder matter and obtain the overall constitutive response through volume
averaging. We then use this critical state model to interpret and capture the
results of multiscale laboratory creep tests in organic-rich shale.

2 Theory

We consider a heterogeneous solid consisting of a mixture of two materials
M and m occupying approximately the same fraction of the total volume.
We assume that these materials form their own solid skeleton so that they
could each generate intrinsic stresses within them. We note at the outset that
the problem is different from that considered by Hill [32], in which two solid
phases are assumed to be firmly bonded together such that one phase can be
regarded as inclusions in a matrix of the other. In our formulation, there are
no inclusions and no dominant matrix—both solid phases form continuous
solid frames whose displacement fields are also continuous.

2.1 General framework

Let σM denote the intrinsic Cauchy stress tensor in material M , and σm the
intrinsic Cauchy stress tensor in material m. Denoting the volume fractions as
φM and φm such that φM + φm = 1, the corresponding partial stress tensors
are

σM = φMσM , σm = φmσm . (1)

The total Cauchy stress tensor acting on the mixture takes the usual form

σ = σM + σm , (2)

or, in rate form (assuming infinitesimal theory so that the volume fractions
remain essentially constant),

σ̇ = φM σ̇M + φmσ̇m =
∑

α=M,m

φασ̇α . (3)

From physical consideration, we assume that there is no relative motion
between the two materials in the sense that the organics and clay (material
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m), for example, do not squeeze out of the harder rock matrix (material
M). Since both phases are continuous and their displacement fields are also
continuous, the strains must be uniform and εM = εm ≡ ε. In the context
of viscoplasticity, the rate-constitutive equation for each of the two materials
then takes the form

σ̇α = ceα :
(
ε̇− ε̇vpα

)
, α = M,m , (4)

where ceα and ε̇vpα are, respectively, the tangential elasticity tensor and vis-
coplastic strain rate for material α. Substituting into (3) and re-arranging
yields the following expression for the total Cauchy stress tensor:

σ̇ = ce :
(
ε̇− ε̇vp

)
, (5)

where
ce =

∑
α=M,m

φαceα (6)

is the overall tangential elasticity tensor for the mixture, and

ε̇vp = ce−1 :
( ∑
α=M,m

φαceα : ε̇vpα

)
(7)

is the overall viscoplastic strain rate for the heterogeneous solid. Note that
ε̇vp is the weighted sum of ε̇vpM and ε̇vpm ; the weights are φM (ce−1 : ceM ) and
φm(ce−1 : cem), which reduce to the volume fractions when ceM = cem ≡ ce.

Remark. For the problem of inclusions, Hill [32] noted that the assumption of
uniform strain is equivalent to the Reuss and Voigt estimates and is incorrect,
since the Reuss estimate would imply that the inclusions and matrix could
not remain bonded while the Voigt stresses would produce tractions at the
interfaces that are not in equilibrium. However, as noted earlier, the present
problem is not the same as that of inclusions. If the two phases were allowed to
experience unequal strains, then the two displacement fields would be distinct
and there would be relative motion between the two phases, which is physically
unacceptable in the present setting. In contrast, one should note that the
displacement fields characterizing the motion of the inclusions are inherently
discontinuous. In addition, because each phase could generate interface forces
against the other (unlike inclusions which cannot generate such interface forces
because they are discontinuous), equilibrium at the interfaces would not be
an issue. One should note that such interface forces naturally arise between
phases in the context of mixture theory.

2.2 Rate-independent elastoplasticity

Consider two yield functions fM (σM , pcM ) and fm(σm, pcm), where pcM and
pcm define stress-like plastic internal variables, often called preconsolidation



Cam-Clay plasticity. Part IX 5

stresses, for the two materials. Under an overall strain rate tensor ε̇, we first
consider the inviscid elastoplastic limit where fα = ḟα = 0 for α = M,m.
Adopting the associative flow rule for the plastic flow direction yields the
following expressions for the plastic multipliers [12]

λ̇α =
1

χα

∂fα
∂σα

: ceα : ε̇ ≥ 0 , (8)

where

χα =
∂fα
∂σα

: ceα :
∂fα
∂σα

+Hα > 0, (9)

and Hα is the plastic modulus.
In the elastoplastic limit, the rate constitutive equation takes the familiar

form
σ̇ = cep : ε̇ , (10)

where cep is the continuum elastoplastic tangential moduli tensor given by

cep =
∑

α=M,m

φαcepα , (11)

and

cepα = ceα −
1

χα
ceα :

∂fα
∂σα

⊗ ∂fα
∂σα

: ceα , α = M,m . (12)

Note that the overall elastoplastic tangential moduli tensor is also the weighted
average of the elastoplastic tangential moduli tensors for the two material
components.

2.3 Rate-dependent viscoplasticity

We now consider the viscoplastic range. There are numerous possible forms
for the viscoplastic strain rate [47, 49, 70, 75, 76], but here we employ two
commonly used theories. The first of these is the form proposed by Duvaut
and Lions [29],

ε̇vpα =
1

τα
ce−1
α : (σα − σ◦α) , α = M,m , (13)

where σ◦α is the closest-point projection of σα on the yield surface fα = 0,
and τα is the relaxation time. The closest point projection is the position of
the stress point if the over-stress σα is mapped back to the yield surface in
a rate-independent manner. The second form of the viscoplastic strain rate is
due to Perzyna [44],

ε̇vpα =
〈fα〉
ηα

∂fα
∂σα

, α = M,m, (14)
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where 〈·〉 are the Macauley brackets, and ηα is a viscosity coefficient. Both
forms for the viscoplastic strain rate are developed further in what follows.

