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ABSTRACT

We present an Õ (n2/3/ε2)-query algorithm that tests whether an

unknown Boolean function f : {0, 1}n → {0, 1} is unate (i.e., every
variable is either non-decreasing or non-increasing) or ε-far from

unate. The upper bound is nearly optimal given the Ω̃(n2/3) lower

bound of Chen, Waingarten and Xie (2017). The algorithm builds

on a novel use of the binary search procedure and its analysis over

long random paths.
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1 INTRODUCTION

A Boolean function f : {0, 1}n → {0, 1} is monotone if every vari-

able is non-decreasing, and unate if every variable is either non-

decreasing or non-increasing (equivalently, f is unate iff there exists

a string a ∈ {0, 1}n such that д(x ) := f (x ⊕ a) is monotone). Both

problems of testing monotonicity and unateness were introduced

in [16], where a tester is a randomized algorithm that, given query

access to an unknown Boolean function f : {0, 1}n → {0, 1}, out-
puts łacceptž with probability at least 2/3 when f is monotone

(or unate) and outputs łrejectž with probability at least 2/3 when

f is ε-far from monotone (or unate).1 The work of [16] analyzed

1Given a property P of Boolean functions, we say f is ε -far from P if for every д ∈ P ,
Prx∼{0,1}n [f (x ) , д (x )] ≥ ε where x ∼ {0, 1}n is sampled uniformly at random.
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the non-adaptive2, one-sided error3 edge tester4 which led to the

upper bounds of O (n/ε ) and O (n3/2/ε ) for testing monotonicity

and unateness, respectively. These remained the best upper bounds

for over a decade.

Recently there have been some exciting developments in under-

standing the query complexity of both problems. Progress made

on the upper bound side is due, in part, to new directed isoperi-

metric inequalities on the hypercube. In particular, [6] and [17]

showed that various isoperimetric inequalities on the hypercube

have directed analogues, where the edge boundary is now mea-

sured by considering anti-monotone bichromatic edges5. These

inequalities were then used in the analysis of non-adaptive algo-

rithms for testing monotonicity [6, 10, 17]. For example, to obtain

the Õ (
√
n/ε2) upper bound, [17] used their new inequality to prove

the existence of a large and almost regular bipartite graph that

consists of anti-monotone bichromatic edges in any function that

is ε-far from monotone. These upper bounds are complemented

with lower bounds for testing monotonicity [4, 8, 10, 11, 15]. For

non-adaptive algorithms, the query complexity has been pinned

down to Θ̃(
√
n) for constant ε ; for general adaptive algorithms, a

gap remains between Õ (
√
n/ε2) of [17] and the best lower bound

of Ω̃(n1/3) [11].

Given the similarity in their definitions, it is natural to expect

that the same directed isoperimetric inequalities can be used to test

unateness: if f is far from unate, then by definition f (x ⊕ a) is far
from monotone for any a ∈ {0, 1}n , on which one can then apply

these inequalities to obtain rich graph structures. This is indeed

the approach [12] followed to obtain an Õ (n3/4)-query adaptive

algorithm for unateness by leveraging the directed isoperimetric

inequality of [17]. It improved the upper bound of [16] as well as

recent linear upper bounds for testing unateness [2, 3, 6, 18] (which

turned out to be optimal [1, 11] for non-adaptive and one-sided

error algorithms). Shortly before the work of [12], an adaptive lower

bound of Ω̃(n2/3) was obtained in [11] for testing unateness.

Our main contribution is an Õ (n2/3/ε2)-query, adaptive algo-

rithm for testing unateness. This essentially settles the problem

since it matches the Ω̃(n2/3) adaptive lower bound of [11] up to a

poly-logarithmic factor (when ε is a constant).

Theorem 1 (Main). There is an Õ (n2/3/ε2)-query, adaptive algo-

rithm with the following property: Given ε > 0 and query access to

2An algorithm is non-adaptive if queries made cannot depend on answers to previous
queries and thus, all queries can be made in a single batch. In contrast a general
adaptive algorithm proceeds round by round: the point it queries in each round can
depend on answers to previous queries.
3We say a tester makes one-sided error if it always accepts a function that satisfies the
property.
4An edge tester keeps drawing edges (x , y ) from the hypercube uniformly at random
and querying f (x ) and f (y ).
5An edge (x, x (i ) ) (where x (i ) denotes the point obtained from x by flipping the

i th bit) in {0, 1}n is bichromatic if f (x ) , f (x (i ) ), is monotone (bichromatic) if
xi = f (x ), and is anti-monotone (bichromatic) if xi , f (x ).
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an unknown Boolean function f : {0, 1}n → {0, 1}, it always accepts
when f is unate and rejects with probability at least 2/3 when f is

ε-far from unate.

In addition to the bipartite graph structure implied by the isoperi-

metric inequality of [17], the algorithm relies on novel applications

of the standard binary search procedure on long random paths.

Given a path between two points x and y in the hypercube with

f (x ) , f (y), the binary search (see Figure 1) returns a bichromatic

edge along the path with log ℓ queries where ℓ is the length of the

path. The idea of using binary search in Boolean function property

testing is not new. In every application we are aware of in this

area (e.g., in testing conjunctions [13, 14], testing juntas [5, 9],

unateness [18] and monotonicity [7]), one runs binary search to

find bichromatic edges (or pairs, as in testing juntas) that can be

directly used to form a violation (or at least part of it) to the property

being tested. This is indeed how we use binary search in one of the

cases of the algorithm (Case 2) to search for an edge violation (i.e., a

pair of bichromatic edges along the same variable, one is monotone

and the other is anti-monotone). However, in the most challenging

case (Case 1) of the algorithm, binary search plays a completely

different role. Instead of searching for an edge violation, binary

search is used to preprocess a large set S0 ⊆ [n] of variables to

obtain a subset S ⊆ S0. This set S is used to search for bichromatic

edges more efficiently using a procedure called AE-Search from

[12]. Analyzing the performance of S for AE-Search is technically

the most demanding part of the paper, where new ideas are needed

for understanding the behavior of binary search running along long

random paths in the hypercube.

1.1 Technical Overview

In this section we present a high-level overview of the algorithm,

focusing on why and how we use binary search in Case 1 of the

algorithm. For simplicity we assume ε is a constant.

First our algorithm rejects a function onlywhen an edge violation

to unateness is found. Since an edge violation is a certificate of non-

unateness, the algorithm always accepts a function when it is unate

and thus, it makes one-sided error. As a result, it suffices to show

that the algorithm finds an edge violation with high probability

when the unknown function f is far from unate.

For simplicity, we explain Case 1 of the algorithm using the

following setting:6 All edge violations of f are along a hidden

set I ⊂ [n] of Ω(n) variables. For each variable i ∈ I, there are
Θ(2n/n) monotone edges and Θ(2n/n) anti-monotone edges. Let

P+i denote the set of points incident on monotone edges along i and

P−i denote the set of points incident on anti-monotone edges along

i . The sets P+i ’s for i ∈ I are disjoint, so monotone edges along

variables in I form a matching of sizeΘ(2n ); similarly, the sets P−i ’s
are disjoint and anti-monotone edges along I also form a matching

of size Θ(2n ). Along each i < I, there are Θ(2n/√n) bichromatic

edges along i which are all either monotone or anti-monotone, but

not both.

This particular case will highlight some of the novel ideas in

the algorithm and the analysis, so we focus on this case for the

technical overview.

6The following conditions on the function f are satisfied by the hard functions in [11]

used for proving the Ω̃(n2/3 ) lower bound.

An appealing approach for finding an edge violation is to keep

running binary search on points x ,y that are drawn independently

and unifomly at random. Since a function that is far from unate

must be ε-far from constant as well, f (x ) , f (y) with a constant

probability and when this happens, binary search returns a bichro-

matic edge. Now in order to analyze the chance of observing an

edge violation by repeating this process, two challenges arise. First,

the output distribution given by the variable of the bichromatic

edge found by binary search can depend on f in subtle ways, and

becomes difficult to analyze formally (partly because of its adaptiv-

ity). Second, since the influence of variables outside I is Ω(1/
√
n),

a random path between x and y of Ω(n) edges may often cross

Ω(
√
n) bichromatic edges along variables outside of I and O (1)

bichromatic edges along variables in I. In this case, binary search

will likely return a bichromatic edge along a variable outside I,
which is useless for finding an edge violation.

