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Abstract—Population recovery is the problem of learning
an unknown distribution over an unknown set of n-bit
strings, given access to independent draws from the distri-
bution that have been independently corrupted according
to some noise channel. Recent work has intensively studied
such problems both for the bit-flip noise channel and for
the erasure noise channel.

In this paper we initiate the study of population re-
covery under the deletion channel, in which each bit b is
independently deleted with some fixed probability and the
surviving bits are concatenated and transmitted. This is
a far more challenging noise model than bit-flip noise or
erasure noise; indeed, even the simplest case in which the
population is of size 1 (corresponding to a trivial probability
distribution supported on a single string) corresponds to
the trace reconstruction problem, which is a challenging
problem that has received much recent attention.

In this work we give algorithms and lower bounds for
population recovery under the deletion channel when the
population size is some value � > 1. As our main sample
complexity upper bound, we show that for any population
size � = o(log n/ log log n), a population of � strings from
{0, 1}n can be learned under deletion channel noise using
2n

1/2+o(1)

samples. On the lower bound side, we show that

at least nΩ(�) samples are required to perform population
recovery under the deletion channel when the population

size is �, for all � ≤ n1/2−ε.
Our upper bounds are obtained via a robust multivari-

ate generalization of a polynomial-based analysis, due to
Krasikov and Roddity [KR97], of how the k-deck of a bit-
string uniquely identifies the string; this is a very different
approach from recent algorithms for trace reconstruction
(the � = 1 case). Our lower bounds build on moment-
matching results of Roos [Roo00] and Daskalakis and
Papadimitriou [DP15].

I. INTRODUCTION

In recent years the unsupervised learning problem

of population recovery has emerged as a significant

focus of research attention in theoretical computer sci-

ence [DRWY12], [MS13], [BIMP13], [LZ15], [DST16],

[WY16], [PSW17], [DOS17b]. In the population re-

covery problem there is an unknown distribution X

over an unknown set of n-bit strings from {0, 1}n,

and the learner’s job is to reconstruct a high-accuracy

approximation of X given access to noisy independent

draws from X (so each data point which the learning

algorithm receives is independently generated as follows:

an n-bit string is drawn from X and corrupted by some

noise process, and the result is provided to the learning

algorithm). The two noise models which have chiefly

been studied to date are the bit-flip noise model, in which

each coordinate is independently flipped with some fixed

probability, and the erasure noise model, in which each

coordinate is independently replaced by ‘?’ with some

fixed probability.

Since the population recovery problem was first in-

troduced in [DRWY12], [WY16], a number of positive

results and lower bounds have been obtained for different

variants of the problem. In one popular version of the

problem [PSW17], [DOS17b], [MS13], for a particular

noise model (bit-flip or erasure) the distribution X may

be an arbitrary distribution over {0, 1}n, and the goal is

to learn the distribution X with respect to �∞ distance

(i.e. to output a list of strings x1, . . . , xr ∈ {0, 1}n and

associated weights X̃(xi) such that |X(xi)−X̃(xi)| ≤ ε
for all i ∈ [r] and X(x) ≤ ε for all x ∈ {0, 1}n \
{x1, . . . , xr}). In another well-studied version of the

problem [WY16], [LZ15], [DST16], which is closely

related to the problems we shall consider, the distribution

X is promised to be supported on at most � strings

in {0, 1}n (i.e. the “population size” is promised to

be at most �), and the goal is to output a hypothesis

distribution X̃ over {0, 1}n which has total variation
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distance at most ε from X. Significant progress has

been made on determining the sample complexity of

population recovery for both of these variants under the

bit-flip and erasure noise models; we refer the interested

reader to [DST16], [PSW17], [DOS17b] for the current

state of the art.

This work: Population recovery from the deletion

channel and its relation to trace reconstruction. In

both the bit-flip noise model and the erasure noise model,

all of the challenge in the population recovery problem

stems from the fact that given a noisy draw from X it

is a priori not clear which element of X’s support was

corrupted by noise to produce the noisy draw. Putting

it another way, if the population size is promised to be

� = 1, then under either of these two noise models it

is trivially easy to learn a single unknown string from

noisy examples.