In contrast to classical theory of plasticity, no consistency condition is im-
posed in viscoplasticity theory since the yield function is not required to satisfy
any constraint. However, with viscoplasticity it is also necessary to perform
a time-integration of the rate-dependent constitutive relations. Consider the
Duvaut-Lions form for the viscoplastic strain rate, for example. Substituting
(13) into (4) yields the rate equation

σ̇α = ceα : ε̇− 1

τα
(σα − σ◦α) , α = M,m . (15)

A simple backward implicit time-integration over time interval ∆t yields

σα,n+1 =
σtr
α,n+1 + (∆t/τα)σ◦α,n+1

1 + ∆t/τα
, (16)

where
σtr
α,n+1 = σα,n + ceα : ∆ε (17)

is the elastic stress predictor. We recall that the backward implicit scheme
is only first-order accurate; however, it is unconditionally stable, which is a
desirable feature of the algorithm since it allows for the use of a very large time
step without concern that the solution will blow up. As a check, we see that the
elastic stress predictor is recovered when ∆t/τα → 0 (i.e., σα,n+1 → σtr

α,n+1),
and that the rate-independent elastoplastic limit is obtained when ∆t → ∞
(i.e., σα,n+1 → σ◦α).

Next, we consider the Perzyna model (see [37] for its predictive poten-
tial for modeling granular material behavior) for which the rate constitutive
equation takes the form

σ̇α = ceα : ε̇− ceα :
〈fα〉
ηα

∂fα
∂σα

, α = M,m . (18)

Assuming fα > 0, we can remove the Macauley brackets and employ a simple
backward implicit time integration once again to obtain

σα,n+1 = σtr
α,n+1 −

∆t

ηα
ceα :

(
fα
∂fα
∂σα

)
n+1

, (19)

where the quantities inside the symbol (·)n+1 are evaluated at the unknown
stress configuration σα,n+1. The Perzyna model generally requires an iterative
solution of simultaneous nonlinear equations for the unknown stress configu-
ration σα,n+1. The technique is developed further in the next section in the
context of anisotropic and isotropic critical state models.

After the stress configurations σα,n+1 have been determined for α = M
and m, the overall Cauchy stress tensor can be calculated from the weighted
average
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σn+1 =
∑

α=M,m

φασα,n+1 . (20)

Remark. It is obvious from (14) that the unit for the viscosity coefficient η
depends on the unit for the yield function f . If f has a unit of F/L2 (stress),
then η has a unit of FT/L2 (e.g., Pa · s). If f has a unit of F 2/L4 (stress
squared), then η has a unit of F 3T/L6 (e.g., Pa3 · s). Since there is no unique
way by which one can write the yield function f (for example, it can be written
as a homogenous function of any degree n of the stress variable), there is no
unique unit for the viscosity coefficient η.

2.4 Critical state models

We now present specific critical-state models that we propose to use for shale.
For this material, the stiffer rock matrix may exhibit transverse isotropy in the
mechanical response due to the existence of bedding planes, whereas the softer
organics and clays embedded within the rock matrix may exhibit an isotropic
behavior due to relatively random orientation of micron- and submicron-scale
particles.

For material M , which exhibits transverse isotropy, we assume a rotated
ellipsoidal yield function of the form

fM (σ∗, pcM ) =
q∗2

M2
M

+ p∗(p∗ − pcM ) , (21)

where p∗ = tr(σ∗)/3, q∗ =
√

3/2‖s∗‖, s∗ = σ∗ − p∗1, MM is the slope of the
critical state line, and pcM is a stress-like plastic internal variable associated
with material M . The stress tensor σ∗ is a fictitious stress obtained from a
linear map with respect to the real stress σM according to the equation

σ∗ = P : σM , (22)

where P is a rotation operator given by

P = c1I +
c2
2

(
m⊕m+m	m

)
+
c3
4

(
1⊕m+m⊕ 1 + 1	m+m	 1

)
, (23)

c1, c2, and c3 are the anisotropy parameters, 1 is the second-order identity
tensor (Kronecker delta), and I is the rank-four symmetric identity tensor. In
the above expression for P, m is the second-order microstructure tensor that
defines the bedding plane orientation,

m = n⊗ n , (24)

where n is the unit normal to the bedding plane. The tensorial operators ⊗, ⊕,
and 	 are defined such that (•⊗◦)ijkl = (•)ij(◦)kl, (•⊕◦)ijkl = (•)jl(◦)ik, and
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(•	◦)ijkl = (•)il(◦)jk, see [52, 74, 75] for further details. Alternative tensorial
forms of the constitutive equation are presented by Boehler and Sawczuk [10].

There has been some work done suggesting that the creep rate in source
rocks is driven by isotropic constituents such as pores and organic matter,
and that this creep rate is almost isotropic [54]. Thus, for material m we take
the same modified Cam-Clay yield function but express it in isotropic form
with respect to real stress σm, i.e.,

fm(σm, pcm) =
q2

M2
m

+ p(p− pcm) , (25)

where p = tr(σm)/3, q =
√

3/2‖s‖, s = σm − p1, Mm is the slope of the
critical state line, and pcm is a stress-like internal plastic variable associated
with material m. In the viscoplastic range, an over-stress may be allowed in
which the values of the yield functions fM and fm may be greater than zero.

Hardening and softening responses in critical state theory are generally
governed by the volumetric component of the viscoplastic strain. Further-
more, we can incorporate thermal effects into the formulation through the
preconsolidation stress pcα according to the expression

ṗcα = pcα

[ tr(ε̇vpα )

λpα
+ G(Θ)Θ̇

]
, α = M,m , (26)

where λpα is a plastic compressibility index and G is some function of absolute
temperature Θ (assumed to be the same for materials M and m). Denoting the
volumetric part of the viscoplastic strain rate by θ̇vpα = tr(ε̇vpα ), and integrating
the preconsolidation stress over time (tn, tn+1), yields the evolution equation

pcα = pcα,n exp
(θvpα − θvpα,n

λpα

)
F(Θ) , α = M,m , (27)

where pcα,n is the value of pcα at time tn, and F(Θ) = exp
( ∫ tn+1

tn
G(Θ)dΘ

)
.

