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Abstract—Population recovery is the problem of learning
an unknown distribution over an unknown set of n-bit
strings, given access to independent draws from the distri-
bution that have been independently corrupted according
to some noise channel. Recent work has intensively studied
such problems both for the bit-flip noise channel and for
the erasure noise channel.

In this paper we initiate the study of population re-
covery under the deletion channel, in which each bit b is
independently deleted with some fixed probability and the
surviving bits are concatenated and transmitted. This is
a far more challenging noise model than bit-flip noise or
erasure noise; indeed, even the simplest case in which the
population is of size 1 (corresponding to a trivial probability
distribution supported on a single string) corresponds to
the frace reconstruction problem, which is a challenging
problem that has received much recent attention.

In this work we give algorithms and lower bounds for
population recovery under the deletion channel when the
population size is some value / > 1. As our main sample
complexity upper bound, we show that for any population
size £ = o(logn/loglogn), a population of ¢ strings from
{01/12}+"O gan be learned under deletion channel noise using
2" samples. On the lower bound side, we show that
at least n*(") samples are required to perform population
recovery under the deletion channel when the population
size is ¢, for all £ < n'/?7¢,

Our upper bounds are obtained via a robust multivari-
ate generalization of a polynomial-based analysis, due to
Krasikov and Roddity [KR97], of how the k-deck of a bit-
string uniquely identifies the string; this is a very different
approach from recent algorithms for trace reconstruction
(the ¢ = 1 case). Our lower bounds build on moment-
matching results of Roos [Roo00] and Daskalakis and
Papadimitriou [DP15].

I. INTRODUCTION

In recent years the unsupervised learning problem
of population recovery has emerged as a significant
focus of research attention in theoretical computer sci-
ence [DRWY12], [MS13], [BIMP13], [LZ15], [DST16],
[WY16], [PSW17], [DOS17b]. In the population re-
covery problem there is an unknown distribution X
over an unknown set of n-bit strings from {0,1}",
and the learner’s job is to reconstruct a high-accuracy
approximation of X given access to noisy independent
draws from X (so each data point which the learning
algorithm receives is independently generated as follows:
an n-bit string is drawn from X and corrupted by some
noise process, and the result is provided to the learning
algorithm). The two noise models which have chiefly
been studied to date are the bit-flip noise model, in which
each coordinate is independently flipped with some fixed
probability, and the erasure noise model, in which each
coordinate is independently replaced by ‘?” with some
fixed probability.

Since the population recovery problem was first in-
troduced in [DRWY12], [WY16], a number of positive
results and lower bounds have been obtained for different
variants of the problem. In one popular version of the
problem [PSW17], [DOS17b], [MS13], for a particular
noise model (bit-flip or erasure) the distribution X may
be an arbitrary distribution over {0, 1}", and the goal is
to learn the distribution X with respect to /., distance
(i.e. to output a list of strings z*,..., 2" € {0,1}" and
associated weights X (z?) such that |X (%) — X (2')| < ¢
for all ¢ € [r] and X(z) < ¢ for all x € {0,1}"\
{z',...,2"}). In another well-studied version of the
problem [WY16], [LZ15], [DST16], which is closely
related to the problems we shall consider, the distribution
X is promised to be supported on at most ¢ strings
in {0,1}" (i.e. the “population size” is promised to
be at most /), and the goal is to output a hypothesis
distribution X over {0,1}"™ which has total variation
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distance at most ¢ from X. Significant progress has
been made on determining the sample complexity of
population recovery for both of these variants under the
bit-flip and erasure noise models; we refer the interested
reader to [DST16], [PSW17], [DOS17b] for the current
state of the art.

This work: Population recovery from the deletion
channel and its relation to trace reconstruction. In
both the bit-flip noise model and the erasure noise model,
all of the challenge in the population recovery problem
stems from the fact that given a noisy draw from X it
is a priori not clear which element of X’s support was
corrupted by noise to produce the noisy draw. Putting
it another way, if the population size is promised to be
¢ = 1, then under either of these two noise models it
is trivially easy to learn a single unknown string from
noisy examples.

In this work we study population recovery under the
deletion noise model, which is far more challenging
to handle than either bit-flip noise or erasure noise.
The deletion channel is defined as follows: when a
string x is passed through the deletion channel with
deletion parameter §, each coordinate x; is independently
deleted with probability d, the surviving coordinates are
concatenated, and the resulting string (of length n’ < n,
where n/ is distributed as Bin(n,1 — §)) is the output
of the noise process. Intuitively, the deletion channel is
challenging because given a received word obtained by
passing x through the d-deletion channel (often referred
to as a frace of x, and denoted by z <« Dels(z)), it
is not clear which coordinate of x gave rise to which
coordinate of z. Indeed, in contrast with the bit-flip
and erasure noise models, even if the population size
is guaranteed to be ¢ = 1, the problem of recovering
a single unknown string from independent traces is a
well-known and challenging open problem, known as
the trace reconstruction problem [Lev0lb], [LevOla],
[BKKMO04], [KMO05], [HMPWO08], [VS08], [MPV14],
[DOS17a], [NP17], [PZ17], [HPP18], [HHP18].

There are several motivations for the study of pop-
ulation recovery under the deletion noise model. One
motivation is the considerable recent research interest
both in the trace reconstruction problem (the ¢ = 1
case of population recovery under the deletion chan-
nel) and in population recovery problems under bit-
flip and erasure models. Further motivation comes from
potential relevance of the deletion channel population
recovery problem both to recovery problems in com-
putational biology and to other topics such as DNA
data storage. Regarding biological recovery problems,
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considering population recovery (the £ > 1 case) rather
than trace reconstruction (the ¢ = 1 case) relaxes the
potentially unrealistic assumption that all of the received
samples (of a protein sequence, DNA sequence, etc.)
are derived from a single unknown target sequence
rather than from multiple unknown sequences. Heuristic
algorithms for population recovery-type problems have
also been applied to DNA storage (see e.g., [YGM17]
and [OACT18]). In these settings, each string in the
population comes from a DNA sequence and the noisy
channel can inflict a variety of errors including bit-flips
and deletions.

Thus, the authors feel that the time is ripe for a theoret-
ical study of population recovery under the challenging
deletion model. In this paper we initiate such a study,
obtaining sample complexity upper and lower bounds
when the population is of size £ > 1. Before describing
our results for populations of size ¢ (equivalently, target
distributions supported on at most ¢ strings), we first
recall known upper and lower bounds for the trace
reconstruction problem (¢ = 1) below.

Known bounds on trace reconstruction. The trace
reconstruction problem was raised more than fifteen
years ago [LevOlb], [LevOla], [BKKMO04], though in
fact some variants of the problem go back at least to
the 1970s [Kal73]. The first algorithm that provably suc-
ceeds with high probability in reconstructing an arbitrary
x € {0,1}™ using subexponentially many traces is due
to Mitzenmacher et al. [HMPWO08], who showed that
20(v7) many traces suffice for any constant deletion rate
0 bounded away from 1. This result was improved in
recent simultaneous and independent works of De et
al. [DOS17a] and Nazarov and Peres [NP17]; these pa-
pers each showed that for any constant § bounded away
from 1, at most 20("%) traces suffice to reconstruct any
z €{0,1}"!

Due to the seeming difficulty of the worst-case trace
reconstruction problem (reconstructing an arbitrary x €
{0,1}™), an average-case version of the problem (recon-
structing a randomly chosen string x € {0, 1}"), which
turns out to be significantly easier in terms of sample
complexity, has also received considerable attention. A
number of early works [BKKMO04], [KMO5], [VS08]
gave efficient algorithms that succeed for trace recon-
struction of almost all z € {0,1}"™ when the deletion
rate § is sufficiently low (0,(1) as a function of n).
In [HMPWO08] Mitzenmacher et al. gave an algorithm

'Hartung, Holden and Peres [HHP18] have recently extended this
result to certain more general regimes where there can be different
deletion probabilities for different coordinates and symbols.



which uses poly(n) traces to perform average-case trace
reconstruction when the deletion rate J is at most some
sufficiently small constant. Recently the best results on
average-case trace reconstruction have been significantly
strengthened in works of Peres and Zhai [PZ17] and
Holden, Pemantle and Peres [HPP18] which build on
the worst-case trace reconstruction results of [DOS17a],
[NP17]. The latter of these papers [HPP18] gives an al-
gorithm which uses exp((logn)*/3) traces to reconstruct
a random z € {0,1}" when the deletion rate is any
constant bounded away from 1.

In terms of lower bounds, it is easy to see that if
the deletion rate § is at least some positive constant,
then until Q(logn) draws have been received there
will be some bits of the target string x about which
no information has been received. Improving on this
simple Q(log n) lower bound, McGregor et al. [MPV14]
established a sample complexity lower bound of 2(n)
traces for any constant deletion rate. This was recently
improved by Holden and Lyons [HL18] to Q(n®/4).

Summarizing, for any constant deletion probability
0 < § < 1 there is currently an exponential gap between
the best lower bound of Q(n’/4) samples and the best
upper bound of 20(n'/*) samples for trace reconstruction
of an arbitrary string = € {0,1}".

A. Our results

Positive result. As our main positive result, we obtain
an algorithm which learns any unknown distribution X
supported on at most ¢ strings under the deletion channel.
For any constant ¢ (and in fact even for ¢ as large as
o(logn/loglogn), its sample complexity is exponential
in n'/2+°() In more detail, our main positive result is
the following:

Theorem 1 (Learning an arbitrary mixture of ¢ strings
under the deletion channel). There is an algorithm with
the following performance guarantee: Let X be an arbi-
trary distribution over at most { strings in {0,1}". For
any deletion rate 0 < § < 1 and any accuracy parameter
€, if the algorithm is given access to independent draws
from X that are independently corrupted with deletion
noise at rate 6, then the algorithm uses

~<

many samples and with probability at least 0.99 outputs
a hypothesis X which is supported over at most £ strings
and has total variation distance at most € from the
unknown target distribution X.
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It is easy to see that if the target distribution is
promised to be uniform over (a multi-set of) at most ¢
strings, then the algorithm of Theorem 1 can be used to
exactly reconstruct the unknown multi-set. As we explain
in Section II, while Theorem 1 extends prior results on
trace reconstruction (the ¢ = 1 case), it is proved using
very different techniques from recent works [HMPWO08],
[DOS17a], [NP17], [PZ17], [HPP18], [HHP18] on trace
reconstruction.

We note that for deletion rates § that are bounded away
from 1 by a constant, the 20(n'/?) sample complexity
bounds of [DOS17a], [NP17] for trace reconstruction
are better than the ¢ = 1 case of our result. However,
our bounds apply even if the deletion rate § is very
close to 1; in particular, [DOS17a], [NP17] give no
results for very high deletion rates 6 = 1 — o(1/y/n),
while Theorem 1 gives a 2°(vV?) bound for § = 1 —
1/2rov1oe(n) and a 2°(") bound even for § as large
as 1— 1/2v7/polylog(n) - Of course, the main feature
of Theorem 1 is that it applies when ¢ > 1 (unlike
[DOS17a], [NP17]).

Negative result. Complementing the sample complexity
upper bound, we obtain a lower bound on the sample
complexity of population recovery. Our lower bound
shows that for a wide range of values of ¢, at least
n®) samples are required when the population is of
size at most ¢. An informal version of our lower bound
is as follows (see Theorem 6 in Section V for a detailed
statement):

Theorem 2 (Sample complexity lower bound, informal
statement). Let 0 < § < 1 be any constant deletion
probability and suppose that A is an algorithm which,
when run on samples drawn from the §-deletion channel
over an arbitrary distribution X supported over at most
¢ < n% many strings, with probability at least
0.51 outputs a hypothesis distribution X that has total
variation distance at most 0.49 from the unknown target
distribution X. Then A must use n*“) many samples.