A less adaptive (and thus much simpler to analyze) variant of

binary search called AE-Search was introduced [12] to overcome

these two difficulties. The subroutine AE-Search ( f ,x , S ) queries

f and takes two additional inputs: x ∈ {0, 1}n and a set S ⊆ [n] of

variables, usesO (logn) queries and satisfies the following property:

Property of AE-Search: If (x ,x (i ) ) is a bichromatic edge with

i ∈ S and both x and x (i ) are (S \ {i})-persistent (which for x

informally means that f (x ) = f (x (T) ) with high probability when

T is a uniformly random subset of S \ {i} of half of its size), then
AE-Search ( f ,x , S ) finds the edge (x ,x (i ) ) with probability at

least 2/3. (1)

In some sense,AE-Search ( f ,x , S ) efficiently checks whether there

exists an i ∈ S such that (x ,x (i ) ) is bichromatic, whereas the trivial

algorithm for this task takes O ( |S |) queries.7
In this simplified setting, the algorithm of [12] starts by drawing a

size-
√
n set S ⊆ [n] uniformly at random and runsAE-Search ( f ,x , S)

on independent samples x forn3/4 times, hoping to find an edge vio-

lation. To see why this works we first note that |S∩I| = Ω(
√
n) with

high probability. Moreover, the following property holds for S:

Property of the Random Set S: With Ω(1) probability over the

randomness of S, most i ∈ S ∩ I satisfy that most points in P+i and

P−i are (S \ {i})-persistent. (2)

We sketch its proof since it highlights the technical challenge we

will face later.

First we view the sampling of S as S′ ∪ {i}, where S′ is a random
set of size

√
n − 1 and i is a random variable in [n]. Since the

influence of each variable in S
′ is at mostO (1/

√
n), for many points

x ∈ {0, 1}n most random paths of length O (
√
n) along variables

in S
′ starting at x will not cross any bichromatic edges. In other

words, most random sets S′ of size
√
n − 1 satisfy that most of

points in {0, 1}n are S′-persistent with high constant probability.

Given that ∪iP+i and ∪iP−i are both Ω(1)-fraction of {0, 1}n , most

points in ∪iP+i and ∪iP−i must be S
′-persistent as well. On the

other hand, given that i is independent from S
′ and that I is Ω(n),

7See Definition 2.2 and its relation to the performance of AE-Search in Lemma 2.3
for a formal description
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with probability Ω(1) many points in P+
i
and P−

i
are S′-persistent.

The property of S follows by an argument of expectation.

With properties of both S and AE-Search in hand in (1) and (2),

as well as the fact that |S ∩ I| = Ω(
√
n) with high probability, we

expect to find a bichromatic edge along a variable in S∩I after
√
n

executions ofAE-Search (since the union of P+i and P−i for i ∈ S∩I
consists of Ω(1/

√
n)-fraction of {0, 1}n ). Moreover, the variable is

(roughly) uniformly over S ∩ I and (roughly) equally likely to be

monotone or anti-monotone. It follows from the birthday paradox

that repeatingAE-Search forO (n1/4) ·√n rounds is enough to find

an edge violation.

The natural question is whether we can make S larger (e.g., of

size n2/3) without breaking property (2). This would lead to an

Õ (n2/3)-query algorithm (for the simplified setting). However, it is

no longer true that many random paths of length Ω(n2/3) do not

cross bichromatic edges because the influence of variables along

variables in S \ I is Ω(1/
√
n). Therefore, large S may not satisfy

property (2) and as a result, AE-Search may never output bichro-

matic edges along variables in S∩I. This limit to sets of size at most

O (
√
n) was a similar bottleneck in [17], and the connection between

|S| and the total influence of f was later explored in [7]. Indeed,

if (2) held for S of size larger than
√
n, then one could improve on

the O (
√
n)-query algorithm of [17] for testing monotonicity. Con-

sequently, if one believes that monotonicity testing requires Ω(
√
n)

adaptive queries, it is natural to conjecture that the algorithm in

[12] is optimal for testing unateness.

The key insight in this work is to preprocess the set S before using

AE-Search. For our simplified setting, we first sample S0 ⊂ [n] of

size n2/3 (much larger than what the analysis in [7, 12, 17] would

allow) uniformly at random. Then, we set S = S0, and repeat the

following steps for n2/3 · polylog(n) many iterations:

Preprocess: Sample x ∈ {0, 1}n uniformly at

random. Check if x is S-persistent by drawing

polylog(n) many subsets T ⊆ S of half of its size

uniformly at random. If a T with f (x ) , f (x (T) ) is

found, run binary search on a random path from

f (x ) to f (x (T) ) to find a bichromatic edge along

variable i and remove i from S.

At a high level, the analysis of the algorithm would proceed as

follows. At the end of Preprocess, for every i ∈ S, most points

in {0, 1}n are (S \ {i})-persistent. Otherwise, Preprocess would

remove more variables from S since points which are not (S \ {i})-
persistent cannot be very S-persistent. At the same time, most

variables in S0 ∩ I at the beginning survive in S at the end (given

that variables inI have very low influence). It may seem that we can

now conclude property (2) holds for S, and that a violation is found

after O (n2/3) rounds of AE-Search( f ,x , S) when x is uniform.

However, the tricky (and somewhat subtle) problem is that, even

though most points in {0, 1}n are (S ∩ {i})-persistent for every
i ∈ S∩I, it is not necessarily the case that points inside P+i and P−i
are (S ∩ {i})-persistent, since P+i ∪ P−i is only a O (1/n)-fraction

of the hypercube. Compared with the argument from [12] above

for
√
n-sized uniformly random sets, after preprocessing S0 (which

was a uniform random set) with multiple rounds of binary search,

the set S left can be very far from random. More specifically, the

set S obtained from S0 will heavily depend on the function f and,

in principle, a clever adversary could design a function so that

Preprocess running on S0 deliberately outputs a set S that where

points in P+i and P−i are not (S \ {i})-persistent.
The main technical challenge is to show that this is not possible

when variables in I have low influence,8 and the desired property

for S remains valid. To this end, we show that for any variable i

with low influence, the following two distributions supported on

preprocessed sets S have small total variation distance. The first

distribution samples S′0 ⊂ [n] of size (n2/3 − 1) and outputs the set

S
′ ∪ {i} obtained from preprocessing S

′
0. The second distribution

S
′
0 ⊂ [n] of size (n2/3 − 1) and outputs the set S obtained from

preprocessing S
′
0 ∪ {i}. Intuitively this means that a low-influence

variable i has little impact on the result S of Preprocess and thus,

Preprocess is oblivious to i and cannot deliberately exclude P+i
and P−i from the set of S-persistent points.

To analyze the total variation distance between the results of

running Preprocess on S′0 and S
′
0∪{i}, we need to understand how

a low-influence variable i can affect the result of a binary search on

a long random path (given that Preprocess is just a sequence of

calls to binary search). The random paths have length |S0 | = n2/3 at
the beginning of Preprocess, and are repeated for Õ (n2/3) rounds.

Givingmore details, we show that a variable i with influence Inf f [i]

can affect the result of a binary search on a random path of length

ℓ with probability at most log ℓ · Inf f [i], instead of the trivial upper
bound of ℓ · Inf f [i], which is the probability that a variable i affects

the evaluation of f on vertices of a random path of length ℓ. This

is proved in Claim 3.3 (although the formal statement is slightly

different since we need to introduce a placeholder when running

binary search on the set without i so that the two paths have the

same length; see Section 2.1).

In order to go beyond the assumptions on the function given

in this overview, the algorithm needs to deal with more general

cases: (1) Monotone (or anti-monotone) edges of I may not form

a matching, but rather, a large and almost-regular bipartite graph

whose existence follows from the directed isoperimetric inequal-

ity of [17]. (2) Although [17] implies the existence of such graphs

with bichromatic edges from I, there may be more bichromatic

edges along I outside of these two graphs, which would raise the

influence of these variables to the point where Preprocess is no

longer oblivious of these variables. Intuitively, this implies that

bichromatic edges which give rise to edge violations are abundant,

so finding them becomes easier. This is handled in Case 2, where

we give an algorithm (also based on binary search) which finds

many bichromatic edges along these high influence variables, and

combine it with the techniques from [12] to find an edge violation.