An example of this softening function is the Laloui and Cekerevac [35] soft-
ening law

F(Θ) =
[
1− γT ln

(
1 +

∆Θ

Θ0 − 273

)]
, (28)

where γT is a thermal softening parameter. Other thermal softening laws are
available in the literature, see [52].

2.5 Duvaut-Lions viscoplasticity

We now develop the Duvaut-Lions viscoplastic model within the framework
of critical state theory. The volumetric component of the viscoplastic strain
rate can be obtained by taking the trace of both the left- and right-hand sides
of (13) as
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θ̇vpα =
1

τα
(θeα − θe◦α ) ≡ − 1

τα
(θvpα − θ◦α) , α = M,m, (29)

where θeα = tr(ce−1
α : σα) = tr(εeα), etc., and θ◦α is the inelastic volumetric

strain at the closest-point-projection state. We note that θeα = θ − θvpα and
θe◦α = θ − θ◦α, where θ = θM = θm from the assumption that the total strains
in the two materials are the same. Equation (29) is a first-order ordinary
differential equation in θvpα , which can once again be integrated using the
first-order accurate, unconditionally stable backward implicit scheme:

θvpα,n+1 =
θvpα,n + (∆t/τα)θ◦α,n+1

1 + ∆t/τα
. (30)

Substituting this last equation into (27) gives the integrated evolution equa-
tion for the preconsolidation stress,

pcα = p0α exp
[ 1

λpα
·

(∆t/τα)(θ◦α,n+1 − θvpα,n)

1 + ∆t/τα

]
F(Θ) , α = M,m . (31)

Box 1 shows a summary of the algorithm. The step-by-step procedure
is executed for α = M , and then is repeated for α = m. At the conclu-
sion of the calculations, the overall total stress σn+1 is obtained from (20).
Note the sequential calculations involving closest-point projection for rate-
independent elastoplasticity (Step 3), followed by an update of the variables
for rate-dependent viscoplasticity (Step 4). This sequence of calculations facil-
itates ease in coding since one can simply skip Step 4 if the rate-independent
option of the model is desired.

For α = M and m:

Step 1. Compute σtr
α,n+1 = σα,n + ce

α : ∆ε and pcα,n+1 = pcα,n.
Step 2. Check fα < 0?

Yes, elastic response: Set σα,n+1 = σtr
α,n+1 and exit.

Step 3. No, viscoplastic response:
Compute σ◦α and θ◦α from closest-point projection.

Step 4. Compute σα,n+1 from (16) and pcα,n+1 from (31) and exit.

Box 1. Algorithm for critical state viscoplasticity, Duvaut-Lions version.

In conventional nonlinear finite element analysis, an algorithmic stress-
strain tensor is necessary to construct the global tangent operator. To this
end, we differentiate (20) with respect to the applied strain to obtain
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cn+1 :=
∂σn+1

∂εn+1
=

∑
α=M,m

φα
∂σα,n+1

∂εn+1

=
∑

α=M,m

φα
[ceα + (∆t/τα)c◦α,n+1

1 + ∆t/τα

]
, (32)

where c◦α,n+1 is the algorithmic stress-strain moduli tensor consistent with
the closest-point projection algorithm for rate-independent elastoplasticity.
Once again, this result facilitates ease in coding since the same algorithm
can be used for both rate-independent and rate-dependent options. Semnani
et al. [52] and Zhao et al. [74] present the mathematical expression for the
tangent operator c◦α,n+1.

2.6 Perzyna viscoplasticity

We next develop the Perzyna viscoplastic version of the critical state theory.
To this end, we first consider the general anisotropic case for which the yield
function cannot be expressed in terms of stress invariants and where the stress-
point integration algorithm is given by (19). Symbolically, for the anisotropic
case the yield function may be expressed in the general form fα = fα(σα, pcα),
where pcα is obtained from the implicit integration

pcα,n+1 = pcα,n exp
[∆t

λpα

fα,n+1

ηα
tr
( ∂fα
∂σα

)
n+1

]
F(Θ) , α = M,m . (33)

For a given temperature Θ, one can solve (19) and (33) simultaneously for
σα,n+1 and pcα,n+1, resulting in a total of seven unknowns for 3D problems.

Appendix A shows the procedure for integrating the Perzyna viscoplastic
model. The algorithm resembles the integration for rate-independent critical
state plasticity except that the plastic multiplier is replaced by the analyti-
cally known function 〈f〉/η. This, in a way, makes the viscoplastic formulation
easier to handle because there is no constraint on the sign of the yield function.
Included in Appendix A is the derivation of the algorithmic stress-strain mod-
uli tensor for the Perzyna model. Box 2 shows the step-by-step calculations
for the Perzyna model.

For α = M and m:

Step 1. Compute σtr
α,n+1 = σα,n + ce

α : ∆ε and pcα,n+1 = pcα,n.
Step 2. Check fα < 0?

Yes, elastic response: Set σα,n+1 = σtr
α,n+1 and exit.

Step 3. No, viscoplastic response:
Compute σα,n+1 from (19) and pcα,n+1 from (33) and exit.
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Box 2. Algorithm for critical state viscoplasticity, Perzyna version.