II. OUR TECHNIQUES

As noted earlier, our positive result (Theorem 1)
gives a sample complexity upper bound for the original
(¢ = 1) trace reconstruction problem as a sPecial case.
We remark that both of the recent 20" sample
complexity upper bounds for the trace reconstruction
problem [DOS17a], [NP17], as well as the earlier work
of [HMPWO08], employed essentially the same algorith-
mic approach, which is referred to in [DOS17a] as a
“mean-based algorithm.” At a high level, mean-based



algorithms use their samples (traces) only to compute
empirical estimates of the n expectations’

(D

corresponding to the coordinate means of the received
traces; they then only use those n estimates to reconstruct
the unknown target string z. Both of the algorithms
in [DOS17a], [NP17], as well as the algorithm from
[HMPWOS] for trace reconstruction from an arbitrary
string x, are mean-based algorithms. (Both [DOS17a]
and [NP17] show that their sample complexity upper
bounds are essentially best possible for any mean-based
trace reconstruction algorithm.)

While mean-based algorithms have led to state-of-the-
art results for trace reconstruction of a single string, this
approach breaks down even for the simplest non-trivial
cases of population recovery under the deletion channel.
Indeed, even when ¢ = 2 and the unknown distribution
X is promised to be uniform over two strings, it is easy
to see that the coordinate means do not provide enough
information to recover X. For example, if (z!,2?) and
(y*,4?) are two pairs of strings whose sums (as vectors
in R") 2! + 22 and y' +y? are equal (such as z! = 0",
2 = 1", yl — 071/2171/27 y2 — 1n/20n/2)’ it is easy
to see that the coordinate means of received traces will
match perfectly:

Ez(—Del(; (z) [250}, T ’EZ<—D615 (x) [znfl]

, E |z]= E E [z,
j€{1,2} z+Dels(z9) j€{1,2} z+Dels(y9)

for every ¢ € {0,...,n — 1}. Thus the mean-based
approach of [HMPWO0S8], [DOS17a], [NP17] does not
suffice for even the simplest version of the population
recovery problem when ¢ = 2. Indeed, our sample com-
plexity upper bounds are obtained using a completely
different approach, which we explain below.

A. Warm-up: A different approach to trace reconstruc-
tion (the £ =1 case)

As a warm-up to our main results, we first give
a high-level explanation of how our approach can be
used to obtain a simple 2°(V™)_sample algorithm for
the trace reconstruction problem. While this is a higher
sample complexity than the state-of-the-art mean-based
approach of [DOS17a], [NP17] (though our approach
does better for very high deletion rates, as noted earlier),
our approach has the crucial advantage that it can be

2In this context, the original unknown target string x is viewed as
belonging to {—1,1}", and a trace z obtained from Dels(x) is viewed
as a string in {—1,1}™ for some n’ < n with n —n’ zeros appended
to the end. Throughout the paper, we use [0: n—1] = {0,...,n—1}
to index entries of a string of length n.
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adapted to go beyond the ¢ = 1 case, whereas the mean-
based approach cannot handle ¢ > 1 as described above.

In a nutshell, the essence of our approach is to work
with subsequence frequencies in the original string x (in
contrast, note that the mean-based approach uses single-
coordinate frequencies in the received traces). To explain
further we introduce some useful terminology: the k-
deck of a string x € {0,1}", denoted Dy (z), is the multi-
set of all (Z) subsequences of x with length exactly k.
Thus, the k-deck encapsulates all frequency information
about length-%k subsequences of x.

A question that arises naturally in the combinatorics
of words is the following: what is the smallest value of k
(as a function of n) so that for every string z € {0,1}",
the k-deck of x uniquely identifies x? Despite significant
investigation dating back to the 1970s [Kal73], this basic
quantity is still poorly understood. Improving on earlier
k < n/2 bounds of Kalashnik [Kal73] and Manvel et
al. [MMS™91] and a simultaneous k& = O(y/nlogn)
bound of Scott [Sco97], Krasikov and Roddity [KR97]
showed that £ = O(y/n) suffices. On the lower bounds
side, the best lower bound known is k = 29(\/@), due
to Dudik and Schulman [DS03] (improving on earlier
k = Q(log n) lower bounds of [MMS*91] and [CK97]).

The relevance of upper bounds on k to the trace
reconstruction problem is intuitively clear, and indeed,
McGregor et al. [MPV14] observed that if the deletion
rate 4 is at most 1—cy/(logn)/n, then it is trivially easy
to extract a random length-O(y/nlogn) subsequence
of x from a typical trace of x. Combining this with
the ¥ = O(yv/nlogn) upper bound of Scott [Sco97]
and a straightforward sampling-based procedure (which
estimates the frequency of each string in {0, 1}* to high
enough accuracy to determine its exact multiplicity in the
k-deck), they obtained an information-theoretic sample
complexity upper bound on trace reconstruction: for

§ < 1—cy/(logn)/n, at most n®(V71987) traces suffice
to reconstruct any = € {0, 1}" with high probability.

As an initial observation, we slightly strengthen the
[MPV14] result by showing that for any value of § < 1,
an algorithm which combines sampling and dynamic
programming can exactly infer the k-deck of an un-
known string x € {0,1}" with high probability using
(n/(1— 6))O(k) traces from Dels(z). (See Theorem 4
for a detailed statement and proof of a more general
version of this result.) Combining this with the [KR97]
upper bound k O(y/n), we get that any string
x can be reconstructed from J-deletion noise using
(n/(1 - 5))0(\/@ samples.

The above-outlined approach to trace reconstruction



(the £ = 1 case of population recovery) is the starting
point for our main positive result, Theorem 1. In the next
subsection we give a high-level description of some of
the challenges that arise in dealing with multiple strings
and how this work overcomes them.

B. Ingredients in the proof of Theorem I

Recall that in the setting of Theorem 1 the unknown
X is an arbitrary distribution supported on at most ¢
strings x',..., 2% in {0,1}". Viewing X as a mixture
of individual strings, there is a natural notion of the k-
deck of X, which we denote by Dy (X) and which is the
weighted multi-set corresponding to the X-mixture of
the decks Dy (z1),..., Di(2?).>As a result, Theorem |
will follow if we can show the following: if two distri-
butions X,Y over {0,1}" (each supported on at most
¢ strings) have dv(X,Y) > ¢, then for a not-too-large
value of k, the k-decks Dy (X) and Dy (Y) (note that
these are two weighted multi-sets of strings in {0, 1}*)
must be “noticeably different.” This is established in
Lemma IV.6, which is the technical heart of our upper
bound.

To explain our proof of Lemma IV.6 it is useful to
revisit the ¢ = 1 setting; the analogous (and much
easier to prove) statement in this context is that given
any two strings  # y € {0,1}", the k-decks Dy(z)
and Dy (y) are not identical when k > Cy/n for some
large enough constant C. This is the main result of
[KR97] (and a similar statement, with a slightly weaker
quantitative bound on k, is also proved in [Sco97]). Since
the k-deck in and of itself is somewhat difficult to work
with (being a multi-set over {0, 1}¥), both [KR97] and
[Sco97] work instead with the summed k-deck, which
we denote by SDy(z) and which is simply the vector in
IN* obtained by summing all (}}) elements of the k-deck
Dx(x) (recall that each element of Dy(x) is a vector in
{0,1}*). Both [KR97] and [Sco97] actually show that
for a suitable value of k, the summed k-deck SDy(z)
uniquely identifies 2 among all strings in {0, 1}". (Both
papers also observe that by a simple counting argument,
the smallest such k is at least Q(y/n).) The [KR97]
proof reduces the analysis of the summed k-deck to
an extremal problem about univariate polynomials. The
key ingredient of their proof is the following result
about univariate polynomials, which was established

3By a weighted-multiset we mean a multiset in which each element
has a weight. Alternatively, one can interpret (after normalization)
Dy (x) as a probability distribution over the 2% strings in {0, 1}*
and in this case, Dy (X) can be viewed as a probability distribution
that is the X-mixture of Dy (x!), ..., Dg(z%).
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in [BEK99] in their work on the Prouhet-Tarry-Escott
problem:

Given any nonzero vector 0 € {—1,0,1}",
there is a univariate polynomial p of degree
O(4/n) such that

Z d; - p(i) # 0.
0<i<n
Setting 6 = x — y # 0, to finish the proof of SDy(x) #
SDk(y) when x # y and k > Cy/n, [KR97] shows that
choosing k to be deg(p) + 1, the inequality (f) implies
that SDk(l‘) #+ SDk(y)

Returning to our /-string setting, we remark that
several challenges arise which are not present in the
one-string setting. To highlight one of these, due to the
difficulty of analyzing the entire k-deck of X it is natural
to try to work with the summed k-deck SDy(X) (a non-
negative vector in IR¥), which is obtained by summing
all elements of the weighted multi-set Dy (X). Indeed it
can be shown via a rather straightforward extension
of the [KR97] analysis that, when X is uniform over
xl, ... 2%, the summed k-deck with k = O(y/nlog/)
suffices to exactly reconstruct the sum z' + --- + 2*
(a vector in IN™). But even for uniform distributions,
a difficulty which arises is that the summed k-deck
(even with k n) cannot distinguish between two
uniform distributions over z',...,z¢ versus y',...,y"
that have the same coordinate-wise sums, i.e. that satisfy
ol + -+ 2f =yt + .- 4+ y%.* Indeed, considering
the same example as earlier, in which / = 2 and x! =
0", 2 = 1n,y1 — On/21n/2 and y2 — 1n/20n/2’ the
summed k-deck is ((}), ..., (}))/2 € R¥ in both cases.

At a high level our Lemma IV.6 can be viewed as
a robust generalization of the [KR97] result. A key
technical ingredient in its proof is a robust generalization
of the [BEK99] result to multivariate polynomials. (The
summed k-deck corresponds to univariate polynomials,
so at a high level our analysis involving multivariate
polynomials can be viewed as how we get around the
obstacle noted in the previous paragraph.) The proof of
Lemma IV.6 consists of three steps which we outline
below.

The first conceptual step of our argument is to show
that if two support-¢ distributions X and Y over {0,1}"
satisfy dry(X,Y) > &, then there exists a subset
T C [0 : n—1] of size d = [log(2¢)| such that
X and Y “differ significantly” just on the coordinates
in 7. In particular, there is some |T'|-bit string ¢ such

)

4This is conceptually similar to the inability of mean-based algo-
rithms to handle multiple strings noted earlier.



that Pry.x[zr = c| is significantly different from
Pry,.v[yr = c|, where we use z7 to denote the restric-
tion of a string « € {0, 1}" on coordinates in 7. (This is
made precise in Lemma IV.1.) Let A : ([O"ﬁ;l]) — IR be
the following function over size-d subsets of [0 : n— 1]:

A(S) =Preox [ws = C} —Pryy [ys = c]. 2

Then Lemma IV.1 implies that ||A]|« is not too small.

The second (and central) conceptual step of our ar-
gument can be viewed as a robust generalization of the
[BEK99] result to d-variate polynomials, as alluded to
earlier. The key result giving this step, Lemma V.7,
roughly speaking states the following:

Given the A as defined in (2), there is a
d-variate polynomial ¢ of not-too-high degree
(roughly /n) such that®

>

0<t1 < <tg<n

O(t1, ... ta) - A({t, ..., ta})

()

can be lower bounded in terms of |A||s,
which is not too small by Lemma IV.1.