(3) The set I can be much smaller than n, in which case, the tech-

niques from [12] actually achieves better query complexity. We

formalize this in Case 3 of the algorithm.

1.2 Organization

We review preliminaries, recall the binary search procedure and

review the definition of persistency and the AE-Search procedure

in Section 2. We present the preprocessing procedure in Section

8In the simplified setting, each variable i ∈ I has influence only O (1/n); In the real
situation, we need to handle the case even when each variable has influence as high

as 1/n2/3 .
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3 and prove that a low-influence variable has small impact on its

output. We use the directed isoperimetric lemma of [17] to establish

a so-called Scores Lemma in Section 4, which roughly speaking

helps us understand how good the set S is after preprocessing (in

terms of using it to runAE-Search to find a bichromatic edge along

a certain variable). We separate our main algorithm into three cases

in Section 5, depending on different combinations of parameters.

As we are limited in space, we provide a sketch of the required

lemma statements without proofs for Case 1 in Section 6. We omit

the necessary proofs, as well as the analysis for Cases 2 and 3 of

the algorithm to the full version of this paper.

2 PRELIMINARIES

We will use bold-faced letters such as T and x to denote random

variables. For n ≥ 1, we write [n] = {1, . . . ,n}. In addition, we write

д = Õ ( f ) to mean д = O ( f · polylog( f )) and д = Ω̃( f ) to mean

д = Ω( f /polylog( f )).

For x ∈ {0, 1}n , and a set S ⊂ [n], we write x (S ) ∈ {0, 1}n as

the point given by letting x
(S )

k
= xk for all k < S , and x

(S )

k
= 1 − xk

for all k ∈ S (i.e., x (S ) is obtained from x by flipping variables in

S). When S = {i} is a singleton set, we abbreviate x (i ) = x ( {i })

and say that x (i ) is obtained from x by flipping the ith variable.

Throughout the paper, we use n + 1 as the name of a placeholder

variable (i.e., a dummy variable). If x ∈ {0, 1}n and S ⊆ [n+ 1], then

x (S ) := x (S\{n+1}) , and in particular, x (n+1) = x . We will refer to

this as flipping variable n + 1 (see Section 2.1) although no change

is made on x . For a subset S ⊆ [n + 1] and a variable i ∈ [n], we

let Sub (S, i ) ⊆ [n + 1] be the subset obtained by substituting n + 1

with i and i with n + 1. In other words,

Sub (S, i ) =


S if i,n + 1 ∈ S or i,n + 1 < S

(S ∪ {n + 1}) \ {i} if i ∈ S and n + 1 < S

(S ∪ {i}) \ {n + 1} if n + 1 ∈ S and i < S .

We will at times endow S ⊆ [n+1] with an ordering π : [|S |]→ S

which is a bijection indicating that π (i ) is the ith element of S under

π . When T ⊂ S , the ordering τ : [|T |]→ T obtained from π is the

unique bijection such that for all i, j ∈ T , τ−1 (i ) < τ−1 (j ) if and
only if π−1 (i ) < π−1 (j ). Moreover, when S ⊆ [n + 1] and π is

an ordering of S , the ordering π ′ of Sub (S, i ) obtained from π is

obtained by substituting n+1 with i and i with n+1 in the ordering,

i.e., π ′(k ) = π (k ) when π (k ) < {i,n + 1}, π ′(k ) = n + 1 if π (k ) = i

and π ′(k ) = i if π (k ) = n + 1.
Given a Boolean function f : {0, 1}n → {0, 1}, and a variable

i ∈ [n], we say that (x ,x (i ) ) is a bichromatic edge of f along variable

i if f (x ) , f (x (i ) ); it is monotone (bichromatic) if xi = f (x ) and

anti-monotone (bichromatic) if xi , f (x ). The influence of variable

i in f is defined as

Inf f [i] = Pr
x∼{0,1}n

[
f (x ) , f (x (i ) )

]
,

which is twice the number of bichromatic edges of f along i divided

by 2n . The total influence of f , If =
∑

i ∈[n] Inf f [i], is twice the
number of bichromatic edges of f divided by 2n . Given distributions

µ1 and µ2 on some sample space Ω, the total variation distance

between µ1 and µ2 is given by

dTV (µ1, µ2) = max
S ⊆Ω

���µ1 (S ) − µ2 (S )���.

Subroutine BinarySearch ( f ,x , S,π )

Input: Query access to f : {0, 1}n → {0, 1}, a point x ∈ {0, 1}n , a
nonempty set S ⊆ [n + 1] and an ordering π of S .

Output: Either i ∈ S and a point y ∈ {0, 1}n where (y,y (i ) ) is a

bichromatic edge, or nil.

(1) Query f (x ) and f (x (S ) ) and return nil if f (x ) = f (x (S ) ).

(2) Letm = |S | and x = x0,x1, . . . ,xm = x (S ) be the sequence

of points obtained from x by flipping variables in the order

of π (1), . . . ,π (m): xi = x
(π (i ))
i−1 . Let ℓ = 0 and r =m.

(3) While r − ℓ > 1 do

(4) Let t = ⌈(ℓ + r )/2⌉ and query f (xt ). If f (xℓ ) , f (xt )

set r = t ; otherwise set ℓ = t .

(5) Return π (r ) and y = xℓ .

Figure 1: Description of the binary search subroutine for

finding a bichromatic edge.

2.1 Binary Search With A Placeholder

We use the subroutine BinarySearch ( f ,x , S,π ) described in Fig-

ure 1, where f : {0, 1}n → {0, 1} is a Boolean function, x ∈ {0, 1}n ,
S is a nonempty subset of [n + 1], and π is an ordering of S .

When S ⊆ [n], BinarySearch ( f ,x , S,π ) performs as the stan-

dard binary search algorithm: x = x0,x1, . . . ,x |S | = x (S ) is a path

from x to x (S ) in which xt is obtained from xt−1 by flipping vari-

able π (t ) ∈ S ⊆ [n], and when f (x ) , f (x (S ) ), the binary search

is done along this path to find an edge that is bichromatic. Now in

general S may also contain n + 1, which we use as the name of a

placeholder variable. Similarly, when f (x ) , f (x (S ) ), the binary

search is done along the path x = x0,x1, . . . ,x |S | = x (S ) (recall

that x (S ) is defined as x (S\{n+1}) when S contains n + 1) where xt
is obtained from xt−1 by flipping variable π (t ) (in particular, when

π (t ) = n + 1, xt = xt−1).
Note that even though n + 1 is a placeholder variable, given

S ⊆ [n + 1] with n + 1 ∈ S and an ordering π of S , queries made by

BinarySearch ( f ,x , S,π ) and BinarySearch ( f ,x , S \ {n + 1},π ′)
(where π ′ is the ordering of S \{n+1} obtained from π ) are different,

so their results may also be different. We summarize properties of

BinarySearch in the following lemma.

Lemma 2.1. BinarySearch ( f ,x , S,π ) uses O (logn) queries and

satisfies the following property. If f (x ) = f (x (S ) ), it returns nil; if

f (x ) , f (x (S ) ), it returns a variable i ∈ S \ {n + 1} and a point

y ∈ {0, 1}n along the path from x to x (S ) with ordering π such that

(y,y (i ) ) is bichromatic.

2.2 Persistency With Respect To A Set Of

Variables

We need the following notion of persistency for points and edges

with respect to a set of variables.

Definition 2.2. Given a Boolean function f : {0, 1}n → {0, 1}, a
set S ⊆ [n + 1] of variables and a point x ∈ {0, 1}n , we say that x is
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S-persistent if the following two conditions hold:

Pr
T⊆S

|T |= ⌊ |S |/2⌋

[
f (x ) = f (x (T) )

]
≥ 1 − 1

log2 n
and

Pr
T⊆S

|T |= ⌊ |S |/2⌋+1

[
f (x ) = f (x (T) )

]
≥ 1 − 1

log2 n
.

where T is a subset of S of certain size drawn uniformly at random.

Note that when S = ∅, every point in {0, 1}n is trivially S-persistent.

Let e be an edge in {0, 1}n . We say that e is S-persistent if both

points of e are S-persistent.

The notion of persistency above is useful because it can be used

to formulate a clean sufficient condition for

AE-Search ( f ,x , S ) to find a bichromatic edge (x ,x (i ) ) for some

i ∈ S with high probability. This is captured in Lemma 2.3 (see

Lemma 6.5 in [12]) below.