For the special case of isotropic viscoplasticity (i.e., α = m), the stress-
point integration can be performed more conveniently in the stress invariant
space, as illustrated below. For brevity in notations, we shall drop the sub-
scripts for the present discussion and take (·) = (·)m,n+1. Let K and µ denote
the elastic bulk and shear moduli for the isotropic material, respectively. The
relevant update equations assuming backward implicit time integration are as
follows:

p = ptr −K∆t

η

(
f
∂f

∂p

)
q = qtr − 3µ

∆t

η

(
f
∂f

∂q

)
pc = pc,n exp

[ ∆t

λpη

(
f
∂f

∂p

)]
F(Θ)


, (34)

where ∂f/∂p = 2p − pc, ∂f/∂q = q/M2, and f = f(p, q, pc) > 0 for the
modified Cam-Clay yield function. The above three equations can be solved
for p, q, and pc, after which the Cauchy stress tensor can be constructed from
the equation

σ = p1 +

√
2

3
qn̂ , (35)

where n̂ = s/‖s‖, and s = dev(σ). Appendix B shows the simplified version
of the Perzyna theory for the case of an isotropic, two-invariant yield function.

Remark. As noted in [12], critical state models (and many practical constitu-
tive models for that matter) generally do not follow the principle of maximum
plastic dissipation [53], even if they obey the associative flow rule, because the
hardening laws for these models are mostly empirical and not derived from
any normality condition. Nevertheless, the discussions of this section demon-
strate that there is no ambiguity on the evolution of all variables, and that
the proposed constitutive formulation remains deterministic and complete.

3 Numerical simulations

In this section, we use numerical simulations to highlight important features of
the viscoplastic Cam-Clay model. The first example involves a comparison of
creep strains predicted by the Perzyna and Duvaut-Lions viscoplastic models
at various bedding plane orientations assuming a single material description,
i.e., no distinction is made between softer and harder materials. Next, we
employ the two-material description to capture the creep strain responses of
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anisotropic Barnett shale under triaxial stress condition. Then we demonstrate
the impact of spatial heterogeneity in material composition on the overall
creep of a rectangular specimen of shale. We emphasize that all material
parameters used in the following examples were derived from the literature,
thus ensuring that the calculated responses are realistic and representative of
those encountered in the field.

3.1 Duvaut-Lions and Perzyna formulations compared

We first compare the creep responses predicted by the two viscoplastic models,
focusing on the calibration of the relaxation time τ of the Duvaut-Lions model
and viscosity coefficient η of the Perzyna model.

A transversely isotropic elastic material requires five elastic constants. For
this example, we derive these constants for a shale belonging to the Westgate
Formation of the Upper Cretaceous Colorado Group taken from an explo-
ration well near Cold Lake, Alberta, Canada, as reported by Wong et al. [69].
The elastic parameters were measured from ultrasonic tests and include the
Young’s modulus along the bed-parallel (BP) direction Eh, Young’s modulus
along the bed-normal (BN) direction Ev, Poisson’s ratio for stress applied
and strain measured along the BP direction νhh, Poisson’s ratio for stress ap-
plied in the BN and strain measured in the BP directions νvh, and the shear
modulus along the BN direction Gvh. We convert them into the five elastic
parameters adopted by Namani et al. [40] and Zhao et al. [74], which include
the Lamé parameter λ, shear modulus along the BN direction µ1, shear mod-
ulus along the BP direction µ2, and the two anisotropy parameters α and β.
The original and converted elastic parameters are summarized in Table 1.

Table 1. Elastic material parameters for shale, all in MPa except Poisson’s ratios.

original

Eh 4741

converted

λ 60
Ev 3991 µ1 1820
νhh 0.01 µ2 2350
νvh 0.05 α 150
Gvh 1822 β 1070

The studies of Wong et al. [69] only focused on the elastic properties of
the Cold Lake shale, and did not include the properties of this material in the
inelastic regime. Here, we assume that the inelastic properties are similar to
those of synthetic rocks tested by Tien et al. [61]. These artificial rocks were
produced by mixing different weight ratios of kaolinite, cement, and water, and
layering them alternately to create artificial transversely isotropic rocks. The
inelastic properties of these rocks were then inferred by Zhao et al. [74] from
the experiments conducted at a confining pressure of 6 MPa. The parameters
consist of the slope of the critical state line M , compressibility parameter λp,
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and the three anisotropy parameters, c1, c2 and c3, which are all summarized
in Table 2.

Table 2. Calibrated Cam-Clay parameters from tests on a synthetic rock at a
confining pressure of 6 MPa.

M λp c1 c2 c3
2.0 0.0026 0.82 −0.33 0.36

Using the aforementioned parameters, we now simulate the drained creep
response of the shale using the following loading protocol. First, we assume the
shale to be normally consolidated and apply an all-around confining pressure
of 6 MPa on a triaxial sample of this material. The axial stress is then increased
instantaneously to 7.5 MPa while the radial stress is maintained at 6 MPa,
resulting in a stress difference of 1.5 MPa. The material is then allowed to
creep under this sustained state of stress.

Figure 1 shows the time-variation of the axial creep strain at a sustained
stress difference of 1.5 MPa assuming a horizontal bedding plane (i.e., θ = 0).
Note from this figure that when the stress difference is relatively small com-
pared with pc, the ratio η/τ can be adjusted so that the creep strain responses
calculated by the Perzyna and Duvaut-Lions models are nearly the same. Un-
like the Duvaut-Lions formulation, which calculates the inviscid response at
each time step, the Perzyna formulation cannot determine the inviscid solu-
tion in one time step since setting η = 0 will result in a singular solution.
However, when the inviscid solution is difficult to calculate, such as in contact
problem and other stiff systems, the Perzyna formulation can be used for vis-
coplastic regularization. Regardless of the model, higher values of η or τ lead
to slower creep strain rates, and when these two parameters approach infinity,
one readily recovers the elastic solution.

Figures 2 and 3 depict an interesting trend when the cumulative axial
creep strains are plotted versus bedding plane orientation θ. Note that for
this hypothetical shale, the axial creep strains are higher when the axial load
is applied in the weaker BN direction (θ = 0) than when it is applied in the
stronger BP direction (θ = 90◦). Also note the asymmetric hump that the
cumulative axial strains exhibit at different time instants when plotted with
respect to bedding plane orientation θ (see Fig. 3). This feature resembles
an inverted U-shaped curve with shoulders that characterizes the variation
of strength with bedding plane orientation [74]. For this particular shale, the
cumulative axial creep strain is thus larger when the load is applied at an angle
to the bedding plane than when it is applied in either BN or BP directions.

