

1 Applied and Environmental Microbiology

2

3

4

5 **CosR is a global regulator of the osmotic stress response with**
6 **widespread distribution among bacteria**

7

8 Gwendolyn J. Gregory, Daniel P. Morreale, and E. Fidelma Boyd*

9

10 Department of Biological Sciences, University of Delaware, Newark, DE, 19716

11 Corresponding author*

12 E. Fidelma Boyd

13 Department of Biological Sciences

14 341 Wolf Hall, University of Delaware

15 Newark, DE 19716

16 Phone: (302) 831-1088. Fax: (302) 831-2281 Email: fboyd@udel.edu

17 **ABSTRACT** Bacteria accumulate small, organic compounds, called compatible solutes, via
18 uptake from the environment or biosynthesis from available precursors to maintain the turgor
19 pressure of the cell in response to osmotic stress. The halophile *Vibrio parahaemolyticus* has
20 biosynthesis pathways for the compatible solutes ectoine (*ectABCasp_ect*) and glycine betaine
21 (*betIBAproXWV*), four betaine-carnitine-choline transporters (*bcct1-bcct4*) and a second ProU
22 transporter (*proVWX*). All of these systems are osmotically inducible with the exception of
23 *bcct2*. Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of
24 *ectABCasp_ect* in *Vibrio* species. In this study, we investigated whether CosR has a broader role
25 in the osmotic stress response. Expression analyses demonstrated that *betIBAproXWV*, *bcct1*,
26 *bcct3*, *bcct4* and *proVWX* are repressed in low salinity. Examination of an in-frame *cosR* deletion
27 mutant showed expression of these systems is de-repressed in the mutant at low salinity
28 compared to wild-type. DNA binding assays demonstrated that purified CosR binds directly to
29 the regulatory region of both biosynthesis systems and four transporters. In *Escherichia coli* GFP
30 reporter assays, we demonstrated that CosR directly represses transcription of *betIBAproXWV*,
31 *bcct3*, and *proVWX*. Similar to *V. harveyi*, we showed *betIBAproXWV* was directly activated by
32 the quorum sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation
33 among *Vibrio* species. Phylogenetic analysis demonstrated that CosR is ancestral to the
34 *Vibrionaceae* family and bioinformatics analysis showed widespread distribution among
35 *Gamma-Proteobacteria* in general. Incidentally, in *Aliivibrio fischeri*, *A. finisterrensis*, *A. sifiae*
36 and *A. wodanis*, an unrelated MarR-type regulator named *ectR* was clustered with *ectABC-asp*,
37 which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data
38 show that CosR is a global regulator of osmotic stress response that is widespread among
39 bacteria.

40 **IMPORTANCE** *Vibrio parahaemolyticus* can accumulate compatible solutes via biosynthesis
41 and transport, which allow the cell to survive in high salinity conditions. There is little need for
42 compatible solutes under low salinity conditions, and biosynthesis and transporter systems need
43 to be repressed. However, the mechanism(s) of this repression is not known. In this study, we
44 showed that CosR played a major role in the regulation of multiple compatible solute systems.
45 Phylogenetic analysis showed that CosR is present in all members of the *Vibrionaceae* family as
46 well as numerous *Gamma-Proteobacteria*. Collectively, these data establish CosR as a global
47 regulator of the osmotic stress response that is widespread in bacteria, controlling many more
48 systems than previously demonstrated.

49

50 **KEYWORDS** MarR-type regulator CosR osmotic stress response

51 **[INTRODUCTION]**

52 Halophilic bacteria such as *Vibrio parahaemolyticus* encounter a range of osmolarities
53 and have an absolute requirement for salt. To combat the loss of turgor pressure due to efflux of
54 water in high osmolarity conditions, bacteria have developed a short-term “salt in” strategy
55 requiring the uptake of K⁺ and a long-term “salt out” strategy that involves the accumulation of
56 compatible solutes in the cell (1-3). Compatible solutes, as the name suggests, are organic
57 compounds that are compatible with the molecular machinery and processes of the cell, and
58 include compounds such as ectoine, glycine betaine, trehalose, glycerol, proline, glutamate, and
59 carnitine, among others (1, 4-9). Compatible solutes are taken up from the environment or
60 biosynthesized from various precursors in response to osmotic stress, which allows cells to
61 continue to grow and divide even in unfavorable environments (2, 4, 10, 11).

62 Searches of the genome database demonstrated that ectoine biosynthesis genes are
63 present in over 500 bacterial species (12). Most of the species that contain ectoine biosynthesis
64 genes are halotolerant or halophiles. Previously, it was shown that ectoine biosynthesis is present
65 in all halophilic *Vibrio* species including *Vibrio parahaemolyticus*, and this species also
66 possesses the genes for glycine betaine biosynthesis and multiple compatible solute transporters
67 (13). *De novo* biosynthesis of ectoine requires aspartic acid as the precursor, which can be
68 supplied by the cell (14). Aspartic acid is converted to ectoine by four enzymes, EctA, EctB,
69 EctC and Asp_Ect, encoded by the operon *ectABCasp_ect* (15). Ectoine biosynthesis begins with
70 L-aspartate-β-semialdehyde, which is also pivotal to bacterial amino acid and cell wall synthesis
71 (15). Asp_Ect is a specialized aspartokinase dedicated to the ectoine pathway that, among
72 Proteobacteria, is present only in alpha, gamma and delta species (16). Our recent study showed
73 that the quorum sensing response regulator OpaR was a negative regulator and AphA was a

74 positive regulator of *ectABC-asp_ect* gene expression (17). In addition, we showed that OpaR
75 and AphA are positive regulators of *cosR*, which encodes a MarR-type regulator CosR (17, 18).
76 We showed that, similar to *V. cholerae*, CosR is a repressor of *ectABC-asp_ect* indicating that
77 control of ectoine biosynthesis is multilayered and stringent (17).

78 Production of glycine betaine is a two-step oxidation from the precursor choline, which is
79 acquired exogenously. *De novo* biosynthesis of glycine betaine has been identified in only a few
80 species of halophilic bacteria (19-24). Choline is converted to glycine betaine by the products of
81 two genes *betB* and *betA* (25, 26). In *E. coli*, these genes are encoded by the operon *betIBA*, with
82 the regulator BetI shown to repress its own operon (27, 28). In all *Vibrio* species that
83 biosynthesize glycine betaine, the *betIBA* genes are in an operon with the *proXWV* genes, which
84 encode an ATP-binding cassette (ABC)-type transporter named ProU2 (13, 14, 29). Regulation
85 of glycine betaine biosynthesis has been studied in several species, but few direct mechanisms of
86 regulation have been shown beyond BetI (27, 28, 30-33). Recently, in *V. harveyi*, a close relative
87 of *V. parahaemolyticus*, *betIBAproXWV* was shown to be positively regulated by the quorum
88 sensing master regulator LuxR (32, 33).

89 It is energetically favorable to the cell to uptake compatible solutes from the environment
90 rather than to biosynthesize them, and Bacteria and Archaea encode multiple osmoregulated
91 transporters (9, 34-39). ABC-type transporters are utilized to import exogenous compatible
92 solutes into the cell and include ProU (encoded by *proVWX*) in *E. coli* and *Pseudomonas*
93 *syringae*, OpuA in *Lactococcus lactis* and *B. subtilis*, and OpuC in *P. syringae* (39-44). *Vibrio*
94 *parahaemolyticus* encodes two ProU transporters, one on each chromosome. ProU1 is encoded
95 by *proVWX* (VP1726-VP1728) and ProU2 is encoded by the *betIBAproXWV* operon (VPA1109-
96 VPA1114) (13). ProU1 is a homolog of the *E. coli* K-12 ProU, which in this species was shown

97 to bind glycine betaine with high affinity (41, 45, 46). ProU2 is a homolog of the *P. syringae*
98 *proVXW* (13).

99 The betaine-carnitine-choline transporters (BCCTs) are single component sodium- or
100 proton coupled transporters, the first of which, BetT, discovered in *E. coli*, was shown to
101 transport choline with high-affinity and is divergently transcribed from *betIBA* (47, 48). *Vibrio*
102 *parahaemolyticus* encodes four BCCTs, BCCT1-BCCT3 (VP1456, VP1723, VP1905), and
103 BCCT4 (VPA0356) (13). The *bcct2* (VP1723) gene is the only *bcct* that is not induced by
104 salinity in *V. parahaemolyticus* (14). All four BCCT transporters were shown to transport
105 glycine betaine amongst other compatible solutes (29). A study in *V. cholerae* demonstrated that
106 a *bcct3* homolog is repressed by the regulator CosR in low salt conditions (18).

107 To date there has been no single regulator identified that controls multiple compatible
108 solute systems in bacteria. In this study, we examined whether CosR could have a broader role in
109 the osmotic stress response. First, we examined expression of genes encoding osmotic stress
110 response systems in low salinity and used quantitative real-time PCR to quantify expression of
111 these genes in a Δ *cosR* deletion mutant. This analysis showed that CosR was a negative regulator
112 of both ectoine and glycine betaine biosynthesis systems and two different transporter systems;
113 the ABC-type transporters ProU1 and ProU2 and the sodium-coupled transporters BCCT1 and
114 BCCT3. These data indicate that the CosR regulon is larger than appreciated and expands the
115 role of CosR to that of a global regulator of the osmotic stress response. We determined whether
116 CosR was a direct regulator using DNA binding assays and an *E. coli* plasmid-based reporter
117 assay. We also examined whether *betIBAproXWV* was under the control of the quorum sensing
118 regulator OpaR, which also regulates *cosR*. We showed that OpaR is an activator of

119 *betIBAproXWV* in contrast to its repression of *ectABCasp_ect*. Phylogenetic analysis of CosR
120 showed it is ancestral to the *Vibrionaceae* family, present in all members of the group.
121 Bioinformatics analysis indicated that CosR homologs are also prevalent among *Gamma-*
122 *Proteobacteria* in general. Overall, the data show that CosR is a previously unrecognized global
123 regulator of the osmotic stress response that is widespread among bacteria.

124

125 **RESULTS**

126 **Compatible solute biosynthesis and transport genes are downregulated in low salinity.** We
127 have previously shown that *V. parahaemolyticus* does not produce compatible solutes ectoine
128 and glycine betaine during growth in minimal media (M9G) supplemented with 1% NaCl
129 (M9G1%) (13, 14). Here we quantified expression levels of both biosynthesis operons in
130 M9G1% or M9G3%. RNA was isolated from exponentially growing wild-type *V.*
131 *parahaemolyticus* RIMD2210633 cells, at optical density 595 nm (OD₅₉₅) 0.45, after growth in
132 M9G1% or M9G3%. Real time quantitative PCR (qPCR) showed that ectoine biosynthesis genes
133 *ectA* and *asp_ect* are differentially expressed in M9G1% as compared to expression in M9G3%.
134 *ectA* is significantly downregulated 794.6-fold and *asp_ect* is significantly downregulated 204.9-
135 fold in M9G1% (**Fig. 1A**). The *betIBAproXWV* operon is also significantly repressed in M9G1%,
136 with fold changes of 25.8-fold, 22-fold, 33.7-fold, and 52.8-fold for *betI*, *betB*, *proX*, and *proW*,
137 respectively (**Fig. 1B**).

138 Similarly, the expression of *bcct1*, *bcct3*, *bcct4*, and *proV1* are significantly repressed in
139 M9G1%, 500-fold, 71.4-fold, 11.6-fold, and 2,786-fold, respectively, when compared with
140 expression in M9G3% (**Fig. 1C**). The *bcct2* gene remained unchanged. Previously, we reported
141 that *bcct2* is not induced by salinity (29), and our data indicated that it has a basal level of
142 transcription in the cell based on similar Ct values in both salinities tested (data not shown).
143 Overall, the data demonstrate osmoregulation of *ectABCasp_ect*, *betIBAproXWV*, *bcct1*, *bcct3*,
144 *bcct4* and *proV1*.

145 **CosR represses compatible solute biosynthesis and transport genes in low salinity.** We know
146 CosR is a repressor of ectoine biosynthesis genes, and we wondered whether it played a broader

147 role in the regulation of other osmotic stress response genes. Therefore, we examined expression
148 in wild-type and an in-frame deletion mutant of *cosR*. RNA was isolated from the Δ *cosR* mutant
149 strain at mid-exponential phase (OD₅₉₅ 0.45) after growth in M9G1% and compared to wild-type
150 grown under identical conditions. Using qPCR analysis, we determined the expression levels of
151 *ectA* and *asp_ect* and showed they are significantly upregulated, 818.5-fold and 308.2-fold,
152 respectively, in a Δ *cosR* mutant compared to wild-type in M9G1% (Fig. 2A), indicating de-
153 repression in the absence of CosR. Next, we examined expression levels of *betIBAproXWV* and
154 showed these genes are significantly de-repressed in the Δ *cosR* mutant (Fig. 2B). Similarly,
155 relative expression levels of *bcct1*, *bcct3* and *proV1* were significantly higher in Δ *cosR* than
156 wild-type, while levels of *bcct2* and *bcct4* were unchanged (Fig. 2C). In sum, these data
157 demonstrated that CosR is a repressor of *ectABCasp_ect*, *betIBAproXWV*, *bcct1*, *bcct3* and
158 *proVWX1* under low salinity conditions. Thus, CosR is a unique example of a regulator that
159 controls multiple compatible solute systems.

160 **CosR binds directly to the promoter of the *betIBAproXWV* operon and represses
161 transcription.** To determine whether CosR regulation of *betIBAproXWV* is direct, we performed
162 DNA binding assays with purified CosR protein and DNA probes of the regulatory region of this
163 operon. The regulatory region was split into five overlapping probes, *PbetI* probes A-E (Fig.
164 3A). CosR bound to probe A, which is directly upstream of the start codon for *betI*, and it also
165 bound to probes B and D (Fig. 3B). CosR did not bind to probes C and E, which demonstrated
166 specificity of CosR binding (Fig. 3B).