In this work we study population recovery under the

deletion noise model, which is far more challenging

to handle than either bit-flip noise or erasure noise.

The deletion channel is defined as follows: when a

string x is passed through the deletion channel with

deletion parameter δ, each coordinate xi is independently

deleted with probability δ, the surviving coordinates are

concatenated, and the resulting string (of length n′ ≤ n,

where n′ is distributed as Bin(n, 1 − δ)) is the output

of the noise process. Intuitively, the deletion channel is

challenging because given a received word obtained by

passing x through the δ-deletion channel (often referred

to as a trace of x, and denoted by z ← Delδ(x)), it

is not clear which coordinate of x gave rise to which

coordinate of z. Indeed, in contrast with the bit-flip

and erasure noise models, even if the population size

is guaranteed to be � = 1, the problem of recovering

a single unknown string from independent traces is a

well-known and challenging open problem, known as

the trace reconstruction problem [Lev01b], [Lev01a],

[BKKM04], [KM05], [HMPW08], [VS08], [MPV14],

[DOS17a], [NP17], [PZ17], [HPP18], [HHP18].

There are several motivations for the study of pop-

ulation recovery under the deletion noise model. One

motivation is the considerable recent research interest

both in the trace reconstruction problem (the � = 1
case of population recovery under the deletion chan-

nel) and in population recovery problems under bit-

flip and erasure models. Further motivation comes from

potential relevance of the deletion channel population

recovery problem both to recovery problems in com-

putational biology and to other topics such as DNA

data storage. Regarding biological recovery problems,

considering population recovery (the � > 1 case) rather

than trace reconstruction (the � = 1 case) relaxes the

potentially unrealistic assumption that all of the received

samples (of a protein sequence, DNA sequence, etc.)

are derived from a single unknown target sequence

rather than from multiple unknown sequences. Heuristic

algorithms for population recovery-type problems have

also been applied to DNA storage (see e.g., [YGM17]

and [OAC+18]). In these settings, each string in the

population comes from a DNA sequence and the noisy

channel can inflict a variety of errors including bit-flips

and deletions.

Thus, the authors feel that the time is ripe for a theoret-

ical study of population recovery under the challenging

deletion model. In this paper we initiate such a study,

obtaining sample complexity upper and lower bounds

when the population is of size � > 1. Before describing

our results for populations of size � (equivalently, target

distributions supported on at most � strings), we first

recall known upper and lower bounds for the trace

reconstruction problem (� = 1) below.

Known bounds on trace reconstruction. The trace

reconstruction problem was raised more than fifteen

years ago [Lev01b], [Lev01a], [BKKM04], though in

fact some variants of the problem go back at least to

the 1970s [Kal73]. The first algorithm that provably suc-

ceeds with high probability in reconstructing an arbitrary

x ∈ {0, 1}n using subexponentially many traces is due

to Mitzenmacher et al. [HMPW08], who showed that

2Õ(
√
n) many traces suffice for any constant deletion rate

δ bounded away from 1. This result was improved in

recent simultaneous and independent works of De et

al. [DOS17a] and Nazarov and Peres [NP17]; these pa-

pers each showed that for any constant δ bounded away

from 1, at most 2O(n1/3) traces suffice to reconstruct any

x ∈ {0, 1}n.1

Due to the seeming difficulty of the worst-case trace

reconstruction problem (reconstructing an arbitrary x ∈
{0, 1}n), an average-case version of the problem (recon-

structing a randomly chosen string x ∈ {0, 1}n), which

turns out to be significantly easier in terms of sample

complexity, has also received considerable attention. A

number of early works [BKKM04], [KM05], [VS08]

gave efficient algorithms that succeed for trace recon-

struction of almost all x ∈ {0, 1}n when the deletion

rate δ is sufficiently low (on(1) as a function of n).