Figure 4 shows the convergence profiles of Newton-Raphson iteration and
suggests that all iterations converged to machine precision. Creep is a stress-
controlled process, so these convergence profiles reflect the properties of the
algorithmic tangent operator that may be employed for boundary-value prob-
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lem simulations. We should note that all calculations were done in 32-bit
precision and satisfied a very stringent convergence criterion.
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Remark. More elaborate forms for the viscoplastic function are available for
both Duvaut-Lions and Perzyna models, see References [50, 53]. For example,
for Duvaut-Lions model, one can insert a function of the form g(E)/τα in
lieu of 1/τα in equation (13), where E is some energy norm; and for Perzyna
model, one can use a nonlinear function of 〈fα〉 in equation (14). However,
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the next section shows the linear forms to be sufficient for capturing the creep
responses of a shale, and will thus be pursued from here on.

3.2 Creep of Barnett shale

Sone and Zoback [57, 58] conducted triaxial creep tests on a shale-gas reser-
voir rock called Barnett shale. This sedimentary rock is a typical geological
formation located in the Bend Arch-Fort Worth Basin in Texas, USA. Tests
were conducted on cylindrical samples of 25.4 mm diameter and 30.5–53.3 mm
length, with the axial load applied either in BN (θ = 0) or BP (θ = 90◦) direc-
tions. On average, shale samples tested consisted of 52% QFP (quartz, feldspar
and pyrite) and 48% clay and kerogen by volume. Thus, a two-material de-
scription is appropriate for simulating these tests. Here, we model the harder
QFP matrix with a transversely isotropic solid frame, and the softer clay-
kerogen component with an isotropic solid frame. With this separation, shale
anisotropy is incorporated into the harder solid matrix, whereas ductile creep
behavior is mostly attributed to the softer matrix.

Sone and Zoback [57, 58] only provided creep and strength response data
but not the elastic and plastic mechanical properties of this shale, so we have
to make some assumptions. Since the present work focuses mainly on creep, we
herein assume the following material parameters for this shale. For the elastic
parameters, the five constants of the transversely isotropic harder frame [40]
and the two constants of the isotropic softer frame are summarized in Ta-
ble 3. The elastic properties for the harder frame are similar to those of pure
quartz [4], which is strictly not transversely isotropic but belongs to trigo-
nal crystal group characterized by six elastic constants. To obtain transverse
isotropy, we simply ignore the non-zero entries that are not consistent with
the elastic moduli operator for a transversely isotropic material. As an aside,
we note that for Barnett shale the S-wave modulus in BP direction is reported
to be higher than in BN direction [57]; this feature is reflected in the values
of µh displayed in Table 3. As for the softer frame, the stiffness of clay and
kerogen generally varies widely with water content; for the present study, they
are chosen to be comparable to the elastic properties of clay as reported by
Bayuk et al. [3].

Table 3. Assumed elastic material parameters for Barnett shale, all in MPa.

harder frame

λh 7400

softer frame

λs 6700
µh1 58000 µs1 1700
µh2 63000 µs2 1700
αh 4500 αs −
βh −65000 βs −

The assumed Cam-Clay parameters for the harder and softer frames are
displayed in Table 4. The slope of the critical state line M was estimated from
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a friction angle of φcs ≈ 40◦ reported by Sone and Zoback [58] from strength
tests conducted subsequent to creep, along with the standard formula relating
M with φcs given in Reference [12]. For the harder frame, the remaining
parameters are comparable to those used by Semnani et al. [52] and Zhao
et al. [74] that were mostly inferred from Tournemire shale data [41]. For the
softer frame, the compressibility index is assumed to be 20 times higher. More
realistic values of these parameters may be inferred from conducting small-
scale tests that can probe the properties of the shale constituents, such as the
nano- and/or micro-indentation tests [8], although this is beyond the scope of
the present paper.

Table 4. Cam-Clay parameters for Barnett shale.

harder frame

Mh 1.6

softer frame

Ms 1.6
λhp 0.00013 λsp 0.0026
ch1 0.73 cs1 1.0
ch2 −0.20 cs2 −
ch3 0.40 cs3 −

The loading protocol follows the experimental procedure described in
Reference [58]. First, we prescribe an initial preconsolidation pressure of
pc0 = 35 MPa, which equals the in-situ effective stress where the shale sam-
ples were taken. Then, we apply a hydrostatic pressure of 20 MPa followed by
a stress difference of 48 MPa by increasing the axial stress while holding the
radial stress fixed. The creep parameters have been selected to obtain a good
fit with the laboratory creep data presented by Sone and Zoback [58], and are
summarized below: ηs = 1.3×109 MPa3 ·s; τs = 1 s; and ηh/ηs = τh/τs = 1000.
The results are plotted in Figures 5, 6, and 7 for the case where θ = 90◦. Note
that the horizontal axis in Fig. 5 is total time, whereas the horizontal axis in
Figs. 6 and 7 is creep time. The instantaneous isotropic compression at t = 0
is represented by a Heaviside function in Fig. 5.

Figure 5 shows the total strains along the axial and two lateral (BN and
BP) directions. During hydrostatic loading, the strain response is elastic and
confirms the fact that the BP direction is stiffer than the BN direction for
this shale sample [57]. After the axial stress is increased, both the axial and
lateral strains change dramatically. Two stages of deformation can be identi-
fied: (a) nearly elastic stage where the load is increased fast enough that the
viscoplastic deformation response is negligible; and (b) creep stage where the
applied stress is held fixed and the yield surface expands in a rate-dependent
manner to “catch up” with the fixed stress. During these two stages the sam-
ple compacts in the axial direction and dilates in the two (BN and BP) lateral
directions, but the overall volume change is still characterized by compaction
following what was observed during the experiments. Note that even during
the creep stage the calculated lateral expansion in the BN direction remains
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Solid lines = elastic loading; dashed curves = creep.

greater than in the BP direction, although the experimental data did not
make any distinction between the two lateral deformations.

