Testing Unateness Nearly Optimally

Xi Chen
xichen@cs.columbia.edu
Columbia University
United States

ABSTRACT

We present an O(n?/3/¢2)-query algorithm that tests whether an
unknown Boolean function f: {0, 1} — {0, 1} is unate (i.e., every
variable is either non-decreasing or non-increasing) or e-far from
unate. The upper bound is nearly optimal given the Q(n?/3) lower
bound of Chen, Waingarten and Xie (2017). The algorithm builds
on a novel use of the binary search procedure and its analysis over
long random paths.

CCS CONCEPTS

» Theory of computation — Streaming, sublinear and near
linear time algorithms.

KEYWORDS

Property testing, Boolean functions, unateness

ACM Reference Format:

Xi Chen and Erik Waingarten. 2019. Testing Unateness Nearly Optimally.
In Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory
of Computing (STOC °19), June 23-26, 2019, Phoenix, AZ, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3313276.3316351

1 INTRODUCTION

A Boolean function f: {0,1}" — {0, 1} is monotone if every vari-
able is non-decreasing, and unate if every variable is either non-
decreasing or non-increasing (equivalently, f is unate iff there exists
a string a € {0, 1}" such that g(x) := f(x @ a) is monotone). Both
problems of testing monotonicity and unateness were introduced
in [16], where a tester is a randomized algorithm that, given query
access to an unknown Boolean function f: {0,1}" — {0, 1}, out-
puts “accept” with probability at least 2/3 when f is monotone
(or unate) and outputs “reject” with probability at least 2/3 when
f is e-far from monotone (or unate).! The work of [16] analyzed

1Given a property P of Boolean functions, we say f is e-far from P if for every g € P,
Pry_o,yn[f(x) # g(x)] > £ where x ~ {0, 1}" is sampled uniformly at random.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC 19, June 23-26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6705-9/19/06....$15.00
https://doi.org/10.1145/3313276.3316351

547

Erik Waingarten
eaw(@cs.columbia.edu
Columbia University
United States

the non—adaptivez, one-sided error’ edge tester? which led to the
upper bounds of O(n/¢) and 0(n3/2/¢) for testing monotonicity
and unateness, respectively. These remained the best upper bounds
for over a decade.

Recently there have been some exciting developments in under-
standing the query complexity of both problems. Progress made
on the upper bound side is due, in part, to new directed isoperi-
metric inequalities on the hypercube. In particular, [6] and [17]
showed that various isoperimetric inequalities on the hypercube
have directed analogues, where the edge boundary is now mea-
sured by considering anti-monotone bichromatic edges®. These
inequalities were then used in the analysis of non-adaptive algo-
rithms for testing monotonicity [6, 10, 17]. For example, to obtain
the O(+/n/e%) upper bound, [17] used their new inequality to prove
the existence of a large and almost regular bipartite graph that
consists of anti-monotone bichromatic edges in any function that
is e-far from monotone. These upper bounds are complemented
with lower bounds for testing monotonicity [4, 8, 10, 11, 15]. For
non-adaptive algorithms, the query complexity has been pinned
down to ©(+/n) for constant ¢; for general adaptive algorithms, a
gap remains between é(\/ﬁ/ez) of [17] and the best lower bound
of Q(n1/3) [11].

Given the similarity in their definitions, it is natural to expect
that the same directed isoperimetric inequalities can be used to test
unateness: if f is far from unate, then by definition f(x @ a) is far
from monotone for any a € {0, 1}"*, on which one can then apply
these inequalities to obtain rich graph structures. This is indeed
the approach [12] followed to obtain an O(n*/4)-query adaptive
algorithm for unateness by leveraging the directed isoperimetric
inequality of [17]. It improved the upper bound of [16] as well as
recent linear upper bounds for testing unateness [2, 3, 6, 18] (which
turned out to be optimal [1, 11] for non-adaptive and one-sided
error algorithms). Shortly before the work of [12], an adaptive lower
bound of Q(n%/?) was obtained in [11] for testing unateness.

Our main contribution is an O(n?/3/£2)-query, adaptive algo-
rithm for testing unateness. This essentially settles the problem
since it matches the Q(n?/3) adaptive lower bound of [11] up to a
poly-logarithmic factor (when ¢ is a constant).

TuEOREM 1 (MAIN). There is an O(n?/3/¢2)-query, adaptive algo-
rithm with the following property: Given ¢ > 0 and query access to

2 An algorithm is non-adaptive if queries made cannot depend on answers to previous
queries and thus, all queries can be made in a single batch. In contrast a general
adaptive algorithm proceeds round by round: the point it queries in each round can
depend on answers to previous queries.

3We say a tester makes one-sided error if it always accepts a function that satisfies the
property.

4 An edge tester keeps drawing edges (x, y) from the hypercube uniformly at random
and querying f(x) and f (y).

5An edge (x, x(9) (where x) denotes the point obtained from x by flipping the
ith bit) in {0, 1}" is bichromatic if f(x) # f(x(?), is monotone (bichromatic) if
x; = f(x), and is anti-monotone (bichromatic) if x; # f(x).

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

an unknown Boolean function f: {0,1}" — {0, 1}, it always accepts
when f is unate and rejects with probability at least 2/3 when f is
e-far from unate.

In addition to the bipartite graph structure implied by the isoperi-
metric inequality of [17], the algorithm relies on novel applications
of the standard binary search procedure on long random paths.

Given a path between two points x and y in the hypercube with
f(x) # f(y), the binary search (see Figure 1) returns a bichromatic
edge along the path with log £ queries where ¢ is the length of the
path. The idea of using binary search in Boolean function property
testing is not new. In every application we are aware of in this
area (e.g., in testing conjunctions [13, 14], testing juntas [5, 9],
unateness [18] and monotonicity [7]), one runs binary search to
find bichromatic edges (or pairs, as in testing juntas) that can be
directly used to form a violation (or at least part of it) to the property
being tested. This is indeed how we use binary search in one of the
cases of the algorithm (Case 2) to search for an edge violation (i.e., a
pair of bichromatic edges along the same variable, one is monotone
and the other is anti-monotone). However, in the most challenging
case (Case 1) of the algorithm, binary search plays a completely
different role. Instead of searching for an edge violation, binary
search is used to preprocess a large set Sy C [n] of variables to
obtain a subset S C Sy. This set S is used to search for bichromatic
edges more efficiently using a procedure called AE-SEARCH from
[12]. Analyzing the performance of S for AE-SEARCH is technically
the most demanding part of the paper, where new ideas are needed
for understanding the behavior of binary search running along long
random paths in the hypercube.

1.1 Technical Overview

In this section we present a high-level overview of the algorithm,
focusing on why and how we use binary search in Case 1 of the
algorithm. For simplicity we assume ¢ is a constant.

First our algorithm rejects a function only when an edge violation
to unateness is found. Since an edge violation is a certificate of non-
unateness, the algorithm always accepts a function when it is unate
and thus, it makes one-sided error. As a result, it suffices to show
that the algorithm finds an edge violation with high probability
when the unknown function f is far from unate.

For simplicity, we explain Case 1 of the algorithm using the
following setting:® All edge violations of f are along a hidden
set 7 C [n] of Q(n) variables. For each variable i € I, there are
©(2"/n) monotone edges and ©(2" /n) anti-monotone edges. Let
P denote the set of points incident on monotone edges along i and
P7 denote the set of points incident on anti-monotone edges along
i. The sets P;’s for i € I are disjoint, so monotone edges along
variables in 7 form a matching of size ©(2"); similarly, the sets Pr ’s
are disjoint and anti-monotone edges along 7 also form a matching
of size ®(2"). Along each i ¢ I, there are ®(2" /+/n) bichromatic
edges along i which are all either monotone or anti-monotone, but
not both.

This particular case will highlight some of the novel ideas in
the algorithm and the analysis, so we focus on this case for the
technical overview.

©The following conditions on the function f are satisfied by the hard functions in [11]
used for proving the Q(n?/?) lower bound.