167 To demonstrate that direct binding by CosR results in transcriptional repression of the
168 *betIBAproXWV* operon, we performed a GFP-reporter assay in *E. coli* strain MKH13. Full-length

169 *cosR* was expressed from a plasmid (pBBR*cosR*) in the presence of a *gfp*-expressing reporter
170 plasmid under the control of the glycine betaine biosynthesis system regulatory region (P_{*betI*}-*gfp*).
171 Relative fluorescence and OD₅₉₅ were measured after overnight growth in M9G1%. Specific
172 fluorescence was calculated by normalizing to OD and compared to specific fluorescence in a
173 strain with an empty expression vector (pBBR1MCS) that also contained the P_{*betI*}-*gfp* reporter
174 plasmid. The activity of the P_{*betI*}-*gfp* reporter was significantly repressed 4.84-fold as compared
175 to the empty vector strain (Fig. 3C). This indicates that CosR directly represses transcription of
176 the *betIBAproXWV* genes.

177 **CosR binds directly to the promoter of *bcct1* and *bcct3* and is a direct repressor of**
178 ***bcct3*.** Next, we wanted to investigate whether CosR repression of *bcct1* and *bcct3* was direct.
179 We designed probes upstream of the translational start for *bcct1* and *bcct3*. The 291-bp
180 regulatory region of P*bcct1*, which includes 15-bp of *bcct1* and 276-bp of the intergenic region,
181 was split into three overlapping probes, P*bcct1* probes A, B, and C (Fig. 4A). DNA binding
182 assays were performed with increasing concentrations of CosR. CosR bound directly to the
183 P*bcct1* probe B but did not bind to the other probes tested, which indicated direct and specific
184 binding by CosR (Fig. 4B). Next, we performed reporter assays in *E. coli* using a GFP
185 expression plasmid under the control of the regulatory region of *bcct1* (P_{*bcct1*}-*gfp*) and a CosR
186 expression plasmid (pBBR*cosR*). Specific fluorescence in the presence of CosR was compared to
187 a strain with empty expression vector (pBBR1MCS). The activity of the P_{*bcct1*}-*gfp* reporter was
188 not significantly different than the strain harboring empty expression vector, which indicates that
189 CosR does not directly repress *bcct1* (Fig. 4C). We speculate that CosR may still directly repress
190 *bcct1*, but in our reporter assay the low level of activation of the *bcct1* regulatory region in *E.*
191 *coli* may have affected the significance of the results. In the *E. coli* heterologous background,

192 additional proteins, which are present in the native species, may be necessary for full repression
193 of *bcct1* by CosR.

194 Two overlapping probes designated *Pbcct3* probe A and B, were designed encompassing
195 196-bp of the regulatory region of *bcct3* (Fig. 5A). Because *bcct3* is divergently transcribed from
196 *cosR*, we used approximately half of the regulatory region for the *Pbcct3* EMSA. An EMSA
197 showed that CosR bound directly to the *Pbcct3* probe A, which is proximal to the start of the
198 gene, but not probe B (Fig. 5B). We then performed reporter assays in *E. coli* using a GFP
199 expression plasmid under the control of the regulatory region of *bcct3*, utilizing the entire 397-bp
200 intergenic region between *bcct3* and *cosR*. Transcriptional activity of the P_{bcct3} -*gfp* reporter is
201 repressed in a CosR-expressing strain (Fig. 5C), although not to the same extent that we saw in
202 expression analyses in *V. parahaemolyticus*. This is not surprising, given that it appears the
203 regulatory region of *bcct3* is not very active in an *E. coli* background, which made detection of
204 repression more difficult. Additionally, other proteins are likely necessary for full repression of
205 the regulatory region of *bcct3* that are not present in an *E. coli* background. The *E. coli* GFP
206 assay did show a direct interaction between CosR and the *bcct3* regulatory region that resulted in
207 repression of transcription. This result, in combination with expression analyses in a *cosR* mutant
208 (Fig. 2C) and binding assays which demonstrated direct binding (Fig. 5B), indicate that CosR
209 directly represses *bcct3*. In addition, we showed that CosR does not bind to the regulatory region
210 of *bcct2* and *bcct4* (Fig. 5D), which is in agreement with the *cosR* mutant expression data (Fig.
211 2C). These data suggest that *bcct2* and *bcct4* are under the control of a yet to be described
212 regulator.

213 **CosR is a direct repressor of *proVWX1*.** The regulatory region upstream of the *proV1* gene was
214 divided into four probes (Fig. 6A). A DNA binding assay was performed with increasing

215 concentrations of CosR and 30 ng of each probe. A shift in the DNA bands of probe D, which is
216 proximal to the start codon of *proV1*, indicated that CosR binds directly to this region (**Fig. 6B**).
217 CosR did not bind to the other probes tested, which indicated that CosR binding is specific.

218 We also performed a reporter assay in *E. coli* utilizing the *cosR* expression plasmid
219 (pBBRcosR) and a GFP reporter plasmid (P_{*proV1*}-gfp). In a CosR-expressing strain, expression of
220 the P_{*proV1*}-gfp reporter was repressed when compared to an empty expression vector strain (**Fig.**
221 **6C**). This repression was to a lesser extent than is seen in *V. parahaemolyticus* but recapitulation
222 of the same magnitude of repression in the heterologous background is not to be expected given
223 the potential absence of additional factors present in the native background. Overall, the results
224 of the *E. coli* reporter assay, taken together with expression analyses in the native background
225 (**Fig. 2C**) and the DNA binding assay (**Fig. 6B**), indicate that CosR is a direct repressor of the
226 *proVWX1* operon.

227 **CosR is not autoregulated.** In *V. cholerae*, expression levels of *cosR* were upregulated in 0.5 M
228 NaCl as compared to levels in 0.2 M NaCl (18). It was suggested that one reason for the
229 upregulation of *cosR* in higher salinity could be that it is involved in an autoregulatory feedback
230 loop (18). In *V. parahaemolyticus*, we found that levels of *cosR* were not significantly
231 upregulated in 3% NaCl as compared to 1% NaCl (data not shown). We have already shown that
232 CosR binds to the intergenic region between *bcct3* and *cosR*, but the binding site location is
233 proximal to the start codon of *bcct3*, more than 300-bp upstream of the *cosR* gene (**Fig. 5A & B**).
234 Therefore, to investigate CosR autoregulation, we designed two probes, 105-bp and 142-bp,
235 which comprise a 220-bp portion of the regulatory region upstream of *cosR* (VP1906) (**Fig. 7A**)
236 and used this in a DNA binding assay with various concentrations of purified CosR (**Fig. 7B**).
237 There were no shifts observed in the binding assay, which indicated that CosR does not bind

238 (Fig. 7B). We then performed a GFP reporter assay in *E. coli*, utilizing the entire 397-bp
239 intergenic region between *bcct3* and *cosR*, to determine if CosR directly represses transcription
240 of its own gene. The transcriptional activity of P_{cosR} -*gfp* in the presence of CosR was not
241 significantly different from the empty-vector strain ($p=0.09$) (Fig. 7C). Because we cannot
242 assess expression of *cosR* in a $\Delta cosR$ mutant, we examined this in a GFP reporter assay in wild-
243 type and a $\Delta cosR$ mutant after growth in M9G1%. We found that the activity of a P_{cosR} -*gfp*
244 reporter was not different between wild-type and the *cosR* mutant (Fig. 7D). Taken together, lack
245 of CosR binding in the EMSA and both *in vivo* and *E. coli* reporter assays lead us to conclude
246 that under these conditions, CosR does not autoregulate, and that the CosR binding site proximal
247 to the *bcct3* gene does not affect transcription of the *cosR* gene.

248 **BetI represses its own operon *betIBA*.** Previously, it was shown that BetI represses its own
249 operon in several bacterial species and this repression is relieved in the presence of choline (27,
250 31, 32). To demonstrate BetI regulates its own operon in *V. parahaemolyticus*, we performed a
251 reporter assay utilizing the P_{betI} -*gfp* reporter in wild-type and a $\Delta betI$ mutant strain. Strains were
252 grown overnight in M9G3%, with and without choline, and specific fluorescence was calculated.
253 Expression of the reporter was de-repressed in the $\Delta betI$ mutant when no choline was present,
254 indicating that BetI is a negative regulator of its own operon (Fig. 8A). In the presence of
255 choline, there was no longer a difference in reporter activity between the wild-type strain and the
256 $\Delta betI$ mutant strain, indicating that repression by BetI was relieved (Fig. 8B). To confirm
257 regulation of *betIBA**proXWV* by BetI is direct, we performed a GFP reporter assay in *E. coli*
258 MKH13 strain. The P_{betI} -*gfp* reporter was transformed into *E. coli* MKH13 (which lacks the
259 *betIBA* operon) along with an expression vector harboring full-length *betI* under the control of an
260 IPTG-inducible promoter. In the BetI-expressing strain, P_{betI} -*gfp* expression was significantly

261 repressed, which indicated that BetI is a direct repressor of its own operon in *V.*

262 *parahaemolyticus* (Fig. 8C).

263 **The quorum sensing LuxR homolog OpaR is a positive regulator of *betIBAproXWW* in *V.***

264 ***parahaemolyticus*.** We examined expression of the P_{betI} -*gfp* reporter in wild-type and the $\Delta opaR$ mutant in *V. parahaemolyticus*. Expression of the reporter was significantly down-regulated in $\Delta opaR$, indicating that OpaR is a positive regulator of the glycine betaine biosynthesis operon (Fig. 9A). We also examined whether regulation of P_{betI} by OpaR was direct utilizing an EMSA with purified OpaR protein. OpaR bound to P_{betI} probes A, B, C and E, and very weakly to probe D, which indicated that regulation of *betIBAproXWW* by OpaR is direct (Fig. 9B). These results are in agreement with a previous study, which also showed direct positive regulation of *betIBAproVWX* by LuxR in *V. harveyi* (32). Thus, it appears that the quorum sensing master regulator may be a conserved regulatory mechanism of glycine betaine biosynthesis among *Vibrio* species.

274 **Motif identification and phylogenetic distribution of CosR.** CosR bound to eight of the

275 probes tested in our DNA binding analyses, including two probes of the *ectABCasp_ect* regulatory region, as shown previously (17). We utilized these sequences in MEME (multiple 276 EM for motif elicitation) analysis (49), and identified a 24-bp pseudo-palindromic motif present 277 in each of the eight sequences (Fig. 10A). The motif is an imperfect inverted repeat separated by 278 two bp (TTTGA-NN-TCTAA). The alignment of the motifs found within each sequence is 279 shown in Figure 10B.

281 CosR, a MarR-type regulator, is a 158 amino acid protein that is divergently transcribed 282 from *bcct3* on chromosome 1 in *V. cholerae* and *V. parahaemolyticus*, two distantly related

283 species. Bioinformatics analysis showed that a CosR homolog is present in over 50 *Vibrio*
284 species and in all cases the *cosR* homolog was divergently transcribed from a *bcct* transporter
285 (**Fig. 11**). Within these *Vibrio* species, similarity ranged from 98% to 73% amino acid identity
286 and showed that CosR was present in phylogenetically divergent *Vibrio* species. We found that
287 in *V. splendidus*, *V. crassostreae*, *V. cyclitrophicus*, *V. celticus*, *V. lentus* and *Aliivibrio wodanis*,
288 the CosR homolog is present directly downstream of the *betIBAProXWW* operon and in *V.*
289 *tasmaniensis* strains and *Vibrio* sp. MED222, the ectoine biosynthesis operon clustered in the
290 same genome location (**Fig. 11**). Collectively, these data indicated that CosR function is
291 conserved among this divergent group of species and that CosR is an important regulator of the
292 osmotic stress response. In all strains of *Aliivibrio fischeri*, the *cosR* homolog (which shares 73%
293 amino acid identity with CosR from *V. parahaemolyticus*) clusters with two uncharacterized
294 transporters. A recent phylogenomics study of distribution of ectoine biosynthesis genes and a
295 homolog of CosR showed the presence of this regulator in species of the *Alpha-Proteobacteria*,
296 *Beta-Proteobacteria* and *Gamma-Proteobacteria* (50). This again suggests that the role of CosR
297 in the osmotic stress response is conserved and phylogenetically widespread.

298 Incidentally, a second MarR-type regulator, a 141 amino acid protein, which we name
299 *ectR*, clusters with the ectoine biosynthesis genes in *Aliivibrio fischeri* (**Fig.11**). EctR shares only
300 31% identity with less than 60% query coverage to CosR from *V. parahaemolyticus* and a similar
301 level of low amino acid identity to EctR1 from *Methylmicrobium alcaliphilum*. EctR was
302 clustered with the *ectABCasp_ect* genes in all strains of *Aliivibrio finisterrensis*, *Aliivibrio sifiae*,
303 and most *A. wodanis* strains. Thus, in *Aliivibrio* species, it appears that the ectoine biosynthesis
304 gene cluster has a new uncharacterized MarR-type regulator.

305

306 **DISCUSSION**

307 Here we have shown that the compatible solute biosynthesis and transport genes are
308 downregulated in *V. parahaemolyticus* in low salinity and these genes are de-repressed in a *cosR*
309 mutant. Our genetic analyses, binding analyses, and reporter assays demonstrated that CosR is a
310 regulator of *betIBAproXWV*, *bcct1*, *bcct3*, and *proVWX* (Fig. 13). Additionally, we showed that
311 under the conditions tested, CosR is not autoregulated. To date, it has now been demonstrated
312 that CosR is a regulator of six different compatible solute systems; two biosynthesis systems
313 ectoine and glycine betaine and four transporters (Fig. 13). Our phylogenetic and bioinformatics
314 analyses indicated that CosR is universal within the *Vibrionaceae* and widespread in *Gamma-*
315 *Proteobacteria* in general suggesting a conserved previously unrecognized global regulator of
316 the osmotic stress response in bacteria.