The third conceptual step relates (i1) to the distance
between the k-decks Dy (X) and Dy(Y), by showing
that if (i1) is not too small then Dy (X) and Dy(Y)
must be “noticeably different” when £ is chosen to be
deg(¢) + d. We refer the reader to Lemma IV.8. At
a high level this is analogous to, but technically more
involved than, the [KR97] proof that the inequality (t)
for § = x — y implies that SDy(z) # SDy(y) with
k = deg(p)+ 1. Lemma IV.6 then follows by combining
all three steps, i.e. drv(X,Y) being large implies that
Dy (X) is “noticeably different” from D (Y) for k that
is roughly /n. Below we outline the main ingredients
needed in the second step.

In the search for a low-degree polynomial ¢ such that
the sum in (71) has large magnitude, it is natural to define
o(t1,...,tq) by first projecting (¢1,...,t4) to a line and
then applying a univariate polynomial similar to the p
used in (). To make this more precise, we will look for
¢ of the form

B(t1,. .. 3)

.,wq are positive integers (so the line is
.,wq)) and f is a low-

Jta) = f(wity + -+ + wata),

where wq, ..
along the direction w = (wy, ..

5The reader who has peeked ahead to the statement of Lemma IV.7
may have noticed that the lemma statement also bounds the magnitudes
of coefficients of the polynomial ¢. This is done for technical reasons,
and we skip these technical details in the high-level description here.
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degree univariate polynomial to be specified later. With
(3), we rewrite the sum in (1) as

S oty ta)  A({ta,
0<t; <---<tg<n

nd ||wlle

— Y jm)-Te),
b=0

where I'(b) is the sum of A(T') over all d-subsets 7' =
{t1,...,tq} such that 0 < ¢; < --- < tg < n and
b = wity + -+ +wgty. Comparing (4) with (7), our
goal would follow directly from the [BEK99] result by
choosing f to be p if I' is nonzero and takes values in
{-1,0,1} (or even {—c, 0, ¢} for some not too small ¢ >
0). However, the main difficulty we encounter is that I"
is much more complex than the {—1,0,1}" vectors that
can be handled by techniques of [BEK99]; for example,
T" in general may contain a large number (depending on
n) of distinct values.

There are three ingredients we use in choosing
wy,...,wq and f to overcome this difficulty:

- ta})

“)

(A) We first observe that A has a combinatorial
“rectangular” structure, which implies that the
support of A can be partitioned into a small
number of sets S, S, ... (each element of S, is a
size-d subset of [0 : n — 1]) such that all T € S,
share the same value of A(T') and there is a set
T, € S, that is dominated® by every T € S,. We
refer to T, as the anchor set of S,. This is made
precise in Lemma IV.3. Moreover, we show in
Lemma IV.4 that the collections S, can be divided
into an even smaller number of groups such that,
for any S,, S, that belong to the same group, the
ratio of |A(T,)| and |A(T,)| is bounded from
above by a small number.

(B) Next we observe that when wy, ..., wy are drawn
from a suitable distribution, all anchor sets in (A)
have distinct images after the projection. (See
Claim 1V.9.) We fix such a tuple (wq,...,wq).
(A) and (B) together are then used to obtain (see
Lemma IV.11) a strong structural characterization
of I'.

Finally we define a new univariate polynomial f
based on Chebyshev polynomials and the
construction of p in [BEK99]. (See Lemma IV.10.)
The characterization of I" and properties of f are

then combined to finish the proof by showing that

©)

5Given two size-d subsets S = {s1,...,sq}and T = {t1,...,tq}
of [0:n—1] with s1 < --- < sgand t; <---<tg, we say that S
is dominated by 7" if s; < ¢; for all <.



the sum in (1) has not too small magnitude when
we apply the polynomial ¢ given in (3).

C. Our lower bounds

We begin by recalling the Q(n) lower bound of
McGregor et al. [MPV14]. This lower bound is obtained
via a simple analysis of the two distributions of traces
resulting from the two strings ' = 0%/210"/2~1 and
x2 = 0"/2-110"/2. The starting point of the [MPV14]
analysis is the observation that under the J-deletion
channel, conditioned on the sole “1” coordinate being
retained, the distribution of a trace of ! corresponds
to (a,b) where a and b are independent draws from
Bin(n/2,1 — §) and Bin(n/2 — 1,1 — §) respectively,
whereas the distribution of a trace of x? corresponds
o (b,a). [MPV14] used this to show that the squared
Hellinger distance between these two distributions of
traces is O(1/n), and in turn use this squared Hellinger
distance bound to infer an €(n) sample complexity
lower bound for determining whether a collection of
received traces came from x! or from 2.

Our lower bound approach may be viewed as an exten-
sion of the [MPV14] lower bound to mixtures of distri-
butions similar to the ones they consider. The high-level
idea of our lower bound proof is as follows: we show
that there exist two distributions X,Y over {0,1}" (in
fact, over n-bit strings with precisely one 1) which have
disjoint supports, each of size at most 2¢, but are such
that the total variation distance drv (Dels(X), Dels(Y)),
between traces of strings drawn from X versus traces of
strings drawn from Y, is very small. This is easily seen
to imply Theorem 2.

For simplicity in introducing the main ideas of our
analysis, in this expository overview we will first con-
sider an “n = +00” version of our population recov-
ery scenario. We begin by considering the distribution
Dels(€yn+;) where m is some fixed value and é,,; is
an infinite string with a single 1 in position m + ¢ and
all other coordinates 0. A § fraction of the outcomes of
Dels(éy,+:) are the infinite all-O string, which conveys
no information. The other 1 —§ fraction of the outcomes
each have precisely one 1, occurring in position 1 + a
where a is distributed according to the binomial distri-
bution Bin(m + 4,1 — §). In this infinite-n setting, two
distributions X,Y over strings of the form é,,; with
disjoint supports correspond to two mixtures of distinct
binomial distributions (all with second parameter 1 — 9,
but with a set of first parameters in the first mixture that
is disjoint from the set of first parameters in the second
mixture). The animating idea behind our construction
and analysis is that it is possible for two distinct mixtures
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of binomials like this to be very close to each other in
total variation distance.’

In order to show that two distinct mixtures of binomial
distributions as described above can be very close to
each other in total variation distance, our lower bounds
employ technical machinery due to Roos [Roo00] and
Daskalakis and Papadimitriou [DP15]. Roos [Roo00]
developed a “Krawtchouk expansion” which provides
an exact expression for the probability that a Poisson
binomial distribution (a sum of n independent Bernoulli
random variables with expectations p1,...,p,) puts on
any given outcome in {0, 1,--- ,n}. Daskalakis and Pa-
padimitriou [DP15] used Roos’s Krawtchouk expansion
to show that under mild technical conditions, low-order
moments of any Poisson binomial distribution essentially
determine the entire distribution. In more detail, their
main result is that if X,Y are two Poisson bino-
mial distributions (satisfying mild technical conditions)
whose t-th moments match, i.e. E[X'] = E[Y'] for
t=1,...,0(log(1/¢)), then the total variation distance
between X and Y is at most €.

Our analysis proceeds in two main steps. In the
first step, we show that there exist two mixtures of
pairs of binomial distributions, which we denote by Dg
and Dy, with certain desirable properties. S and T
are both subsets of {0,...,2¢}, and Dg is a certain
mixture of pairs of binomial distributions (Bin(n/2 +
i,1 — 0),Bin(n/2 — i,1 — 4)) for i € S while Dy
is a certain mixture of pairs of binomial distributions
(Bin(n/2 + j,1 — §),Bin(n/2 — j,1 — §)) for j € T.
We establish the existence of disjoint sets S, T such that
the resulting mixtures Dg and D have matching t-th
moments forall ¢ = 1,. .., ¢. This is proved using known
algebraic expressions for the moments of binomial dis-
tributions and simple linear algebraic arguments. In the
second main step, we extend the analysis of Daskalakis
and Papadimitriou [DP15] and apply this extension to
our setting, in which we are dealing with mixtures of
(pairs of) binomial distributions (as opposed to their
and Roos’s setting of Poisson binomial distributions).
We show that the matching first £ moments of Dg and
Dy imply that the distributions Dels(X) and Dels(Y)

7We remark that our actual scenario is more complicated than this
idealized version because n is a finite value rather than +oo. For
n = 2m -+ 1, this means that a received trace 0% 10® which contains a
1 and came from Dels (ey,+) provides a pair of values (a, b) where
a is distributed according to Bin(m + ¢, p) and b is independently
distributed according to Bin(m—1, p) where p = 1—4 is the retention
probability. This second value b provides additional information which
is not present in the n = +oo version of the problem, and this makes
it more challenging and more technically involved to prove a lower
bound. We deal with these issues in Section V-B.



are very close, where X corresponds to the mixture of
Hamming-weight-one strings in {0,1}" corresponding
to Dg and Y likewise corresponds to the mixture of
Hamming-weight-one strings corresponding to D7. (In
fact, in our setting having ¢ matching moments leads to
n~2® _closeness in total variation distance, whereas in
[DP15] the resulting closeness from £ matching moments
was 2’9“).)

We close this subsection by observing that while the
results of [Roo00], [DP15] were used in a crucial way
in subsequent work of Daskalakis et al. [DDS15] to
obtain a sample complexity upper bound on learning
Poisson binomial distributions, in our context we use
these results to obtain a sample complexity lower bound
for population recovery. Intuitively, the difference is
that in the [DDS15] scenario of learning an unknown
Poisson binomial distribution, there is no noise process
affecting the samples: the learning algorithm is assumed
to directly receive draws from the underlying Poisson
binomial distribution being learned. In such a noise-
free setting, the existence of a small e-cover for the
space of all Poisson binomial distributions (which is
established in [DP15] as a consequence of their moment-
matching result) means, at least on a conceptual level,
that a learning algorithm “need only search a small space
of candidates” to find a high-accuracy hypothesis. In
contrast, in our context of deletion-channel noise, our
arguments show that it is possible for two underlying
true distributions X, Y over {0, 1}" to be very different
(indeed, to have disjoint supports) but to be such that
their deletion-noise-corrupted versions have low-order
moments which match each other exactly. In this sce-
nario, the [Roo00], [DP15] results can be used to show
that the variation distance between the two distributions
of noisy samples received by the learner is very small,
and this gives a sample complexity lower bound for
distinguishing X and Y on the basis of such noisy
samples.

III. PRELIMINARIES

Notation. Given a nonnegative integer n, we write [n] to
denote {1,...,n}. Given integers a < b we write [a : b
to denote {a, ..., b}. It will be convenient for us to index
a binary string x € {0,1}" using [0 : n — 1] as z =
(zg,...,Tn_1). Given a vector v = (vy,...,v4) € RY,
we write ||v||o to denote max;c(q) |v;|. Given a function
A : A — R over a finite domain A, we write ||A|lo =
maxge A |A(a)|]. Given a polynomial p (which may be
univariate or multivariate), we write ||p||; to denote the
sum of magnitudes of p’s coefficients. All logarithms and
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exponents are binary (base 2) unless otherwise specified.

Distributions. We use bold font letters to denote prob-
ability distributions and random variables, which should
be clear from the context. We write “xz ~ X to
indicate that random variable x is distributed according
to distribution X. The total variation distance between
two distributions X and X over a finite set X is defined
as )
drv(X, X) = = X(x) — X(x
v (X, X) 23;{!() ()],

where X (z) denotes the amount of probability mass that
the distribution X puts on outcome .