Lemma 2.3. Given a point x ∈ {0, 1}n and a set S ⊆ [n + 1],

AE-Search ( f ,x , S ) makes O (logn) queries to f , and returns either

an i ∈ S such that (x ,x (i ) ) is a bichromatic edge, or łfail.ž

Let (x ,x (i ) ) be a bichromatic edge of f along i ∈ [n]. If i ∈ S

and (x ,x (i ) ) is (S \ {i})-persistent, then both AE-Search ( f ,x , S ) and

AE-Search ( f ,x (i ) , S ) output i with probability at least 2/3.

Lemma 2.3 has the following immediate corollary.

Corollary 2.4. Given a set S ⊆ [n + 1] and a point x ∈ {0, 1}n ,
there exists at most one variable i ∈ S such that (x ,x (i ) ) is both

bichromatic and (S \ {i})-persistent.

Proof. If the condition holds for both i , j ∈ S , then from

Lemma 2.3 AE-Search ( f ,x , S ) would return both i and j with

probability at least 2/3, a contradiction. □

3 PREPROCESSING VARIABLES

Our goal in this section is to present a preprocessing procedure

called Preprocess. Given query access to a Boolean function

f : {0, 1}n → {0, 1}, a nonempty set S0 ⊆ [n+ 1] (again, n+ 1 serves

here as a placeholder variable), an ordering π of S0 and a parame-

ter ξ ∈ (0, 1), Preprocess ( f , S0,π , ξ ) makes ( |S0 |/ξ ) · polylog(n)
queries and returns a subset S of S0. At a high level, Preprocess

keeps running BinarySearch to remove variables from S0 until the

set S ⊆ S0 left satisfies that at least (1 − ξ )-fraction of points in

{0, 1}n are S-persistent (recall Definition 2.2).

In addition to proving the above property for Preprocess in

Lemma 3.1, we show in Lemma 3.2 the following:When i ∈ S0 ⊆ [n]

has low influence, then the result of running Preprocess on S0 is

close (see Lemma 3.1 for the formal statement) to that of running it

on Sub (S0, i ) (in which we substitute i with the placeholder variable

n + 1).

3.1 The Preprocessing Procedure

The procedure Preprocess ( f , S0,π , ξ ) is described in Figure 3.

It uses a subroutine CheckPersistence ( f , S,π , ξ ) described in

Figure 2. Roughly speaking, CheckPersistence checks if at least

(1 − ξ )-fraction of points in {0, 1}n are S-persistent for the current

set S . This is done by sampling points x and subsets T of S of the

right sizes uniformly at random, and checking if f (x ) = f (x (T) ),

Subroutine CheckPersistence ( f , S,π , ξ )

Input: Query access to f : {0, 1}n → {0, 1}, a nonempty set

S ⊆ [n + 1], an ordering π of S and a parameter ξ ∈ (0, 1).

Output: Either nil or a variable i ∈ S .
(1) Repeat the following steps log4 n/ξ many times:

(a) Sample a point x from {0, 1}n uniformly at random.

(b) Flip a fair coin and perform one of the following tasks:

• Sample T ⊆ S with size ⌊|S |/2⌋ uniformly. Run

BinarySearch ( f ,x ,T,π ′) where π ′ is the ordering of

T defined by π restricted on T. If

BinarySearch( f ,x ,T,π ′) returns a variable i and a

point y, output i .

• Sample T ⊆ S with size ⌊|S |/2⌋ + 1 uniformly. Run

BinarySearch ( f ,x ,T,π ′) where π ′ is the ordering of

T defined by π restricted on T. If

BinarySearch( f ,x ,T,π ′) returns a variable i and a

point y, output i .

(2) If BinarySearch always returned nil, output nil.

Figure 2: Description of the subroutine CheckPersistence.

Procedure Preprocess ( f , S0,π , ξ )

Input: Query access to f : {0, 1}n → {0, 1}, a nonempty set

S0 ⊆ [n + 1], an ordering π of S0 and a parameter ξ ∈ (0, 1).

Output: A subset S ⊆ S0.

(1) Initially, let S = S0 and τ = π .

(2) While S is nonempty do

(3) Run CheckPersistence ( f , S,τ , ξ ).

(4) If it returns nil, return S ; otherwise (it returns an

i ∈ S), remove i from S and τ .

(5) Return S (which must be the empty set to reach this line).

Figure 3: Description of the procedure Preprocess for pre-

processing a set of variables.

for log4 n/ξ many rounds. If CheckPersistence finds x and T such

that f (x ) , f (x (T) ), it runs binary search on them to find a bichro-

matic edge along some variable i ∈ S and outputs i; otherwise it

returns nil.

Themain propertywe prove for CheckPersistence is that when

the fraction of points that are not S-persistent is at least ξ , it returns

a variable i ∈ S with high probability.

The procedure Preprocess ( f , S0,π , ξ ) sets S = S0 and τ = π at

the beginning and keeps calling

CheckPersistence( f , S,τ , ξ ) and removing the variable

CheckPersistence( f , S,τ , ξ ) returns from both S and the order-

ing τ , until CheckPersistence returns nil or S becomes empty

in which case Preprocess terminates and returns S . As a result,

Preprocess makes at most |S0 | calls to
CheckPersistence. It is unlikely that ξ -fraction of points are not S-

persistent but somehow CheckPersistence ( f , S,τ , ξ ) returns nil.

This implies that at least (1 − ξ )-fraction of {0, 1}n are S-persistent

for S = Preprocess ( f , S0,π , ξ ) at the end with high probability.

We summarize our discussion above in the following lemma.
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Lemma 3.1. Given a Boolean function f : {0, 1}n → {0, 1}, a
nonempty S0 ⊆ [n+1], an ordering π of S0 and a parameter ξ ∈ (0, 1),

Preprocess ( f , S0,π , ξ ) makes at most O ( |S0 | log5 n/ξ ) queries to
f and with probability at least 1 − exp

(

−Ω(log2 n)
)

, it outputs a

subset S ⊆ S0 such that at least (1 − ξ )-fraction of points in {0, 1}n
are S-persistent.

3.2 Low Influence Variables Have Low Impact

On Preprocess

In the rest of the section, we show that when S0 ⊆ [n], a variable

i ∈ S0 with low influence Inf f [i] has low impact on the result

of S = Preprocess ( f , S0,π , ξ ). More formally, we show that one

can substitute i by the placeholder n + 1 and the result of running

Preprocess on Sub (S0, i ) is almost the same (after substituting

n + 1 back to i in the result of Preprocess).

This is made more precise in the following lemma:

Lemma 3.2. Let f : {0, 1}n → {0, 1} be a Boolean function. Let

i ∈ S0 ⊆ [n], π be an ordering of S and ξ ∈ (0, 1). Let S ′0 = Sub (S0, i )

be the subset of [n + 1] and let π ′ be the ordering of S ′0 obtained from
π by substituting i with n + 1. Then we have

dTV (Preprocess( f , S0,π , ξ ),

Sub (Preprocess( f , S ′0,π
′, ξ ), i ))

≤ O

(

|S0 | log5 n
ξ

)

· Inf f [i].

Because Preprocess keeps calling CheckPersistence

which keeps calling BinarySearch, we start the proof of

Lemma 3.2 with the following claim concerning the binary search

procedure.

Claim 3.3. Let i ∈ S ⊆ [n] and π be an ordering of S . Let S ′ =
Sub (S, i ), and π ′ be the ordering of S ′ obtained from π by substituting

i with n + 1. We let u andv be the random variables where

• u is the output of BinarySearch ( f ,x , S,π ) when x is drawn

from {0, 1}n uniformly, and

• v is the output of BinarySearch ( f ,z, S ′,π ′) when z is

drawn from {0, 1}n uniformly.

Then, we have dTV (u,v ) ≤ O (logn) · Inf f [i].

Proof. Our plan is to show that for every point x ∈ {0, 1}n with

a certain property, we have{
BinarySearch( f ,x , S,π ), BinarySearch( f ,x (i ) , S,π )

}
(1)

as a multiset is the same as{
BinarySearch( f ,x , S ′,π ′), BinarySearch( f ,x (i ) , S ′,π ′)

}
. (2)

It turns out that the property holds for most points in {0, 1}n . The
lemma then follows.