In [HMPW08] Mitzenmacher et al. gave an algorithm

1Hartung, Holden and Peres [HHP18] have recently extended this
result to certain more general regimes where there can be different
deletion probabilities for different coordinates and symbols.
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which uses poly(n) traces to perform average-case trace

reconstruction when the deletion rate δ is at most some

sufficiently small constant. Recently the best results on

average-case trace reconstruction have been significantly

strengthened in works of Peres and Zhai [PZ17] and

Holden, Pemantle and Peres [HPP18] which build on

the worst-case trace reconstruction results of [DOS17a],

[NP17]. The latter of these papers [HPP18] gives an al-

gorithm which uses exp((log n)1/3) traces to reconstruct

a random x ∈ {0, 1}n when the deletion rate is any

constant bounded away from 1.

In terms of lower bounds, it is easy to see that if

the deletion rate δ is at least some positive constant,

then until Ω(log n) draws have been received there

will be some bits of the target string x about which

no information has been received. Improving on this

simple Ω(logn) lower bound, McGregor et al. [MPV14]

established a sample complexity lower bound of Ω(n)
traces for any constant deletion rate. This was recently

improved by Holden and Lyons [HL18] to Ω̃(n5/4).

Summarizing, for any constant deletion probability

0 < δ < 1 there is currently an exponential gap between

the best lower bound of Ω̃(n5/4) samples and the best

upper bound of 2O(n1/3) samples for trace reconstruction

of an arbitrary string x ∈ {0, 1}n.

A. Our results

Positive result. As our main positive result, we obtain

an algorithm which learns any unknown distribution X

supported on at most � strings under the deletion channel.

For any constant � (and in fact even for � as large as

o(log n/ log logn), its sample complexity is exponential

in n1/2+o(1). In more detail, our main positive result is

the following:

Theorem 1 (Learning an arbitrary mixture of � strings

under the deletion channel). There is an algorithm with

the following performance guarantee: Let X be an arbi-

trary distribution over at most � strings in {0, 1}n. For

any deletion rate 0 < δ < 1 and any accuracy parameter

ε, if the algorithm is given access to independent draws

from X that are independently corrupted with deletion

noise at rate δ, then the algorithm uses

1

ε2
·
(

2

1− δ

)

√
n · (logn)O(�)

many samples and with probability at least 0.99 outputs

a hypothesis X̃ which is supported over at most � strings

and has total variation distance at most ε from the

unknown target distribution X.

It is easy to see that if the target distribution is

promised to be uniform over (a multi-set of) at most �
strings, then the algorithm of Theorem 1 can be used to

exactly reconstruct the unknown multi-set. As we explain

in Section II, while Theorem 1 extends prior results on

trace reconstruction (the � = 1 case), it is proved using

very different techniques from recent works [HMPW08],

[DOS17a], [NP17], [PZ17], [HPP18], [HHP18] on trace

reconstruction.

We note that for deletion rates δ that are bounded away

from 1 by a constant, the 2O(n1/3) sample complexity

bounds of [DOS17a], [NP17] for trace reconstruction

are better than the � = 1 case of our result. However,

our bounds apply even if the deletion rate δ is very

close to 1; in particular, [DOS17a], [NP17] give no

results for very high deletion rates δ = 1 − o(1/
√
n),

while Theorem 1 gives a 2Õ(
√
n) bound for δ = 1 −

1/2polylog(n) and a 2o(n) bound even for δ as large

as 1− 1/2
√
n/polylog(n). Of course, the main feature

of Theorem 1 is that it applies when � > 1 (unlike

[DOS17a], [NP17]).