Population recovery from the deletion channel.
Throughout this paper the parameter 0 < ¢ < 1 denotes
the deletion probability. Given a string = € {0,1}", we
write Dels(z) to denote the distribution of a random
trace of x after it has been passed through the §-deletion
channel (so the distribution Dels(x) is supported on
{0,1}="). Recall that a random trace y ~ Dels(z) is
obtained by independently deleting each bit of x with
probability § and concatenating the surviving bits. ®

We now define the problem of population recovery
from the deletion channel that we will study in this
paper. In this problem the goal is to learn an unknown
target distribution X supported on at most ¢ strings from
{0,1}™. The learning algorithm has access to indepen-
dent samples, each of which is generated independently
by first drawing a string  ~ X and then outputting a
trace from Dels(x). For conciseness we write Dels(X)
to denote this distribution. The goal for the learning
algorithm is to output with high probability (say at least
0.99) a hypothesis distribution X for X which is e-
accurate in total variation distance: dv (X, X) < . We
are interested in the number of samples needed for this
learning task in terms of n, ¢, € and d.

Decks. Given a subset 7' = {t1,...,t5} C [0:n—1] of
size k with t; < --- < t, and two strings v € {0, 1}%,
x € {0,1}", we say that v matches x at T if x7 = v,
where 7 = (24,,...,7;,) € {0,1}* denotes the string
z restricted to positions in 7'. We say that the number
of occurrences of v in x is the number of size-k subsets
T C [0 : n—1] such that v matches z at 7', and we write
#(v, x) to denote this quantity. Given a distribution X

8For simplicity in this work we assume that the deletion probability
6 is known to the learning algorithm. We note that it is possible to
obtain a high-accuracy estimate of § simply by measuring the average
length of traces received from the deletion channel.



over {0,1}", we write #(v, X) to denote the expected
number of occurrences of v in  ~ X, i.e.

#(Uv X) = mPX [#(Uv :B)] .

Given a string = € {0, 1}", we write Dy (z) to denote
the (normalized®) k-deck of x. This is a 2*-dimensional
vector indexed by strings v € {0,1}* such that

Ou(@), = E2.

(%)
So Dg(x) is a nonnegative vector that sums to 1.
Similarly, for a distribution X over strings from {0, 1}",
we write D, (X) to denote the (normalized'’) k-deck of
X, given by

(Du(X)), = #(()X>
k

for each v € {0, 1}*. So Dy (X) is also a 2¥-dimensional
nonnegative vector that sums to 1.

IV. UPPER BOUNDS FOR DISTRIBUTIONS SUPPORTED
ON AT MOST ¢ STRINGS

Our goal is to prove Theorem 3, which is restated
below:

Theorem 3. There is an algorithm A which has the
following performance guarantee: For any distribution
X supported over at most ¢ strings in {0,1}", if A is

given

many samples from Dels(X), then with probability at
least 0.99 the algorithm outputs a probability distri-
bution X supported over at most { strings such that
dTV (X, X) S E.

1
=

2

1-9

V- (logn)2®
) &)

In Section IV-A we introduce the notion of a restric-
tion, which is a “local view” of a distribution X confined
to a specific subset of coordinates and a specific outcome
for those coordinates. We then provide some terminology
and prove three useful lemmas about restrictions in
Section IV-A. Next in Section [V-B we describe the
algorithm A, state our main technical lemma, Lemma
IV.6, and use it to prove the correctness of algorithm A.
We prove Lemma IV.6 in Sections I'V-C and I'V-D.

91t will be more convenient for us to use the notion of (normalized)
k-decks defined here; note that we can recover from it the multi-set
of all subsequences of x with length &, and vice versa.

10Similarly, the (normalized) k-deck here is equivalent to the
weighted multi-set version used in the introduction up to a simple
rescaling.
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Notational convention. Our argument below involves
many integer-valued index variables which take values
in a range of different intervals. To help the reader keep
track, we will use the following convention (the values
L and m will be defined later):

e S,t,81,t1,... will denote an index ranging over [0 :
o ‘771,]_1,1]’ . will denote an index ranging over [0 : k —
. clz},;a’ ,a1,... will denote an index ranging over [[L];
e b,V by,... will denote an index ranging over [0 :
. ZL;;,, a,aq,... and 3, 51,... will denote an

index in all other places.

A. Restrictions

Let X be a distribution over strings from {0, 1}" and
let d € [n] be a parameter (which should be thought of
as quite small; we will set d = O(log /) below). Given
a size-d subset T = {t1,...,tq} of [0 : n — 1] with
0<t <---<tqg<mnand a string ¢ € {0,1}4, we
define

restrict(X, T, ¢) := Pro~x [(@s,, ..., ®,) = ¢],

the probability that a draw of x ~ X matches c in the
coordinates of T'.

Let X and Y be two distributions, each supported over
at most ¢ strings from {0,1}". Our first lemma shows
that if dpv (X, Y) is large, then there are a size-d subset
T and a string ¢ € {0, 1}% with d = |log(2¢)] such that
there is a reasonably big gap between restrict(X, T, ¢)
and restrict(Y, T, c).

Lemma IV.1. Let X and Y be two distributions, each
supported over at most ¢ strings from {0, 1}". Then there
exist a size-d subset T of [0 : n — 1] and a string c €
{0, 1} with d = |log(2¢)| such that

drv(X,Y
restrict(X, T, ¢) — restrict(Y, T, c) | > drv(X,Y)
00
Proof. Let supp(X) U supp(Y) = {z!,...,z%} for

some ¢/ < 2{. For each i € [{'], let p; > 0 be the
magnitude of the difference between the probabilities
of 2¢ in X and in Y. Let ¢ = drv(X,Y). Then
by definition we have ), p; 2e. Without loss of
generality we assume that p; > .-+ > ppy > 0 and
prove the following claim (where we set pyr4 1 = 0 by
default for convenience):

Claim IV.2. There exists an i* € [l'] such that p;~ >
e/(40)" and pi 1 < pi- /(40).



Proof. First we notice that p; > ¢// given that ) . p;
2¢ and ¢/ < 2{. Now given that the p;’s are nonnegative,
there exists an i € [¢'] (e.g., by taking i = ¢') such that
pit1 < pi/(4L). Take i* to be the smallest such index i.
Then we have

pie _ P P2 1
P pir—1 p1 (407

by the choice of ¢* as the smallest such index. As a
result, we have

1

3

— > .
COMNCIN
This finishes the proof of the claim.

Dix =

O

Let i* € [¢'] be the integer given by the claim
above, and we consider the first i* strings z',..., 2% .
Given that * < ¢/ < 2/, there exist a d-subset T of
[0:n — 1] with d = [log(2¢)], a string ¢ € {0,1}¢
and an ¢’ < 7* such that the restriction of 2" matches ¢
but the restriction of 2* does not match ¢ for any other
i < 4*. (This can be achieved by repeatedly selecting
a coordinate that splits the remaining strings into two
nonempty subsets and setting ¢ to reduce the size by at
least half each time.) Using properties of ¢* given in the
claim above, we have

’ restrict(X, T, ¢) — restrict (Y, T, ¢)

Dix _ Dix €

Zpi*—ZmZpi*—%-M 9 ZW-
1>1*
This finishes the proof of the lemma. O
Given two size-d subsets S = {s1,...,54} and T =
{t1,...,ta} of [0 : n — 1] with s < --- < s4 and

t1 < .-+ < tg, we say that S is dominated by T if
s; < t; for every i € [d]. Let A: ([Omfl]

d ) — IR be
a function over size-d subsets of [0 : n — 1]. We use
supp(A) to denote the set of subsets T with A(T") # 0.
We need the following definitions of a cover and a group
cover of such a function A.

Definition 1 (Covers and group covers). We say that a
Sunction A : ([0";_1]) — R has an L-cover {(T,,S.) :
a € [L]} for some L >0 if

1) S,...,81 form an L-way partition of supp(A);

2) T, €8, for each a € [L];

3) A(T) = A(T,) for every T € S,; and

4) T, is dominated by every T € S,.
We refer to the set T, as the anchor set of the collection
S

Furthermore we say that A has an (L,q, \)-group
cover if A has an L-cover {(1y,S,) : a € [L]|} and
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a g-way partition of [L] into Ax,..., A, such that for
each i € [q|, for all a,a’ € A; we have

|A(TL)]

——— <\
’A(Ta’”

Given distributions X and Y over strings from {0, 1}"
and a string ¢ € {0, 1}%, we write Ax v, to denote the
function over size-d subsets of [0 : n — 1] that maps a
size-d subset T' to

Ax v ,o(T) := restrict(X, T, ¢) — restrict(Y, T, ¢).

The second lemma shows that when d and the supports
of X, Y are small, the function Ax v . has a small cover
for any string ¢ € {0,1}¢. Taking as an example when
¢ = d = 2 and supp(X) = {z!, 2%}, we have that
restrict(X, S, c) = restrict(X, T, c) if z5 = z} and
z% = z2 (note that this is a sufficient but not necessary
condition in general). Letting S = {s1,s2} for some
s1 < s and T = {t1,t2} for some t; < ta, this
condition can be written equivalently as

2 2

1 1
(xsl Y xsl (‘Z‘Sz Y ‘TSQ

1

) = (xtl’xfl) h ;

and ) = (xtg ’ xtz

).

This implies that restrict(X,-,¢), as a function over
size-2 subsets, has the following combinatorial “rectan-
gular” structure: one can partition indices t € [0 : n — 1]
into four types 00,01,10,11 according to values of JZ%
and z?; this induces a partition of all size-2 subsets
into 16 “rectangles,” '' where S = {s; < s2} and
T = {t1 < to} belong to the same “rectangle” iff the
type of s; is the same as that of ¢; and the type of s5 is
the same as that of ¢5. It follows that all 7" in the same
“rectangle” share the same value restrict(X, T, c). We
use this observation to obtain a small cover for Ax vy ..

Lemma IV.3. Let X and Y be two distributions, each
supported over at most { strings from {0,1}™. For any
d € [n] and any string ¢ € {0,1}¢, Ax v has an
L-cover for some L < 227

Proof. Suppose that X is supported on z!,. .. ,a:e, and
Y is supported on 3!, ..., y* with ¢, ¢"" < ¢. We say an
index t € [0 : n— 1] is of type-(u,v), where u € {0,1}*
and v € {0,1}*, if

(a7

i

el/

V2
» Yi

R

y=u and (y;,... ) =v.

This allows us to classify size-d subsets of [0 : n — 1]
into at most (2¢+¢")4 < 224¢ many equivalence classes:
S ~Tif S = {s1,...,8q¢} with 87 < .-+ < s4 and

UsStrictly speaking, these are not rectangles since we always need
to order indices of a subset in ascending order.



T = {t1,...,tq} with t; < --- < t4 are such that s;
and ¢; are of the same type for all i € [d].

Let S, be a nonempty equivalence class of ~ such that
S={s1,...,84} €Sy ifs1 <--- < sy and s; has type-
(u®, v ™) for each i € [d]. It follows from the definition
of ~ that all S € S, have the same restrict(X, S, c)
and restrict(Y,S,c), and hence the same value of
Ax v (S). Moreover, we let T, = {t1,...,tq} be the
following set: t; is the smallest index of type-(u"), v(1)
and for each ¢ from 2 to d, ¢; is the smallest index that is
larger than ¢;_; and has type-(u(?, v()). Because S, is
nonempty, T; is well defined and it is easy to verify that
T, is dominated by every S € S,. As a result, Ax v .
has the following L-cover:

{(T%,8,) : S, is nonempty and Ax vy .(T,) # 0},

for some L < 224¢_ This finishes the proof of the lemma.
O

The last lemma shows that the function Ax y . actu-
ally has an (L, g, \)-group cover, for some parameters
L <22 ¢ < ¢and \ <00,

Lemma IV4. Let X and Y be two distributions, each
supported over at most { strings from {0,1}"™. For any
d € [n] and ¢ € {0,1}¢, Ax v has an (L,q,(°®)-
group cover for some L < 224 and q < /.