548

Xi Chen and Erik Waingarten

An appealing approach for finding an edge violation is to keep
running binary search on points x, y that are drawn independently
and unifomly at random. Since a function that is far from unate
must be e-far from constant as well, f(x) # f(y) with a constant
probability and when this happens, binary search returns a bichro-
matic edge. Now in order to analyze the chance of observing an
edge violation by repeating this process, two challenges arise. First,
the output distribution given by the variable of the bichromatic
edge found by binary search can depend on f in subtle ways, and
becomes difficult to analyze formally (partly because of its adaptiv-
ity). Second, since the influence of variables outside I is Q(1/+/n),
a random path between x and y of Q(n) edges may often cross
Q(+/n) bichromatic edges along variables outside of 7 and O(1)
bichromatic edges along variables in 7. In this case, binary search
will likely return a bichromatic edge along a variable outside 7,
which is useless for finding an edge violation.

A less adaptive (and thus much simpler to analyze) variant of
binary search called AE-SEARCH was introduced [12] to overcome
these two difficulties. The subroutine AE-SEARCH (f, x, S) queries
f and takes two additional inputs: x € {0,1}" and a set S C [n] of
variables, uses O(log n) queries and satisfies the following property:

Property of AE-SEARcH: If (x, x() is a bichromatic edge with
i € S and both x and x(are (S \ {i})-persistent (which for x
informally means that f(x) = f (xM) with high probability when
T is a uniformly random subset of S \ {i} of half of its size), then
AE-SEARCH (f, x, S) finds the edge (x, x()) with probability at
least 2/3. (1)
In some sense, AE-SEARCH (f, x, S) efficiently checks whether there
exists an i € S such that (x, x(i)) is bichromatic, whereas the trivial
algorithm for this task takes O(|S|) queries.”

In this simplified setting, the algorithm of [12] starts by drawing a
size-y/n setS C [n] uniformly at random and runs AE-SEARCH (f, x, S)
on independent samples x for n3/# times, hoping to find an edge vio-
lation. To see why this works we first note that [SN.T | = Q(+/n) with
high probability. Moreover, the following property holds for S:

Property of the Random Set S: With Q(1) probability over the
randomness of S, most i € SN I satisfy that most points in P} and
P are (S\ {i})-persistent. 2)
We sketch its proof since it highlights the technical challenge we
will face later.

First we view the sampling of S as S’ U {i}, where S’ is a random
set of size 4/n — 1 and i is a random variable in [n]. Since the
influence of each variable in S’ is at most O(1/+/n), for many points
x € {0,1}" most random paths of length O(+/n) along variables
in §’ starting at x will not cross any bichromatic edges. In other
words, most random sets S’ of size y/n — 1 satisfy that most of
points in {0, 1}" are S’-persistent with high constant probability.
Given that U; P} and U;P; are both Q(1)-fraction of {0, 1}"*, most
points in U;P] and U;P; must be $'-persistent as well. On the
other hand, given that i is independent from S’ and that I is Q(n),

7See Definition 2.2 and its relation to the performance of AE-SEARCH in Lemma 2.3
for a formal description

Testing Unateness Nearly Optimally

with probability Q(1) many points in P;r and P; are S’-persistent.
The property of S follows by an argument of expectation.

With properties of both S and AE-SEARCH in hand in (1) and (2),
as well as the fact that |S N 7| = Q(+/n) with high probability, we
expect to find a bichromatic edge along a variable in SN I after vn
executions of AE-SEARCH (since the union ofP;r and P} fori € SNI
consists of Q(1/+/n)-fraction of {0, 1}"*). Moreover, the variable is
(roughly) uniformly over S N 7 and (roughly) equally likely to be
monotone or anti-monotone. It follows from the birthday paradox
that repeating AE-SEARcH for O(n'/4) - v/n rounds is enough to find
an edge violation.

The natural question is whether we can make S larger (e.g., of
size n?/3) without breaking property (2). This would lead to an
O(n*/3)-query algorithm (for the simplified setting). However, it is
no longer true that many random paths of length Q(n?/3) do not
cross bichromatic edges because the influence of variables along
variables in S \ 7 is Q(1/+/n). Therefore, large S may not satisfy
property (2) and as a result, AE-SEARCH may never output bichro-
matic edges along variables in SN 7. This limit to sets of size at most
O(+/n) was a similar bottleneck in [17], and the connection between
[S| and the total influence of f was later explored in [7]. Indeed,
if (2) held for S of size larger than /n, then one could improve on
the O(y/n)-query algorithm of [17] for testing monotonicity. Con-
sequently, if one believes that monotonicity testing requires Q(+/n)
adaptive queries, it is natural to conjecture that the algorithm in
[12] is optimal for testing unateness.

The key insight in this work is to preprocess the set S before using
AE-SEARCH. For our simplified setting, we first sample So C [n] of
size n?/3 (much larger than what the analysis in [7, 12, 17] would
allow) uniformly at random. Then, we set S = Sy, and repeat the
following steps for n%/3 - polylog(n) many iterations:

Preprocess: Sample x € {0, 1}" uniformly at
random. Check if x is S-persistent by drawing
polylog(n) many subsets T C S of half of its size
uniformly at random. If a T with f(x) # f(x(™) is
found, run binary search on a random path from
f(x) to f(xM) to find a bichromatic edge along
variable i and remove i from S.

At a high level, the analysis of the algorithm would proceed as
follows. At the end of Preprocess, for every i € S, most points
in {0,1}" are (S \ {i})-persistent. Otherwise, Preprocess would
remove more variables from S since points which are not (S \ {i})-
persistent cannot be very S-persistent. At the same time, most
variables in Sg N J at the beginning survive in S at the end (given
that variables in 7 have very low influence). It may seem that we can
now conclude property (2) holds for S, and that a violation is found
after O(n?/3) rounds of AE-SEARCH(f, x, S) when x is uniform.
However, the tricky (and somewhat subtle) problem is that, even
though most points in {0,1}" are (S N {i})-persistent for every
i € SN T, it is not necessarily the case that points inside P} and P}
are (S N {i})-persistent, since Pi+ U P; is only a O(1/n)-fraction
of the hypercube. Compared with the argument from [12] above
for y/n-sized uniformly random sets, after preprocessing So (which
was a uniform random set) with multiple rounds of binary search,
the set S left can be very far from random. More specifically, the
set S obtained from Sy will heavily depend on the function f and,

549

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

in principle, a clever adversary could design a function so that
Preprocess running on Sy deliberately outputs a set S that where
points in P;r and P} are not (S \ {i})-persistent.

The main technical challenge is to show that this is not possible
when variables in 7 have low influence,® and the desired property
for S remains valid. To this end, we show that for any variable i
with low influence, the following two distributions supported on
preprocessed sets S have small total variation distance. The first
distribution samples S C [n] of size (n2/3 - 1) and outputs the set
S’ U {i} obtained from preprocessing S. The second distribution
S(’) C [n] of size (nz/3 — 1) and outputs the set S obtained from
preprocessing S U {i}. Intuitively this means that a low-influence
variable i has little impact on the result S of Preprocess and thus,
Preprocess is oblivious to i and cannot deliberately exclude P}
and P} from the set of S-persistent points.

To analyze the total variation distance between the results of
running Preprocess on S and S| U {i}, we need to understand how
a low-influence variable i can affect the result of a binary search on
a long random path (given that Preprocess is just a sequence of
calls to binary search). The random paths have length |So| = n?/3 at
the beginning of Preprocess, and are repeated for O(n?/3) rounds.
Giving more details, we show that a variable i with influence Inf ¢ [i]
can affect the result of a binary search on a random path of length
¢ with probability at most log £ - Inf ¢[i], instead of the trivial upper
bound of £ - Inf¢[i], which is the probability that a variable i affects
the evaluation of f on vertices of a random path of length ¢. This
is proved in Claim 3.3 (although the formal statement is slightly
different since we need to introduce a placeholder when running
binary search on the set without i so that the two paths have the
same length; see Section 2.1).

In order to go beyond the assumptions on the function given
in this overview, the algorithm needs to deal with more general
cases: (1) Monotone (or anti-monotone) edges of 7 may not form
a matching, but rather, a large and almost-regular bipartite graph
whose existence follows from the directed isoperimetric inequal-
ity of [17]. (2) Although [17] implies the existence of such graphs
with bichromatic edges from 7, there may be more bichromatic
edges along I outside of these two graphs, which would raise the
influence of these variables to the point where Preprocess is no
longer oblivious of these variables. Intuitively, this implies that
bichromatic edges which give rise to edge violations are abundant,
so finding them becomes easier. This is handled in Case 2, where
we give an algorithm (also based on binary search) which finds
many bichromatic edges along these high influence variables, and
combine it with the techniques from [12] to find an edge violation.
(3) The set 7 can be much smaller than n, in which case, the tech-
niques from [12] actually achieves better query complexity. We
formalize this in Case 3 of the algorithm.