Negative result. Complementing the sample complexity

upper bound, we obtain a lower bound on the sample

complexity of population recovery. Our lower bound

shows that for a wide range of values of �, at least

nΩ(�) samples are required when the population is of

size at most �. An informal version of our lower bound

is as follows (see Theorem 6 in Section V for a detailed

statement):

Theorem 2 (Sample complexity lower bound, informal

statement). Let 0 < δ < 1 be any constant deletion

probability and suppose that A is an algorithm which,

when run on samples drawn from the δ-deletion channel

over an arbitrary distribution X supported over at most

� ≤ n0.499 many strings, with probability at least

0.51 outputs a hypothesis distribution X̃ that has total

variation distance at most 0.49 from the unknown target

distribution X. Then A must use nΩ(�) many samples.

II. OUR TECHNIQUES

As noted earlier, our positive result (Theorem 1)

gives a sample complexity upper bound for the original

(� = 1) trace reconstruction problem as a special case.

We remark that both of the recent 2O(n1/3) sample

complexity upper bounds for the trace reconstruction

problem [DOS17a], [NP17], as well as the earlier work

of [HMPW08], employed essentially the same algorith-

mic approach, which is referred to in [DOS17a] as a

“mean-based algorithm.” At a high level, mean-based
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algorithms use their samples (traces) only to compute

empirical estimates of the n expectations2

Ez←Delδ(x)[z0], · · · ,Ez←Delδ(x)[zn−1] (1)

corresponding to the coordinate means of the received

traces; they then only use those n estimates to reconstruct

the unknown target string x. Both of the algorithms

in [DOS17a], [NP17], as well as the algorithm from

[HMPW08] for trace reconstruction from an arbitrary

string x, are mean-based algorithms. (Both [DOS17a]

and [NP17] show that their sample complexity upper

bounds are essentially best possible for any mean-based

trace reconstruction algorithm.)

While mean-based algorithms have led to state-of-the-

art results for trace reconstruction of a single string, this

approach breaks down even for the simplest non-trivial

cases of population recovery under the deletion channel.

Indeed, even when � = 2 and the unknown distribution

X is promised to be uniform over two strings, it is easy

to see that the coordinate means do not provide enough

information to recover X. For example, if (x1, x2) and

(y1, y2) are two pairs of strings whose sums (as vectors

in �n) x1+x2 and y1+y2 are equal (such as x1 = 0n,
x2 = 1n, y1 = 0n/21n/2, y2 = 1n/20n/2), it is easy

to see that the coordinate means of received traces will

match perfectly:

E
j∈{1,2}

E
z←Delδ(xj)

[zi] = E
j∈{1,2}

E
z←Delδ(yj)

[zi],

for every i ∈ {0, . . . , n − 1}. Thus the mean-based

approach of [HMPW08], [DOS17a], [NP17] does not

suffice for even the simplest version of the population

recovery problem when � = 2. Indeed, our sample com-

plexity upper bounds are obtained using a completely

different approach, which we explain below.

A. Warm-up: A different approach to trace reconstruc-

tion (the � = 1 case)

As a warm-up to our main results, we first give

a high-level explanation of how our approach can be

used to obtain a simple 2Õ(
√
n)-sample algorithm for

the trace reconstruction problem. While this is a higher

sample complexity than the state-of-the-art mean-based

approach of [DOS17a], [NP17] (though our approach

does better for very high deletion rates, as noted earlier),

our approach has the crucial advantage that it can be

2In this context, the original unknown target string x is viewed as
belonging to {−1, 1}n, and a trace z obtained from Delδ(x) is viewed
as a string in {−1, 1}n′

for some n′ ≤ n with n−n′ zeros appended
to the end. Throughout the paper, we use [0 : n−1] = {0, . . . , n−1}
to index entries of a string of length n.

adapted to go beyond the � = 1 case, whereas the mean-

based approach cannot handle � > 1 as described above.

In a nutshell, the essence of our approach is to work

with subsequence frequencies in the original string x (in

contrast, note that the mean-based approach uses single-

coordinate frequencies in the received traces). To explain

further we introduce some useful terminology: the k-

deck of a string x ∈ {0, 1}n, denoted Dk(x), is the multi-

set of all
(

n
k

)

subsequences of x with length exactly k.