Proof. First we apply Lemma [V.3 to obtain an L-
cover {(T,,S,) : a € [L]} of A := Ax,y, . for some
L < 224 1t suffices to show that the L positive numbers
|A(Ty)], a € [L], can be divided into at most ¢ groups
such that any two in the same group have the ratio
bounded from above by ¢°9(“).

Let p1,...,per > 0 be probabilities of strings in X
for some ¢/ < ¢ and ¢q,...,qe > 0 be probabilities
of strings in Y for some ¢’ < {. The observation is
that every number |A(T,)| is a linear form over the p;’s
and ¢;’s with coefficients —1,0 or 1. This motivates the
following claim:

Claim IV.5. Let uy,...,uy > 0 be g (not necessarily
distinct) positive numbers. Let V' be the set of all positive
values v of the form v = ciuy + - - + cqugy for some

c1,...,¢q € {—1,0,1}. Then there cannot exist g + 1
numbers vi,...,vg41 in V satisfying vgy1 > -+ > vy
and

ditt > (g+2), forallic]g].

(%
Proof. Assume for a contradiction that such g + 1
numbers vq,...,v441 €xist in V and let

Uy = Ci1Ul + - G gl
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where ¢; ; € {—1,0,1} for each i € [g + 1]. Given
that these are g + 1 many g-dimensional vectors c¢; =
(Cij,---sCiyg), let ©* < g+ 1 be the smallest integer
such that ¢;= can be written as a linear combination of
Cly...,Cir_1: Cix = @1€] + +++ 4+ ay«_1¢i+_1, which
implies that

Vix = QU1 + -+ Qur_1 0+ 1
(6)

We show below that the magnitude of coefficients
Qai,...,a4+_1 is relatively small, which leads to a con-
tradiction because we assumed that v;~ is much bigger
than v;«_1,...,v;.

To see this, note that (ayq,...,q;«—1) is the solution
toa (i*—1)x (i*—1) linear system Az = b where A is a
{—1,0,1}-valued (:* —1) x (¢* —1) full-rank matrix and
bisa{—1,0,1}-valued vector. (In more detail, one can
take A to be a full-rank (7* — 1) x (¢* — 1) submatrix of
the matrix that consists of cq,...,c;«_1 as columns and
take the vector b to be the corresponding entries of ¢;«.)
It follows from Cramer’s rule that each entry of A~! has
magnitude at most (¢* —1)! and thus, each entry of A~'b
has absolute value at most (i* — 1) - (i* — 1)! < #*! <
(g9 + 1)! This contradicts with (6) and the assumption
that ”U1<...<”U7;*,1§Ui*/(g+2)!. O

< o] v+ | 1| - v

Claim IV.5 gives us the following procedure to parti-
tion [L] into A4,..., A, for some ¢ < ¢

1) Seti=1and £ =[L].

2) While £ is nonempty do

3)  Let v be the smallest |A(Ty)|, a € L.

4)  Remove from £ and add to A; every a € £ with
|A(Ty)| < (20 +2)! - v, and increment .

It follows from Claim IV.5 that when £ becomes empty
at the end, the number of A;’s we created can be no
more than ¢. Furthermore, every a and a’ that belong
to the same A; have the ratio of |A(T,)| and |A(T,)|
bounded by (2/+2)! = ¢©)_ This finishes the proof of
the lemma. O

B. Main Algorithm

We start with an algorithm, based on dynamic pro-
gramming, for estimating the k-deck of a distribution X
over {0, 1}".

Theorem 4. Let k € [n]. There is an algorithm with the
following performance guarantee: for any distribution
X over strings in {0,1}", if the algorithm is given
o)

M:O<sz<1—<s>%



many samples from Dels(X) then with probability at
least 0.99 the algorithm outputs a nonnegative 2%-
dimensional vector Q with ||Q — Dip(X)||eo < &. Its
running time is 2% M - poly(n).

Proof. Letz!,..., P be the support of X. Then for each
string v € {0, 1}*, we have

E [#(v,z)]

z~Del;s (X)

(1=0)" > X(") - #(v,2")
=(1-0)" E [#(v.2)]

-0 40,0 = (1= 9" () (X)),

The first equation is because for a given size-k subset
S C [0:n—1] of indices at which v matches 2%, all of
the positions in S “survive” into a string z ~ Dels(z?)
with probability exactly (1 — §)*.

As a result, it suffices to estimate E[#(v, z)] to addi-
tive accuracy +£(1—8)"(}}) for every string v € {0, 1}*.
For any fixed string v € {0, 1}*, by a standard Chernoff

k

bound, using
a o)

samples the empirical estimate of E[#(v, z)] will have
the desired additive £(1 — 6)* (Z) accuracy except with
failure probability 0.01/2%. The success probability of
0.99 follows from union bound.

The running time of the algorithm uses the following
simple observation: given z € {0,1}" and v € {0,1}*,
there is a poly(n/, k)-time procedure that computes
#(v, z). The procedure works by straightforward dy-
namic programming: For each ;7 € [0 : k — 1] and
i € [0:n’ — 1], the algorithm maintains a count of the
number #(vg ... v, 20 . .. 2;). This then implies that the
running time of the overall algorithm is M - 2% - poly(n).
This finishes the proof of the lemma. O

[y

M=O<

We prove the following main technical lemma in
Sections IV-C and I'V-D. Intuitively, this lemma says that
if the total variation distance between X and Y is not
too small, then for a suitable (not too large) value of
k*, the distance between the k*-decks of X and Y also
cannot be too small.

Lemma IV.6. Let ¢ be a positive integer with £ < logn.
Let X and Y be two distributions, each supported over
at most ¢ strings from {0,1}". Then there is a positive

integer
k* = v/n - (logn)°® (7
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such that
d1v (X, Y) < exp (Vi - (10gn) 0@ ) Dy (X)~Die (Y) o

We now present our algorithm A and use Lemma V.6
to prove Theorem 3:

Proof of Theorem 3. The bound (5) we aim for holds
trivially when ¢ > logn. To see this, we first notice that
when ¢ > logn, the sample complexity bound (5) we

aim for is at least
. . 8
(1 ! 5) )

poly(¢)
22

With (1/(1—6))™ samples from Dels(X), we expect to
see a full string of length n where no bits are deleted
and we know that such a string is drawn directly from
X. This means that, with (8) many samples, we receive
poly(¢)/e* draws from X with high probability. When
the latter happens, the empirical estimation X of X
satisfies dpy(X,X) < e with high probability. This
allows us to focus on the case when ¢ < logn in the
rest of the proof (so Lemma IV.6 applies).

Let € be the total variation distance we aim for in
Theorem 3. Let k* be the parameter in (7). Let £ be
a parameter to be specified later. By Theorem 4, the
algorithm A can first use

k*
a5

samples to obtain an estimate @) of Dg-(X) such that
1Q = Di=(X)loe <&, (10)

and it succeeds in obtaining such an estimate with
probability at least 0.99.

With @ in hand the algorithm A computes ||Q —
D+ (Y)||s for every distribution Y supported on at
most ¢ strings such that the probability of each string
in Y is an integer multiple of £/¢. Finally the algorithm
outputs the distribution X* that minimizes the distance
(breaking ties arbitrarily).

We show that when (@ satisfies (10), X* must be
close to X. We start with a simple observation that
one can round X to get a distribution X’ in which
the probability of each string is an integer multiple
of £/¢ and drv(X,X’) < & This can be done by
rounding the probability of every string except one to the
nearest multiple of £/¢ and setting the last probability
as required so that the total probability is 1. We have

1Q — De=(X)|
<@ = D (X) ||, + [|Dr= (X) = D (X
< ||@ = De=(X) ||, + drv(X, X) < 2¢.

1

M*:O( 9)

o



By definition of X* and X', we have |[|Q
Dir (X [loo < |Q — D= (X') [loo < 2€. As a result,

D+ (X) — D= (XH) ||,
< [|Q@ = Dr- (X", + [ @ = Di- (X)]| . < 3¢
It follows from Lemma IV.6 that
dry (X, X*) < 3¢ - exp (\/ﬁ (log n)o(€)> :

Finally we choose £ so that the RHS becomes ¢. The
number of samples needed in (9) becomes

()2'(1—5

This finishes the proof of Theorem 3.

1

3

2 ) V- (logn)®

O

We use the following two lemmas to prove Lemma
IV.6. They are proved in Section IV-C and IV-D.

Lemma IV.7. Let d,q,L and \ be positive integers
satisfying

d,q<logn and L,\< (logn)°Uosm)

Let A : ([Omdfl]) — R be a function that is not identi-
cally zero and has an (L, q, \)-group cover. Let m =
d(n — 1)L2. Then there exists a d-variate polynomial ¢
with degree at most O(y/m - log*™ ' m) and ||¢||,
exp(O(y/m - 1og** 3 m)) such that

2.

0<t1<--<tg<n
1Al
= 49—1 :
exp(O(v/m - log™ ™" m))
We note that the following lemma holds for any

two distributions X, Y over {0, 1}"™ regardless of their
support size.

Lemma IV.8. Let d,k € [n] with k > d. Let X,Y be
distributions each supported over strings from {0,1}".
Then for any string c € {0,1}? and d-variate polynomial
¢ of degree at most k — d,

>

0<t1 < <tg<n
< éll1 - ™ - [Dk(X) = Dr(Y) | oo-

Proof of Lemma 1V.6. Let X and Y be two distributions
each supported over at most ¢ strings from {0,1}". It
then follows from Lemma IV.l1 and Lemma IV.4 that
there exists a string ¢ € {0,1}¢ with d = [log(2¢)] such
that A := Ax y . satisfies |Allo > drv(X,Y) /(90

o(t1, .. ta) - A({t1,. .., ta})

P(t1, ... ta)  Axy.e({t1,. .- ta})
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and has an (L, g, \)-group cover for some L < 22
q < /¥, and \ = 9 As we assumed that ¢ < log n,
both d and ¢ are at most logn and L, A < (90 <
(logn)©U°en) (so Lemma IV.7 applies).

Let m = d(n — 1)L? and ¢ be the polynomial given
in Lemma IV.7. Let k* = deg(¢) + d (we set k = k*
in Lemma IV.8; the choice of k* ensures that deg(¢) <
k* — d as required in Lemma [V.8) with

E* = O(vm -log* ™™ m) = /n - (logn)°®.
Combining Lemma IV.7 and Lemma IV.8, we have
1A
exp(y/n - (logn)©®)
<exp <\/?z (log n)o(é)) . p/-(logm)®®)
Dk (X) = D= (Y) || o

The lemma follows from the fact that ||Al, >
drv(X,Y) /100, O
C. Proof of Lemma IV.7

Let A be a function over d-subsets of [0 : n — 1] that
is not identically zero and has an (L, g, A)-group cover
{(T4,Sa) : a € [L]} with a g-way partition Aq,..., A4,
of [L]. We start with a high-level description of the d-
variate polynomial ¢.

To evaluate ¢ on a tuple (¢1,...,tq), we first
project (t1,...,tq) onto a line along the direction of
(w1, ...,wq) for some relatively small positive integers
wy, ..., wq to be specified later, and then apply a uni-
variate polynomial f(-) on the image of the projection.
In other words ¢ takes the form

ot ..

for some positive integers wi, ..
details below.

1) The projection : Let m = d(n—1)L? and let w be
the following function from size-d subsets of [0 : n — 1]
to [0 : m]:

Jta) = fwity + - + watq) (11)

Lwg € [L?]. We give

w(T) = wity + - -+ + wata,

where T = {t1,....tq} with t; < --- < t4. So w is
the projection function that maps a size-d subset 1" of
[0 : n — 1] (or equivalently, a sorted d-tuple of distinct
values from [0 : n — 1]) to a location on the real line.
Claim IV.9 implies that there exist wy,...,wq € [L?]
such that all anchor sets in the L-cover are mapped to
distinct locations.