1.2 Organization

We review preliminaries, recall the binary search procedure and
review the definition of persistency and the AE-SEARCH procedure
in Section 2. We present the preprocessing procedure in Section

8n the simplified setting, each variable i € I has influence only O(1/n); In the real
situation, we need to handle the case even when each variable has influence as high
as 1/n?/3.

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

3 and prove that a low-influence variable has small impact on its
output. We use the directed isoperimetric lemma of [17] to establish
a so-called Scores Lemma in Section 4, which roughly speaking
helps us understand how good the set S is after preprocessing (in
terms of using it to run AE-SEARCH to find a bichromatic edge along
a certain variable). We separate our main algorithm into three cases
in Section 5, depending on different combinations of parameters.
As we are limited in space, we provide a sketch of the required
lemma statements without proofs for Case 1 in Section 6. We omit
the necessary proofs, as well as the analysis for Cases 2 and 3 of
the algorithm to the full version of this paper.

2 PRELIMINARIES

We will use bold-faced letters such as T and x to denote random
variables. For n > 1, we write [n] = {1, ..., n}. In addition, we write
g = O(f) to mean g = O(f - polylog(f)) and g = Q(f) to mean
9 = Q(f /polylog(f)).

For x € {0,1}", and a set S C [n], we write *) € {o,1}"
the point given by letting x(s) =xy forallk ¢ S, and x()
forallk € S (ie, x5 is obtalned from x by flipping Varlables in

=1-x

S). When S = {i} is a singleton set, we abbreviate x (D) = xUih
and say that x(!) is obtained from x by flipping the ith variable.
Throughout the paper, we use n + 1 as the name of a placeholder
variable (i.e., a dummy variable). If x € {0,1}" and S C [n+ 1], then
x5 .= xS\ B+ and in particular, *MtD = x We will refer to
this as flipping variable n + 1 (see Section 2.1) although no change
is made on x. For a subset S C [n + 1] and a variable i € [n], we
let Sub (S, i) C [n + 1] be the subset obtained by substituting n + 1
with i and i with n + 1. In other words,

S ifin+1€Sori,n+1¢8S
Sufn+1})\{i} ifieSandn+1¢S
Suf{ih\{n+1} ifn+1eSandi¢s.

Sub (S,i) =

We will at times endow S C [n+ 1] with an ordering : [|S|]] — S
which is a bijection indicating that (i) is the ith element of S under
7. When T C S, the ordering 7: [|T|] — T obtained from r is the
unique bijection such that for all i,j € T, 71(i) < z71(j) if and
only if 771(i) < 7~1(j). Moreover, when S C [n + 1] and 7 is
an ordering of S, the ordering 7’ of Sub (S, i) obtained from r is
obtained by substituting n+ 1 with i and i with n+ 1 in the ordering,
ie, n’(k) = n(k) when n(k) ¢ {i,n+ 1}, 7' (k) = n+ 1if n(k) = i
and 7’ (k) = iif r(k) = n+ 1.

Given a Boolean function f: {0,1}" — {0, 1}, and a variable
i € [n], we say that (x, x() is a bichromatic edge of f along variable
iif f(x) # f (xD); it is monotone (bichromatic) if x; f(x) and
anti-monotone (bichromatic) if x; # f(x). The influence of variable
iin f is defined as

Inf[i] =

(O
el F@ 2 £
which is twice the number of bichromatic edges of f along i divided
by 2". The total influence of f, 1 = };e[n) Infr[i], is twice the
number of bichromatic edges of f divided by 2". Given distributions
p1 and pg on some sample space Q, the total variation distance
between p1 and py is given by

d s = S) — u2(S)|.
v (K1, p2) Isnélé|ﬂ1() = 12(S)|

550

Xi Chen and Erik Waingarten
Subroutine BinarySearch (f, x, S,)
Input: Query access to f: {0,1}" — {0, 1}, a point x € {0,1}", a
nonempty set S C [n + 1] and an ordering 7 of S.
Output: Either i € S and a point y € {0, 1}" where (y,y)) isa
bichromatic edge, or nil.
(1) Query f(x) and f(x(®)) and return nil if f(x) = f(x(s)).
(2) Let m = |S| and x = x0,X1,...,Xm = x5 be the sequence
of points obtained from x b?l flipping variables in the order
of m(1),...,m(m): x; —x .Let{=0andr=m
(3) While r — f > 1do
(4) Let t = [(£ +r)/2] and query f(x;). If f(xp) # f(xz)
set r = t; otherwise set £ = t.
(5) Return 7(r) and y = xp.

Figure 1: Description of the binary search subroutine for
finding a bichromatic edge.

2.1 Binary Search With A Placeholder

We use the subroutine BinarySearch (f, x, S,) described in Fig-
ure 1, where f: {0,1}" — {0, 1} is a Boolean function, x € {0, 1}",
S is a nonempty subset of [n + 1], and x is an ordering of S.

When S C [n], BinarySearch (f, x, S, =) performs as the stan-
dard binary search algorithm: x = x¢, x1, ..., x5 = xS isa path
from x to x5 in which x; is obtained from x,_; by flipping vari-
able 7(t) € S C [n], and when f(x) # f(x(%)), the binary search
is done along this path to find an edge that is bichromatic. Now in
general S may also contain n + 1, which we use as the name of a
placeholder variable. Similarly, when f(x) # f (x9), the binary
search is done along the path x = xg, x1, ...) (recall
that x) is defined as x(S\t"*1}) when S contains n + 1) where x;
is obtained from x;_1 by flipping variable () (in particular, when
m(t) =n+1,x; = xp-1).

Note that even though n + 1 is a placeholder variable, given
S € [n+1] withn+ 1 € S and an ordering 7 of S, queries made by
BlnarySearch (f,x,S,) and BinarySearch (f,x,S\ {n + 1}, 7’)
(where 7’ is the ordering of S\ {n+ 1} obtained from) are different,
so their results may also be different. We summarize properties of
BinarySearch in the following lemma.

— (S
,X‘5| = x(

LEmMA 2.1. BinarySearch (f,x, S, 7) uses O(log n) queries and
satisfies the following property. If f(x) = f(x(s)), it returns nil; if
f(x) # f(x(s)), it returns a variable i € S\ {n + 1} and a point
y € {0, 1}" along the path from x to x(5) with ordering & such that
(y,yD) is bichromatic.

2.2 Persistency With Respect To A Set Of
Variables

We need the following notion of persistency for points and edges
with respect to a set of variables.

DEFINITION 2.2. Given a Boolean function f: {0,1}"* — {0,1}, a
set S C [n + 1] of variables and a point x € {0, 1}, we say that x is

Testing Unateness Nearly Optimally

S-persistent if the following two conditions hold:
1

Pr [f(x) = f(x(T))] 21-—; and
TCcS log“n
ITI=LISI/2]
P = facM] > 1- ‘
TCs [f(x) flx)] B log? n
[T|=LIS1/2]+1

where T is a subset of S of certain size drawn uniformly at random.
Note that when S = 0, every point in {0, 1}" is trivially S-persistent.

Let e be an edge in {0, 1}"". We say that e is S-persistent if both
points of e are S-persistent.

The notion of persistency above is useful because it can be used
to formulate a clean sufficient condition for
AE-SEARCH (f, x, S) to find a bichromatic edge (x, x(!)) for some
i € S with high probability. This is captured in Lemma 2.3 (see
Lemma 6.5 in [12]) below.

LEMMA 2.3. Given a point x € {0,1}"* and a set S C [n + 1],
AE-SEARCH(f, x,S) makes O(logn) queries to f, and returns either
ani € S such that (x, x(i)) is a bichromatic edge, or “fail.”

Let (x,x) be a bichromatic edge of f alongi € [n].Ifi € S
and (x, xY is (S\ {i})-persistent, then both AE-SEARCH (f, x, S) and
AE-Searcu (f, x| S) output i with probability at least 2/3.