317 The physiological importance of CosR repression of compatible solute biosynthesis in
318 low salinity is to protect levels of key intracellular metabolites. Ectoine biosynthesis requires the
319 precursor aspartate and this affects the level of glutamate, acetyl-CoA, and oxaloacetate (51, 52).
320 Thus, tight regulation of ectoine biosynthesis is essential for cellular fitness. CosR characterized
321 from *Vibrio* species show ~50% amino acid identity to EctR1 first described in the halotolerant
322 methanotroph *Methylmicrobium alcaliphilum* that repressed ectoine biosynthesis (53). In this
323 species, *ectR1* is divergently transcribed from the same promoter as *ectABC-ask*. Mustakhimov
324 and colleagues showed that EctR1 is a direct repressed expression of the *ectABC-ask* operon in
325 response to low salinity (53). EctR repression of the ectoine biosynthesis genes was also shown
326 in both *Methylophaga alcalica* and *Methylophaga thalassica*, two moderately halophilic
327 methylotrophs (54, 55). Czech and colleagues showed that CosR/EctR1 was phylogenetically
328 widespread and clustered with *ect* genes in some species (50). In *V. cholerae*, CosR was also

329 identified as a repressor of ectoine biosynthesis genes though it does not cluster with
330 *ectABCasp_ect* (18). The *cosR* gene in *V. cholerae* is divergently transcribed from the *opuD* gene
331 (a *bcct3* homolog), which was also repressed by CosR (18). Similarly, in *V. parahaemolyticus*,
332 the *cosR* (VP1906) homolog is divergently transcribed from *bcct3* (VP1905) and is a direct
333 negative regulator of both *bcct3* and *ectABCasp_ect* (17). Our phylogenetic analysis found that
334 the CosR homolog was present in all members of the *Vibrionaceae*, and among many *Vibrio*
335 species was clustered with a *bcct3* homolog. The phylogeny of CosR mirrored the branching
336 pattern of the relationships of members of the group for other housekeeping genes. These data
337 indicate that CosR is ancestral to the group and the conservation of genomic context suggests
338 functional conservation (**Fig. 11 and Fig. 12**). We used CosR from *Aeromonas* species to root
339 the tree and similar to *Vibrionaceae* species, CosR is present in all members of this group. Indeed,
340 bioinformatics analysis indicated that a CosR homolog is present in many other *Gamma-*
341 *Proteobacteria* suggesting that it is an under-appreciated player in the osmotic stress response in
342 bacteria (data not shown). In several *Vibrio* species, the CosR homolog was clustered with the
343 *betIBAproXWW* operon, which is further suggestive of its role in regulation of compatible solute
344 biosynthesis among *Vibrio* species.

345 The MarR family of transcriptional regulators, first characterized in *E. coli*, are important
346 regulators of a number of cellular responses, typically responding to a change in the external
347 environment (56-58). The literature suggests that MarR-type regulators form dimers and bind to
348 a 20-45 bp pseudo-palindromic site in the intergenic region of genes they control (56, 59-61).
349 We utilized the regulatory regions of each of the osmotic stress response genes that CosR
350 regulates and identified a pseudo-palindromic CosR DNA binding motif (**Fig. 10**). This motif is
351 similar to the binding sequence of the CosR homolog EctR1 identified previously in *M.*

352 *alcaliphilum*, which was also pseudo-palindromic with 2-bp separating inverted repeats (53).
353 The activity of MarR-type regulators can be modulated by the presence of a chemical signal,
354 either a ligand, metal ion, or reactive oxygen species. Binding of these signals causes the protein
355 to undergo a conformational change, thereby affecting DNA binding capability (56, 62, 63). We
356 modeled a CosR homodimer using SWISS-MODEL and did not identify a ligand binding pocket
357 (data not shown). In *V. cholerae*, CosR activity was not affected by the presence of exogenous
358 compatible solutes including ectoine, glycine betaine and proline, and *opuD* (*bcct* homolog)
359 transcripts were unchanged in a *cosR* mutant (50). Hence, the environmental or cellular signals
360 that modulate the activity of CosR remain unidentified, as was noted by Czech and colleagues
361 (50). Interestingly, our modelling of the EctR regulator clustered with ectoine genes identified in
362 *Aliivibrio* species indicated it also does not have a ligand-binding pocket (data not shown).
363 Autoregulation was shown for several MarR family regulators, including *ectR1* in *M.*
364 *alcaliphilum* (53, 56). In *V. parahaemolyticus*, we showed CosR does not bind to its own
365 regulatory region, and our reporter assays suggested that CosR does not autoregulate. It is
366 interesting to note that EctR1 does not participate in an autoregulatory feedback loop in *M.*
367 *thalassica* (55, 64).

368 Similar to ectoine biosynthesis gene expression, few direct regulators of glycine betaine
369 biosynthesis genes have been identified. In *E. coli*, expression of *betIBA* was repressed by BetI
370 and repression was relieved in the presence of choline (27). BetI was shown to directly regulate
371 transcription at this locus via DNA binding assays (28). ArcA was shown to repress the *betIBA*
372 operon under anaerobic conditions in *E. coli*, although direct binding was not shown (27). In *V.*
373 *harveyi*, it was shown that *betIBA**proXWV* were repressed 2- to 3-fold when *betI* was
374 overexpressed from a plasmid. Purified BetI bound directly to the regulatory region of the

375 *betIBAproXWV* operon in DNA binding assays (32, 33). In these studies, it was also shown that
376 the quorum sensing response regulator LuxR, along with the global regulator IHF, activated
377 expression of *betIBAproXWV* (32, 33). Here, we have shown that BetI represses its own operon
378 in *V. parahaemolyticus*, as expected, and we identified a novel regulator of glycine betaine
379 biosynthesis genes, CosR, which directly represses under low salinity conditions (Fig. 13). We
380 also confirm that, similar to *V. harveyi*, the quorum sensing master regulator OpaR directly
381 induced *betIBAproXWV* expression in *V. parahaemolyticus*, indicating this mechanism is likely
382 conserved in *Vibrio* species (Fig. 13).

383 Biosynthesis of compatible solutes is an energetically costly process for bacteria (35).
384 *Vibrio parahaemolyticus* does not accumulate compatible solutes in low salinity (13, 14, 29), and
385 therefore the transcription of biosynthesis and transport genes is unnecessary. CosR represses
386 these genes involved in the osmotic stress response in *V. parahaemolyticus*. The high
387 conservation of the CosR protein across *Vibrionaceae* and *Gamma-Proteobacteria* and its
388 genomic context indicates that regulation by CosR of compatible solute systems is widespread in
389 bacteria.

390
391 **MATERIALS AND METHODS**

392 **Bacterial strains, media and culture conditions.** Listed in Table 1 are all strains and plasmids
393 used in this study. A previously described streptomycin-resistant clinical isolate of *V.*
394 *parahaemolyticus*, RIMD2210633, was used as the wild-type strain (65, 66). *Vibrio*
395 *parahaemolyticus* strains were grown in either lysogeny broth (LB) (Fisher Scientific, Fair
396 Lawn, NJ) supplemented with 3% NaCl (wt/vol) (LBS) or in M9 minimal medium (47.8 mM
397 Na₂HPO₄, 22 mM KH₂PO₄, 18.7 mM NH₄Cl, 8.6 mM NaCl) (Sigma-Aldrich, USA)
398 supplemented with 2 mM MgSO₄, 0.1 mM CaCl₂, 20 mM glucose as the sole carbon source

399 (M9G) and 1% or 3% NaCl (wt/vol) (M9G1%, M9G3%). *E. coli* strains were grown in LB
400 supplemented with 1% NaCl (wt/vol) or M9G1% where indicated. *E. coli* β 2155, a
401 diaminopimelic acid (DAP) auxotroph, was supplemented with 0.3 mM DAP and grown in LB
402 1% NaCl. All strains were grown at 37°C with aeration. Antibiotics were used at the following
403 concentrations (wt/vol) as necessary: ampicillin (Amp), 50 μ g/ml; chloramphenicol (Cm), 12.5
404 μ g/ml; tetracycline (Tet), 1 μ g/mL; and streptomycin (Str), 200 μ g/ml. Choline was added to
405 media at a final concentration of 1 mM, when indicated.

406 **Construction of the *betI* deletion mutant.** An in-frame *betI* (VPA1114) deletion mutant was
407 constructed as described previously (17). Briefly, the Gibson assembly protocol, using
408 NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, Ipswich, MA), followed
409 by allelic exchange, was used to generate an in-frame 63-bp truncated, non-functional *betI* gene
410 (67, 68). Two fragments, AB and CD, were amplified from the RIMD2210633 genome using
411 primers listed in Table 2. These were ligated with pDS132, which had been digested with SphI,
412 via Gibson assembly to produce suicide vector pDS132 with a truncated *betI* allele (pDS Δ *betI*).
413 pDS Δ *betI* was transformed into *E. coli* strain β 2155 λ *pir*, followed by conjugation with *V.*
414 *parahaemolyticus*. The suicide vector pDS132 must be incorporated into the *V.*
415 *parahaemolyticus* genome via homologous recombination, as *V. parahaemolyticus* lacks the *pir*
416 gene required for replication of the vector. Growth without chloramphenicol induces a second
417 recombination event which leaves behind either the truncated mutant allele or the wild-type
418 allele. Colonies were plated on sucrose for selection, as pDS132 harbors a *sacB* gene, which
419 makes sucrose toxic to cells still carrying the plasmid and colonies appear soapy. Healthy
420 colonies were screened via PCR and sequenced to confirm an in-frame deletion of the *betI* gene.

421 **RNA isolation and qPCR.** *Vibrio parahaemolyticus* RIMD2210633 and $\Delta cosR$ were grown
422 with aeration at 37 °C overnight in LBS. Cells were pelleted, washed twice with 1X PBS, diluted
423 1:50 into M9G3% or M9G1% and grown with aeration to mid-exponential phase (OD₅₉₅ 0.45).
424 RNA was extracted from 1 mL of culture using Trizol, following the manufacturer's protocol
425 (Invitrogen, Carlsbad, CA). The samples were treated with Turbo DNase (Invitrogen), followed
426 by heat inactivation of the enzyme as per manufacturer's protocol. Final RNA concentration was
427 quantified using a Nanodrop spectrophotometer (Thermo Scientific, Waltham, MA). 500 ng of
428 RNA were used for cDNA synthesis by priming with random hexamers using SSIV reverse
429 transcriptase (Invitrogen). Synthesized cDNA was diluted 1:25 and used for quantitative real-
430 time PCR (qPCR). qPCR experiments were performed using PowerUp SYBR master mix (Life
431 Technologies, Carlsbad, CA) on an Applied Biosystems QuantStudio6 fast real-time PCR system
432 (Applied Biosystems, Foster City, CA). Reactions were set up with the following primer pairs
433 listed in Table 2: VPbcct1Fwd/Rev, VPbcct2Fwd/Rev, VPbcct3Fwd/Rev, VPbcct4Fwd/Rev,
434 VPectAFwd/Rev, VPasp_ectFwd/Rev, VPproV1Fwd/Rev, VPAbetIFwd/Rev,
435 VPAbetBFwd/Rev, VPAbetXFwd/Rev, VPAbetWFwd/Rev, and 16SFwd/Rev for
436 normalization. Expression levels were quantified using cycle threshold (CT) and were
437 normalized to 16S rRNA. Differences in gene expression were determined using the $\Delta\Delta CT$
438 method (69).

439 **Protein purification of CosR.** CosR was purified as described previously (17). Briefly, full-
440 length *cosR* (VP1906) was cloned into the protein expression vector pET28a (+) containing an
441 IPTG-inducible promoter and a C-terminal 6x-His tag (Novagen). Expression of CosR-His was
442 then induced in *E. coli* BL21 (DE3) with 0.5 mM IPTG at OD₅₉₅ of 0.4 and grown overnight at
443 room temperature. Cells were harvested, resuspended in lysis buffer (50 mM NaPO₄, 200 mM

444 NaCl, 20 mM imidazole buffer [pH 7.4]) and lysed using a microfluidizer. CosR-His was bound
445 to a Ni-NTA column and eluted with 50 mM NaPO₄, 200 mM NaCl, 500 mM imidazole buffer
446 [pH 7.4] after a series of washes to remove loosely bound protein. Protein purity was determined
447 via SDS-PAGE. OpaR was purified as described previously (70).

448 **Electrophoretic Mobility Shift Assay.** Five overlapping DNA fragments, designated *PbetI*
449 probe A (125-bp), probe B (112-bp), probe C (142-bp), probe D (202-bp) and probe E (158-bp),
450 were generated from the *betIBAProXWW* regulatory region (includes 36 bp of the coding region
451 and the 594-bp upstream intergenic region) using primer sets listed in Table 2. Three overlapping
452 DNA fragments, designated *PbccI* probe A (120-bp), probe B (110-bp), and probe C (101-bp),
453 were generated from the *bccI* regulatory region (includes 15 bp of the coding region and the
454 276-bp upstream intergenic region) using primer sets listed in Table 2. Two overlapping DNA
455 fragments, designated *PbccI3* probe A (108-bp) and probe B (107-bp), were generated from the
456 *bccI3* regulatory region (includes 17 bp of the coding region and 179-bp of the upstream
457 intergenic region) using primer sets listed in Table 2. Four overlapping DNA fragments,
458 designated *PproVI* probe A (160-bp), probe B (134-bp), probe C (108-bp), and probe D (109-
459 bp), were generated from the *proVI* regulatory region (includes 9-bp of the coding region and the
460 438-bp upstream intergenic region) using primer sets listed in Table 2. Fragments designated
461 *PbccI2* (233-bp) and *PbccI4* (244-bp) were generated from the *bccI2* and *bccI4* regulatory
462 regions, respectively, using primers listed in Table 2. Two overlapping DNA fragments,
463 designated *PcosR* probe A (105-bp) and probe B (142-bp), were generated from the *cosR*
464 regulatory region (includes 4 bp of the coding region and 216-bp of the upstream intergenic
465 region) using primer sets listed in Table 2. The concentration of purified CosR-His and OpaR
466 was determined using a Bradford assay. CosR or OpaR was incubated for 20 minutes with 30 ng

467 of each DNA fragment in a defined binding buffer (10 mM Tris, 150 mM KCl, 0.5 mM
468 dithiothreitol, 0.1 mM EDTA, 5% polyethylene glycol [PEG] [pH 7.9 at 4°C]). A 6% native
469 acrylamide gel was pre-run for 2 hours at 4C (200 V) in 1 X TAE buffer. Gels were loaded with
470 the DNA:protein mixtures (10 μ L), and run for 2 hours at 4°C (200 V). Finally, gels were stained
471 in an ethidium bromide bath for 15 min and imaged.