We remark here that although the model has several parameters that can
be calibrated, the process is not merely a matter of curve-fitting. In fact, no
matter what values of parameters one chooses, the creep test results reported
for this shale cannot be replicated by an isotropic viscoplastic formulation,
or even by a transversely isotropic viscoplastic model that does not allow for
inelastic volumetric compaction. Important elements must be represented for
the model to capture the observed laboratory responses.

3.3 Strain localization at varying strain rates

We next present hypothetical numerical simulations of strain localization in a
shale whose properties are similar to those reported in Section 3.2 for Barnett
shale. Here, we go beyond the stress point calculations and conduct plane
strain simulations of boundary-value problems.

The setup is shown in Fig. 8. We assume a rectangular sample having a
width of 25.4 mm and a height of 50.8 mm, which is approximately the same
size as the cylindrical shale sample tested by Sone and Zoback [58] under
triaxial loading condition. The bedding plane orientation in the harder frame
is assumed to be θ = 45◦ with respect to the horizontal. The top and bot-
tom ends are supported on rollers (i.e. smooth) except for the middle node
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Fig. 6. Experimental (noisy data) and simulated (smooth curves) creep responses
of Barnett shale sample, Duvaut-Lions viscoplasticity. Experimental data after Sone
and Zoback [57, 58].

at the bottom end that is supported on a pin to arrest rigid-body horizontal
translation. To trigger strain localization, the shale is assumed to be overcon-
solidated under a confining pressure of 1 MPa and a preconsolidation pressure
of pc0 = 35 MPa. This ensures that the stress point resides on the dilative
side of the yield surface, thus generating a softening response. We assume a
homogeneous sample with 50% hard and 50% soft components by volume;
a weak element with 30% hard and 70% soft is introduced at the center to
initiate the shear band. The sample is then subjected to vertical compression
at different strain rates.

We consider three vertical strain rates: ε̇A = 4× 10−6, ε̇B = 2× 10−7, and
ε̇C = 2×10−8, all in percent per second. To accommodate the changed loading
condition (plane strain for this example versus axisymmetric for the previous
example), we adjust the viscosity coefficients ηh and ηs of the Perzyna formu-
lation to 1/30 of the values reported in Section 3.2, while keeping the same
relaxation times τh and τs of the Duvaut-Lions formulation as in Section 3.2.
This adjustment is not mandatory and is made solely for the purpose of gen-
erating nearly the same stress-strain responses, as shown in Figs. 9 and 10.
Observe that strain rate ε̇A is too fast for the sample to produce a softening
response. On the other hand, strain rates ε̇B and ε̇C are slow enough that the
shale exhibits a softening response almost right at initial yield.

Deformed shapes and localized deformation patterns calculated using the
Duvaut-Lions and Perzyna formulations are shown in Figs. 11 and 12, respec-
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tively. Note that the shale domain swings to the right as it deforms, consistent
with the weaker BN direction. Because of the significant elastic deformation
occurring prior to strain localization, most of this swing may be attributed
to elastic anisotropy. As noted earlier, the strain rate ε̇A is too fast for the
shale to develop a softening response; thus, no deformation band is generated
despite the presence of a weak element. On the other hand, the intermediate
strain rate ε̇B results in a pair of conjugate deformation bands, although the
band in the BN direction appears to be slightly more prominent. The slowest
strain rate ε̇C generates a dominant deformation band in the BN direction.
However, note that the band thickness increases with increasing deformation.
This may be attributed in part to the dilative nature of the deformation band
(it is a dilative shear band), which causes the localized zone to spread as the
sample is compressed. We remark that viscoplasticity is a form of regulariza-
tion that provides a characteristic length scale. Hence, in principle, no element
enhancement is needed to accommodate the localized deformation produced
in this example.

3.4 Creep-induced shear bands

In this example, we show through numerical simulations that creep deforma-
tion can also lead to strain localization. The process is different from sim-
ulations commonly seen in the literature in that the load here is constant
while the shear bands are either emerging, spreading, and/or propagating.
We present two sets of simulations: The first assumes a homogeneous shale
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Fig. 8. Problem setup: (a) finite element mesh; (b) bedding plane orientation for
harder material component.
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Fig. 9. Vertical stress versus vertical strain curves as functions of the vertical strain
rate: Duvaut-Lions viscoplasticity.

sample with one weak element at the center, similar to the configuration of the
previous section.The second considers a heterogeneous sample with spatially
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varying hard/soft volume fractions. The idea of introducing heterogeneity to
trigger strain localization follows that adopted in References [2, 13, 14, 59, 60].

For the first set of simulations, Fig. 13 shows the evolution of the vertical
displacement at the top of the sample after applying a vertical stress of 16
MPa and holding it fixed. Both Duvaut-Lions and Perzyna formulations pre-
dict creep displacements that accelerate with time. For purposes of describing
the evolution of the creep-induced shear bands, we select three time instants
labeled A, B, and C in Fig. 13, and plot the contours of the norms of the
viscoplastic strains at these time instants in Fig. 14. The contours predicted
by Duvaut-Lions and Perzyna formulations are nearly identical, so we only
show one set of figures in Fig. 14. As in the previous example, the shear band
is dilative and propagates in the weaker BN direction. The thickness of the
shear band is not constant but appears to grow with time.