Lemma 2.3 has the following immediate corollary.

COROLLARY 2.4. Given a setS C [n+ 1] and a point x € {0,1}",
there exists at most one variable i € S such that (x,x(i)) is both
bichromatic and (S \ {i})-persistent.

Proor. If the condition holds for both i # j € S, then from
Lemma 2.3 AE-SEARCH (f, x, S) would return both i and j with
probability at least 2/3, a contradiction. O

3 PREPROCESSING VARIABLES

Our goal in this section is to present a preprocessing procedure
called Preprocess. Given query access to a Boolean function
f:{0,1}* — {0, 1}, a nonempty set Sy C [n+ 1] (again, n+ 1 serves
here as a placeholder variable), an ordering 7 of Sy and a parame-
ter £ € (0,1), Preprocess(f, So, 7, &) makes (|So|/&) - polylog(n)
queries and returns a subset S of Sy. At a high level, Preprocess
keeps running BinarySearch to remove variables from Sy until the
set S C Sp left satisfies that at least (1 — &)-fraction of points in
{0, 1} are S-persistent (recall Definition 2.2).

In addition to proving the above property for Preprocess in
Lemma 3.1, we show in Lemma 3.2 the following: When i € Sy C [n]
has low influence, then the result of running Preprocess on Sy is
close (see Lemma 3.1 for the formal statement) to that of running it
on Sub (S, i) (in which we substitute i with the placeholder variable
n+1).

3.1 The Preprocessing Procedure

The procedure Preprocess (f, So, x, &) is described in Figure 3.
It uses a subroutine CheckPersistence (f,S, r, ¢) described in
Figure 2. Roughly speaking, CheckPersistence checks if at least
(1 — &)-fraction of points in {0, 1}" are S-persistent for the current
set S. This is done by sampling points x and subsets T of S of the
right sizes uniformly at random, and checking if f(x) = f (x(My,

551

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

Subroutine CheckPersistence (f, S, r, £)
Input: Query access to f: {0,1}"* — {0, 1}, a nonempty set
S € [n+ 1], an ordering x of S and a parameter ¢ € (0, 1).
Output: Either nil or a variable i € S.
(1) Repeat the following steps log* n/¢ many times:
(a) Sample a point x from {0, 1}"* uniformly at random.
(b) Flip a fair coin and perform one of the following tasks:

e Sample T C S with size [|S|/2] uniformly. Run
BinarySearch(f,x, T,) where n’ is the ordering of
T defined by x restricted on T. If
BinarySearch(f,x, T, x’) returns a variable i and a
point y, output i.

e Sample T C S with size [|S|/2] + 1 uniformly. Run
BinarySearch(f,x, T, ') where n’ is the ordering of
T defined by x restricted on T. If
BinarySearch(f,x, T, =’) returns a variable i and a
point y, output i.
(2) If BinarySearch always returned nil, output nil.

Figure 2: Description of the subroutine CheckPersistence.

Procedure Preprocess (f, So, 7, £)
Input: Query access to f: {0,1}" — {0, 1}, a nonempty set
So € [n+ 1], an ordering 7 of Sy and a parameter & € (0,1).
Output: A subset S C Sp.

(1) Initially, let S = Sp and 7 = 7.

(2) While S is nonempty do
(3) Run CheckPersistence (f, S, 7,).
4) If it returns nil, return S; otherwise (it returns an

i € S), remove i from S and 7.
(5) Return S (which must be the empty set to reach this line).

Figure 3: Description of the procedure Preprocess for pre-
processing a set of variables.

for log* n/& many rounds. If CheckPersistence finds x and T such
that f(x) # f (x(D), it runs binary search on them to find a bichro-
matic edge along some variable i € S and outputs i; otherwise it
returns nil.

The main property we prove for CheckPersistence is that when
the fraction of points that are not S-persistent is at least £, it returns
a variable i € S with high probability.

The procedure Preprocess (f, So, 7, &) sets S = Sp and 7 = 7 at
the beginning and keeps calling
CheckPersistence(f,S, 7, £) and removing the variable
CheckPersistence(f, S, z, £) returns from both S and the order-
ing 7, until CheckPersistence returns nil or S becomes empty
in which case Preprocess terminates and returns S. As a result,
Preprocess makes at most |Sy| calls to
CheckPersistence. It is unlikely that £-fraction of points are not S-
persistent but somehow CheckPersistence (f, S, 7, &) returns nil.
This implies that at least (1 — &)-fraction of {0, 1}" are S-persistent
for S = Preprocess (f, So, 7, £) at the end with high probability.

We summarize our discussion above in the following lemma.

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

LEMMA 3.1. Given a Boolean function f: {0,1}" — {0,1}, a
nonempty So C [n+1], an ordering 7w of So and a parameter& € (0,1),
Preprocess (f, So, 7, &) makes at most O(|So| log5 n/&) queries to
f and with probability at least 1 — exp (—Q(log2 n)), it outputs a
subsetS C Sy such that at least (1 — &)-fraction of points in {0, 1}"
are S-persistent.

3.2 Low Influence Variables Have Low Impact
On Preprocess

In the rest of the section, we show that when Sy C [n], a variable
i € So with low influence Inf¢[i] has low impact on the result
of S = Preprocess (f, So, 7, £). More formally, we show that one
can substitute i by the placeholder n + 1 and the result of running
Preprocess on Sub (So, i) is almost the same (after substituting
n + 1 back to i in the result of Preprocess).

This is made more precise in the following lemma:

LEmMMA 3.2. Let f: {0,1}" — {0,1} be a Boolean function. Let
i € So C [n], 7 be an ordering of S and & € (0, 1). Let S = Sub (So, i)
be the subset of [n + 1] and let &’ be the ordering of S obtained from
7 by substituting i with n + 1. Then we have

dry (Preprocess(f,So, 7, £),
Sub (Preprocess(f, Sg, 7', £), 1))

5
< o(—|50|1;Jg ") “Inff[i].

Because Preprocess keeps calling CheckPersistence
which keeps calling BinarySearch, we start the proof of
Lemma 3.2 with the following claim concerning the binary search
procedure.

CramM 3.3. Leti € S C [n] and be an ordering of S. Let S’ =
Sub (S, i), and n" be the ordering of S’ obtained from r by substituting
i withn + 1. We let u and v be the random variables where

o u is the output of BinarySearch (f, x, S,) when x is drawn
from {0, 1}™ uniformly, and

e v is the output of BinarySearch (f,z,5’, n") when z is
drawn from {0, 1} uniformly.

Then, we have dry(u,v) < O(logn) - Inf¢[i].

Proor. Our plan is to show that for every point x € {0, 1}" with
a certain property, we have

{BinarySearch(f,x,S,;r),BinarySearch(f,x(i),S,n')} (1)

as a multiset is the same as
{BinarySearch(f,x,S',zr'),BinarySearch(f,x(i),S',n')}‘ (2)

It turns out that the property holds for most points in {0, 1}"*. The
lemma then follows.

To describe the property we let m = |S| = |S’| and let k = 771(i)
(with 7’(k) = n + 1). We let J C [0 : m] denote the set of indices
taken by variables ¢ and r (see Figure 1 for settings of £ and r) in an
execution of BinarySearch along a path of length m that outputs
the kth edge at the end. For example, ignoring the rounding issue,
J always contains 0, m and m/2: these are indices of the first three
points that binary search examines. It contains 3m/4 if k > m/2, or
m/4if k < m/2, so on and so forth. The set J also always contains

552

Xi Chen and Erik Waingarten

k — 1 and k: these are indices of the last two points that binary
search examines before returning the kth edge.

Now we describe the property. Given x € {0,1}" we let x =
X0y xm = x5 with x; = xi’_rit)) for all ¢t € [m]. We let C(x) be
the indicator of the condition that:

flxj) = f(xj(-i)), forallj e J. 3)

We show that x ~ {0,1}" satisfies C(x) with high probability.
Because x is drawn uniformly from {0, 1}", x; defined above is also
distributed uniformly for each j € J and thus, the probability that a
specific j € J violates the condition above is at most Inf ¢[i]. It then
follows from a union bound over j € J that the fraction of points
that violate the condition C(x) is at most Inf¢[i] - O(log n).