472 **Reporter Assays.** A GFP reporter assay was conducted using the *E. coli* strain MKH13 (71).
473 GFP reporter plasmids were constructed as previously described (17). Briefly, each regulatory
474 region of interest was amplified using primers listed in Table 2 and ligated via Gibson assembly
475 protocol with the promoterless parent vector pRU1064, which had been digested with SpeI, to
476 generate reporter plasmids with GFP under the control of the regulatory region of interest.
477 Complementary regions for Gibson assembly are indicated in lower case letters in the primer
478 sequence (Table 2). Reporter plasmid $P_{betI}-gfp$ encompasses 594-bp upstream of the
479 *betIBAproXWW* operon. Reporter plasmid $P_{bccI}-gfp$ encompasses 278-bp upstream of the *PbccI*
480 regulatory region. Reporter plasmid $P_{bcc3}-gfp$ encompasses 397-bp upstream of the *Pbcc3*
481 regulatory region. Reporter plasmid $P_{proV1}-gfp$ encompasses 438-bp upstream of the *PproV1*
482 regulatory region. Reporter plasmid $P_{cosR}-gfp$ encompasses 397-bp upstream of the *PcosR*
483 regulatory region. The full-length *cosR* was then expressed from an IPTG-inducible promoter in
484 the pBBR1MCS expression vector. Relative fluorescence (RFU) and OD₅₉₅ were measured;
485 specific fluorescence was calculated by dividing RFU by OD₅₉₅. Strains were grown overnight
486 with aeration at 37°C in LB1% with ampicillin (50 μ g/mL) and chloramphenicol (12.5 μ g/mL),
487 washed twice with 1X PBS, then diluted 1:1000 in M9G1%. Expression of *cosR* was induced
488 with 0.25 mM IPTG, and strains were grown for 20 hours at 37°C with aeration under antibiotic
489 selection. GFP fluorescence was measured with excitation at 385 and emission at 509 nm in

490 black, clear-bottom 96-well plates on a Tecan Spark microplate reader with Magellan software
491 (Tecan Systems Inc., San Jose, CA). Specific fluorescence was calculated for each sampled by
492 normalizing fluorescence intensity to OD₅₉₅. Two biological replicates were performed for each
493 assay.

494 A GFP reporter assay was conducted in RIMD2210633 wild-type, $\Delta betI$, $\Delta opaR$, or $\Delta cosR$
495 mutant strains. The P_{*betI*-gfp} or P_{*cosR*-gfp} reporter plasmid was transformed into *E. coli* β 2155 λ pir
496 and conjugated into wild-type, $\Delta betI$, $\Delta opaR$, or $\Delta cosR$ mutant strains. Strains were grown
497 overnight with aeration at 37°C in LB3% with tetracycline (1 μ g/mL). Cells were then pelleted,
498 washed two times with 1X PBS, diluted 1:100 into M9G3% and grown for 20 hours with
499 antibiotic selection. Choline was added to a final concentration of 1 mM, where indicated. GFP
500 fluorescence was measured with excitation at 385 and emission at 509 nm in black, clear-bottom
501 96-well plates on a Tecan Spark microplate reader with Magellan software (Tecan Systems Inc.).
502 Specific fluorescence was calculated for each sampled by normalizing fluorescence intensity to
503 OD₅₉₅. Two biological replicates were performed for each assay.

504 **Bioinformatics and phylogenetic analyses.** Sequences of EMSA probes *PectA* A and B, *PbetI*
505 A, B and D, *Pbcc1* B, *Pbcc3* A, and *PproV1* D to which CosR bound were input into the
506 MEME (Multiple EM for Motif Elicitation) tool (meme-suite.org/tools/meme) (49). We set the
507 parameters to search for one occurrence of one motif per sequence with a minimum width of 18-
508 bp and a maximum width of 35-bp. The *V. parahaemolyticus* protein CosR (NP_798285) was
509 used as a seed for BLASTp to identify homologs in the *Vibrionaceae* family in the NCBI
510 database. Sequences of representative strains were downloaded from NCBI and used in a
511 Python-based program Easyfig to visualize gene arrangements (72). Accession numbers for

512 select strains were: *V. parahaemolyticus* RIMD (BA00031), *V. crassotreae* 9CS106 (CP016229),
513 *V. splendidus* BST398 (CP031056), *V. celticus* CECT7224 (NZ_FLQZ01000088), *V. lentinus*
514 10N.286.51.B9 (NZ_MCUE01000044), *V. tasmaniensis* LGP32 (FM954973), *V. cyclitrophicus*
515 ECSMB14105 (CO039701), *Aliivibrio fischeri* ES114 (CP000021), *A. fischeri* MJ11
516 (CP001133), *A. wodanis* AWOD1 (LN554847), *A. wodanis* 06/09/160 (CP039701). The *V.*
517 *parahaemolyticus* RIMD2201633 CosR and *A. fischeri* ES114 EctR protein sequences were
518 retrieved from NCBI using accession numbers NP_798285 and AAW88191.1, respectively, and
519 input into the SWISS-MODEL workspace, which generated a 3D model of a homodimer to
520 identify putative ligand-binding pockets (73-77). Evolutionary analysis was performed on the
521 CosR protein from all species within the family *Vibrionaceae* with completed genome sequence
522 and as an outgroup we used CosR from members of the genus *Aeromonas*. Protein sequences
523 were obtained from NCBI database and aligned using the Clustal W algorithm (78). Aligned
524 protein sequences were used to generate a Neighbor-Joining tree with a bootstrap value of 1000
525 (79, 80). The evolutionary distances were computed using the JTT matrix-based method [3] and
526 are in the units of the number of amino acid substitutions per site (81). The rate variation among
527 sites was modeled with a gamma distribution (shape parameter = 5). This analysis involved 96
528 amino acid sequences. All ambiguous positions were removed for each sequence pair using the
529 pairwise deletion option. There were a total of 173 positions in the final dataset. Evolutionary
530 analyses were conducted in MEGA X (82).

531

532 **ACKNOWLEDGEMENTS**

533 This research was supported by a National Science Foundation grant (award IOS-1656688) to
534 E.F.B. G.J.G. was funded in part by a University of Delaware graduate fellowship award. We

535 thank members of the Boyd Group and three anonymous reviewers for constructive feedback on
536 the manuscript.

537 REFERENCES

538

539 1. Galinski EA. 1995. Osmoadaptation in bacteria. *Adv Microb Physiol* 37:272-328.

540 2. Csonka LN. 1989. Physiological and genetic responses of bacteria to osmotic stress. *Microbiol Rev* 53:121-47.

541 3. Wood JM. 2011. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. *Annu Rev Microbiol* 65:215-38.

542 4. da Costa MS, Santos H, Galinski EA. 1998. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. *Adv Biochem Eng Biotechnol* 61:117-53.

543 5. Galinski EA, Oren A. 1991. Isolation and structure determination of a novel compatible solute from the moderately halophilic purple sulfur bacterium *Ectothiorhodospira marismortui*. *Eur J Biochem* 198:593-598.

544 6. Sleator RD, Hill C. 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. *FEMS Microbiol Rev* 26:49-71.

545 7. Roberts MF. 2004. Osmoadaptation and osmoregulation in archaea: update 2004. *Front Biosci* 9:1999-2019.

546 8. Roberts MF. 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. *Saline Systems* 1:5.

547 9. Kempf B, Bremer E. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. *Arch Microbiol* 170:319-30.

548 10. Record MT, Jr., Courtenay ES, Cayley DS, Guttman HJ. 1998. Responses of *E. coli* to osmotic stress: large changes in amounts of cytoplasmic solutes and water. *Trends Biochem Sci* 23:143-8.

549 11. Wood JM. 1999. Osmosensing by bacteria: signals and membrane-based sensors. *Microbiol Mol Biol Rev* 63:230-62.

550 12. Widderich N, Hoppner A, Pittelkow M, Heider J, Smits SH, Bremer E. 2014. Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms. *PLoS One* 9:e93809.

551 13. Naughton LM, Blumerman SL, Carlberg M, Boyd EF. 2009. Osmoadaptation among *Vibrio* species and unique genomic features and physiological responses of *Vibrio parahaemolyticus*. *Appl Environ Microbiol* 75:2802-10.

552 14. Ongagna-Yhombi SY, Boyd EF. 2013. Biosynthesis of the osmoprotectant ectoine, but not glycine betaine, is critical for survival of osmotically stressed *Vibrio parahaemolyticus* cells. *Appl Environ Microbiol* 79:5038-49.

553 15. Louis P, Galinski EA. 1997. Characterization of genes for the biosynthesis of the compatible solute ectoine from *Marinococcus halophilus* and osmoregulated expression in *Escherichia coli*. *Microbiology* 143 (Pt 4):1141-9.

554 16. Lo CC, Bonner CA, Xie G, D'Souza M, Jensen RA. 2009. Cohesion group approach for evolutionary analysis of aspartokinase, an enzyme that feeds a branched network of many biochemical pathways, p 594-651, *Microbiol Mol Biol Rev*, 73.

555 17. Gregory GJ, Morreale DP, Carpenter MR, Kalburge SS, Boyd EF. 2019. Quorum sensing regulators AphA and OpaR control expression of the operon responsible for biosynthesis of the compatible solute ectoine. *Appl Environ Microbiol* 85.

556 18. Shikuma NJ, Davis KR, Fong JN, Yildiz FH. 2013. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in *Vibrio cholerae*. *Environ Microbiol* 15:1387-99.

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583 19. Roberts MF, Lai MC, Gunsalus RP. 1992. Biosynthetic pathways of the osmolytes N
584 epsilon-acetyl-beta-lysine, beta-glutamine, and betaine in *Methanohalophilus* strain
585 FDF1 suggested by nuclear magnetic resonance analyses. *J Bacteriol* 174:6688-93.

586 20. Lai MC, Yang DR, Chuang MJ. 1999. Regulatory factors associated with synthesis of the
587 osmolyte glycine betaine in the halophilic methanarchaeon *Methanohalophilus*
588 *portucalensis*. *Appl Environ Microbiol* 65:828-33.

589 21. Nyysölä A, Kerouuo J, Kaukinen P, Weymarn Nv, Reinikainen T. 2000. Extreme
590 halophiles synthesize betaine from glycine by methylation. *J. Biol. Chem.* 275:22196-
591 2201.

592 22. Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Takano J, Takabe T. 2003. Isolation
593 and functional characterization of N-methyltransferases that catalyze betaine synthesis
594 from glycine in a halotolerant photosynthetic organism *Aphanothecace halophytica*. *J Biol*
595 *Chem* 278:4932-42.

596 23. Lu WD, Chi ZM, Su CD. 2006. Identification of glycine betaine as compatible solute in
597 *Synechococcus* sp. WH8102 and characterization of its N-methyltransferase genes
598 involved in betaine synthesis. *Arch Microbiol* 186:495-506.

599 24. Kimura Y, Kawasaki S, Yoshimoto H, Takegawa K. 2010. Glycine betaine
600 biosynthesized from glycine provides an osmolyte for cell growth and spore germination
601 during osmotic stress in *Myxococcus xanthus*. *J Bacteriol* 192:1467-70.

602 25. Landfald B, Strom AR. 1986. Choline-glycine betaine pathway confers a high level of
603 osmotic tolerance in *Escherichia coli*. *J Bacteriol* 165:849-55.

604 26. Andresen PA, Kaasen I, Styrvold OB, Boulnois G, Strom AR. 1988. Molecular cloning,
605 physical mapping and expression of the bet genes governing the osmoregulatory choline-
606 glycine betaine pathway of *Escherichia coli*. *J Gen Microbiol* 134:1737-46.

607 27. Lamark T, Rokenes TP, McDougall J, Strom AR. 1996. The complex bet promoters of
608 *Escherichia coli*: regulation by oxygen (ArcA), choline (BetI), and osmotic stress. *J*
609 *Bacteriol* 178:1655-62.

610 28. Rokenes TP, Lamark T, Strom AR. 1996. DNA-binding properties of the BetI repressor
611 protein of *Escherichia coli*: the inducer choline stimulates BetI-DNA complex formation.
612 *J Bacteriol* 178:1663-70.

613 29. Ongagna-Yhombi SY, McDonald ND, Boyd EF. 2015. Deciphering the role of multiple
614 betaine-carnitine-choline transporters in the Halophile *Vibrio parahaemolyticus*. *Appl*
615 *Environ Microbiol* 81:351-63.

616 30. Eshoo MW. 1988. lac fusion analysis of the bet genes of *Escherichia coli*: regulation by
617 osmolarity, temperature, oxygen, choline, and glycine betaine. *J Bacteriol* 170:5208-15.

618 31. Scholz A, Stahl J, de Berardinis V, Muller V, Averhoff B. 2016. Osmotic stress response
619 in *Acinetobacter baylyi*: identification of a glycine-betaine biosynthesis pathway and
620 regulation of osmoadaptive choline uptake and glycine-betaine synthesis through a
621 choline-responsive BetI repressor. *Environ Microbiol Rep* 8:316-22.