To describe the property we letm = |S | = |S ′ | and let k = π−1 (i )
(with π ′(k ) = n + 1). We let J ⊆ [0 : m] denote the set of indices

taken by variables ℓ and r (see Figure 1 for settings of ℓ and r ) in an

execution of BinarySearch along a path of lengthm that outputs

the kth edge at the end. For example, ignoring the rounding issue,

J always contains 0,m andm/2: these are indices of the first three

points that binary search examines. It contains 3m/4 if k > m/2, or

m/4 if k ≤ m/2, so on and so forth. The set J also always contains

k − 1 and k : these are indices of the last two points that binary

search examines before returning the kth edge.

Now we describe the property. Given x ∈ {0, 1}n we let x =

x0, . . . ,xm = x (S ) with xt = x
(π (t ))
t−1 for all t ∈ [m]. We let C (x ) be

the indicator of the condition that:

f (x j ) = f (x
(i )
j ), for all j ∈ J . (3)

We show that x ∼ {0, 1}n satisfies C (x ) with high probability.

Because x is drawn uniformly from {0, 1}n , x j defined above is also
distributed uniformly for each j ∈ J and thus, the probability that a

specific j ∈ J violates the condition above is at most Inf f [i]. It then

follows from a union bound over j ∈ J that the fraction of points

that violate the condition C (x ) is at most Inf f [i] ·O (logn).

It suffices to prove that when x ∈ {0, 1}n satisfies C (x ), the two
multisets in (1) and (2) are the same. To this end we write down the

two paths in the multiset (1) that start with x and x (i ) as

x0,x1, . . . ,xm and y0,y1, . . . ,ym

in which xt = x
(π (t )
t−1 and yt = x

(i )
t . Similarly we write down the

two paths for (2) as

z0, z1, . . . , zm and w0,w1, . . . ,wm ,

in which we have zt = xt for all t < k and zt = yt for all t ≥ k ;

wt = yt for all t < k andwt = xt for all t ≥ k . It follows from the

property (3) of x that

f (x j ) = f (yj ) = f (zj ) = f (w j ), for all j ∈ J . (4)

Since 0,m ∈ J we have that f (x0) = f (xm ) implies the same holds

for y, z andw in which case (1) and (2) are trivially the same since

they all return nil. So we assume below that f (x0) , f (xm ) and

thus, all four binary searches return a variable and a bichromatic

edge.

Next, since k − 1,k ∈ J we have

f (xk−1) = f (xk ) = f (yk−1) = f (yk )

= f (zk−1) = f (zk ) = f (wk−1) = f (wk ).

As a result, the kth edge is not bichromatic in all four paths and thus,

during each run of binary search, k is removed from the interval

[ℓ : r ] (see Figure 1) after a certain number of rounds. Moreover,

it follows from the definition of J and (4) that in all four runs of

binary search, the values of ℓ and r are the same at the moment

when k is removed from consideration (i.e., at the first time when

either ℓ or r is updated so that k < [ℓ : r ]. We consider two cases

for the values of ℓ and r .

(1) ℓ > k : In this case, BinarySearch ( f ,x , S,π ) continues to

search on the path xℓ , . . . ,xr and

BinarySearch ( f ,x (i ) , S ′,π ′) continues to search on the

pathwℓ , . . . ,wr which is the same as xℓ , . . . ,xr given that

ℓ > k . As a result, their outputs are the same. Similarly we

have that BinarySearch ( f ,x (i ) , S,π ) is the same as

BinarySearch ( f ,x , S ′,π ′) in this case.

(2) r < k : In this case, BinarySearch ( f ,x , S,π ) continues to

search on the path xℓ , . . . ,xr and

BinarySearch ( f ,x , S ′,π ′) continues to search on the path

zℓ , . . . , zr which is the same as xℓ , . . . ,xr given that r < k .

As a result, their outputs are the same. Similarly we have
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that BinarySearch ( f ,x (i ) , S,π ) is the same as

BinarySearch ( f ,x (i ) , S ′,π ′) in this case.

As a result, the two multisets are the same when x satisfies the

condition C (x ). □

Claim 3.3 gives the following corollary using a union bound:

Corollary 3.4. Let i ∈ S ⊆ [n] and π be an ordering of S . Let

S ′ = Sub (S, i ) and π ′ be the ordering of S ′ obtained from π by

substituting i with n + 1. Then we have

dTV (CheckPersistence( f , S,π , ξ ),

CheckPersistence( f , S ′,π ′, ξ ))

≤ O

(

log5 n

ξ

)

· Inf f [i].

Proof. We use the following coupling to run

CheckPersistence ( f , S,π , ξ ) and

CheckPersistence ( f , S ′,π ′, ξ ) in parallel.

For each round of CheckPersistence we first flip a fair coin

and draw a subset T of S of the size indicated by the coin uniformly.

Then we couple the binary search on x ∼ {0, 1}n and T and the

binary search on z ∼ {0, 1}n and Sub (T, i ) using the best coupling

between them.

It then follows from Claim 3.3 and a union bound over the

log4 n/ξ rounds that the probability of this coupling of

CheckPersistence ( f , S,π , ξ ) and

CheckPersistence ( f , S ′,π ′, ξ ) returning different results is at

most

(log4 n/ξ ) · Inf f [i] ·O (logn).

This finishes the proof of the corollary. □

Now we prove Lemma 3.2.

Proof of Lemma 3.2. Let m = |S | = |S ′ |. For each j ∈ [m],

let Xj denote the output of the jth call to CheckPersistence in

Preprocess ( f , S0,π , ξ ) with Xj set to nil by default if the pro-

cedure terminates before the jth call. Similarly we use Yj to de-

note the output of the jth call in Preprocess ( f , S ′0,π
′, ξ ). Let

X = (X1, . . . ,Xm ) and Y = (Y1, . . . ,Ym ). Then X = Y implies

that S = Preprocess ( f , S0,π , ξ ) is the same as

S
′
= Preprocess ( f , S ′0,π

′, ξ ). As a result, it suffices to show that

dTV (X,Y) ≤
m log5 n

ξ
· Inf f [i].

To this end, we first note that by Corollary 3.4 the total variation

distance between X1 and Y1 is at most β := O (log5 n/ξ ) · Inf f [i].
On the other hand, note that if the outputs from the first ℓ − 1

calls in Preprocess ( f , S0,π , ξ ) and Preprocess ( f , S ′0,π
′, ξ ) are

the same, say a1, . . . ,aℓ−1, then before the ℓth call, the set S in the

former still contains i and the S′ in the latter can be obtained by

substituting its i withn+1. It follows fromCorollary 3.4 that, for any

ℓ > 1 and any a1, . . . ,aℓ−1, the total variation distance between the

distribution of Xℓ conditioning on X1 = a1, . . . ,Xℓ−1 = aℓ−1 and
the distribution of Yℓ conditioning on Y1 = a1, . . . ,Yℓ−1 = aℓ−1 is

also at most β . We prove that these properties together imply that

dTV (X,Y) ≤ mβ , from which the lemma follows.9

For this purpose we use the following coupling of X and Y.

First we use the best coupling for the distribution of X1 and the

distribution of Y1 to draw (a1,b1). Then we draw (a2,b2) from

the the best coupling for the distribution of X2 conditioning on

X1 = a1 and the distribution of Y2 conditioning on Y1 = b1. We

then repeat until (am ,bm ) is drawn. It follows from the description

that the marginal distribution of a = (a1, . . . ,am ) is the same as X

and the marginal distribution of b = (b1, . . . ,bm ) is the same as Y.

Moreover, we have

dTV (X,Y) ≤ Pr

[
a , b

]
= Pr

[
a1 , b1

]
+ Pr

[
a1 = b1 ∧ a2 , b2

]
+ · · ·

+ Pr

[
aj = b j for j < m ∧ am , bm

]
,

which is at mostmβ by the description of the coupling and proper-

ties of X and Y. □

4 THE SCORES LEMMA

By definition when f is ε-far from unate, f (x ⊕ a) is ε-far from

monotone for every a ∈ {0, 1}n . This means that we can utilize

the directed isoperimetric inequality of [17] to show the existence

of relatively large and almost-regular bipartite graphs that con-

sist of bichromatic edges.The goal of this section is to show that,

using these bipartite graphs, there exist certain probability distri-

butions over subsets of variables such that a set S drawn from any

of these distributions can be used to search for bichromatic edges

via AE-Search efficiently.