It suffices to prove that when x € {0, 1}" satisfies C(x), the two
multisets in (1) and (2) are the same. To this end we write down the
two paths in the multiset (1) that start with x and x(©) as

X0, X1, - - and yo,y1,.-

(7 (2)

in which x; = x,_;
two paths for (2) as

s Ym

s Xm

and y; = xgi)A Similarly we write down the

20,215-..,2m and wy,wi,..., Wn,

in which we have z; = x; for all t < k and z; = y; for all ¢ > k;
wy =y; forall t < k and w; = x; for all t > k. It follows from the
property (3) of x that

f(xj) = fy)) = f(z)) = f(w)), 4)
Since 0,m € J we have that f(xo) = f(x;) implies the same holds
for y, z and w in which case (1) and (2) are trivially the same since
they all return nil. So we assume below that f(xp) # f(xm) and
thus, all four binary searches return a variable and a bichromatic
edge.
Next, since k — 1,k €] we have

flxe—1) = fxx) = fyr-1) = fyx)
= f(zk-1) = f(z) = f(wr_q) = fwg).

As aresult, the kth edge is not bichromatic in all four paths and thus,
during each run of binary search, k is removed from the interval
[£ : r] (see Figure 1) after a certain number of rounds. Moreover,
it follows from the definition of J and (4) that in all four runs of
binary search, the values of £ and r are the same at the moment
when k is removed from consideration (i.e., at the first time when
either € or r is updated so that k ¢ [: r]. We consider two cases
for the values of £ and r.

forallj € J.

(1) € > k: In this case, BinarySearch (f, x, S,) continues to
search on the path x,, ..., x, and

BinarySearch (f,x(i), S’, n”) continues to search on the
path we, ..., w, which is the same as xy, . . ., x, given that
£ > k. As a result, their outputs are the same. Similarly we
have that BinarySearch (f, x5,) is the same as
BinarySearch (f,x,S’, 7’) in this case.

r < k: In this case, BinarySearch (f, x, S, 7) continues to
search on the path x,, ..., x, and

BinarySearch (f,x,S’, #’) continues to search on the path
z¢, . .., zr which is the same as x¢, . . ., x, given that r < k.
As a result, their outputs are the same. Similarly we have

Testing Unateness Nearly Optimally

that BinarySearch (f, x5, 1) is the same as
BinarySearch (f,x(i), S’, ') in this case.

As a result, the two multisets are the same when x satisfies the
condition C(x). O
Claim 3.3 gives the following corollary using a union bound:

COROLLARY 3.4. Leti € S C [n] and & be an ordering of S. Let
S’ = Sub(S,i) and n’ be the ordering of S’ obtained from 7 by
substituting i with n + 1. Then we have

drv(CheckPersistence(f, S, , &),
CheckPersistence(f,S’, 7', £))

< o(bg;”) - Inf[i].

Proor. We use the following coupling to run
CheckPersistence (f, S, 7, &) and
CheckPersistence (f,S’, n’, £) in parallel.

For each round of CheckPersistence we first flip a fair coin
and draw a subset T of S of the size indicated by the coin uniformly.
Then we couple the binary search on x ~ {0,1}" and T and the
binary search on z ~ {0, 1} and Sub (T, i) using the best coupling
between them.

It then follows from Claim 3.3 and a union bound over the
log* n/¢ rounds that the probability of this coupling of
CheckPersistence (f, S, 7, &) and
CheckPersistence (f,S’, n’,) returning different results is at
most

(log* n/&) - Inf ¢ [i] - O(log n).

This finishes the proof of the corollary. o
Now we prove Lemma 3.2.
PROOF OF LEMMA 3.2. Let m = |S| = |S’|. For each j € [m],

let X; denote the output of the jth call to CheckPersistence in
Preprocess (f,So, 7, &) with X; set to nil by default if the pro-
cedure terminates before the jth call. Similarly we use Y; to de-
note the output of the jth call in Preprocess (f,S;, 7', £). Let
X = (X1,...,Xm)and Y = (Y1,...,Y). Then X = Y implies
that S = Preprocess (f, So, 7, £) is the same as

S’ = Preprocess (f, S, 7/, £). As a result, it suffices to show that

1 5
dry(X,Y) < = % 7

. Inff[i].

To this end, we first note that by Corollary 3.4 the total variation
distance between X; and Y; is at most § := O(Iog5 n/&) - Infg[i].
On the other hand, note that if the outputs from the first £ — 1
calls in Preprocess (f, So, 7, £) and Preprocess (f,S;, 7, £) are
the same, say ajy, ..., ag_1, then before the {th call, the set S in the
former still contains i and the S’ in the latter can be obtained by
substituting its i with n+1. It follows from Corollary 3.4 that, for any
¢ > landanyay,...,ap_q, the total variation distance between the
distribution of X, conditioning on X; = ay,...,X¢—1 = ag—1 and
the distribution of Y, conditioning on Y1 = a1,...,Yp_y = ap_; is

553

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

also at most . We prove that these properties together imply that
drv(X,Y) < mp, from which the lemma follows.’

For this purpose we use the following coupling of X and Y.
First we use the best coupling for the distribution of X; and the
distribution of Y; to draw (a1, b1). Then we draw (ay, by) from
the the best coupling for the distribution of X3 conditioning on
X1 = aj and the distribution of Y, conditioning on Y; = b1. We
then repeat until (@, bp,) is drawn. It follows from the description
that the marginal distribution of @ = (aj, . . ., an) is the same as X
and the marginal distribution of b = (b1, ..., bp) is the same as Y.
Moreover, we have

drv(X,Y) < Pr [a ;tb]
=Pr[a1 ¢b1]+PI‘[(11 =b1/\a2¢b2]+.‘.
+Pr[aj=bjforj<m/\am¢bm],

which is at most mf by the description of the coupling and proper-
ties of X and Y. o

4 THE SCORES LEMMA

By definition when f is e-far from unate, f(x ® a) is e-far from
monotone for every a € {0,1}". This means that we can utilize
the directed isoperimetric inequality of [17] to show the existence
of relatively large and almost-regular bipartite graphs that con-
sist of bichromatic edges.The goal of this section is to show that,
using these bipartite graphs, there exist certain probability distri-
butions over subsets of variables such that a set S drawn from any
of these distributions can be used to search for bichromatic edges
via AE-SEARCH efficiently.
To this end, we start by introducing three distributions

He,ms D, m and P, m in Section 4.1. We then use them to define
a score for each variable i € [n] which aims to quantify the chance
of finding a bichromatic edge along i using AE-SEARCH and a set S
drawn from some of those distributions. Finally we give the Scores
Lemma in Section 4.2, which shows that the sum of scores over
i € [n] is large when f is e-far from unate and has total influence

O(vn).

4.1 Distributions D¢ ,,,, Hy ,, And P; ,, And The
Definition Of Scores

We start by defining two distributions D¢, and Hg .

DEFINITION 4.1. Given & € (0,1) and m :
let D¢ p, denote the following distribution supported on subsets of
[n]: S ~ D¢ p is drawn by first sampling a subset So of [n] of
size m and an ordering 7t of So uniformly at random. We then call
Preprocess (f, So, 7, £) to obtain S.

Similarly, let Hy p,, denote the following distribution supported on
subsets of [n+1]:S ~ Hy , is drawn by first sampling a subset So of
[n+ 1] of sizem withn + 1 € So and an ordering s of So uniformly
at random. We then call Preprocess (f, So, 7, £) to obtain S. Notice
that asn + 1 is just a placeholder, we always haven+1 € S ~ Hg 1.

1 <m < n, we

As it will become clear later, our unateness tester will sample
subsets according to the distribution D¢ ,, and use them to find an

9We suspect that this is probably known in the literature but were not able to find a
reference.

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

edge violation to unateness when f is far from unate. While this
section is mainly concerned about Hy ,,, it will only be used in
the analysis to help us understand how good those samples from
D¢, are in terms of revealing an edge violation to unateness.

Let A = [2log(n/e)] in the rest of the paper. Given i € [n] and
m:1<m<n-1weuse P; n, to denote the uniform distribution
over all size-m subsets of [n] \ {i}.

Next we use Hs ,, and P;,, to define strong edges.