622 32. van Kessel JC, Rutherford ST, Cong JP, Quinodoz S, Healy J, Bassler BL. 2015. Quorum
623 sensing regulates the osmotic stress response in *Vibrio harveyi*. *J Bacteriol* 197:73-80.

624 33. Chaparian RR, Olney SG, Hustmyer CM, Rowe-Magnus DA, van Kessel JC. 2016.
625 Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing
626 genes in *Vibrio harveyi*. *Mol Microbiol* 101:823-40.

627 34. Ventosa A, Nieto JJ, Oren A. 1998. Biology of moderately halophilic aerobic bacteria.
628 *Microbiol Mol Biol Rev* 62:504-44.

629 35. Oren A. 1999. Bioenergetic aspects of halophilism. *Microbiol Mol Biol Rev* 63:334-48.
630 36. Wood JM. 2007. Bacterial osmosensing transporters. *Methods Enzymol* 428:77-107.
631 37. Culham DE, Henderson J, Crane RA, Wood JM. 2003. Osmosensor ProP of *Escherichia*
632 *coli* responds to the concentration, chemistry, and molecular size of osmolytes in the
633 proteoliposome lumen. *Biochemistry*, 42:410-420.
634 38. Rübenhagen R, Morbach S, Krämer R. 2001. The osmoreactive betaine carrier BetP from
635 *Corynebacterium glutamicum* is a sensor for cytoplasmic K⁺. *EMBO J*, 20:5412-20.
636 39. van der Heide T, Stuart MC, Poolman B. 2001. On the osmotic signal and osmosensing
637 mechanism of an ABC transport system for glycine betaine. *EMBO J*, 20:7022-32.
638 40. Cairney J, Booth IR, Higgins CF. 1985. Osmoregulation of gene expression in
639 *Salmonella typhimurium*: proU encodes an osmotically induced betaine transport system.
640 *J Bacteriol* 164:1224-32.
641 41. May G, Faatz E, Villarejo M, Bremer E. 1986. Binding protein dependent transport of
642 glycine betaine and its osmotic regulation in *Escherichia coli* K12. *Mol Gen Genet*
643 205:225-33.
644 42. Kempf B, Bremer E. 1995. OpuA, an osmotically regulated binding protein-dependent
645 transport system for the osmoprotectant glycine betaine in *Bacillus subtilis*. *J Biol Chem*
646 270:16701-13.
647 43. Mahmood NA, Biemans-Oldehinkel E, Patzlaff JS, Schuurman-Wolters GK, Poolman B.
648 2006. Ion specificity and ionic strength dependence of the osmoregulatory ABC
649 transporter OpuA. *J Biol Chem* 281:29830-9.
650 44. Chen C and Beattie GA. 2007. Characterization of the osmoprotectant transporter OpuC
651 from *Pseudomonas syringae* and demonstration that cystathionine-beta-synthase domains
652 are required for its osmoregulatory function. *J Bacteriol* 189:6901-12.
653 45. Lucht JM and Bremer E. 1994. Adaptation of *Escherichia coli* to high osmolarity
654 environments: osmoregulation of the high-affinity glycine betaine transport system proU.
655 *FEMS Microbiol Rev* 14:3-20.
656 46. Gul N and Poolman B. 2013. Functional reconstitution and osmoregulatory properties of
657 the ProU ABC transporter from *Escherichia coli*. *Mol Membr Biol* 30:138-48.
658 47. Lamark T, Kaasen I, Eshoo MW, Falkenberg P, McDougall J, Strom AR. 1991. DNA
659 sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine
660 betaine pathway of *Escherichia coli*. *Mol Microbiol* 5:1049-64.
661 48. Ziegler C, Bremer E, Kramer R. 2010. The BCCT family of carriers: from physiology to
662 crystal structure. *Mol Microbiol* 78:13-34.
663 49. Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to
664 discover motifs in biopolymers. *Proc Int Conf Intell Syst Mol Biol* 2:28-36.
665 50. Czech L, Hermann L, Stoveken N, Richter AA, Hoppner A, Smits SHJ, Heider J, Bremer
666 E. 2018. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and
667 Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. *Genes*
668 (Basel) 9.
669 51. Shao Z, Deng W, Li S, He J, Ren S, Huang W, Lu Y, Zhao G, Cai Z, Wang J. 2015.
670 GlnR-Mediated Regulation of *ectABCD* transcription expands the role of the GlnR
671 regulon to osmotic stress management. *J Bacteriol* 197:3041-7.
672 52. Pastor JM, Bernal V, Salvador M, Argandona M, Vargas C, Csonka L, Sevilla A, Iborra
673 JL, Nieto JJ, Canovas M. 2013. Role of central metabolism in the osmoadaptation of the
674 halophilic bacterium *Chromohalobacter salexigens*. *J Biol Chem* 288:17769-81.

675 53. Mustakhimov, II, Reshetnikov AS, Glukhov AS, Khmelenina VN, Kalyuzhnaya MG,
676 Trotsenko YA. 2010. Identification and characterization of EctR1, a new transcriptional
677 regulator of the ectoine biosynthesis genes in the halotolerant methanotroph
678 *Methylomicrobium alcaliphilum* 20Z. *J Bacteriol* 192:410-7.

679 54. Mustakhimov, II, Reshetnikov AS, Khmelenina VN, Trotsenko YA. 2009. EctR--a novel
680 transcriptional regulator of ectoine biosynthesis genes in the haloalkaliphilic
681 methylotrophic bacterium *Methylophaga alcalica*. *Dokl Biochem Biophys* 429:305-8.

682 55. Mustakhimov, II, Reshetnikov AS, Fedorov DN, Khmelenina VN, Trotsenko YA. 2012.
683 Role of EctR as transcriptional regulator of ectoine biosynthesis genes in *Methylophaga*
684 *thalassica*. *Biochemistry (Mosc)* 77:857-63.

685 56. Perera IC, Grove A. 2010. Molecular mechanisms of ligand-mediated attenuation of
686 DNA binding by MarR family transcriptional regulators. *J Mol Cell Biol* 2:243-54.

687 57. Sulavik MC, Gambino LF, Miller PF. 1995. The MarR repressor of the multiple
688 antibiotic resistance (mar) operon in *Escherichia coli*: prototypic member of a family of
689 bacterial regulatory proteins involved in sensing phenolic compounds. *Mol Med* 1:436-
690 46.

691 58. Cohen SP, Hachler H, Levy SB. 1993. Genetic and functional analysis of the multiple
692 antibiotic resistance (mar) locus in *Escherichia coli*. *J Bacteriol* 175:1484-92.

693 59. Hong M, Fuangthong M, Helmann JD, Brennan RG. 2005. Structure of an OhrR-ohrA
694 operator complex reveals the DNA binding mechanism of the MarR family. *Mol Cell*
695 20:131-41.

696 60. Kumarevel T, Tanaka T, Umehara T, Yokoyama S. 2009. ST1710-DNA complex crystal
697 structure reveals the DNA binding mechanism of the MarR family of regulators. *Nucleic*
698 *Acids Res* 37:4723-35.

699 61. Dolan KT, Duguid EM, He C. 2011. Crystal structures of SlyA protein, a master
700 virulence regulator of *Salmonella*, in free and DNA-bound states. *J Biol Chem*
701 286:22178-85.

702 62. Hao Z, Lou H, Zhu R, Zhu J, Zhang D, Zhao BS, Zeng S, Chen X, Chan J, He C, Chen
703 PR. 2014. The multiple antibiotic resistance regulator MarR is a copper sensor in
704 *Escherichia coli*. *Nat Chem Biol* 10:21-8.

705 63. Deochand DK, Grove A. 2017. MarR family transcription factors: dynamic variations on
706 a common scaffold. *Crit Rev Biochem Mol Biol* 52:595-613.

707 64. Reshetnikov AS, Khmelenina VN, Mustakhimov, II, Kalyuzhnaya M, Lidstrom M,
708 Trotsenko YA. 2011. Diversity and phylogeny of the ectoine biosynthesis genes in
709 aerobic, moderately halophilic methylotrophic bacteria. *Extremophiles* 15:653-63.

710 65. Whitaker WB, Parent MA, Naughton LM, Richards GP, Blumerman SL, Boyd EF. 2010.
711 Modulation of responses of *Vibrio parahaemolyticus* O3:K6 to pH and temperature
712 stresses by growth at different salt concentrations. *Appl Environ Microbiol* 76:4720-9.

713 66. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima
714 M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H,
715 Hattori M, Iida T. 2003. Genome sequence of *Vibrio parahaemolyticus*: a pathogenic
716 mechanism distinct from that of *V. cholerae*. *Lancet* 361:743-9.

717 67. Horton RM HH, Ho SN, Pullen JK, Pease LR. 1989. Engineering hybrid genes without
718 the use of restriction enzymes: gene splicing by overlap extension. *Gene* 77:61-68.

719 68. Gibson DG. 2011. Enzymatic assembly of overlapping DNA fragments. *Methods*
720 *Enzymol* 498:349-61.

721 69. Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-
722 PCR. *Nucleic Acids Res* 29:e45.

723 70. Kalburge SS, Carpenter MR, Rozovsky S, Boyd EF. 2017. Quorum Sensing Regulators
724 Are Required for Metabolic Fitness in *Vibrio parahaemolyticus*. *Infect Immun*
725 85:e00930-16.

726 71. Haardt M, Kempf B, Faatz E, Bremer E. 1995. The osmoprotectant proline betaine is a
727 major substrate for the binding-protein-dependent transport system ProU of *Escherichia*
728 *coli* K-12. *Mol Gen Genet* 246:783-6.

729 72. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer.
730 *Bioinformatics* 27:1009-10.

731 73. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de
732 Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. 2018. SWISS-MODEL:
733 homology modelling of protein structures and complexes. *Nucleic Acids Res* 46:W296-
734 w303.

735 74. Guex N, Peitsch MC, Schwede T. 2009. Automated comparative protein structure
736 modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective.
737 *Electrophoresis* 30 Suppl 1:S162-73.

738 75. Bienert S, Waterhouse A, de Beer TA, Tauriello G, Studer G, Bordoli L, Schwede T.
739 2017. The SWISS-MODEL Repository-new features and functionality. *Nucleic Acids*
740 *Res* 45:D313-d319.

741 76. Benkert P, Biasini M, Schwede T. 2011. Toward the estimation of the absolute quality of
742 individual protein structure models. *Bioinformatics* 27:343-50.

743 77. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. 2017. Modeling protein
744 quaternary structure of homo- and hetero-oligomers beyond binary interactions by
745 homology. *Sci Rep* 7:10480.

746 78. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of
747 progressive multiple sequence alignment through sequence weighting, position-specific
748 gap penalties and weight matrix choice. *Nucleic Acids Res* 22:4673-80.

749 79. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing
750 phylogenetic trees. *Mol Biol Evol* 4:406-25.

751 80. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap.
752 *Evolution* 39:783-791.

753 81. Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of mutation data
754 matrices from protein sequences. *Comput Appl Biosci* 8:275-82.

755 82. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular
756 Evolutionary Genetics Analysis across Computing Platforms. *Mol Biol Evol* 35:1547-
757 1549.

758 83. Dehio C, Meyer M. 1997. Maintenance of broad-host-range incompatibility group P and
759 group Q plasmids and transposition of Tn5 in *Bartonella henselae* following conjugal
760 plasmid transfer from *Escherichia coli*. *J Bacteriol* 179:538-40.

761 84. Philippe N, Alcaraz JP, Coursange E, Geiselmann J, Schneider D. 2004. Improvement of
762 pCVD442, a suicide plasmid for gene allele exchange in bacteria. *Plasmid* 51:246-55.

763 85. Kovach ME, Phillips RW, Elzer PH, Roop RM, 2nd, Peterson KM. 1994. pBBR1MCS: a
764 broad-host-range cloning vector. *Biotechniques* 16:800-2.