Thus, the k-deck encapsulates all frequency information

about length-k subsequences of x.

A question that arises naturally in the combinatorics

of words is the following: what is the smallest value of k
(as a function of n) so that for every string x ∈ {0, 1}n,

the k-deck of x uniquely identifies x? Despite significant

investigation dating back to the 1970s [Kal73], this basic

quantity is still poorly understood. Improving on earlier

k ≤ n/2 bounds of Kalashnik [Kal73] and Manvel et

al. [MMS+91] and a simultaneous k = O(
√
n log n)

bound of Scott [Sco97], Krasikov and Roddity [KR97]

showed that k = O(
√
n) suffices. On the lower bounds

side, the best lower bound known is k = 2Ω(
√
logn), due

to Dudı́k and Schulman [DS03] (improving on earlier

k = Ω(log n) lower bounds of [MMS+91] and [CK97]).

The relevance of upper bounds on k to the trace

reconstruction problem is intuitively clear, and indeed,

McGregor et al. [MPV14] observed that if the deletion

rate δ is at most 1−c
√

(log n)/n, then it is trivially easy

to extract a random length-O(
√
n log n) subsequence

of x from a typical trace of x. Combining this with

the k = O(
√
n log n) upper bound of Scott [Sco97]

and a straightforward sampling-based procedure (which

estimates the frequency of each string in {0, 1}k to high

enough accuracy to determine its exact multiplicity in the

k-deck), they obtained an information-theoretic sample

complexity upper bound on trace reconstruction: for

δ ≤ 1−c
√

(log n)/n, at most nO(
√
n logn) traces suffice

to reconstruct any x ∈ {0, 1}n with high probability.

As an initial observation, we slightly strengthen the

[MPV14] result by showing that for any value of δ < 1,

an algorithm which combines sampling and dynamic

programming can exactly infer the k-deck of an un-

known string x ∈ {0, 1}n with high probability using

(n/(1− δ))
O(k)

traces from Delδ(x). (See Theorem 4

for a detailed statement and proof of a more general

version of this result.) Combining this with the [KR97]

upper bound k = O(
√
n), we get that any string

x can be reconstructed from δ-deletion noise using

(n/(1− δ))
O(

√
n)

samples.

The above-outlined approach to trace reconstruction
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(the � = 1 case of population recovery) is the starting

point for our main positive result, Theorem 1. In the next

subsection we give a high-level description of some of

the challenges that arise in dealing with multiple strings

and how this work overcomes them.

B. Ingredients in the proof of Theorem 1

Recall that in the setting of Theorem 1 the unknown

X is an arbitrary distribution supported on at most �
strings x1, . . . , x� in {0, 1}n. Viewing X as a mixture

of individual strings, there is a natural notion of the k-

deck of X, which we denote by Dk(X) and which is the

weighted multi-set corresponding to the X-mixture of

the decks Dk(x
1), . . . ,Dk(x

�).3As a result, Theorem 1

will follow if we can show the following: if two distri-

butions X,Y over {0, 1}n (each supported on at most

� strings) have dTV(X,Y) > ε, then for a not-too-large

value of k, the k-decks Dk(X) and Dk(Y) (note that

these are two weighted multi-sets of strings in {0, 1}k)

must be “noticeably different.” This is established in

Lemma IV.6, which is the technical heart of our upper

bound.

To explain our proof of Lemma IV.6 it is useful to

revisit the � = 1 setting; the analogous (and much

easier to prove) statement in this context is that given

any two strings x �= y ∈ {0, 1}n, the k-decks Dk(x)
and Dk(y) are not identical when k ≥ C