DEFINITION 4.2 (STRONG EDGES). Let e be a bichromatic edge of f
along variable i € [n]. We say e is {-strong, for some integer { € [A],
if the following two conditions hold:

(1) For everym < n®/® as a power of 2 and every = 1/2k with
¢ < k < A, the edge e is S-persistent (recall Definition 2.2)
with probability at least 1 — (1/logn) whenS ~ Hg p,.

(2) The edge e is S-persistent with probability at least
1—(1/logn) whenS ~ P [vr/2t1

For each i € [n] and ¢ € [A], we define
SCOREZ (N

1
= — - number of {-strong monotone edges along variable i.
2n

We analogously define Score; ,(f) for anti-monotone edges along
variable i. Finally we define

Score] (f) = [Heli[i/)\(] {SCOREZ{,(f) . 2%}, 5)

and we analogously define Score; (f).

4.2 The Scores Lemma

We state the Scores Lemma:

LEMMA 4.3. Let f: {0,1}" — {0,1} be e-far from unate with
Ir < 6+/n. Then there are s, t € [A], h € [3A] and a set I C [n] such

that |1 | is a power of 2, |I|/2h = Q(e?/A"Y) and everyi € I has
_ 1 1
7 SCORE; 4 - ?} > 6)

2 h

We note that our Scores Lemma above looks very similar to
Lemma 4.3 from [12]. Thus the proof follows a similar trajectory.
The main difference is that we are varying the distributions from
which the set S of variables is drawn. Compared to [12] we not
only consider the quality of S drawn from the # distribution in the
definition of strong edges but also those drawn from Hy ,, with a
number of possible combinations of £ and m in the indicated range.
This makes the proof of the lemma slightly more involved than that
of Lemma 4.3 in [12].

min {SCORE;r S

5 THE MAIN ALGORITHM

We now describe the main algorithm for testing unateness. The
algorithm rejects a function f only when an edge violation has
been found. As a result, for its correctness it suffices to show that
when the input function f is e-far from unate, the algorithm finds
an edge violation with probability at least 2/3. For convenience we
will suppress polylog(n/¢) factors using O(-) in the rest of analysis.

The main algorithm has four cases. Case 0 is when the input func-
tion f satisfies Iy > 6+/n. In this case an O(+/n)-query algorithm is
known [2] (also see Lemma 2.1 of [12]).

554

Xi Chen and Erik Waingarten

From now on, we assume that f is not only e-far from unate
but also satisfies Iy < 6+/n. Then there are parameters s, t € [A]
and h € [3A] and a set 7 C [n] with which Lemma 4.3 holds
for f. We may assume that the algorithm knows s, t,h and |7 | =
2¢ (by trying all possibilities, which just incurs an addition factor
of O(A%) in the query complexity). We may further assume without
loss of generality that s > ¢ since the case of s < t is symmetric.

We consider the following three cases of f:

Case 1: |7|/2! > n?/3 and and at least half of i € T satisfy

n1/3

m 5 (7)

62
Inff[i] < (F) :
Case 2: |7|/2¢ > n?/® and and at least half of i € T violate (7); and
Case 3: |7|/2¢ < n?/3.

LEMMA 5.1. Lets >t € [A], h € [3A], and € € [|logn]] with
272t > n?3. There is a O(n®/3 /%) -query algorithm with the fol-
lowing property. Given any Boolean function f: {0,1}"* — {0, 1} that
satisfies (i) Lemma 4.3 holds for f with s,t,h and a set I C [n] with
|| = 2¢; and (ii) at least half of i € T satisfy (7), the algorithm finds

an edge violation to unateness with probability at least 2/3.

LEMMA 5.2. Lets > t € [A], h € [3A], and € € [|logn]] with
2072t > n?/3. There is an algorithm that makes O(n?/3 /%) queries
and satisfies the following property. Given any Boolean function
f:1{0,1}" — {0,1} that satisfies (i) Lemma 4.3 holds for f with
s,t,h and aset I C [n] with|I| = 2¢ and (ii) at least half of i € T
violate (7), the algorithm finds an edge violation to unateness with
probability at least 2/3.

LEMMA 5.3. Lets > t € [A], h € [3A], and € € [|logn]] with
20/2t < n2/3. There is an algorithm that makes 0?3 + \n/€?)
queries and satisfies the following property. Given any Boolean func-
tion f: {0,1}"* — {0, 1} that satisfies Lemma 4.3 with s, t, h and a set
T C [n] of size |T| = 2¢, the algorithm finds an edge violation of f
to unateness with probability at least 2/3.

Theorem 1 follows by combining all these lemmas.

6 THE ALGORITHM FOR CASE 1

Lets > t € [A], h € [3A] and ¢ € [[logn]]. In Case 1 the input
function f: {0,1}"™ — {0, 1} satisfies Lemma 4.3 with parameters
s,t,hand I C [n] of size |I| = 2, with |T]/2¢ > n?/3. At least half
of the variables i € I have low influence as given in (7). Let i be
such a variable. Then by (7),

&2
Al3
Letting ¢ = 1/2° throughout this section, it follows from Lemma

4.3 that
_0 A13 |[| _ AZ
IR VEY R VIV &

6.1 Informative Sets

1/3

C— >
|71

S

\S}

Infr[i] > 2- Scorg] ; > ;

=

3 ®)

We start with the notion of informative sets. Note that we will have
different notions of informative sets in different cases of the algo-
rithm. We use the same name because they serve similar purposes.

Testing Unateness Nearly Optimally

Giveni € [n] and aset S C [n + 1] we use PE;r (S) to denote the
set of s-strong monotone edges along variable i that are S-persistent.
We define PE; (S) similarly for antimonotone edges.

DEFINITION 6.1 (INFORMATIVE SETS). A set S C [n + 1] is i-
informative for monotone edges if

PEF(S Score? s—h
[PET (S)] S is 2 ©)
2n 4 4
and that S C [n + 1] is i-informative for anti-monotone edges if
PE; (S SCORE] t=h
| l()l > it > 2_ (10)

2n 4 4
We simply say that S C [n + 1] is i-informative if S satisfies both (9)
and (10).
LEMMA 6.2. For eachi € I and each positive integer m < n
that is a power of 2, S ~ Hg, p, is i-informative with probability at
least 1 — o(1).

2/3

Proor. We first show that S ~ ‘Hf, m satisfies (9) with probabil-
ity at least 1 — o(1). The same argument works to show S ~ H;
satisfies (10). The lemma then follows from a union bound. To this
end, let a be the probability of S ~ H p, being i-informative for
monotone edges. We examine

Pr |e is S-persistent]|,
Pr[eissp]

where e is an s-strong monotone edge along variable i drawn uni-
formly at random and S ~ H p,. It follows from the definition
of strong edges that the probability is at least 1 — 1/ log n. On the
other hand, we can also upperbound the probability using « (and
the definition of i-informative sets) as (1 — «)/4 + a. Solving the
inequality we get & > 1 — o(1). O

Next we introduce two new families of distributions that will

help us connect H p, with Dy ;.

DEFINITION 6.3. Given ¢ € (0,1), m: 1 < m < nandi € [n], we
let D, p,; denote the following distribution supported on subsets of
[n]:S ~ H 1y, ; is drawn by first sampling a subset Sy of [n] of size
m withi € So and an ordering st of Sy uniformly at random. We then
callPreprocess (f,So, 7, £) and set S to be its output.

Similarly, H p, ; denotes the following distribution supported on
subsets of [n + 1]: S ~ Hy , ; is drawn by first sampling a subset
So of [n+ 1]\ {i} of size m withn + 1 € Sg and an ordering 7 of Sp
uniformly at random. We then call Preprocess (f, So, 7, £) and set
S to be its output.

Using the fact that the total variation distance between the So
used in H p, (at the beginning of the process) and the S used in
Hg, m,i is at most m/n, we have

dty (W§,m7 7‘{§’ m, i) <m/n
and the following corollary from Lemma 6.2.

COROLLARY 6.4. For everyi € I and every positive integer m <
n?/3 as a power of 2, we have that S ~ He, m,i is i-informative with
probability at least 1 — o(1).

The next two lemmas allow us to draw random subsets and still

obtain i-informative sets. They enable us to use techniques from
[12] for particular cases of our algorithm.

555

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

LemmA 6.5 Foreveryi € I wehaveT ~ P, [r /ey isi-informative
for anti-monotone edges with probability at least 1 — o(1).