To this end, we start by introducing three distributions

Hξ ,m ,Dξ ,m and Pi,m in Section 4.1. We then use them to define

a score for each variable i ∈ [n] which aims to quantify the chance

of finding a bichromatic edge along i using AE-Search and a set S

drawn from some of those distributions. Finally we give the Scores

Lemma in Section 4.2, which shows that the sum of scores over

i ∈ [n] is large when f is ε-far from unate and has total influence

O (
√
n).

4.1 Distributions Dξ ,m ,Hξ ,m And Pi,m And The

Definition Of Scores

We start by defining two distributions Dξ ,m andHξ ,m .

Definition 4.1. Given ξ ∈ (0, 1) and m : 1 ≤ m ≤ n, we

let Dξ ,m denote the following distribution supported on subsets of

[n]: S ∼ Dξ ,m is drawn by first sampling a subset S0 of [n] of

sizem and an ordering π of S0 uniformly at random. We then call

Preprocess ( f , S0,π , ξ ) to obtain S.

Similarly, letHξ ,m denote the following distribution supported on

subsets of [n + 1]: S ∼ Hξ ,m is drawn by first sampling a subset S0 of

[n + 1] of sizem with n + 1 ∈ S0 and an ordering π of S0 uniformly

at random. We then call Preprocess ( f , S0,π , ξ ) to obtain S. Notice

that as n + 1 is just a placeholder, we always have n + 1 ∈ S ∼ Hξ ,m .

As it will become clear later, our unateness tester will sample

subsets according to the distributionDξ ,m and use them to find an

9We suspect that this is probably known in the literature but were not able to find a
reference.
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edge violation to unateness when f is far from unate. While this

section is mainly concerned about Hξ ,m , it will only be used in

the analysis to help us understand how good those samples from

Dξ ,m are in terms of revealing an edge violation to unateness.

Let Λ = ⌈2 log(n/ε )⌉ in the rest of the paper. Given i ∈ [n] and
m : 1 ≤ m ≤ n − 1 we use Pi,m to denote the uniform distribution

over all size-m subsets of [n] \ {i}.
Next we useHξ ,m and Pi,m to define strong edges.

Definition 4.2 (Strong edges). Let e be a bichromatic edge of f

along variable i ∈ [n]. We say e is ℓ-strong, for some integer ℓ ∈ [Λ],
if the following two conditions hold:

(1) For everym ≤ n2/3 as a power of 2 and every ξ = 1/2k with

ℓ ≤ k ≤ Λ, the edge e is S-persistent (recall Definition 2.2)

with probability at least 1 − (1/ logn) when S ∼ Hξ ,m .

(2) The edge e is S-persistent with probability at least

1 − (1/ logn) when S ∼ Pi, ⌈√n/2ℓ ⌉ .

For each i ∈ [n] and ℓ ∈ [Λ], we define
Score+i, ℓ ( f )

=

1

2n
· number of ℓ-strong monotone edges along variable i .

We analogously define Score−
i, ℓ

( f ) for anti-monotone edges along

variable i . Finally we define

Score+i ( f ) = max
ℓ∈[Λ]

{

Score+i, ℓ ( f ) ·
1

2ℓ

}

, (5)

and we analogously define Score−i ( f ).

4.2 The Scores Lemma

We state the Scores Lemma:

Lemma 4.3. Let f : {0, 1}n → {0, 1} be ε-far from unate with

If < 6
√
n. Then there are s, t ∈ [Λ], h ∈ [3Λ] and a set I ⊆ [n] such

that |I | is a power of 2, |I |/2h = Ω(ε2/Λ11) and every i ∈ I has

min
{

Score
+

i,s ·
1

2s
, Score−i,t ·

1

2t

}

≥ 1

2h
. (6)

We note that our Scores Lemma above looks very similar to

Lemma 4.3 from [12]. Thus the proof follows a similar trajectory.

The main difference is that we are varying the distributions from

which the set S of variables is drawn. Compared to [12] we not

only consider the quality of S drawn from the P distribution in the

definition of strong edges but also those drawn fromHξ ,m with a

number of possible combinations of ξ andm in the indicated range.

This makes the proof of the lemma slightly more involved than that

of Lemma 4.3 in [12].

5 THE MAIN ALGORITHM

We now describe the main algorithm for testing unateness. The

algorithm rejects a function f only when an edge violation has

been found. As a result, for its correctness it suffices to show that

when the input function f is ε-far from unate, the algorithm finds

an edge violation with probability at least 2/3. For convenience we

will suppress polylog(n/ε ) factors using Õ (·) in the rest of analysis.

The main algorithm has four cases. Case 0 is when the input func-

tion f satisfies If > 6
√
n. In this case an Õ (

√
n)-query algorithm is

known [2] (also see Lemma 2.1 of [12]).

From now on, we assume that f is not only ε-far from unate

but also satisfies If ≤ 6
√
n. Then there are parameters s, t ∈ [Λ]

and h ∈ [3Λ] and a set I ⊆ [n] with which Lemma 4.3 holds

for f . We may assume that the algorithm knows s, t ,h and |I | =
2ℓ (by trying all possibilities, which just incurs an addition factor

ofO (Λ4) in the query complexity). We may further assume without

loss of generality that s ≥ t since the case of s < t is symmetric.

We consider the following three cases of f :

Case 1: |I |/2t ≥ n2/3 and and at least half of i ∈ I satisfy

Inf f [i] ≤
(

ε2

Λ13

)

· n
1/3

|I | ; (7)

Case 2: |I |/2t ≥ n2/3 and and at least half of i ∈ I violate (7); and

Case 3: |I |/2t ≤ n2/3.

Lemma 5.1. Let s ≥ t ∈ [Λ], h ∈ [3Λ], and ℓ ∈ [⌊logn⌋] with
2ℓ/2t ≥ n2/3. There is a Õ (n2/3/ε2)-query algorithm with the fol-

lowing property. Given any Boolean function f : {0, 1}n → {0, 1} that
satisfies (i) Lemma 4.3 holds for f with s, t ,h and a set I ⊆ [n] with

|I | = 2ℓ ; and (ii) at least half of i ∈ I satisfy (7), the algorithm finds

an edge violation to unateness with probability at least 2/3.

Lemma 5.2. Let s ≥ t ∈ [Λ], h ∈ [3Λ], and ℓ ∈ [⌊logn⌋] with
2ℓ/2t ≥ n2/3. There is an algorithm that makes Õ (n2/3/ε2) queries

and satisfies the following property. Given any Boolean function

f : {0, 1}n → {0, 1} that satisfies (i) Lemma 4.3 holds for f with

s, t ,h and a set I ⊆ [n] with |I | = 2ℓ and (ii) at least half of i ∈ I
violate (7), the algorithm finds an edge violation to unateness with

probability at least 2/3.

Lemma 5.3. Let s ≥ t ∈ [Λ], h ∈ [3Λ], and ℓ ∈ [⌊logn⌋] with
2ℓ/2t ≤ n2/3. There is an algorithm that makes Õ (n2/3 +

√
n/ε2)

queries and satisfies the following property. Given any Boolean func-

tion f : {0, 1}n → {0, 1} that satisfies Lemma 4.3 with s, t ,h and a set

I ⊆ [n] of size |I | = 2ℓ , the algorithm finds an edge violation of f

to unateness with probability at least 2/3.

Theorem 1 follows by combining all these lemmas.

6 THE ALGORITHM FOR CASE 1

Let s ≥ t ∈ [Λ], h ∈ [3Λ] and ℓ ∈ [⌊logn⌋]. In Case 1 the input

function f : {0, 1}n → {0, 1} satisfies Lemma 4.3 with parameters

s, t ,h and I ⊆ [n] of size |I | = 2ℓ , with |I |/2t ≥ n2/3. At least half

of the variables i ∈ I have low influence as given in (7). Let i be

such a variable. Then by (7),

(

ε2

Λ13

)

· n
1/3

|I | > Inf f [i] ≥ 2 · Score+i,s ≥
2s

2h
.