765 86. Karunakaran R, Mauchline TH, Hosie AH, Poole PS. 2005. A family of promoter probe
766 vectors incorporating autofluorescent and chromogenic reporter proteins for studying
767 gene expression in Gram-negative bacteria. *Microbiology* 151:3249-56.
768
769
770

771 **Table 1. Strains and Plasmids**

Strain	Genotype or description	Reference or Source
<i>Vibrio paraahaemolyticus</i>		
RIMD2210633	O3:K6 clinical isolate, Str ^r	(65, 66)
$\Delta cosR$	RIMD2210633 $\Delta cosR$ (VP1906), Str ^r	(17)
$\Delta betI$	RIMD2210633 $\Delta betI$ (VPA1114), Str ^r	This study
SSK2516 ($\Delta opaR$)	RIMD2210633 $\Delta opaR$ (VP2516), Str ^r	(70)
<i>Escherichia coli</i>		
DH5 α λ pir	Δlac pir	ThermoFisher Scientific
β 2155 λ pir	$\Delta dapA::erm$ pir for bacterial conjugation	(83)
BL21(DE3)	Expression strain	ThermoFisher Scientific
MKH13	MC4100 ($\Delta betTIBA$) $\Delta(putPA)101$ $\Delta(proP)2$ $\Delta(proU)$; Sp ^r	(71)
Plasmids		
pDS132	Suicide plasmid; Cm ^R Cm ^r ; SacB	(84)
pBBR1MCS	Expression vector; lacZ promoter; Cm ^r	(85)
pBBRcosR	pBBR1MCS harboring full-length cosR (VP1906)	(17)
pRU1064	promoterless-gfpUV, Amp ^r , Tet ^r , IncP origin	(86)
pRUPectA	pRU1064 with PectA-gfp, Amp ^r , Tet ^r	(17)
pRUPbetI	pRU1064 with PbetI-gfp, Amp ^r , Tet ^r	This study
pRUPbct1	pRU1064 with Pbct1-gfp, Amp ^r , Tet ^r	This study
pRUPbct3	pRU1064 with Pbct3-gfp, Amp ^r , Tet ^r	This study
pRUPproV1	pRU1064 with PproV-gfp, Amp ^r , Tet ^r	This study
pRUPcosR	pRU1064 with PcosR-gfp, Amp ^r , Tet ^r	(17)
pET28a+	Expression vector, 6xHis; Kan ^r	Novagen
pETcosR	Pet28a+ harboring cosR, Kan ^r	(17)

772

773

774 **Table 2.** *Primers used in this study*

Use	Sequence (5'-3')	bp
Mutant		
VPbet1A	gctttcttagaggtaaccgcgtgcGCCAGTTTATGTGCTCACC	580
VPbet1B	atattttatgagaCATCCCCACCTTGGCATTG	
VPbet1C	gatgcctgaaCTCGACAAGCAGCTAACG	688
VPbet1D	ggagagctcgatategcgtgcTCTGCCCTACCCGGTAATC	
VPbet1FLFwd	AGCATAGCACAATAAGAGTCG	1895
VPbet1FLRev	CCTGATTGCCAGTGAACGA	
EMSA		
VPbet1FwdA	CGGTTTCTGATTCAGGC	125
VPbet1RevA	CTTTAATGATAAATCGTTGAGTTCG	
VPbet1FwdB	ATGCCAAAATTAGTTCTGAAC	112
VPbet1RevB	GGTCTTGAATGGATGGTAGGG	
VPbet1FwdC	CCCTACCATCCATTCAAAGACC	142
VPbet1RevC	CTAAGGCTTCTACATTGCTTTC	
VPbet1FwdD	GAAAGCAATGTAGAACGCTTAG	202
VPbet1RevD	GAACTTGGATATGCGTCCATT	
VPbet1FwdE	AATGGACGCATATCCAAGTTC	158
VPbet1RevE	AGCATAGCACAATAAGAGTCG	
VPbcct1FwdA	ACCGCAAACCTCCCGATC	120
VPbcct1RevA	CGGTATTCACTGACAAAAGAA	
VPbcct1FwdB	TTCTTTGTAATGAAATACCG	110
VPbcct1RevB	TGTCTCAACTCACAAGAAAT	
VPbcct1FwdC	ATTCTGTGAGTTGAAGACA	101
VPbcct1RevC	AGCGAATTTCATACCAATCACA	
VPbcct3FwdA	CGCTTTGTAATGCAAATTACC	107
VPbcct3RevA	CCC GTGAAAGCGGAAGATC	
VPbcct3FwdB	GATCTCCGCTTCACGGG	108
VPbcct3RevB	TCTATACCTTTGTCACTCGTTCTC	
VPcosRFwdA	CAAATCTCCACACCATTAATTAG	105
VPcosRRevA	CGTCTTGGTGATTCTTTTATTG	
VPcosRFwdB	GC GAATAAAAAGAAATCACCAAGACG	142
VPcosRRevB	CCAATTTTCATCCAGTCTGTAGGG	
VPproU1FwdA	TCTTATTCCATGCGTTG	160
VPproU1RevA	AGAGGCAGAAAAGAACAGTGAA	
VPproU1FwdB	TTCACTGTTCTTCTGCCTCT	134
VPproU1RevB	GGTTATGAATGTGTTGTTGT	
VPproU1FwdC	ACAAACGAACACATTCATAACC	108
VPproU1RevC	TGGCTTGGCTTATTGGTGTTC	
VPproU1FwdD	GAACACCAATAAGCCAAGGCCA	109
VPproU1RevD	GGGATCCATGTTAATTGTCCTTGT	
VPbcct2Fwd	ACCGAGACATGCCAATTCTG	233
VPbcct2Rev	CGGTGCTCACGAATAATCTCC	
VPbcct4Fwd	AGAACAGGTTGGCTCAATGT	244
VPbcct4Rev	TTCCCCCACATCAAGTCG	
Expression		
PbetFwd	TCTAAGCTTGCATAGCACAATAAGAGTCGC	594
PbetRev	TATACTAGTTTGCCTTGTATTAAATTG	
Pbcct1Fwd	tagatagagagagagagaAAACCGCAAACCTCCCGATC	278

Pbcc1Rev	actcattttcttcctccaCAATCACAAATTATGCAAAAATGAC	
Pbcc3Fwd	tagatagagagagagagaATTTTTTCATCCAGTCTGTAGG	397
Pbcc3Rev	actcattttcttcctccaCGTTCCCTCTCTATTGTATTATTTTC	
PproU1Fwd	tagatagagagagagagaTCTTTATTCCATGCGTTG	438
PproU1Rev	actcattttcttcctccaGTTAATTGTCCTTGTATGTG	
PcosRFwd	tagatagagagagagagaCGTTCCCTCTCTATTGTATTATTTTC	397
PcosRRev	cggccgcctagaactagtgTTATTCTGGTTGGTGATG	
RT-PCR primers		
VPbcc1Fwd	GTTCGGTCTTGCAGTTCTC	246
VPbcc1Rev	CCCATCGCAGTATCAAAGGT	
VPbcc2Fwd	AACAAAGGGTTGCCACTGAC	167
VPbcc2Rev	TTCAAACCTGTTGCTGCTTG	
VPbcc3Fwd	TGGACGGTATTCTACTGGGC	202
VPbcc3Rev	CGCCTAACTCGCCTACTTTG	
VPectAFwd	TCGAAAGGGAAGCGCTGAG	125
VPectARev	AGTGCTGACTTGGCCATGAT	
VPasp_ectFwd	CGATGATTCATTGCGACG	126
VPasp_ectRev	GTCATCTCACTGTAGCCCCG	
VPproV1Fwd	GCATCGTTCTCTGACTCC	163
VPproV1Rev	TGCTCATGACTACTGGCAC	
VPAbcc4Fwd	CAAGGCGTAGGCCGCATGGT	234
VPAbcc4Rev	ACCGCCCACGATGCTGAACC	
VPAbetIFwd	ACTTCGGTGGTAAGCATGGG	138
VPAbetIRev	TGCCGTCAATAATGGCGTTG	
VPAbetBFwd	TGGAAATCAGCACCGACT	160
VPAbetBRev	TCTGCCCTACCCGTAATCA	
VPaproXFwd	TTCCCTGGTAACTGGATGCC	216
VPaproXRev	ATCGTTACCTGGTTGATGC	
VPaproWFwd	ATCACAGCGGCACTGGCTTGG	190
VPaproWRev	GGCGATGCGCTGCCATGATC	
16SFwd	ACCGCCTGGGGAGTACGGTC	
16SRev	TGCGCTCGTTGCAGGGACTT	234
775		
776		
777		
778		
779		
780		
781		
782		
783		

784 **Figure legends**

785 **Figure 1.** RNA was isolated from RIMD2210633 after growth in M9G 1%NaCl and M9G
786 3%NaCl at an OD₅₉₅ of 0.45. Expression analysis of **(A)** *ectA, asp_ect*, **(B)** *betI, betB, proX2,*
787 *proW2* **(C)** *bcct1, bcct2, bcct3, bcct4* and *proV1* by quantitative real time PCR (qPCR). 16S was
788 used for normalization. Expression levels shown are levels in M9G1% relative to M9G3%. Mean
789 and standard error of two biological replicates are shown. Statistics were calculated using a
790 Student's t-test (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

791 **Figure 2.** RNA was isolated from RIMD2210633 and Δ *cosR* after growth in M9G 1%NaCl at an
792 OD₅₉₅ of 0.45. Expression analysis of **(A)** *ectA, asp_ect*, **(B)** *betI, betB, proX2, proW2* **(C)** *bcct1,*
793 *bcct2, bcct3, bcct4* and *proV1* by qPCR. 16S was used for normalization. Expression levels
794 shown are levels in Δ *cosR* relative to wild-type. Mean and standard error of two biological
795 replicates are shown. Statistics were calculated using a Student's t-test (*, P < 0.05; **, P <
796 0.01).

797 **Figure 3. (A)** The regulatory region of *betIBAproXWV* was divided into five probes for EMSAs,
798 *PbetI* A-E, 125-bp, 112-bp, 142-bp, 202-bp and 158-bp, respectively. The regulatory region used
799 for the GFP reporter assay is indicated with a bracket. **(B)** An EMSA was performed with
800 purified CosR-His (0 to 0.62 μ M) and 30 ng of each *PbetI* probe, with DNA:protein molar ratios
801 of 1:0, 1:1, 1:5, and 1:10. **(C)** A P_{betI} -*gfp* reporter assay was performed in *E. coli* strain MKH13
802 containing an expression plasmid with full-length *cosR* (*pcosR*). Specific fluorescence of the
803 CosR-expressing strain was compared to a strain harboring empty expression vector. Mean and
804 standard deviation of two biological replicates are shown. Statistics were calculated using a
805 Student's t-test (***, P < 0.001).

806 **Figure 4. (A)** The regulatory region of *bcct1* was divided into three similarly sized probes for
807 EMSAs, *Pbcct1* A-C, 120-bp, 110-bp, and 101-bp, respectively. The regulatory region used for
808 the GFP reporter assay is indicated with a bracket. **(B)** An EMSA was performed with purified
809 CosR-His (0 to 0.69 μ M) and 30 ng of *Pbcct1* probe with DNA:protein molar ratios of 1:0, 1:1,
810 1:5, and 1:10. **(C)** A $P_{bcct1-gfp}$ reporter assay was performed in *E. coli* strain MKH13 containing
811 an expression plasmid with full-length *cosR* (*pcosR*). Specific fluorescence of the CosR-
812 expressing strain was compared to a strain harboring empty expression vector (pBBR1MCS).
813 Mean and standard deviation of two biological replicates are shown. Statistics were calculated
814 using a Student's t-test (**, P < 0.01).

815 **Figure 5. (A)** A 196-bp portion of the regulatory region of *bcct3* was split into two probes for
816 EMSAs, *Pbcct3* A and B, 108-bp and 107-bp, respectively. The regulatory region used for the
817 GFP reporter assay is indicated with a bracket. **(B)** An EMSA was performed with purified
818 CosR-His (0 to 0.65 μ M) and 30 ng of *Pbcct3* probe with DNA:protein molar ratios of 1:0, 1:1,
819 1:5, and 1:10. **(C)** $P_{bcct3-gfp}$ reporter assay was performed in *E. coli* strain MKH13 containing an
820 expression plasmid with full-length *cosR* (*pcosR*). Specific fluorescence of the CosR-expressing
821 strain was compared to a strain harboring empty expression vector (pBBR1MCS). Mean and
822 standard deviation of two biological replicates are shown. Statistics were calculated using a
823 Student's t-test (**, P < 0.01). **(D)** Diagrams indicating the regulatory regions of *bcct2* and *bcct4*
824 that were used as probes in a CosR EMSA. **(E)** An EMSA was performed with CosR-His (0 to
825 0.18 μ M) and probes of the regulatory regions of *bcct2* and *bcct4*. Each lane contains 30 ng of
826 DNA and DNA:protein molar ratios of 1:0, 1:1, 1:5, and 1:10.

827 **Figure 6. (A)** The 447-bp regulatory region of the *proV1* gene was divided into four probes for
828 EMSAs, *PproV1* A-D, 160-bp, 134-bp, 108-bp and 109-bp, respectively. The regulatory region

829 used for the GFP reporter assay is indicated with a bracket. **(B)** An EMSA was performed with
830 purified CosR-His (0 to 0.64 μ M) and 30 ng of each *P_{proV1}* probe with DNA:protein molar
831 ratios of 1:0, 1:1, 1:5, and 1:10. **(C)** A reporter assay was conducted in *E. coli* MKH13 harboring
832 the *P_{proV1}-gfp* reporter plasmid and the expression plasmid *pcosR*. Specific fluorescence of the
833 CosR-expressing strain was compared to an empty vector strain. Mean and standard deviation of
834 two biological replicates are shown. Statistics were calculated using a Student's t-test (*, P <
835 0.05).

836 **Figure 7.** **(A)** A 220-bp section of the regulatory region of *cosR* was split into two similarly
837 sized probes for EMSAs, *PcosR* A and B, 105-bp and 142-bp, respectively. The regulatory
838 region used for the GFP reporter assay is indicated with a bracket. **(B)** An EMSA was performed
839 with increasing concentrations of purified CosR-His (0 to 0.66 μ M) and 30 ng of each probe with
840 DNA:protein molar ratios of 1:0, 1:1, 1:5, and 1:10. **(C)** A *P_{cosR}-gfp* reporter assay was
841 performed in *E. coli* strain MKH13 the *pcosR* expression plasmid. Specific fluorescence of the
842 CosR-expressing strain was compared to a strain harboring empty expression vector. Mean and
843 standard deviation of two biological replicates are shown. **(D)** A *P_{cosR}-gfp* reporter assay was
844 performed in *V. parahaemolyticus* WT and Δ *cosR* mutant strains. Mean and standard deviation
845 of three biological replicates are shown.

846 **Figure 8.** **(A)** Expression of a *P_{betI}-gfp* transcriptional fusion reporter in wild-type and a Δ *betI*
847 mutant. Relative fluorescence intensity (RFU) and OD₅₉₅ were measured after growth in **(A)**
848 M9G3% or **(B)** M9G3% with the addition of choline. Specific fluorescence was calculated by
849 dividing RFU by OD. Mean and standard deviation of two biological replicates are shown.
850 Statistics were calculated using a Student's t-test (*, P < 0.05). **(C)** A reporter assay was
851 conducted in *E. coli* MKH13 using the *P_{betI}-gfp* reporter plasmid and an expression plasmid with

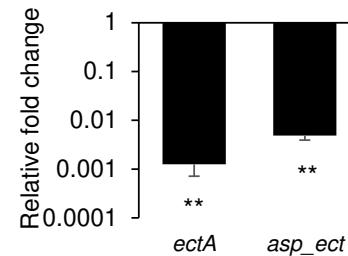
852 full-length *betI* (p*betI*). The specific fluorescence was calculated and compared to a strain with
853 an empty expression vector (pBBR1MCS). Mean and standard deviation of two biological
854 replicates are shown. Statistics were calculated using a Student's t-test (***, P < 0.001).