√
n for some

large enough constant C. This is the main result of

[KR97] (and a similar statement, with a slightly weaker

quantitative bound on k, is also proved in [Sco97]). Since

the k-deck in and of itself is somewhat difficult to work

with (being a multi-set over {0, 1}k), both [KR97] and

[Sco97] work instead with the summed k-deck, which

we denote by SDk(x) and which is simply the vector in

N
k obtained by summing all

(

n
k

)

elements of the k-deck

Dk(x) (recall that each element of Dk(x) is a vector in

{0, 1}k). Both [KR97] and [Sco97] actually show that

for a suitable value of k, the summed k-deck SDk(x)
uniquely identifies x among all strings in {0, 1}n. (Both

papers also observe that by a simple counting argument,

the smallest such k is at least Ω̃(
√
n).) The [KR97]

proof reduces the analysis of the summed k-deck to

an extremal problem about univariate polynomials. The

key ingredient of their proof is the following result

about univariate polynomials, which was established

3By a weighted-multiset we mean a multiset in which each element
has a weight. Alternatively, one can interpret (after normalization)
Dk(x) as a probability distribution over the 2k strings in {0, 1}k
and in this case, Dk(X) can be viewed as a probability distribution
that is the X-mixture of Dk(x

1), . . . ,Dk(x
�).

in [BEK99] in their work on the Prouhet-Tarry-Escott

problem:

Given any nonzero vector δ ∈ {−1, 0, 1}n,

there is a univariate polynomial p of degree

O(
√
n) such that

∑

0≤i<n

δi · p(i) �= 0. (†)

Setting δ = x− y �= 0, to finish the proof of SDk(x) �=
SDk(y) when x �= y and k ≥ C

√
n, [KR97] shows that

choosing k to be deg(p) + 1, the inequality (†) implies

that SDk(x) �= SDk(y).
Returning to our �-string setting, we remark that

several challenges arise which are not present in the

one-string setting. To highlight one of these, due to the

difficulty of analyzing the entire k-deck of X it is natural

to try to work with the summed k-deck SDk(X) (a non-

negative vector in �k), which is obtained by summing

all elements of the weighted multi-set Dk(X). Indeed it

can be shown via a rather straightforward extension

of the [KR97] analysis that, when X is uniform over

x1, . . . , x�, the summed k-deck with k = O(
√
n log �)

suffices to exactly reconstruct the sum x1 + · · · + x�

(a vector in N
n). But even for uniform distributions,

a difficulty which arises is that the summed k-deck

(even with k = n) cannot distinguish between two

uniform distributions over x1, . . . , x� versus y1, . . . , y�

that have the same coordinate-wise sums, i.e. that satisfy

x1 + · · · + x� = y1 + · · · + y�.4 Indeed, considering

the same example as earlier, in which � = 2 and x1 =
0n, x2 = 1n, y1 = 0n/21n/2 and y2 = 1n/20n/2, the

summed k-deck is (
(

n
k

)

, . . . ,
(

n
k

)

)/2 ∈ �k in both cases.

At a high level our Lemma IV.6 can be viewed as

a robust generalization of the [KR97] result. A key

technical ingredient in its proof is a robust generalization

of the [BEK99] result to multivariate polynomials. (The

summed k-deck corresponds to univariate polynomials,

so at a high level our analysis involving multivariate

polynomials can be viewed as how we get around the

obstacle noted in the previous paragraph.) The proof of

Lemma IV.6 consists of three steps which we outline

below.

The first conceptual step of our argument is to show

that if two support-� distributions X and Y over {0, 1}n
satisfy dTV(X,Y) ≥ ε, then there exists a subset

T ⊂ [0 : n − 1] of size d = 	log(2�)
 such that

X and Y “differ significantly” just on the coordinates

in T . In particular, there is some |T |-bit string c such

4This is conceptually similar to the inability of mean-based algo-
rithms to handle multiple strings noted earlier.
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that Prx∼X[xT = c ] is significantly different from

Pry∼Y[yT = c ], where we use xT to denote the restric-

tion of a string x ∈ {0, 1}n on coordinates in T . (This is

made precise in Lemma IV.1.) Let ∆ :
(

[0:n−1]
d

)

→ � be

the following function over size-d subsets of [0 : n− 1]:

∆(S) = Prx∼X

[

xS = c
]

−Pry∼Y

[

yS = c
]

. (2)

Then Lemma IV.1 implies that ‖∆‖∞ is not too small.