Letting ξ = 1/2s throughout this section, it follows from Lemma

4.3 that

ξ = Ω

(

Λ
13

ε2
· |I |
2hn1/3

)

= Ω

(

Λ
2

n1/3

)

. (8)

6.1 Informative Sets

We start with the notion of informative sets. Note that we will have

different notions of informative sets in different cases of the algo-

rithm. We use the same name because they serve similar purposes.
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Given i ∈ [n] and a set S ⊆ [n + 1] we use PE+i (S ) to denote the

set of s-strongmonotone edges along variable i that are S-persistent.

We define PE−i (S ) similarly for antimonotone edges.

Definition 6.1 (Informative Sets). A set S ⊆ [n + 1] is i-

informative for monotone edges if

|PE+i (S ) |
2n

≥
Score

+

i,s

4
≥ 2s−h

4
(9)

and that S ⊆ [n + 1] is i-informative for anti-monotone edges if

|PE−i (S ) |
2n

≥
Score

−
i,t

4
≥ 2t−h

4
. (10)

We simply say that S ⊆ [n + 1] is i-informative if S satisfies both (9)

and (10).

Lemma 6.2. For each i ∈ I and each positive integerm ≤ n2/3

that is a power of 2, S ∼ Hξ ,m is i-informative with probability at

least 1 − o(1).

Proof. We first show that S ∼ Hξ ,m satisfies (9) with probabil-

ity at least 1 − o(1). The same argument works to show S ∼ Hξ ,m

satisfies (10). The lemma then follows from a union bound. To this

end, let α be the probability of S ∼ Hξ ,m being i-informative for

monotone edges. We examine

Pr
e,S

[
e is S-persistent

]
,

where e is an s-strong monotone edge along variable i drawn uni-

formly at random and S ∼ Hξ ,m . It follows from the definition

of strong edges that the probability is at least 1 − 1/ logn. On the

other hand, we can also upperbound the probability using α (and

the definition of i-informative sets) as (1 − α )/4 + α . Solving the

inequality we get α ≥ 1 − o(1). □

Next we introduce two new families of distributions that will

help us connectHξ ,m with Dξ ,m .

Definition 6.3. Given ξ ∈ (0, 1),m : 1 ≤ m ≤ n and i ∈ [n], we
let Dξ ,m,i denote the following distribution supported on subsets of

[n]: S ∼ Hξ ,m,i is drawn by first sampling a subset S0 of [n] of size

m with i ∈ S0 and an ordering π of S0 uniformly at random. We then

call Preprocess ( f , S0,π , ξ ) and set S to be its output.

Similarly,Hξ ,m,i denotes the following distribution supported on

subsets of [n + 1]: S ∼ Hξ ,m,i is drawn by first sampling a subset

S0 of [n + 1] \ {i} of sizem with n + 1 ∈ S0 and an ordering π of S0
uniformly at random. We then call Preprocess ( f , S0,π , ξ ) and set

S to be its output.

Using the fact that the total variation distance between the S0
used inHξ ,m (at the beginning of the process) and the S0 used in

Hξ ,m,i is at mostm/n, we have

dTV
(

Hξ ,m ,Hξ ,m,i

)

≤ m/n

and the following corollary from Lemma 6.2.

Corollary 6.4. For every i ∈ I and every positive integerm ≤
n2/3 as a power of 2, we have that S ∼ Hξ ,m,i is i-informative with

probability at least 1 − o(1).
The next two lemmas allow us to draw random subsets and still

obtain i-informative sets. They enable us to use techniques from

[12] for particular cases of our algorithm.

Lemma 6.5. For every i ∈ I we haveT ∼ Pi, ⌈√n/2t ⌉ is i-informative

for anti-monotone edges with probability at least 1 − o(1).

Proof. Similarly to the proof of Lemma 6.2, we write α to denote

the probability of T ∼ Pi, ⌈√n/2t ⌉ being i-informative for anti-

monotone edges. We examine

Pr
e,T

[
e is T-persistent

]
,

where e is a t-strong anti-monotone edge along variable i drawn

uniformly and T ∼ Pi, ⌈√n/2t ⌉ . It follows from the definition of

strong edges that this probability is at least 1 − 1/ logn. On the

other hand, we can also upperbound the probability using α (and

the definition of i-informative sets for anti-monotone edges) as

(1 − α )/4 + α . Solving the inequality we get α ≥ 1 − o(1). □

Similarly, we may conclude the analogous lemma for monotone

edges, whose proof follows similarly to Lemma 6.5.

Lemma 6.6. For every i ∈ I we have that S ∼ Pi, ⌈√n/2s ⌉ is
i-informative for monotone edges with probability at least 1 − o(1).

6.2 Catching Variables: Relating Dξ ,m And

Hξ ,m

Now we focus on the variables in I that satisfy (7). To this end,

we let I∗ be a subset of I of size ⌈|I|/2⌉ such that all variables in

I∗ satisfy (7). Given that the algorithm knows the size of I, it also
knows the size of I∗ (though not variables within). Next we usem

to denote the largest power of 2 that is at most ξ |I |/n1/3. In other

words,m is the unique power of 2 satisfying

ξ |I |
2n1/3

< m ≤ ξ |I |
n1/3
. (11)

Given that |I | ≥ |I|/2t ≥ n2/3 and (8), we have m ≫ 1 and

m = Θ(ξ |I |/n1/3).
We now turn to analyzing the distribution Dξ ,m with the m

defined above.

Definition 6.7 (Catching Variables). Let i ∈ I∗. We say that

a set S ⊆ [n] catches the variable i if i ∈ S and Sub (S, i ) = (S ∪ {n +
1}) \ {i} is i-informative (see Definition 6.1). We let

Caught(S ) =
{
i ∈ I∗ : S catches i

}
.

Intuitively, if we sample S ∼ Dξ ,m and i ∈ Caught(S), then

we have an upper bound for how many samples x we need for

AE-Search( f ,x , S ∪ {n + 1}) to reveal a bichromatic edge along i .

Claim 6.8. For every i ∈ I∗, we have

Pr
S∼Dξ ,m,i

[
S catches i

]
≥ Pr

T∼Hξ ,m,i

[
T is i-informative

]
− o(1).

Proof. We show the total variation distance between S ∼ Dξ ,m,i

and Sub (T, i ) over T ∼ Hξ ,m,i is

O

(

m log8 n

ξ
· Inf f [i]

)

= O

(

|I | log8 n
n1/3

· Inf f [i]
)

= o(1), (12)
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Procedure AlgorithmCase1.1 ( f )

Input: Query access to a Boolean function f : {0, 1}n → {0, 1}
Output: Either łunate,ž or two edges constituting an edge

violation of f to unateness.

(1) Repeat the following O (1) times:

(2) Draw S ∼ Dξ ,m : First draw a size-m subset S0 of [n]

and an ordering π of S0
uniformly at random and then call

Preprocess ( f , S0,π , ξ ).

(3) Repeat q times, where q = O
(

n2/3Λ13
/

ε2
)

:

(4) Draw an x ∈ {0, 1}n uniformly and run

AE-Search ( f ,x , S ∪ {n + 1})
(5) Let A be the set of i ∈ [n] such that an anti-monotone

edge along i is found

(6) Repeat q times:

(7) Draw an y ∈ {0, 1}n uniformly and run

AE-Search ( f ,y, S ∪ {n + 1})
(8) Let B be the set of i ∈ [n] such that a monotone edge

along variable i is found

(9) If A∩B , ∅, output an edge violation of f to unateness.

(10) Output łunate.ž

Figure 4: Algorithm for Case 1.1

given (7) and i ∈ I∗. The lemma follows from the observations that

Sub (T, i ) contains i and when T is i-informative, Sub (T, i ) catches

i .

To upperbound the total variation distance between S ∼ Dξ ,m,i

and Sub (T, i ) over T ∼ Hξ ,m,i , we use the following coupling. First

we draw a subset S0 of [n] with i ∈ S0 and an ordering π of S0
uniformly at random. Then we set S′0 = Sub (S0, i ) and π

′ to be the

ordering of S′0 obtained from π by replacing i with n+ 1. Finally we

draw the output from the best coupling for Preprocess ( f , S0,π , ξ )

and Sub (Preprocess ( f , S′0,π
′, ξ ), i ). The upper bound in (12) fol-

lows directly from Lemma 3.2. □

6.3 Algorithm For Case 1.1

There are two sub-cases in Case 1. Specifically, for the remainder

of Section 6.3, we assume that

m ≥ n1/3 log2 n

2t
, (13)

and handle the other case in Case 1.2. We let

r :=
m |I∗ |
n
= Ω(log2 n), (14)

the expected size of the intersection of a random size-m subset

of [n] with I∗, where we used (13) and |I∗ |/2t = Ω(n2/3). Note

that both m and r are known to the algorithm. We give Lemma

5.1 assuming (13) using AlgorithmCase1.1 in Figure 4, with the

following query complexity.