ProoF. Similarly to the proof of Lemma 6.2, we write « to denote
the probability of T ~ #; [r/2t] being i-informative for anti-
monotone edges. We examine

Pr |e is T-persistent|,
Pr[eisTp]

where e is a t-strong anti-monotone edge along variable i drawn
uniformly and T ~ #; [yr/2e- It follows from the definition of
strong edges that this probability is at least 1 — 1/logn. On the
other hand, we can also upperbound the probability using o (and
the definition of i-informative sets for anti-monotone edges) as
(1 - a)/4 + a. Solving the inequality we get @ > 1 — o(1). O

Similarly, we may conclude the analogous lemma for monotone
edges, whose proof follows similarly to Lemma 6.5.

LEMMA 6.6. For every i € I we have thatS ~ P; [ym/2s1 i
i-informative for monotone edges with probability at least 1 — o(1).

6.2 Catching Variables: Relating D; ,, And

He, m
Now we focus on the variables in 7 that satisfy (7). To this end,
we let 7* be a subset of I of size [|7|/2] such that all variables in

T* satisfy (7). Given that the algorithm knows the size of 7, it also
knows the size of 7* (though not variables within). Next we use m

to denote the largest power of 2 that is at most £|7|/n'/3. In other
words, m is the unique power of 2 satisfying
I I
S <m< M (11)
onl/3 nl/3

Given that |7| > |7|/2¢ > n*/® and (8), we have m > 1 and
m = ©(|I|/n'/3).

We now turn to analyzing the distribution D¢ ,, with the m
defined above.

DEFINITION 6.7 (CATCHING VARIABLES). Leti € I*. We say that
a set S C [n] catches the variable i ifi € S and Sub (S, i) = (SU {n+
1}) \ {i} is i-informative (see Definition 6.1). We let

CAUGHT(S) = {i € I : S catches i}.
Intuitively, if we sample S ~ D¢, and i € CAUGHT(S), then

we have an upper bound for how many samples x we need for
AE-SEARCH(f, x,S U {n + 1}) to reveal a bichromatic edge along i.

CraM 6.8. Foreveryi € I*, we have

Pr
S~D§.m,i
>

> Pr
T~He m,i

[S catches i]

[T is i-informative] —0(1).

Proor. We show the total variation distance between S ~ D¢, ;
and Sub (T, i) over T ~ H , ; is
mlog8 n . || log8 n

-Inff[i]) =o(1), (12)

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

Procedure AlgorithmCasel.1 (f)

Input: Query access to a Boolean function f: {0,1}" — {0,1}
Output: Either “unate,” or two edges constituting an edge
violation of f to unateness.

(1) Repeat the following O(1) times:
(2) Draw § ~ D, p,: First draw a size-m subset S of [n]
and an ordering s of So
uniformly at random and then call
Preprocess (f, So, 7, £).
Repeat g times, where g = O (n2/3A13/€2):
Draw an x € {0, 1}" uniformly and run
AE-SEARCH (f,x,SU {n+ 1})
Let A be the set of i € [n] such that an anti-monotone
edge along i is found
Repeat g times:
Draw an y € {0, 1}" uniformly and run
AE-SEARCH (f,y,SU {n+1})
Let B be the set of i € [n] such that a monotone edge
along variable i is found
) If ANB # 0, output an edge violation of f to unateness.
(10) Output “unate”

®)
(4)

®)

(6)
™

®)

Figure 4: Algorithm for Case 1.1

given (7) and i € 7*. The lemma follows from the observations that
Sub (T, i) contains i and when T is i-informative, Sub (T, i) catches
i.

To upperbound the total variation distance between S ~ Dy p, ;
and Sub (T, i) over T ~ H ,, ;, we use the following coupling. First
we draw a subset Sg of [n] with i € Sy and an ordering 7 of Sp
uniformly at random. Then we set S = Sub (S, i) and 7" to be the
ordering of §) obtained from s by replacing i with n + 1. Finally we
draw the output from the best coupling for Preprocess (f, So, 7, £)
and Sub (Preprocess (f, S/, ', £), i). The upper bound in (12) fol-
lows directly from Lemma 3.2. O

6.3 Algorithm For Case 1.1

There are two sub-cases in Case 1. Specifically, for the remainder
of Section 6.3, we assume that
1/3 |op?
n'/?log®n
> Z—t’ (13)
and handle the other case in Case 1.2. We let
_ m|IT7|

= Q(log? n), (14)

the expected size of the intersection of a random size-m subset
of [n] with 7*, where we used (13) and |7*|/2! = Q(n?/3). Note
that both m and r are known to the algorithm. We give Lemma
5.1 assuming (13) using AlgorithmCase1.1 in Figure 4, with the
following query complexity.

CraM 6.9. The query complexity of AlgorithmCasel.1 is
O(n?/3/2).

The algorithm for Case 1.1 starts by sampling a set S ~ Dy p,. It
then keeps drawing points x uniformly at random to run

556

Xi Chen and Erik Waingarten

AE-SEARCH (f, x,S U {n + 1}) to find bichromatic edges, with the
hope to find an edge violation along one of the variables in 7*. We
break lines 3-8 into the search of anti-monotone edges and the
search of monotone edges separately only for the analysis later;
algorithm wise there is really no need to do so. (The reason we
use S U {n + 1} instead of S in the algorithm lies in the proof of
Lemma 6.10; roughly speaking, we need it to establish a connection
between Dy, and Hy ,, so that we can carry the analysis on
He, m that has been done so far over to Dy ,,,.) On the one hand,
recall from Lemma 2.3 that if i € S C [n] and a bichromatic edge
e along variable i is Sub (S, i) = (SU {n + 1}) \ {i}-persistent, then
running AE-SEARCH on S U {n + 1} and any of the two points of e
would reveal e with high probability. On the other hand, if a set (e.g.,
Sub (S, i)) is i-informative then it is persistent on a large fraction of
edges along variable i.

Our first goal is to prove Lemma 6.10, which states that S ~ Dy,
catches many variables.

LEmMMA 6.10. We have | CAUGHT(S)| > r/6 with probability Q(1).

Given Lemma 6.10, a constant fraction of the intersection of S
and 7 * will be caught, and therefore, AE-SEARCH (f, x,SU {n + 1})
will output a bichromatic edge along a variable from these caught
coordinates for sufficiently many points x. We fix S to be a set that
catches at least r/6 many variables in 7, and claim that during
this loop, an edge violation is found with probability 1 — o(1).

Given S, we write J C I* to denote the set of variables caught
by S with | J| > r/6. Then by definition we have that J C S and
Sub (S, j) is j-informative for every j € J.

We start by showing that A N 7 is large with high probability.

LEMMA 6.11. We have AN J| > Q (m2t/n1/3) with probability
at least 1 — o(1).

Fix an A such that C = A N J satisfies the lower bound of
Lemma 6.11. We finally show that C N B with high probability. This
finishes Case 1.

LEMMA 6.12. We have that C N B is not empty with probability at
least 1 — o(1).

6.4 Algorithm For Case 1.2

The second subcase of Case 1 occurs when

n'/3log® n

m<—— (15)

and the crucial difference is that unlike Case 1.1, we cannot conclude
with (14). More specificially, two potential issues which were not
present in Section 6.3 may arise: 1) sampling a set S ~ Dy ,,, may
result in CAuGHT(S) = 0, and 2) even if |CAUGHT(S)| is large, too
few points x may result in AE-SEARCH (f, x, S) returning an anti-
monotone edge (for instance, when 2! = 1 and 2h = n). Thus,
we address these two problems with AlgorithmCasel.2, which is
described in Figure 5.

At a high level, AlgorithmCase1.2 proceeds by sampling a set
T C [n] of size

p:=[Vn/2"] +1=0(vYn/2")

uniformly at random, and directly uses the set T to search for anti-
monotone edges by repeating AE-SEaRcH (f, x, T) for O(n?/3/¢2)

Testing Unateness Nearly Optimally

Procedure AlgorithmCasel.2 (f)

Input: Query access to a Boolean function f: {0, 1} — {0, 1}
Output: Either “unate,” or two edges constituting an edge
violation of f to unateness.