The second (and central) conceptual step of our ar-

gument can be viewed as a robust generalization of the

[BEK99] result to d-variate polynomials, as alluded to

earlier. The key result giving this step, Lemma IV.7,

roughly speaking states the following:

Given the ∆ as defined in (2), there is a

d-variate polynomial φ of not-too-high degree

(roughly
√
n) such that5

∣

∣

∣

∣

∣

∣

∑

0≤t1<···<td<n

φ(t1, . . . , td) ·∆
(

{t1, . . . , td}
)

∣

∣

∣

∣

∣

∣

(††)

can be lower bounded in terms of ‖∆‖∞,

which is not too small by Lemma IV.1.

The third conceptual step relates (††) to the distance

between the k-decks Dk(X) and Dk(Y), by showing

that if (††) is not too small then Dk(X) and Dk(Y)
must be “noticeably different” when k is chosen to be

deg(φ) + d. We refer the reader to Lemma IV.8. At

a high level this is analogous to, but technically more

involved than, the [KR97] proof that the inequality (†)

for δ = x − y implies that SDk(x) �= SDk(y) with

k = deg(p)+1. Lemma IV.6 then follows by combining

all three steps, i.e. dTV(X,Y) being large implies that

Dk(X) is “noticeably different” from Dk(Y) for k that

is roughly
√
n. Below we outline the main ingredients

needed in the second step.

In the search for a low-degree polynomial φ such that

the sum in (††) has large magnitude, it is natural to define

φ(t1, . . . , td) by first projecting (t1, . . . , td) to a line and

then applying a univariate polynomial similar to the p
used in (†). To make this more precise, we will look for

φ of the form

φ(t1, . . . , td) = f
(

w1t1 + · · ·+ wdtd
)

, (3)

where w1, . . . , wd are positive integers (so the line is

along the direction w = (w1, . . . , wd)) and f is a low-

5The reader who has peeked ahead to the statement of Lemma IV.7
may have noticed that the lemma statement also bounds the magnitudes
of coefficients of the polynomial φ. This is done for technical reasons,
and we skip these technical details in the high-level description here.

degree univariate polynomial to be specified later. With

(3), we rewrite the sum in (††) as
∑

0≤t1<···<td<n

φ(t1, . . . , td) ·∆
(

{t1, . . . , td}
)

=

nd ‖w‖∞
∑

b=0

f(b) · Γ(b), (4)

where Γ(b) is the sum of ∆(T ) over all d-subsets T =
{t1, . . . , td} such that 0 ≤ t1 < · · · < td < n and

b = w1t1 + · · · +wdtd. Comparing (4) with (†), our

goal would follow directly from the [BEK99] result by

choosing f to be p if Γ is nonzero and takes values in

{−1, 0, 1} (or even {−c, 0, c} for some not too small c >
0). However, the main difficulty we encounter is that Γ
is much more complex than the {−1, 0, 1}n vectors that

can be handled by techniques of [BEK99]; for example,

Γ in general may contain a large number (depending on

n) of distinct values.

There are three ingredients we use in choosing

w1, . . . , wd and f to overcome this difficulty:

(A) We first observe that ∆ has a combinatorial

“rectangular” structure, which implies that the

support of ∆ can be partitioned into a small

number of sets S1,S2, . . . (each element of Sa is a

size-d subset of [0 : n− 1]) such that all T ∈ Sa

share the same value of ∆(T ) and there is a set

Ta ∈ Sa that is dominated6 by every T ∈ Sa. We

refer to Ta as the anchor set of Sa. This is made

precise in Lemma IV.3. Moreover, we show in

Lemma IV.4 that the collections Sa can be divided

into an even smaller number of groups such that,

for any Sa,Sa′ that belong to the same group, the

ratio of |∆(Ta)| and |∆(Ta′)| is bounded from

above by a small number.