Claim IV.9. If wy,...,wy are drawn independently and
uniformly at random from [L?| then w(T,) # w(T,) for
all a # o' € [L] with probability at least 1/2.

Proof. Let S = {s1,...,8q¢} and T = {t1,...,tq}
denote two size-d subsets of [0 : n— 1] that satisfy 51 <
s < 8g,t1 < --- < tqgand S # T. Then the probability
that w(S) = w(T) equals

Pr[wis) + -+ + wasa = wit + -+ + watq]. (12)

As (s1,...,84) # (t1,...,tq), one of the d quantities
s; —t; is nonzero; say without loss of generality s; # t;.
Fixing any outcomes of random draws of wo, ..., wy,
there is a unique outcome of w; which would result in
the equation in (12), and the probability that w; takes
this particular outcome is either 1/L? or zero (if it is not
in [L?]). As a result, the probability in (12) is at most
1/L?, and the claim follows from a union bound over
(g) events. O

We fix such a tuple wy,...,wy € [L?] that satisfies
Claim IV.9 for the rest of the proof.

2) The univariate polynomial : Now we move to the

more difficult part of choosing the univariate polynomial
fin (11).
A useful tool. A key tool for our construction of f is
a univariate polynomial h with several useful properties
described below. Figure 1 gives a schematic representa-
tion of the key upper bounds on |h(b)| provided by item
(2) in Lemma IV.10.

Lemma IV.10. There is a univariate polynomial h with
the following properties:

1) h has degree O(y/mlogm).

2) h(0) =1 and for each b € [m],

Vb
3) h satisfies ||h||1 < exp(O(y/mlogm)).

Ih(b)] < and |h(—b)| < e8Vblosm.

Our construction of the polynomial A is based on
the Chebyshev polynomial and builds on an earlier
construction due to Borwein et al. [BEK99]. We prove
Lemma IV.10 in Appendix A, and we explain the role
that h plays in the construction of our desired univariate
polynomial f under the heading “The high-level idea”
below, after first providing some useful preliminary
explanation.

Given that our polynomial ¢ takes the form of (11),
the crucial quantity whose magnitude we are trying to
lower bound, namely

Z é(t1, ..

0<t1<--<tqg<n

Sta) - A({t1, ... ta})
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—30

20

10

30

=10

Fig. 1: A schematic representation of the bounds on
|h(b)| given by item (2) of Lemma IV.10. The three
key properties are that (i) h(0) = 1; (ii) for b € [m)],
the upper bound on |h(b)| is very small and
decreases rapidly as we move away from 0; and (iii)
for b € [-m : —1], the upper bound on |h(b)]| is not
too large and does not increase too rapidly as we
move away from O.

(recall the LHS of Lemma IV.7), can be written as

> f®)-T),

be[0:m]

(13)

where T : [0 : m] — R is a function that is defined
using A as follows:

I'(b)
T: w(T)=b

= A(T), (14)

where the sum is over all d-subsets 7" of [0 : n — 1].

To better understand T', we use the (L,q, \)-group
cover of A to introduce two new sequences Tg, ..., Ty
and myg,...,m,, for some value r € [0 : ¢ — 1] that
is defined below. We start with some notation. For each
i € [q], we let G; = Uuea,S, and refer to G; as group
i. We refer to the T}, with the smallest w(T},) among all
a € A; as the anchor of group ¢ and denote it by V;.
(By Claim IV.9, each group has a unique anchor and we
have w(T) > w(V;) for all T € G, other than V;.) We
let v; = |A(V;)| and x; = w(V;), so k; is the location
that the anchor V; of G; is projected to. By the definition
of an (L, ¢, \)-group cover and Claim IV.9, we have that
each v; > 0, the k;’s are distinct,

[A]loo

maxv; > .

i€lq] A




Now we are ready to define r and the two sequences.
See Figure 2 for an illustration of these sequences. First
we let 79 = maxX;c[gv; and also let mg € [0 : m)]
denote the smallest x; (among all groups i € [¢]) with
v; = 7p. We are done and the value of r is 0 if no k; is
smaller than m (i.e. the anchor of every other group is
projected to a larger location value than my); otherwise,
we let m; < 7o be the largest value of v; over those
i € [g] that have k; < mq and also let m; < mg be the
smallest x; such that v; = 7. We are done and the value
of r is 1 if no k; is smaller than m; (i.e. every other
group anchor is projected to a larger location value than
my); otherwise we repeat the process. Continuing in this
way, at the end we obtain two sequences:

A
with 70 = maxwv; > 1Alls and

0< <. < 7o,
" 0 icla] A

0<m, <---<mg<m,

for some value r € [0 : ¢ — 1]. We say that (79,...,7,)
is the 7-step-sequence and that (myg,...,m,) is the m-
step-sequence for I'.

The high-level idea. Before entering into further details
we give intuition for the polynomial f. Looking ahead to
(18), the polynomial f is essentially a translation of the
polynomial & depicted in Figure 1, i.e. f(x) is essentially
h(z — mg) for some o € [0 : r].'? Recalling the key
properties of h, we see that

(] f(ma) =1.

o |f(b)] is “very small” for b > m,; and

o |f(b)] is “not too large” for b < m,.

The crux of our analysis below is to establish that there
is a suitable value m, in the m-step-sequence which is
such that the magnitude of the single summand f(m,) -
['(mg,) in (13) is greater than the contribution of all other
summands in (13).

To gain some intuition for why this is the case, let us
pretend that instead of the I being defined as in (13), the
definition of T" instead only took a sum over the g anchors
Vi,...,V, of the g groups Gy, ..., G, (i.e. I is supported
on ki, i € [q], with |[I'(k;)| = v;). Of course this is not
actually the case since each group G; in general contains
many more sets than just its anchor Tj, but it turns out
that the effect of other sets in supp(A) will only cost us
some extra n®\ factors in the analysis (corresponding to
the n?\ factors in properties (ii) and (iii) of I'g, ..., T, as
described below, where n¢ > (Z) just serves as a bound

2The exponent of h in the exact definition of our f given in
Equation (18) is needed for technical reasons that are not important
for this intuitive explanation.

for the number of size-d subsets) which turn out to be
manageable.

In this hypothetical scenario the only nonzero values
of T'(b) that would enter the picture would be the v;
values at locations x;, i € [g], which are the heights
of the bars in Figure 2. The desired m,, could then be
identified as follows:

e We proceed in an inductive fashion. For each
p € [0 : r], we show that there is a choice of
a € [0 : p] such that, by setting
f(z) = h(x — my,), the value of |f(m,) - T'(mgy)|
outweighs |f(b) - I'(b)| for every other
b € [m, : m]. The choice of « at the end of the
induction when p reaches r gives us the desired
location m,, for the translation of h to define f.

« The base case when p = 0 is trivial by setting
a =0 and f(x) = h(x — mg). Here we have that
|f(mo) - T'(myg)| outweighs |f(b) - T'(b)| for all
b > myg because |I'(mg)| = 70 > |[T'(b)| by the
definition of our step-sequences and the fact that
f(mp) =1 is “much larger” than |f(b)| for
b > my.

o Next we move to p = 1, and now we need to take
I'(b), b € [my : mo — 1], into consideration. To
this end we compare /7 with exp(y/mo — my)
and consider the following two cases.

— If 79/ is larger then we can keep oo = 0 and
f(z) = h(z — mg) because |f(mo) - I'(mo)|
outweighs |f(m1) - T'(my)| (since T'(my) =7
and f(my) is roughly® exp(y/mg — m1)) as
well as |f(b) - T'(b)| for all
be[my+1:mg—1] (since |f(mq)| > |f(D)]
and by the definition of our step-sequences,
|T'(mq)| > |T(b)]). By the inductive hypothesis
we also know that |f(myg) - T'(mg)| outweighs
|f(b) - T'(b)| for all b > my.

— Otherwise (if 7 is larger than
70/ exp(y/mo — m1)) we show that setting
a=1and f(x) = h(x — my) works. On the
one hand, |f(mq) - T'(mq)| outweighs
|f(b) -T'(b)| for b € [m;3 + 1 : mgy — 1] since
IT'(b)| < |T'(mq)| by the definition of our
step-sequences and the fact that f(mq) =1 is
“much larger” than |f(b)| (similar to the base
case). On the other hand, |f(mq) - T'(m1)| =7
outweighs | f(myg) - T'(mg)| = |f(mo)] - 10

3This is not entirely precise because in (2) of Lemma IV.10 there
is indeed an extra factor of logm in the exponent on the left side of
0; overcoming this factor of logm is the reason why we end up with
the exponent as in (18).
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Fig. 2: An illustration of a 7-step-sequence and its associated m-step-sequence. The values

Tr < Tp—1 < -++ < T1 < 79 (Which may be arbitrary real positive values) are the heights of the bars at locations
0<m <myp_1 <---<my <mg < m (these locations are integers). The location of each vertical bar
corresponds to some k;, i € [g], and its height is v;; the corresponding group G; is illustrated as a diamond, with
V; being its left corner. Note that all the bars between locations m,; and m;_; have height at most 7;. See
Example 5 for an explanation of why certain diamonds are shaded in the figure.

(since | f(my)| is, roughly speaking,
exp(—+/mo —my)) as well as | f(b) - I'(b)| for
b > mg (since |f(mg)| > |f(b)| and

|T'(mg)| > |T'(b)| so the contribution from b is
smaller than that from mg).

o Continuing in this fashion, we show that, if « is
the choice for some p € [0 : r — 1], then for p + 1
we can either keep the same choice of o or move
a to p+ 1, depending on the result of a similar
comparison between 7, /7,41 and

exp(y/Ma — Mp+1). This finishes the induction.

The above reasoning is formalized in the statement and
proof of the (crucial) Lemma IV.11, which additionally
has to deal with the complication that it must address the
real scenario rather than the hypothetical simplification
considered in the informal description above.
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Now we turn to the details. For each b € [0 : m], we

let
U G;.

i€[q]: ki>b

G>p =

For each p € [0 : 7] let I, denote the following function
on [0: m]:

Ip(0) A(T).

>

T€G>my: w(T)=b

In words, the value of I',, evaluated at a location value
b is obtained as follows: for each group G; for which
the location k; that the anchor set V; is projected to is
at least m,,, we sum the value of A(7) over all T’ € G;
which are mapped by the projection function w to the
location b.



Example 5. In Figure 2, only G;’s that correspond to
shaded diamonds are considered in I';.

We have the following properties from our choices of
7;’s and m;’s:

(i) I' =T',.. This is because every location x; is at

least m,..
(ii) Ty is such that I'y(b) = 0 for all b < my,
|1—‘0(m0)\ = 70, and

ITo(b)] < nAro

for all b > myg. (The last bound holds just because
there are at most n? many size-d subsets and the
maximum value of |[A(T)| on any T contributing
to the sum T'y(b) is at most A7g.)

(iii) Generalizing the previous property, for each
p € [r], I'y(b) = 0 for b < my, [I'y(my)| = 7, and

|Fp(b) - Fp—l(b)| < nfA7,

for all b > m,, (since the maximum magnitude of
A(T) on any subset T' contributing to the sum
I',(b) but not to I',_1(b) is at most A7p).