Next we consider a shale sample with spatially varying volume frac-
tion. Figure 15 shows the volume fractions for the harder material generated
stochastically, assuming uniform distribution from 0.4 to 0.6. The bedding
plane orientation for the harder material is the same as before, at θ = 45◦.
Figure 16 shows the evolution of the vertical displacement at the top of the
sample after applying a vertical stress of 15 MPa and holding it fixed. This load
is slightly lower than the one used for the homogeneous sample simulation,
but Fig. 16 shows that the resulting creep deformation is larger. In general,
heterogeneous samples undergo inelastic deformation at an earlier stage than
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magnified 200×.

do homogeneous samples due to the more irregular spatial distribution of the
stress within the problem domain.

Figures 17 and 18 show multiple creep-induced shear bands at time in-
stants A, B, and C (see Fig. 16 for reference) calculated by Duvaut-Lions
and Perzyna viscoplasticity, respectively. The two figures are nearly identical
and show an interesting pattern: Shear bands are generally oriented in the
weaker BN direction, but smaller shear bands are arranged in phalanx for-
mation aligned with the bedding plane. Note that if there was no anisotropy,
one would expect that the smaller shear bands would be randomly positioned
and randomly oriented, but not in this particular example where the material
possesses cross anisotropy. It is interesting to note that this pattern of shear
bands being generally oriented in the BN direction but arranged in phalanx
formation in the BP direction could possibly explain why they tend to zigzag
along and across bedding planes in cross anisotropic materials, as observed
from the experimental results for synthetic transversely isotropic rocks re-
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ported by Tien et al. [61], for example. For further details on this issue, the
readers are referred to Section 5.1 of the recent paper by Zhao et al. [74].

Finally, Fig. 19 shows typical global convergence profiles of Newton-
Raphson iterations for the creep problems simulated in this paper. The most
number of iterations is 5 during step #1 when the creep strain rate is fastest,
then the convergence rate speeds up requiring around 2 iterations only at later
stages of the calculations. The Duvaut-Lions calculations take about one more
iteration to converge compared to the Perzyna calculations because it needs to
compute the elastoplastic closest-point solution, which requires imposing the
consistency condition. Given that elastoplasticity is generally ‘more nonlinear’
compared to viscoplasticity, this observation is not unusual. Other than this
minor difference, the two algorithms show comparable rates of convergence.



Cam-Clay plasticity. Part IX 25

0

time, s

1.0

ve
rt

ic
al

 d
is

pl
ac

em
en

t, 
µm

1.4

1.6

10000

1.2

0.8

0.6

0.4

0.2

0.0
20000 30000 40000

A

B

C

Duvaut-Lions
Perzyna

Fig. 13. Creep displacement for a homogeneous shale with one weak element at the
center of a rectangular sample.

A B C

0.03

0.02

0.01

0.00

0.04

Fig. 14. Evolution of creep-induced dilative shear band for a homogeneous shale
with one weak element at the center of a rectangular sample. Plots are nearly identi-
cal for Duvaut-Lions and Perzyna simulations. Color bars are norms of viscoplastic
strain in percent. Displacements magnified 200×.

4 Closure

We close this paper with a recap of the proposed multiscale framework for
shale that accounts for anisotropy, heterogeneity, and rate-dependent effects,
as summarized in Fig. 20. The two-material description presented in this paper
is a volume-average of the sub-micron scale heterogeneity in a shale. Volume
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fractions are the primary variables at the micrometer scale, which could vary
from point to point within a millimeter-scale specimen. They can be inferred,
for example, from ternary plots obtained from X-ray powder diffraction or
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Fig. 18. Evolution of creep-induced shear band in a heterogeneous shale with
stochastically varying volume fraction: Perzyna viscoplasticity (cf. Fig. 16). Color
bar is norm of viscoplastic strain in percent. Displacements magnified 200×.

some other mineralogy tests. With this setup, we are able to capture two layers
of heterogeneity: the nanoscale heterogeneity and the mesoscale heterogeneity,
as well as bridge the responses from sub-micron to specimen scales. To our
knowledge, no model currently exists for shale that is capable of bridging
mechanical processes across such a wide range of scales.

Despite the complex problem being investigated, the framework and model
presented in this work are remarkably quite simple. However, validation of the
proposed framework against a consistent set of experimental data for the same
type of shale is essential, particularly for a model that spans such a wide range
of scales. Unfortunately, no data on the mechanical responses of the same type
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Fig. 20. Recap of two-material modeling of time-dependent deformation behavior
of shale showing two layers of heterogeneity: from nanometers to millimeters.

of shale from nanometers to millimeters currently exist in the literature. Work
is now underway to generate these much needed data for validation of every
aspect of the model presented in this work. Further results will be reported
in future publication(s).
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Appendix A. Perzyna theory – anisotropic version

For brevity, we drop the subscript ‘n+ 1’ and write (19) in residual form

r1 = σα − σtr
α +

∆t

ηα
ceα :

(
fα
∂fα
∂σα

)
, (36)

and also write (33) in residual form

r2 = pcα − p′cα , (37)

where

p′cα = pcα,n exp
( ∆t

λpαηα
fα
∂fα
∂σα

: 1
)
F(Θ) , (38)

assuming F(Θ) is given. Symbolically, (36) is a tensor equation, but we can
assume it to be vectorized so that the total residual vector may be defined as
r(x) = {r1, r2}T, where x = {σα, pcα}T is the vectorized set of unknowns.
The goal is to determine x∗ such that r(x∗) = 0. To this end, we employ
Newton’s method and construct the tangent operator

r′(x) =

[
A11 A12

A21 A22

]
= A . (39)

Note that A11 is a 6 × 6 submatrix for full 3D applications, A22 is a scalar
field, and A21 and A12 are row and column vectors, respectively.