(1) Repeat the following O(1) times:

(2) Draw a set T C [n] of size p uniformly at random.
3) Repeat O (712/3A11 log? n/ez) times:
4) Draw an x € {0, 1}" uniformly and run

AE-SEARCH (f, x, T)
Let A be the set of i € [n] such that an anti-monotone
edge along i is found.
Repeat O (n1/3 log? n/(mzt)) times:
Draw S by first drawing a subset Sg of T of size m
and an ordering
7t of So both uniformly at random and then call
Preprocess (f, So, 7, £).
Repeat O ((Zh/2$) -log n) times:
Draw y € {0, 1}" uniformly and run
AE-SEARCH (f,y,SU {n + 1}).
Let B be the set of i € [n] such that a monotone edge
along variable i is found.
(11) If ANB # 0, output an edge violation of f to unateness.
(12) Output “unate”

®)

(6)
™

®)
©

(10)

Figure 5: Algorithm for Case 1.2

many iterations. We show at the end the algorithm will obtain
anti-monotone edges along at least Q(n'/®) variables in T N 1
(as an anti-monotone edge is found every O(+/n/€?) iterations of
AE-SEARCH (f, x, S)). The algorithm will then sample Sg C T of size
m (notice that m < p by (15)), pass it through Preprocess to obtain
S C Sp, and then repeat AE-SEARCH (f,y, So) in hopes of observing
an edge violation. In order to do so, S must contain a variable where
the algorithm has already observed an anti-monotone edge. Since
the number of variables with anti-monotone edges observed may
be O(n!/®) and m-n'/® could be much smaller than p, the algorithm
needs to sample the subset Sy from T multiple times.

We state the query complexity of the algorithm for Case 1.2,
where we note that the upper bound will follow from (15), (8), (11),
the fact that 2! > 1 and 2"/7 > Q(¢?).

LEMMA 6.13. The query complexity of AlgorithmCase1.2 is (us-
ing (8))

o)))

In order to analyze AlgorithmCase1.2 we consider one of the
main iterations and let T denote the set drawn in line 2. We define
the following subset C € T N I* to capture how good T is: A
variable i € T N I belongs to C if it satisfies both of the following
conditions:

(i) The set T \ {i} is i-informative for anti-monotone edges; and
(ii) If we draw S by first drawing a subset Sg of T of size m
conditioning on i € ¢ and an ordering of & of S¢ uniformly
at random and then calling Preprocess (f, So, 7, £) to
get S, then the probability that S catches i is at least 1/2.

557

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

We prove that when T is a random size-p set, the set C is large
with constant probability.

LEmMMA 6.14. With probability at least Q(1) over the draw of T C
[n] in line 2, we have
I*
IC| = Q (M))
n

Having established Lemma 6.14, we consider a fixed iteration
of line 2 where the set C obtained from T satisfies the size lower
bound from Lemma 6.14. Note that since line 2 is executed O(1)
times, this will happen with large constant probability. After fixing
T and C, we will show that in this iteration, AlgorithmCase1.2
finds an edge violation to unateness with high probability.

LEMMA 6.15. With probability 1 — o(1) over the randomness in
lines 3-5,|]A N C| > Q(n'/%).

By Lemma 6.15 we consider the case when [ANC| = Q(nl/ﬁ). Fix
a particular A and a subset of = AN C such that | | = G)(nl/6).

LEMMA 6.16. With probability at least 1 — o(1), at least one of the
S sampled in line 7 catches at least one variable in .

Finally we show that if S catches a j € 7, then line 9 finds a
monotone edge along j.

LEMMA 6.17. If'S catches j € J in line 7, then line 9 finds a
monotone edge along variable j with probability at least 1 — o(1).

ACKNOWLEDGMENTS

We would like to thank Jinyu Xie for useful discussions. This work
is supported in part by the NSF Graduate Research Fellowship
under Grant No. DGE-16-44869 and NSF awards CCF-1703925 and
1IS-1838154.

REFERENCES
5!

Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya
Raskhodnikova, and C. Seshadhri. 2017. A lower bound for nonadaptive, one-
sided error testing of unateness of Boolean functions over the hypercube. arXiv
preprint arXiv:1706.00053 (2017).

Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, So-
fya Raskhodnikova, and C. Seshadhri. 2017. Optimal Unateness Testers for
Real-Values Functions: Adaptivity Helps. In Proceedings of the 44th International
Colloquium on Automata, Languages and Programming (ICALP "2017).

Roksana Baleshzar, Meiram Murzabulatov, Ramesh Krishnan S. Pallavoor, and
Sofya Raskhodnikova. 2016. Testing unateness of real-valued functions. arXiv
preprint arXiv:1608.07652 (2016).

Aleksandrs Belovs and Eric Blais. 2016. A polynomial lower bound for test-
ing monotonicity. In Proceedings of the 48th ACM Symposium on the Theory of
Computing (STOC °2016). 1021-1032.

Eric Blais. 2009. Testing juntas nearly optimally. In Proceedings of the 41st ACM
Symposium on the Theory of Computing (STOC °2009). 151-158.

Deeparnab Chakrabarty and Seshadhri Comandur. 2016. An o(n) monotonicity
tester for boolean functions over the hypercube. SIAM J. Comput. 45, 2 (2016),
461-472.

Deeparnab Chakrabarty and C. Seshadhri. 2018. Adaptive Boolean monotonicity
testing in total influence time. (2018).

Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. 2015. Boolean function
monotonicity testing requires (almost) n'/? non-adaptive queries. In Proceedings
of the 47th ACM Symposium on the Theory of Computing (STOC ’2015). 519-528.
Xi Chen, Zhengyang Liu, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. 2018.
Distribution-free junta testing. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC).

Xi Chen, Rocco A. Servedio, and Li-Yang Tan. 2014. New algorithms and lower
bounds for monotonicity testing. In Proceedings of the 55th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS ’2014). 285-295.

[10

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA Xi Chen and Erik Waingarten

[11] Xi Chen, Erik Waingarten, and Jinyu Xie. 2017. Beyond Talagrand functions: domains. In Proceedings of the 34th ACM Symposium on the Theory of Computing
new lower bounds for testing monotonicity and unateness. In Proceedings of the (STOC °2002). 474-483.
50th ACM Symposium on the Theory of Computing (STOC °2018). [16] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex
[12] Xi Chen, Erik Waingarten, and Jinyu Xie. 2017. Boolean unateness testing with Samordinsky. 2000. Testing Monotonicity. Combinatorica 20, 3 (2000), 301-337.
ﬁ(n3/4) adaptive queries. In Proceedings of the 58th Annual IEEE Symposium on [17] Subhash Khot, Dor Minzer, and Muli Safra. 2015. On monotonicity testing and
Foundations of Computer Science (FOCS °2017). boolean isoperimetric type theorems. In Proceedings of the 56th Annual IEEE
[13] X. Chen and J. Xie. 2016. Tight Bounds for the Distribution-Free Testing of Symposium on Foundations of Computer Science (FOCS "2015). IEEE Computer
Monotone Conjunctions. In Proceedings of the 27th Annual ACM-SIAM Symposium Society, 52-58. _
on Discrete Algorithms (SODA). [18] Subhash Khot and Igor Shinkar. 2016. An O(n) queries adaptive tester for
[14] E. Dolev and D. Ron. 2011. Distribution-Free Testing for Monomials with a unateness. In Approximation, Randomization and Combinatorial Optimization.
Sublinear Number of Queries. Theory of Computing 7, 1 (2011), 155-176. Algorithms and Techniques. 37:1-37:7.
[15] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubin-

feld, and Alex Samorodnitsky. 2002. Monotonicity testing over general poset

558

	Abstract
	1 Introduction
	1.1 Technical overview
	1.2 Organization

	2 Preliminaries
	2.1 Binary Search With A Placeholder
	2.2 Persistency With Respect To A Set Of Variables

	3 Preprocessing Variables
	3.1 The Preprocessing Procedure
	3.2 Low Influence Variables Have Low Impact On Preprocess

	4 The Scores Lemma
	4.1 Distributions D,m, H,m And Pi,m And The Definition Of Scores
	4.2 The Scores Lemma

	5 The Main Algorithm
	6 The Algorithm for Case 1
	6.1 Informative Sets
	6.2 Catching Variables: Relating D,m And H,m
	6.3 Algorithm For Case 1.1
	6.4 Algorithm For Case 1.2

	Acknowledgments
	References