We require the following crucial lemma,
Lemma IV.11, concerning I',. Intuitively, the lemma
states that for each p there is a suitable index o < p
(so mg > my) such that (a) the magnitude of I',(my,)
is not too small compared to 7y (this is given by (15));
(b) for locations b > m,, the magnitude of I',(b) is not
too large compared to the magnitude of I',(m,,) (this is
given by (16)); and (c) for locations b between m,, and
me the magnitude of I'y(b) is small compared to the
magnitude of I',,(m,,) (this is given by (17)). In all three
places the meaning of “small” or “large” is specified by
a second parameter 5 which can grow slowly with
p. We defer the proof, which proceeds by induction
on p and makes the high-level idea (described earlier)
precise, to the full version of the paper [BCF'19].

Lemma IV.11. Assume that d < logn and A <
(logn)©U°8™)  Then for each p € [0 : 7| there are two
parameters o, € [0 : p| and B, € [0 : 4p + 3] (letting o
denote o, and B denote (3, below for convenience) such
that

|I‘p(ma)| 2P - exp (vVm - log? m) > 7o 15)

and every index b € [m,, : m] satisfies
1) If b > myg, then

< |Fp(ma)| 2P exp (Vb —mq - log” m);

16)

T (b))
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2) If mp < b < mg, then

’I‘p(b)}-exp (Vma —b- log?*3 m) < 2p-|1"p(ma)|.

amn

Finally we combine Lemma V.10 and Lemma IV.11
to prove Lemma IV.7.

Proof of Lemma IV.7. Recall that d,q < logn and
A\, L < (logn)©@Uosn),

Let « € [0 : 7] and B € [0 : 4r + 3] be the final
parameters that satisfy Lemma IV.11 for I', = I'. We
define the polynomial f using h from Lemma IV.10 as
follows

(18)

f(m) (h(x B ma)) [3 logPt? —| |

It follows from Lemma IV.10 that f has degree
deg(f) = O(v/m -log’*?m) = O(v/m - log* "™ m).
using 7 < ¢ and 8 < 4r + 3. Moreover, we have

[ f]l1 < exp (O(\/E -log*at! m)) “(m+ 1)d6g(f)
= exp (O(\/ﬁ . 10g4q+2 m))

It follows from the definition of ¢ in (11) and
wi,...,wg € [L?] that the same degree upper bound
holds for ¢ and

l6ll1 < exp (O(\/> log*at2 )) (dLQ)deg(f)
(vVm - log"T* m)).
(b

To analyze ), f(b)-I'(b), we show that | f(b)-I"
|T'(mq)|/(2m) for all b # m,, and thus,

< exp (O
(b)| <

S sy | 2 Mol 2 n
be o] 2 = 20 exp(y/m - log? m)
Ao
% p (O - log"™ Tm))’

using 79 > ||Al/co/A. For each b > m,, by Lemma
IV.11 and Lemma IV.10 (and ¢ < logn),

exp (\/b — Mg - logﬁ m)

‘f(b) ' F(b)‘ = }F(maﬂ 2 exp (m - 3log’tt m)
_ IPtma)l
- 2m

For each b < m, we have from Lemma IV.I1 and
Lemma IV.10 that

exp (\/ma —-b- logm_2 m)

b)-T'(b)| <27-|['(ma)|-
[70)-T0)] 20 [Plma)| - 8T
_ (o)l
2m
This finishes the proof of Lemma IV.7.




D. Proof of Lemma IV.8

Let X and Y be two distributions each supported over
strings from {0, 1}".

Given 0 < j; <---<jg<k—1, weusegj . j, to
denote the following d-variate polynomial,

t1> (tztll
J2—J1—1
tg —tg—1 — 1 )

J1
( >(n—td—1
Ja—Ji—1—1)\k—ja—1

To see the relevance of this polynomial to the k-deck,
we note that given any 0 < ¢; < -+ < tg < n the
quantity g;, . ;. (t1,...,tq) is the number of ways to
pick k indices from [0 : n — 1] such that each ¢; is the
(j; + 1)th smallest index picked.
We first show that the following sum
.y td}, C)

Zgjlvw-vjd (t1,...
(20)

(where the sum is over all 0 < t; < --- < tg < n) can
be written as a low-weight linear combination of entries
of Dy (X).

Lemma IV.12. For any 0 < j; < -+ < jg < k—1
and any c € {0,1}%, the sum (20) can be written as a
linear combination of entries of Dy (X) in which each
coefficient is either 0 or (7).

Proof. Recalling the combinatorial interpretation of
Gijr . ja(ti, ... tq) given after (19), we see that if we
divide the sum in (20) by (’,:), the result is precisely
the probability that (2;,,...,2;j,) = ¢ when we draw
x ~ X, draw a size-k subset T of [0 : n — 1] uniformly
at random, and then set z = xy. The latter probability
can also be expressed using entries of Dy (X) as

>, OX).,

2€{0,1}*
(25, 7"-=Zj,i):c

gjlw-yjd (th - ,td) = (
(19)

,tq) - restrict (X, {t1, ..

as (Dg(X)), is the probability of xr = z with x and
T drawn as above. This finishes the proof. O

Next we show that, for every monomial ¢7* - --t/? of
degree r1 + - -- +1rq < k — d, there exists a low-weight
linear combination of polynomials g;, ... ;, that agrees
with ¢1' .-t} over ti,...,tq that satisfy 0 < #; <

e < tg < n.

Lemma IV.13. For any nonnegative integers ri,...,7q
with r1 + -+ +1rqg < k —d, we have that

t71“1 "'tgd = Z wjlv-ijd.gjlv---vjd(t17’"7td)7

0<j1< - <ja<k
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forall 0 < t; < --- < tg < n, where the coefficients
. O(k
Wiy,.....5a satisfy Z |wj17~--7jd| <k ( )'

Before proving Lemma IV.13, we use Lemma V.12
and Lemma IV.13 to prove Lemma IV.8.

Proof of Lemma IV.8. Combining Lemma IV.12 and
Lemma IV.13, we have that

2.

0<t1<--<tg<n

t;l . tgd - restrict (X, {t1, .-

>

0<t1<--<tqg<n
restrict (X, {t1, . .

. ,td}, C)

Wyy,....ja
0<j1<-<ja<k

. ,td}, C)

can be written as a linear combination of entries of
D (X) in which each coefficient has magnitude at most
KO®) . (Z) =n9%®) As a result, we have

2.

0<t1<--<tg<n
< n?® - IDR(X) — Di(Y)| -

t;l cee tZd . AX,Y,C ({tl, ..

. td})

This finishes the proof of the lemma. O

Finally we prove Lemma I'V.13. We follow a three-step
approach. We say that a quasimonomial is a polynomial
of the form

19 (ty—1 —1)°2 - (t3—tg —1)™ -+ (tg —tg_q — 1)

for some nonnegative integers aq, ..., og; the degree of
this quasimonomial is oy + - - - + aq. And we say that a
PBC (Product of Binomial Coefficients) is a polynomial

of the form
i\ [to—t; — 1 tg —tg_q —1
O ()
., Ba; the degree of

(s
for some nonnegative integers 1, ..
this PBC is 31 + - - - + B4. We observe that, compared to
PBCs, the polynomials g;, ... j, have an extra binomial
coefficient that involves ¢4 at the end. The three steps of
our approach are as follows:

« First step: Express each d-variable monomial

tt -t withr +---+rg<k—dasa
low-weight linear combination of quasimonomials
of degree at most k£ — d.

Second step: Express each quasimonomial of
degree at most k — d as a low-weight linear
combination of PBCs of degree at most k — d.
Third step: Finally, express each PBC of degree
at most k — d as a low-weight linear combination
of polynomials g;, ... ;..

gj17~~~7jd(t1? R td)'



For each step, we bound the sum of magnitudes of
coefficients in the linear combination. The rest of the
proof of Lemma IV.13, including the details of each step,
is deferred to the full version of our paper [BCF19].

V. LOWER BOUNDS FOR DISTRIBUTIONS SUPPORTED
ON AT MOST 2¢ STRINGS

Our main result in this section is Theorem 6, given
below, which establishes a lower bound on the sample
complexity of population recovery under the deletion
channel which is exponential in the population size for
a wide range of population sizes:

Theorem 6. Fix any constant deletion probability 6 €
(0,1). Suppose that A is an algorithm which, when run
on i.i.d. samples drawn from a distribution Dels(X) with
|supp(X)| < 2¢, outputs a hypothesis X which satisfies
drv(X,X) < 0.49 with probability at least 0.51. Then
A must use -

Q(n/e?) =

03

many samples.

If the population size upper bound 2/ is a constant
this gives a lower bound of Q(n(*+1)/2) samples, and
for any ¢ < n4% this gives a lower bound of n(*).

For the rest of this section fix 6 € (0,1) and let p
denote 1 — §. The high-level idea of the proof is as
follows: We show that there exist two distributions X, Y
over {0,1}™ which have disjoint supports, each of size

at most 2/, but satisfy
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n

3
2

41
2 p
)
which clearly implies Theorem 6.
For simplicity throughout this section we assume that
n is odd, and we write m to denote (n — 1)/2. The
following notation will be useful: For 0 < ¢ < 2¢ we
write €,,1; to denote the string 0™+110™~¢. The two
distributions X and Y that we consider will be supported
on disjoint subsets of {en1i}icjo:2¢) (and hence each
distribution has support size at most 2¢ + 1, but in our
proofs neither will have full support so their support size
will be at most 2/).

-(1-9)
21

dry (Dels(X), Dels(Y)) = O (

Notation and setup. For notational convenience, let
B(r) denote the binomial distribution Bin(r, p).

Let S be a set of indices, g be a distribution over .S,
and {V;};cs be a set of random variables indexed by S.
We write Mix(7g; {V;}ies) to denote the mixture over
{V,}ics with each V; weighted by mg(7).
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For conciseness we write Z, to denote a random
variable which is distributed according to the binomial
distribution B(n). We recall the following convenient
expression for the falling moments of the binomial
distribution: for any ¢ = 0,1, ..., we have

EZ,(Z,—1)---(Z, —t)] = P(n)

where Pi(n) =n(n—1)---(n—t)p'*t.
For completeness we include the derivation below:

(22)

EZn(Zyp — 1) (Zy —1)]

= 2 i(i—1)--(i—t)- (?)ﬂl _
E-ACE 2)!(7;;— RS

= (n - )] ; (" g
= P,(n).

The key lemmas. The first main lemma makes precise
the moment-matching property of mg and 7w that we
require:

Lemma V.1 (Matching moments of mixtures of dis-
jointly supported binomial distributions). Let ¢ <
O(y/n)."* There are two disjoint subsets S, T C [0 : 2]
and two distributions g, supported on {€,,1;}ics
and {em+;}jer respectively with the following property
(which we call the “matching moment property”):

Let ]33 be a random variable whose distribution is
the mixture of {Z,+;}ics in which distribution Z,,;
has mixing weight wg(emy;), and likewise Dy be a
random variable whose distribution is the mixture of
{Z,.+;}jer in which distribution Z,,; has mixing
weight 7 (e ;). Then the first £ moments of Dg and
D7 match each other, i.e. for all t € [¢], we have

E[(Ds)'] = E[(D7)"]. (23)

The second main lemma (statement given in
Lemma V.3 below) gives the desired upper bound on
total variation distance. To prove Theorem 6 it suffices
to prove Lemmas V.1 and V.3.

A. Proof of Lemma V.1
Proof. We defer the proof to the full version of the paper
[BCF™19]. O

“Note that if £ = w(1/n) then Theorem 6 holds trivially, so this
assumption is without loss of generality.