Claim 6.9. The query complexity of AlgorithmCase1.1 is

Õ (n2/3/ε2).

The algorithm for Case 1.1 starts by sampling a set S ∼ Dξ ,m . It

then keeps drawing points x uniformly at random to run

AE-Search ( f ,x , S ∪ {n + 1}) to find bichromatic edges, with the

hope to find an edge violation along one of the variables in I∗. We

break lines 3ś8 into the search of anti-monotone edges and the

search of monotone edges separately only for the analysis later;

algorithm wise there is really no need to do so. (The reason we

use S ∪ {n + 1} instead of S in the algorithm lies in the proof of

Lemma 6.10; roughly speaking, we need it to establish a connection

between Dξ ,m and Hξ ,m so that we can carry the analysis on

Hξ ,m that has been done so far over to Dξ ,m .) On the one hand,

recall from Lemma 2.3 that if i ∈ S ⊆ [n] and a bichromatic edge

e along variable i is Sub (S, i ) = (S ∪ {n + 1}) \ {i}-persistent, then
running AE-Search on S ∪ {n + 1} and any of the two points of e

would reveal e with high probability. On the other hand, if a set (e.g.,

Sub (S, i )) is i-informative then it is persistent on a large fraction of

edges along variable i .

Our first goal is to prove Lemma 6.10, which states that S ∼ Dξ ,m

catches many variables.

Lemma 6.10. We have |Caught(S) | ≥ r/6 with probability Ω(1).

Given Lemma 6.10, a constant fraction of the intersection of S

and I∗ will be caught, and therefore, AE-Search ( f ,x , S∪ {n + 1})
will output a bichromatic edge along a variable from these caught

coordinates for sufficiently many points x . We fix S to be a set that

catches at least r/6 many variables in I∗, and claim that during

this loop, an edge violation is found with probability 1 − o(1).
Given S , we write J ⊆ I∗ to denote the set of variables caught

by S with |J | ≥ r/6. Then by definition we have that J ⊆ S and

Sub (S, j ) is j-informative for every j ∈ J .

We start by showing that A ∩ J is large with high probability.

Lemma 6.11. We have |A ∩ J | ≥ Ω

(

m2t /n1/3
)

with probability

at least 1 − o(1).

Fix an A such that C = A ∩ J satisfies the lower bound of

Lemma 6.11. We finally show thatC ∩B with high probability. This

finishes Case 1.

Lemma 6.12. We have that C ∩ B is not empty with probability at

least 1 − o(1).

6.4 Algorithm For Case 1.2

The second subcase of Case 1 occurs when

m <
n1/3 log2 n

2t
, (15)

and the crucial difference is that unlike Case 1.1, we cannot conclude

with (14). More specificially, two potential issues which were not

present in Section 6.3 may arise: 1) sampling a set S ∼ Dξ ,m may

result in Caught(S) = ∅, and 2) even if |Caught(S) | is large, too
few points x may result in AE-Search ( f ,x , S) returning an anti-

monotone edge (for instance, when 2t = 1 and 2h = n). Thus,

we address these two problems with AlgorithmCase1.2, which is

described in Figure 5.

At a high level, AlgorithmCase1.2 proceeds by sampling a set

T ⊆ [n] of size

p := ⌈
√
n/2t ⌉ + 1 = Θ(

√
n/2t )

uniformly at random, and directly uses the set T to search for anti-

monotone edges by repeating AE-Search ( f ,x ,T) for Õ (n2/3/ε2)
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Procedure AlgorithmCase1.2 ( f )

Input: Query access to a Boolean function f : {0, 1}n → {0, 1}
Output: Either łunate,ž or two edges constituting an edge

violation of f to unateness.

(1) Repeat the following O (1) times:

(2) Draw a set T ⊂ [n] of size p uniformly at random.

(3) Repeat O
(

n2/3Λ11 log2 n
/

ε2
)

times:

(4) Draw an x ∈ {0, 1}n uniformly and run

AE-Search ( f ,x ,T)

(5) Let A be the set of i ∈ [n] such that an anti-monotone

edge along i is found.

(6) Repeat O
(

n1/3 log3 n
/

(m2t )
)

times:

(7) Draw S by first drawing a subset S0 of T of sizem

and an ordering

π of S0 both uniformly at random and then call

Preprocess ( f , S0,π , ξ ).

(8) Repeat O
(

(2h/2s ) · logn
)

times:

(9) Draw y ∈ {0, 1}n uniformly and run

AE-Search ( f ,y, S ∪ {n + 1}).
(10) Let B be the set of i ∈ [n] such that a monotone edge

along variable i is found.

(11) If A∩B , ∅, output an edge violation of f to unateness.

(12) Output łunate.ž

Figure 5: Algorithm for Case 1.2

many iterations. We show at the end the algorithm will obtain

anti-monotone edges along at least Ω(n1/6) variables in T ∩ I
(as an anti-monotone edge is found every Õ (

√
n/ε2) iterations of

AE-Search ( f ,x , S)). The algorithmwill then sample S0 ⊂ T of size

m (notice thatm ≪ p by (15)), pass it through Preprocess to obtain

S ⊆ S0, and then repeat AE-Search ( f ,y, S0) in hopes of observing

an edge violation. In order to do so, Smust contain a variable where

the algorithm has already observed an anti-monotone edge. Since

the number of variables with anti-monotone edges observed may

beO (n1/6) andm ·n1/6 could be much smaller than p, the algorithm

needs to sample the subset S0 from T multiple times.

We state the query complexity of the algorithm for Case 1.2,

where we note that the upper bound will follow from (15), (8), (11),

the fact that 2t ≥ 1 and 2h/I ≥ Ω̃(ε2).

Lemma 6.13. The query complexity of AlgorithmCase1.2 is (us-

ing (8))

Õ

(

n2/3

ε2

)

+ Õ

(

n1/3

m2t

) *
,Õ

(

m

ξ

)

+ Õ *
,
2h

2s
+
-
+
- = Õ (n2/3/ε2).

In order to analyze AlgorithmCase1.2 we consider one of the

main iterations and let T denote the set drawn in line 2. We define

the following subset C ⊆ T ∩ I∗ to capture how good T is: A

variable i ∈ T ∩ I∗ belongs to C if it satisfies both of the following

conditions:

(i) The setT \ {i} is i-informative for anti-monotone edges; and

(ii) If we draw S by first drawing a subset S0 of T of sizem

conditioning on i ∈ S0 and an ordering of π of S0 uniformly

at random and then calling Preprocess ( f , S0,π , ξ ) to

get S, then the probability that S catches i is at least 1/2.

We prove that when T is a random size-p set, the set C is large

with constant probability.

Lemma 6.14. With probability at least Ω(1) over the draw of T ⊂
[n] in line 2, we have

|C| = Ω

(

p |I∗ |
n

)

.

Having established Lemma 6.14, we consider a fixed iteration

of line 2 where the set C obtained from T satisfies the size lower

bound from Lemma 6.14. Note that since line 2 is executed O (1)

times, this will happen with large constant probability. After fixing

T and C , we will show that in this iteration, AlgorithmCase1.2

finds an edge violation to unateness with high probability.

Lemma 6.15. With probability 1 − o(1) over the randomness in

lines 3ś5, |A ∩C | ≥ Ω(n1/6).

By Lemma 6.15 we consider the case when |A∩C | = Ω(n1/6). Fix

a particular A and a subset of J = A ∩C such that |J | = Θ(n1/6).

Lemma 6.16. With probability at least 1 − o(1), at least one of the
S sampled in line 7 catches at least one variable in J .

Finally we show that if S catches a j ∈ J , then line 9 finds a

monotone edge along j.

Lemma 6.17. If S catches j ∈ J in line 7, then line 9 finds a

monotone edge along variable j with probability at least 1 − o(1).
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