We now evaluate the elements of A. First, the derivatives of r1 are

A11 =
∂r1

∂σα
= I +

∆t

ηα
ceα :

(
fα

∂f2
α

∂σα∂σα
+
∂fα
∂σα

⊗ ∂fα
∂σα

)
, (40)

and

A12 =
∂r1

∂pcα
=

∆t

ηα
ceα :

(
fα

∂f2
α

∂σα∂pcα
+
∂fα
∂σα

∂fα
∂pcα

)
. (41)

Next, the derivatives of r2 are

A21 =
∂r2

∂σα
= − p′cα

∆t

λpαηα

(
fα

∂2fα
∂σα∂σα

+
∂fα
∂σα

⊗ ∂fα
∂σα

)
: 1 , (42)

and
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A22 =
∂r2

∂pcα
= 1− p′cα

∆t

λpαηα

(
fα

∂f2
α

∂σα∂pcα
+
∂fα
∂σα

∂fα
∂pcα

)
: 1 . (43)

At the conclusion of the local Newton iteration, we know that

r(x∗, ε) = 0 (44)

for a given ε. Thus, differentiating with respect to ε at the locally converged
configuration x∗ gives

∂r

∂ε
= b+A∗

∂x

∂ε
= 0 , (45)

where

b =
(∂r
∂ε

)
x=fixed

=
(−ce

0

)
, (46)

and A∗ is the value of A evaluated at the converged local configuration x∗.
This gives

∂x

∂ε
=
( ∂σα/∂ε
∂pcα/∂ε

)
= −A∗−1b . (47)

The last equation determines the algorithmic stress-strain moduli tensor
cα,n+1 = ∂σα/∂ε for the Perzyna viscoplastic model. �

Appendix B. Perzyna theory – isotropic version

We note that the isotropic case can be recovered from the anisotropic the-
ory simply by setting the anisotropy parameters to their appropriate values.
However, implementing the isotropic theory separately may be warranted for
some large-scale calculations because it generally results in much improved
efficiency, as can be seen from the formulations below.

The key here is to work with the first two stress invariants p = tr(σ)/3 and
q =

√
3/2‖s‖, where s = dev(σ); and the first two strain invariants εv = tr(ε)

and εs =
√

2/3‖e‖, where e = dev(ε), see [15]. Converting (34) to residual
form gives

r1 = p− ptr +K
∆t

η

(
f
∂f

∂p

)
r2 = q − qtr + 3µ

∆t

η

(
f
∂f

∂q

)
r3 = pc − p′c


, (48)

where K and µ are the elastic bulk and shear moduli, respectively, and

p′c = pcn exp
[ ∆t

λpη

(
f
∂f

∂p

)]
F(Θ) . (49)
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The unknowns are x1 = p, x2 = q, and x3 = pc. We want to find x∗ such that
r(x∗) = 0, so we use Newton’s method and construct the tangent operator
A = r′(x). For r1, the derivatives are:

A11 = 1 +K
∆t

η

[
f
∂2f

∂p2
+
(∂f
∂p

)2]
A12 = K

∆t

η

(∂f
∂p

∂f

∂q

)
A13 = K

∆t

η

(
f
∂2f

∂p∂pc
+
∂f

∂p

∂f

∂pc

)


. (50)

For r2, the derivatives are:

A21 = 3µ
∆t

η

(∂f
∂q

∂f

∂p

)
A22 = 1 + 3µ

∆t

η

[
f
∂2f

∂q2
+
(∂f
∂q

)2]
A23 = 3µ

∆t

η

(
f
∂2f

∂q∂pc
+
∂f

∂q

∂f

∂pc

)


. (51)

And for r3, the derivatives are:

A31 = −p′c
∆t

λpη

[
f
∂2f

∂p2
+
(∂f
∂p

)2]
A32 = −p′c

∆t

λpη

(∂f
∂p

∂f

∂q

)
A33 = 1− p′c

∆t

λpη

(
f
∂2f

∂p∂pc
+
∂f

∂p

∂f

∂pc

)


. (52)

At the conclusion of the iteration, we obtain the roots p and q (as well
as pc), from which we construct the full Cauchy stress tensor as indicated in
(35). To obtain the algorithmic stress-strain moduli tensor, we differentiate
(35) directly as follows

c =
∂σ

∂ε
= 1⊗

(
D11

∂εv
∂ε

+D12
∂εs
∂ε

)
+

√
2

3
n̂⊗

(
D21

∂εv
∂ε

+D22
∂εs
∂ε

)
+

2q

3εs

(
I− 1

3
1⊗ 1− n̂⊗ n̂

)
, (53)

where

D11 =
∂p

∂εv
, D12 =

∂p

∂εs
, D21 =

∂q

∂εv
, D22 =

∂q

∂εs
. (54)

Note that ∂εv/∂ε = 1 and ∂εs/∂ε =
√

2/3 n̂, so the algorithmic stress-strain
moduli tensor simplifies to
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c =
2q

3εs

(
I− n̂⊗ n̂

)
+
(
D11 −

2q

9εs

)
1⊗ 1 +

2

3
D22n̂⊗ n̂

+

√
2

3

(
D121⊗ n̂+D21n̂⊗ 1

)
. (55)

To determine the Dij ’s, we note that

ri(xj , εk) = 0 , i, j = 1, 2, 3 ; k = v, s (56)

when evaluated at the converged configuration x∗j . So, at the converged con-
figuration we have

∂ri
∂εk

=
∂ri
∂xj︸︷︷︸
Aij

∂xj
∂εk

+
∂ri
∂εk︸︷︷︸
Bik

∣∣∣
xj=fixed

= 0 , (57)

where
∂ri
∂εk

∣∣∣
xj=fixed

= Bik (58)

and

[Bik] =

−K 0
0 −3µ
0 0

 . (59)

Solving gives
∂xj
∂εk

= −A−1
ji Bik . (60)

Note that Djk = ∂xj/∂εk for j = 1, 2 and k = v, s. �
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