We will use the following corollary of Lemma V.1:

Corollary V.2. Let S,T,wg,mr be as in Lemma V.1.
Then for any polynomial p of degree at most £, we have

Z’ZTS em+i)p(m+1) ZWS em+j)P(m+7). (24)
1€IN JEN

Proof. Equation (23) can be rewritten as

> ws(emt) Bl(Zmtd)'] = > ws(emis) Bl(Zmi))'),

ielN

which holds for all ¢ < /.
This is equivalent to having equal falling moments,

ie for all t € [f], > cn7s(emti) B[P—1(Zpyi)]

equals > ; n Ts(em+j) E[FP—1(Zy4;)]. Indeed, for a

random variable Z, E[P,_1(Z)] can be written as a

jeN

linear combination of 1,E[Z],E[Z?], ..., E[Z!] and
since 1,Py(Z), Pi(Z),...,P;_1(Z) form a set of £
polynomials in Z with degrees 0,1,2,...,¢, then they

form a basis for polynomials in Z with degree at most
L.

By (22), this is in turn equivalent to having, for all
t €[4,

E:Ws@m+ﬁf140n+0
i€IN

= Z 71-S(eerj)'F)tfl("n""j)a
JEN

which is in turn equivalent to (24) by the reasoning in

the above paragraph. O

B. Total Variation Distance Upper Bound

We state Lemma V.3 below. Informally, it says that
if mg, mp have the matching moment property, then the
variation distance between two corresponding mixtures
of two-dimensional vector-valued random variables is
small. (In the following, the notation (B(a), B(b)) stands
for a vector-valued random variable in which the two
coordinates are independently drawn from B(a) and
B(b) respectively.)

Lemma V.3. Let X,Y be two distributions with disjoint
supports {emi}ics and {em+;}jcr respectively, where
SUT C [0: 2, with the matching moment property
from Lemma V.I above. Then

) v

Setup and useful results. Our proof of Lemma V.3 is
based on “moment-matching” results for Poisson bino-
mial distributions which were proved by Roos [Roo00]
and subsequently used by Daskalakis and Papadimitriou
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n

N\EA«

(1 =9).
(25)

dTv(DeL§ (X),Delg( )) <0 <
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[DP15]. Our approach is similar to the approach used
in [DP15]. To state these results, recall that a Poisson
binomial distribution (PBD)isasum U = A;+---+A,
of independent Bernoulli random variables (so each A;
is a random variable taking value 1 with some probability

€ [0, 1] and taking value O with probability 1 — p;).

In [DPI15], it is shown that if two PBDs satisfy
some mild technical condition and have matching first ¢
moments, then they have total variation distance at most
2-20)  We show that two mixtures of pairs of suitable
binomially distributed variables that have matching first
¢ moments will have total variation distance at most
nfﬁ(ﬁ)'

We recall Theorem 1 of [DP15], which gives a
“Krawtchouk expansion” for any Poisson binomial dis-
tribution. This provides an expression for the exact
probability that the Poisson binomial distribution puts
on any outcome in its support. (We state the theorem for
PBDs which are a sum of n’ many random variables, as
when we apply it later it will be for such PBDs where
n=m+l=(n-1)/2+1)

Theorem 7 (Theorem 1 of [Roo00], see also Theorem 7
of [DP15]). Let U = Ay + --- + A,/ be a Poisson
binomial distribution in which each A, takes value 1
with probability p; € [0,1]. Then for all r € [n'] and all
p € [0,1], we have

n/
=r]= Zat(pl, .
t=0

. 7pn’§p) : AtBn/—t,;D(T)v

(26)
where
e ag(p1,..-,pn;p) =1 and for t € [0: 1],
t
e (p1, ..., Porip) = > [T ®ue—p),

1<u(1l) < <u(t)<n/ r=1
e and for all t € [0 : 1],

(n' —1t)!
n'

dt
dpt
where in the last expression By ,(r) denotes the
value (Ti )pr(l —p)"' =", the probability that the bi-
nomial distribution Bin(n',p) puts on the outcome
r, viewed as a function of p.

We highlight the fact that A'B,, ,(r) has no de-
pendence on the parameters pi,...,Dpys; this will be
important for us later.

The following result, deduced from [Roo00], is very
useful in analyzing (26). It bounds each of the n’ + 1
summands in (26) which add up to Pr[U = r].

AtBnr,up(r) : By (1),



Theorem 8. Let (py,...,py) € [0,1]", p € [0,1], and
ay(+,+) be as in the statement of Theorem 7. Define

250 (0 = p)* + (S0, (0 — )’
g(pla"'apn’;p) = Z 1( /)2 (E 21( )) ’
2n/p*(1 - p)
(27
For t € [n/],
ot (pr, - oo D) 1A By (1) 11
<Ve-0(pr,.. ., puip)its
where ||A'Bp_y ()1 denotes the 1-norm  of

A'Byi_y p(+) viewed as an (n' + 1)-dimensional
vector, i.e. ||A"Bp_y 5 ()|l1 =D one o |A'Brr—g p(7)].

Proof. Inequality 30) in [Roo00] says
|at(p17 . 7pn’7p)| iS at most
/ n/2—t
i t t n
p*(1=p)20(ps,- ... p)* <n’ - t>

for ¢t € [n/].
Inequality (38) in [Roo00] gives

¢ t 3

)" (o

1—p)

n —
n/

1A' By () < Vet (

for ¢t € [n/].
By multiplying the above two inequalities together we
get the desired result because ¢ < n'. O

For conciseness we now let Dg denote
MlX(T(s,((Bll’l(m + z,p),Bln(m - Zyp))>165) where
in each component two-dimensional distribution the
two distributions Bin(m + 4,p) and Bin(m — i,p)
are independent, and similarly we let D denote
Mix(7r; ((Bin(m + j, p), Bin(m — j,p)))jer). In the
rest of the proof we will argue that

241
52 Tz
dTv<Ds,DT>§0<n> 02 @28
This establishes the claimed wupper bound on

drv(Dels(X), Dels(Y)) given in (25). To see this,
observe that for any outcome in supp(X) or supp(Y),
with probability § the one 1-coordinate is deleted under
Dels (in which case the distributions resulting from
Dels(X) and Dels(Y) are identical), and that with the
remaining 1 — ¢ probability (when the one 1-coordinate
is not deleted) there is an exact correspondence between
Dels(X) and Dg and between Dels(Y) and Dy.

For an index ¢ < n/, let v(¢) denote the n’-dimensional
real vector whose first ¢ values are p and whose remain-
ing values are 0.
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For ¢,t' € [0: n'] we define

Cre(p) = Z Ts(em+i) - Oét(U(mH);p) ‘ Oét/(U(mfi%p),
i€N

Diw(p) =D mr(emss) - ar(0 ) p) oy (0" p).
JEN

The following lemma is crucial for us. Recall that n’ =

m+ /.

Lemma V4. Let wg, 7 be as in the statement of
Lemma V.3. Then for any p € [0,1], the values Cy 4 (p)
and Dy (p) are identical for t,t' > 0 and t +t' < L.

Proof. Let p be any value in [0,1]. If ¢ +¢' = 0, then
t = t' = 0. Recalling that a(-,-) = 1 we have that
Coo(p) = Dienms(emti) =1 =3 e mr(emtj) =
Dy o(p) as desired.

+k\ (0 —m—k\ (m—k\ (n'—m+k

Let r(k) = (") (") (e ) (L)

For t + t' > 1, we observe that oy (v(™*9);p) -
Qys (v(m’i);p) is composed of summands of the form
(p - p)c+c (_p)tth ¢ force [07 ﬂa c e [07t/]'

In particular, we have Cy(p) = > ,cnTs(€mti) -
each mg(€y,+;) is multiplied by a polynomial in m of
degree at most t +t' < /.

Similarly, we have Dyy(p) = > ;cnmr(em+;) -
Yoo =g (i) - (p=p) - (=p)"" T and by
Corollary V.2, we see that C; ¢ (p) = Dy v (p). O

We can now prove Lemma V.3 using a similar ar-
gument to the one used in the proof of Theorem 3 in
[DP15]. Our proof will upper bound Pr[Dg = (r,s)] —
Pr[Dy = (r, s)] by using Theorem 7, Lemma V.4, and
Theorem 8. The proof is deferred to the full version of
the paper [BCF'19].
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APPENDIX
A. Chebyshev polynomials

Let 7,(x) denote the rth Chebyshev polynomial of
the first kind. Then 7;. has degree r and satisfies the
following property:

Property 9. T,.(1) = 1 and |T,.(z)| < 1 for all |x] < 1.
If x > 1 then T,.(z) > 1.

We will need an upper bound for T,.(z) over x € [1,2].
For this purpose we recall the following explicit form of
T, (x) for |x| > 1:

(2 — VAT =I) + (2 + V@ —T)"
: .

Property 10. For a € [0, 1], we have T,.(1+a) < €3"Ve,
Proof. Using (29) we have

T, (1+a) < (1 +a+V2a+ a2)r < (143va)" < Ve,

T (x) (29)

where we used a®> < a < \/a when a € [0,1] and
14z <e”. O

The next property follows from the recurrence relation
Trt1(x) =22 - T (x) — Tr—1(x)
with initial conditions Tp(x) = 0 and Ty (z) = 1.
Property 11. For all r > 0, we have ||T,||; < 3".

Following [BEK99], we write g, to denote the follow-
ing polynomial of degree 7:

gr(2) = — ~<T0(x)

r+0.5 2
We need the following properties of the polynomial
gr. Items 1, 2 and 3 of Property 12 follow directly from
Properties 9, 10 and 11, respectively. For item 4 we have

+ Ty (x) +~~-+TT(1:)> :

gr(cosy) (0.5 + cosy + cos2y + - - - + cos Ty)

r+0.5
1 sin(r + 0.5)y

r+0.5 . ,/2(1 —COS:(/)’
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for all 0 < y < 7. This implies that for all z € [-1,1),
we have

1 1 1

9 S 08 AT - R =)
Property 12. The polynomial g, satisfies the following
propetrties.

1) g-(1) =1 and |g,(z)| <1 for all |x| < 1;

2) 1< g.(14a) <e¥Ve forall a € |0,1);

3) \lgrllh <37; and

4) |gr(z)| < VoI ’72(11—1) for all x € [-1,1).

B. Proof of Lemma 1V.10
Recall the statement of Lemma IV.10:

Lemma IV.10, restated. There is a univariate polyno-
mial h with the following properties:

1) h has degree O(y/mlogm).
2) h(0) =1 and for each b € [m],

Vb
3) h satisfies ||h||1 < exp(O(y/mlogm)).

Ih(b)| < and  |h(=b)| < e8Vbloam

Proof. Recall the polynomial g, in Section A. We use
it to define a degree-r polynomial ),

Ur(@) =g, (1-2).
Properties of g, directly imply the following properties
of ¥,
D ¢ (0) =1;

2) For each b € [m], we have

L
m

. 1
|t (b)| < min (1, -

3) Finally, v, satisfies

2b

1

")

llls < 37 (1+

Let 77 = 47 be the smallest power of 4 with 7 > m.
We use 1, to define our h as follows:

) = 1 (¢ (@)

€[]
First we have h(0) = 1 and the degree of h is at most

2 \/4T VI = OV log, ) = O(Vm log m).

i€[f]

m) and 1 < ¢, (—b) < e3Vb/m,

b



Next, given b € [m], let i € [3] be an integer such that
4=1 < p < 4%, Then (using 7 > m)

v o< m e <
Va2t =y o =V o 241 T

Using |4, (b)| < 1 for all r, we have that

1 1
<
h(B)| € 2 < 7

On the other hand, we have for each b € [m] (using
m < 4m and that m is asymptotically large),

h(—b) <exp | 3v/b/m Z Vi /4i=2 /4l

i€(p]
= exp (24\/5 log, 7h> < exp (24\/510g m) .

Finally, the sum of magnitudes of coefficients of h is at
most

—— Vai
H (3Vm/41 ’ ~2) = exp (O(v/mlogm)).
i€[g]
This finishes the proof of the lemma. 0
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