855 **Figure 9. (A)** Expression of a P_{betI} -*gfp* transcriptional fusion reporter in wild-type and $\Delta opaR$
856 mutant strains. Relative fluorescence intensity (RFU) and OD₅₉₅ were measured after growth in
857 M9G3%. Specific fluorescence was calculated by dividing RFU by OD. Mean and standard
858 deviation of two biological replicates are shown. Statistics were calculated using a one-way
859 ANOVA with a Tukey-Kramer *post hoc* test (**, P < 0.01). **(B)** An EMSA was performed with
860 30 ng of each *PbetI* probe A-E utilized previously in the CosR EMSA and purified OpaR protein
861 (0 to 0.41 μ M) in various DNA:protein molar ratios (1:0, 1:1, and 1:5 for probe A; 1:0, 1:1, 1:10
862 for all other probes).

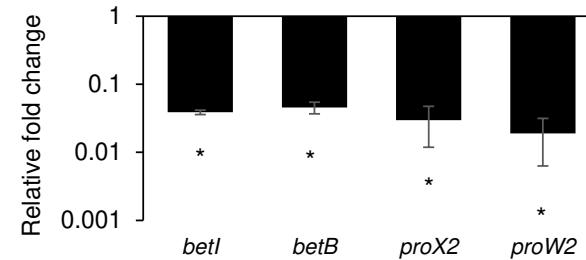
863 **Figure 10. (A)** A CosR DNA binding motif was created using MEME analysis with sequences of
864 the EMSA probes that were bound by CosR. **(B)** An alignment of the motif sites found in each
865 sequence used for MEME analysis with corresponding p-values.

866 **Figure 11.** Schematic of the genomic context of CosR homologs from select *Vibrionaceae*
867 species. Open reading frames are designated by arrows.

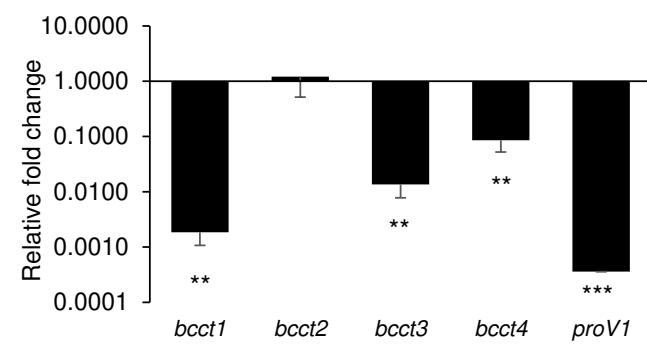
868 **Figure 12.** Phylogenetic and distribution analysis of CosR. The phylogeny of CosR was inferred
869 using the Neighbor-Joining method. The optimal tree with the sum of branch length =
870 5.19649696 is shown. The percentage of replicate trees in which the associated taxa clustered
871 together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn
872 to scale, with branch lengths in the same units as those of the evolutionary distances used to infer
873 the phylogenetic tree. Brackets represent groups based on genus.

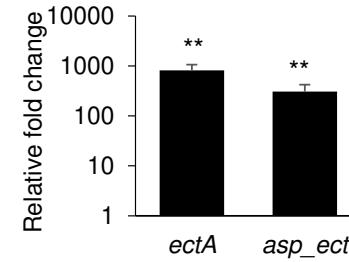

874 **Figure 13.** A model of CosR regulation of the osmotic stress response and its known regulators.
875 Solid arrows indicate direct positive regulation, dashed arrows, indirect positive regulation, solid
876 hammers represent direct repression and dashed hammers, indirect repression. Transporters
877 colored purple are osmotic responsive. The quorum sensing regulators OpaR and AphA were
878 shown in previous studies to directly and indirectly positively regulate CosR, respectively, and in
879 addition, directly regulate ectoine and glycine betaine biosynthesis operons.

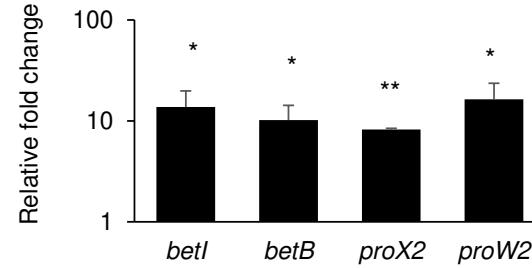
880 **Table 1.** Strains and plasmids used in this study

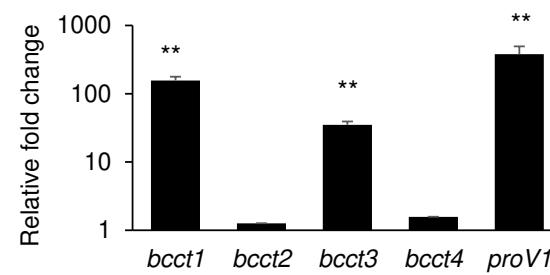

881 **Table 2.** Primers used in this study

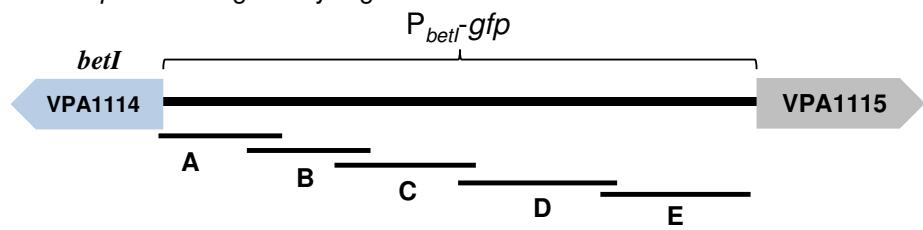
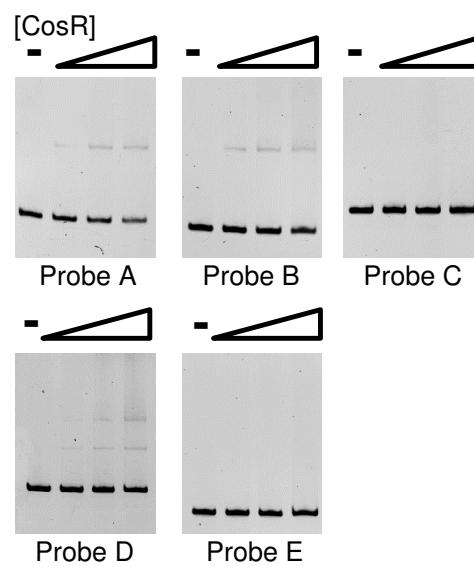
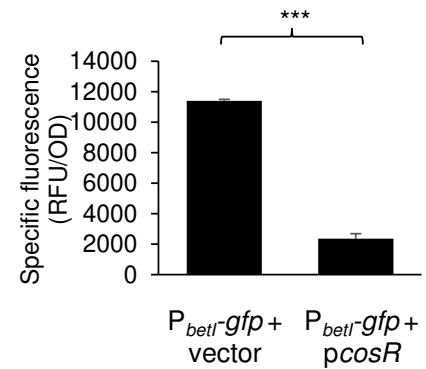
882

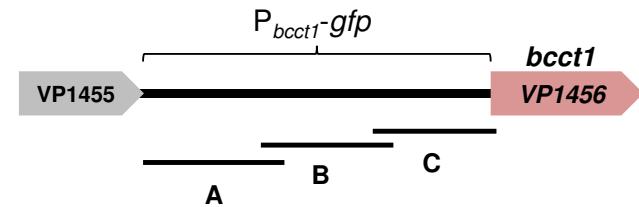
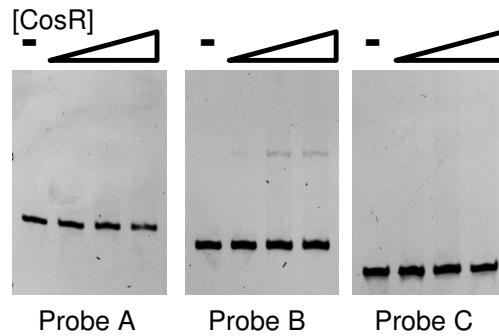
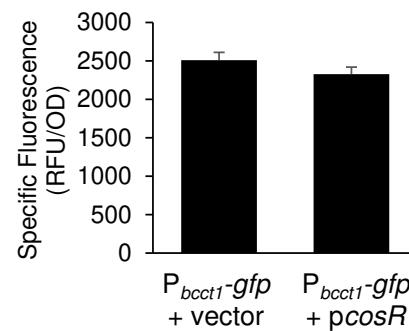

A. *ectA* and *asp_ect* expression in M9G 1%NaCl relative to M9G 3%NaCl

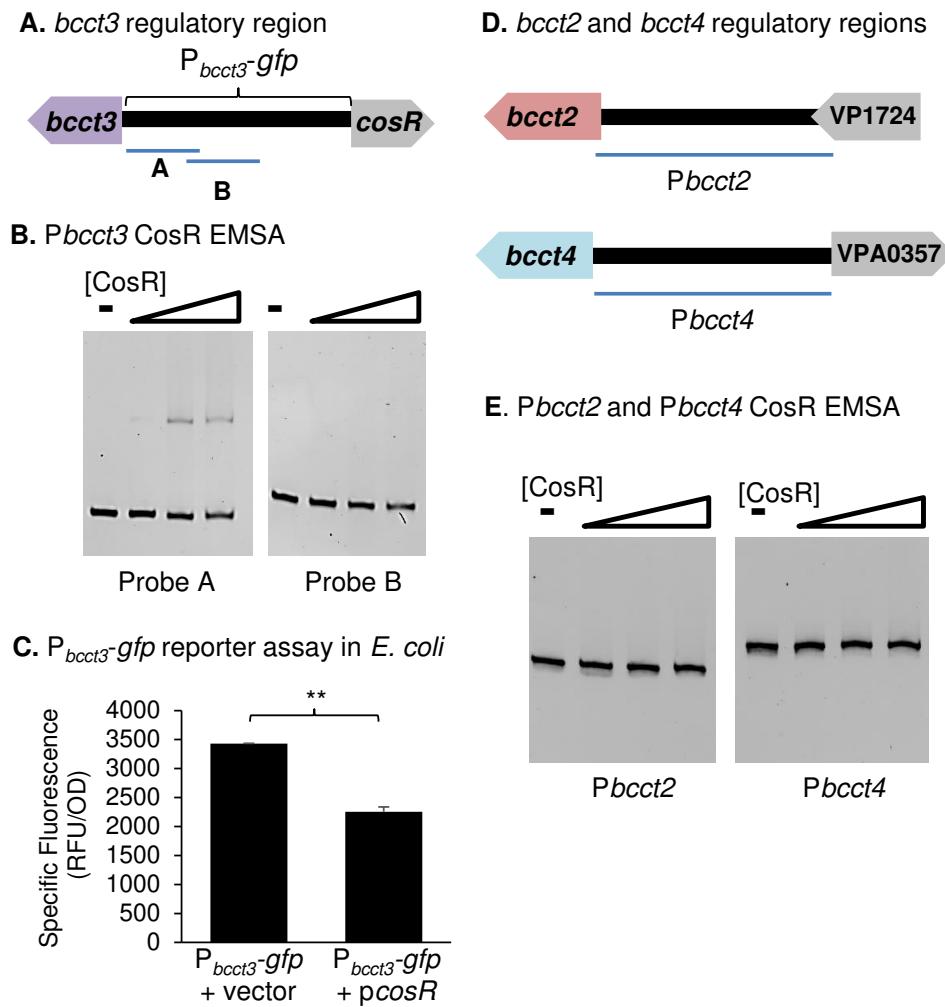

B. *betI*/*B* and *proXW* expression in M9G 1%NaCl relative to M9G 3%NaCl

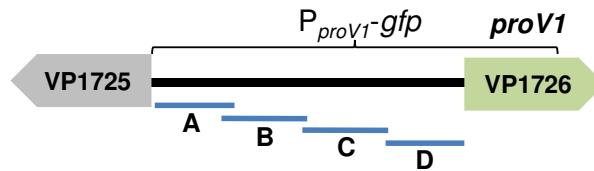
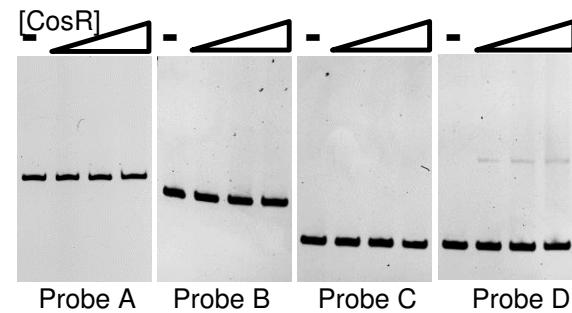
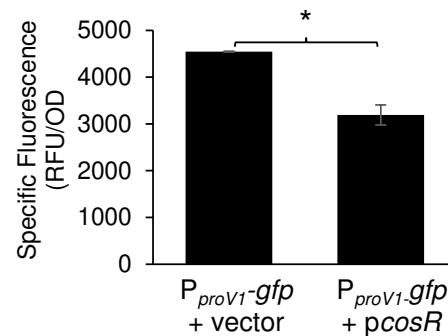

C. *bcct1*-*bcct4* & *proV1* expression in M9G 1%NaCl relative to M9G 3%NaCl

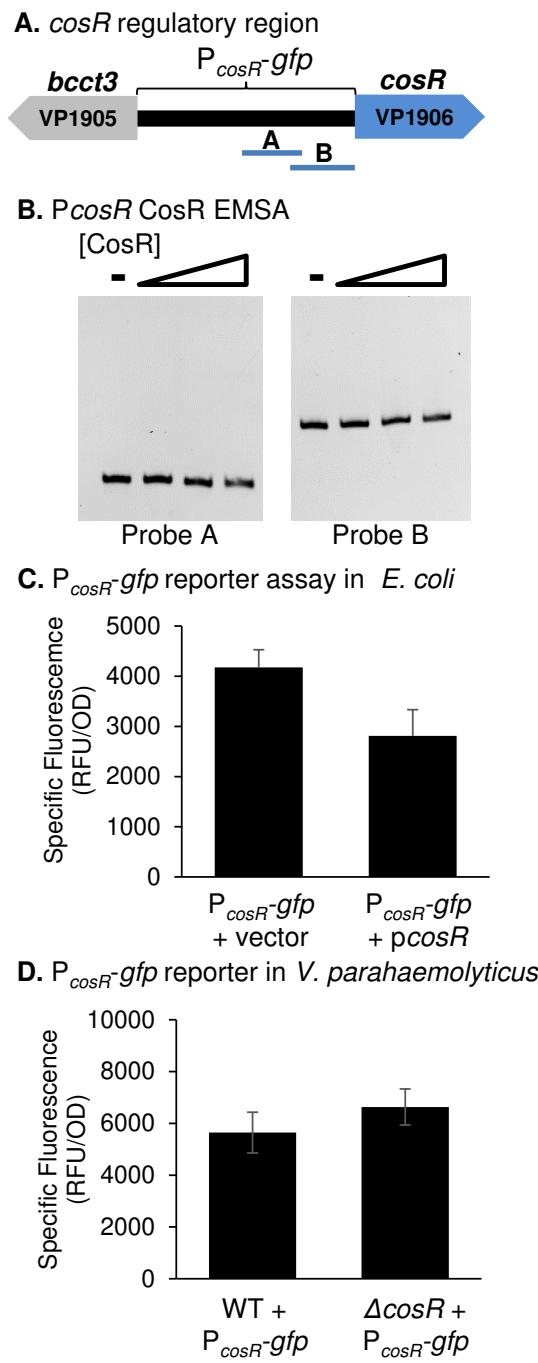

A. Expression of *ectA* and *asp_ect* in $\Delta cosR$ relative to WT in M9G1%NaCl

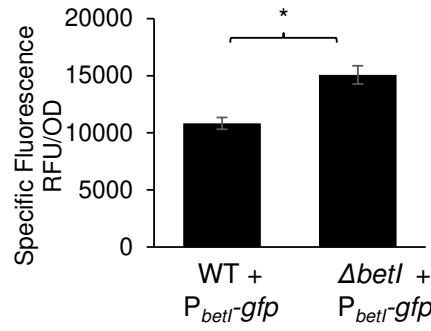
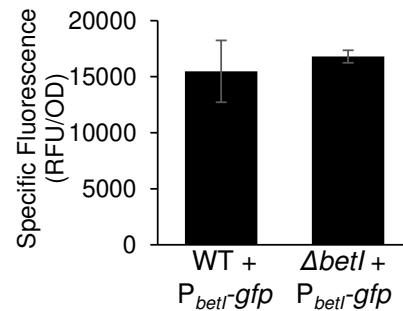
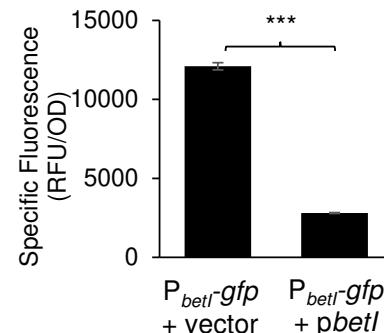




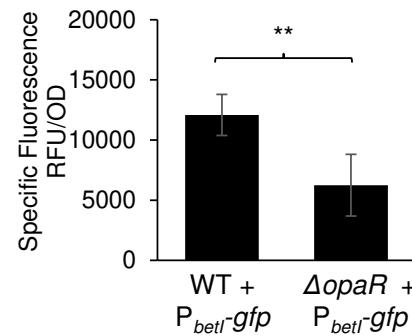
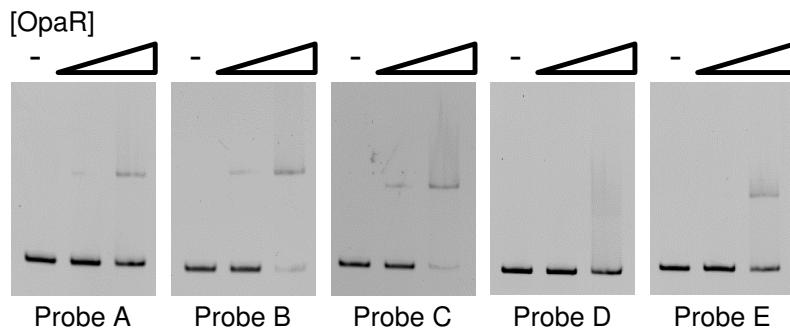



B. Expression of *betl*, *B*, *proX2*, and *proW2* in $\Delta cosR$ relative to WT in M9G1%NaCl

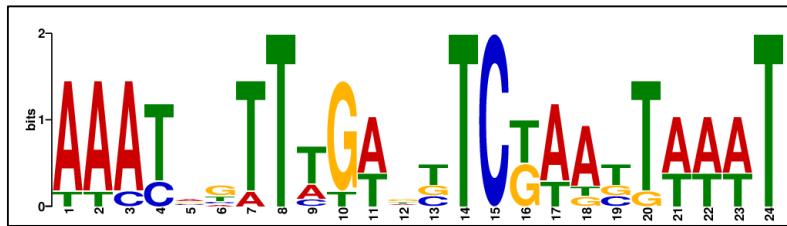





C. Expression of *bcct1*, *bcct2*, *bcct3*, *bcct4*, and *proV1* in $\Delta cosR$ relative to WT in M9G1%NaCl

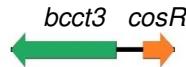


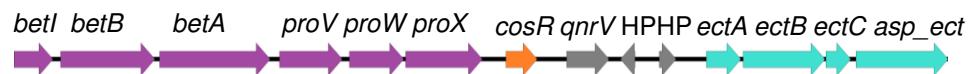
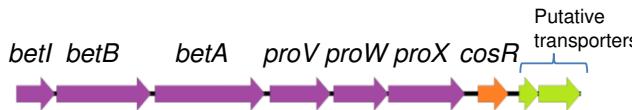
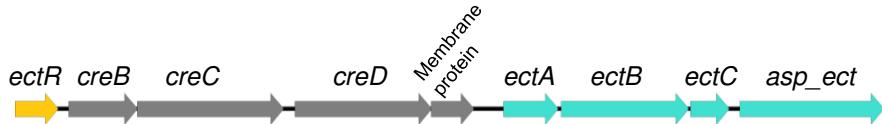
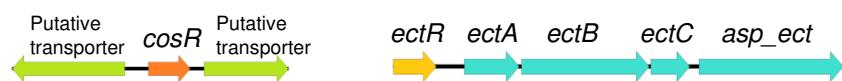



A. *betI*BAproXWV regulatory region**B. *PbetI* CosR EMSA****C. P_{betI} -*gfp* reporter assay in *E. coli***

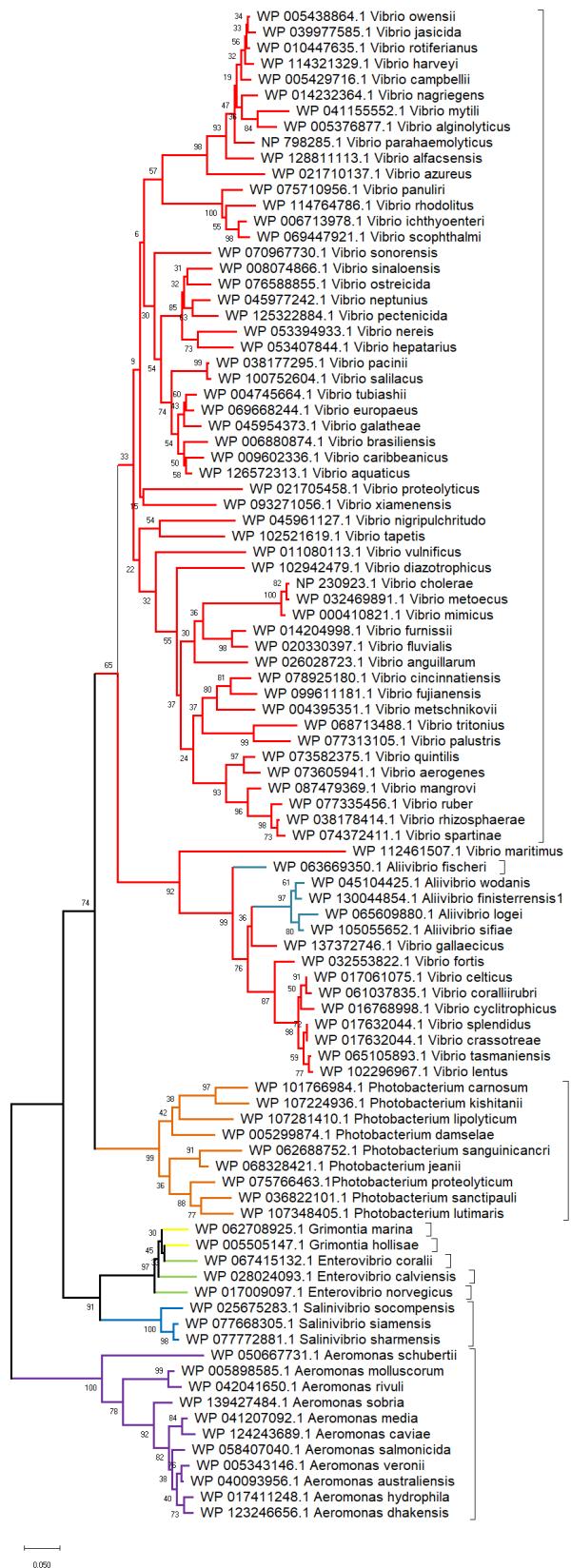


A. *bcct1* regulatory region**B. *Pbcct1* CosR EMSA****C. P_{bcct1} -gfp reporter assay in *E. coli***

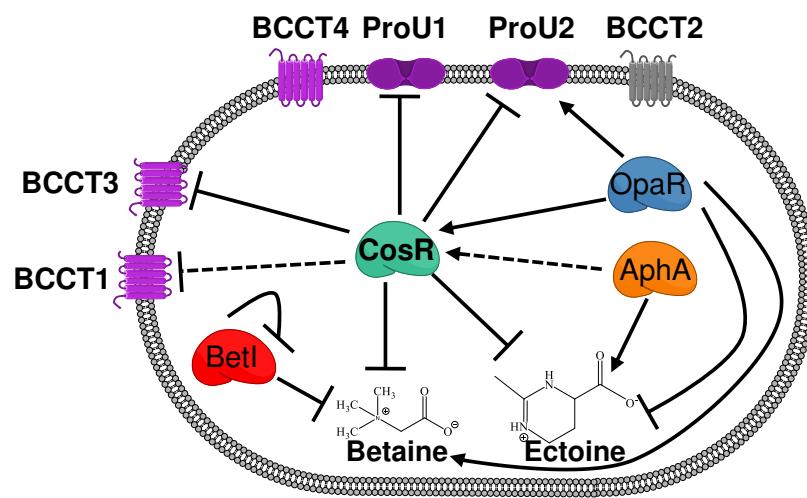


A. *proV1* regulatory region**B. *PproV1* CosR EMSA****C. *P_{proV1}-gfp* reporter assay in *E. coli***




**A. $P_{betI^-}gfp$ reporter assay
in *V. parahaemolyticus*****B. $P_{betI^-}gfp$ reporter assay in *V. parahaemolyticus* with choline****C. $P_{betI^-}gfp$ reporter assay in *E. coli***


A. $P_{betI}gfp$ reporter assay in *V. parahaemolyticus***B. P_{betI} OpaR EMSA**

A. CosR DNA binding motif from MEME analysis of bound EMSA probes**B. Alignment of motif location in regulatory regions of osmotic stress response genes**

Probe	p-value	Sites
<i>PectA</i> A	1.40e-8	TTTGAAATAC ATATCCTTTGACGTCTAATTAAAT TTCTGTATTAA
<i>PectA</i> B	9.81e-10	CCTAAATTTA AAATAGTTGAACTCTAATTTATT AAAGCATCAT
<i>PbetI</i> A	4.37e-13	TTTTAATGAT AAATCGTTGAGTTCGAACTAAAT TTTTGGCATT
<i>PbetI</i> B	7.68e-7	AAATTGCATT AACTTGTGTTATTCTGTTTTT GGGCGGGTCT
<i>PbetI</i> D	2.85e-8	AACACAAACAC AAATAATTAGTGTTCGATGTAAAT TTTTCTAAG
<i>PbccI</i> B	6.18e-9	CAATTTCGAA AAATAGTTAGATGTCGTAGTTAT TCTTGTGAGT
<i>Pbcc3</i> A	1.14e-7	ACGGGATGTA AAACGTATCGTGTTCGAACGATT TTTGTTGGT
<i>PproVI</i> D	3.64e-8	TATCACGAGT TAACGTTTGTACTCTAATTAAAT TGATAAAAGT

Vibrio parahaemolyticus* and more than 50 *Vibrio* species**V. cyclitrophicus*/V. splendidus/V. crassotreae/V. lentus/V. celticus*****Vibrio tasmaniensis*/Vibrio sp. MED222*****A. wodanis* AWOD1/A. wodanis 06/09/160*****A. wodanis* AWOD1/A. wodanis 06/09/160*****A. fischeri* MJ11/A. fischeri ES114**