(B) Next we observe that when w1, . . . , wd are drawn

from a suitable distribution, all anchor sets in (A)

have distinct images after the projection. (See

Claim IV.9.) We fix such a tuple (w1, . . . , wd).
(A) and (B) together are then used to obtain (see

Lemma IV.11) a strong structural characterization

of Γ.

(C) Finally we define a new univariate polynomial f
based on Chebyshev polynomials and the

construction of p in [BEK99]. (See Lemma IV.10.)

The characterization of Γ and properties of f are

then combined to finish the proof by showing that

6Given two size-d subsets S = {s1, . . . , sd} and T = {t1, . . . , td}
of [0 : n− 1] with s1 < · · · < sd and t1 < · · · < td, we say that S
is dominated by T if si ≤ ti for all i.
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the sum in (††) has not too small magnitude when

we apply the polynomial φ given in (3).

C. Our lower bounds

We begin by recalling the Ω(n) lower bound of

McGregor et al. [MPV14]. This lower bound is obtained

via a simple analysis of the two distributions of traces

resulting from the two strings x1 = 0n/210n/2−1 and

x2 = 0n/2−110n/2. The starting point of the [MPV14]

analysis is the observation that under the δ-deletion

channel, conditioned on the sole “1” coordinate being

retained, the distribution of a trace of x1 corresponds

to (a, b) where a and b are independent draws from

Bin(n/2, 1 − δ) and Bin(n/2 − 1, 1 − δ) respectively,

whereas the distribution of a trace of x2 corresponds

to (b,a). [MPV14] used this to show that the squared

Hellinger distance between these two distributions of

traces is O(1/n), and in turn use this squared Hellinger

distance bound to infer an Ω(n) sample complexity

lower bound for determining whether a collection of

received traces came from x1 or from x2.

Our lower bound approach may be viewed as an exten-

sion of the [MPV14] lower bound to mixtures of distri-

butions similar to the ones they consider. The high-level

idea of our lower bound proof is as follows: we show

that there exist two distributions X,Y over {0, 1}n (in

fact, over n-bit strings with precisely one 1) which have

disjoint supports, each of size at most 2�, but are such

that the total variation distance dTV(Delδ(X),Delδ(Y)),
between traces of strings drawn from X versus traces of

strings drawn from Y, is very small. This is easily seen

to imply Theorem 2.

For simplicity in introducing the main ideas of our

analysis, in this expository overview we will first con-

sider an “n = +∞” version of our population recov-

ery scenario. We begin by considering the distribution

Delδ(ẽm+i) where m is some fixed value and ẽm+i is

an infinite string with a single 1 in position m + i and

all other coordinates 0. A δ fraction of the outcomes of

Delδ(ẽm+i) are the infinite all-0 string, which conveys

no information. The other 1−δ fraction of the outcomes

each have precisely one 1, occurring in position 1 + a

where a is distributed according to the binomial distri-

bution Bin(m + i, 1− δ). In this infinite-n setting, two

distributions X,Y over strings of the form ẽm+i with

disjoint supports correspond to two mixtures of distinct

binomial distributions (all with second parameter 1− δ,

but with a set of first parameters in the first mixture that

is disjoint from the set of first parameters in the second

mixture). The animating idea behind our construction

and analysis is that it is possible for two distinct mixtures

of binomials like this to be very close to each other in

total variation distance.7

In order to show that two distinct mixtures of binomial

distributions as described above can be very close to

each other in total variation distance, our lower bounds

employ technical machinery due to Roos [Roo00] and

Daskalakis and Papadimitriou [DP15]. Roos [Roo00]

developed a “Krawtchouk expansion” which provides

an exact expression for the probability that a Poisson

binomial distribution (a sum of n independent Bernoulli

random variables with expectations p1, . . . , pn) puts on

any given outcome in {0, 1, · · · , n}. Daskalakis and Pa-

padimitriou [DP15] used Roos’s Krawtchouk expansion

to show that under mild technical conditions, low-order

moments of any Poisson binomial distribution essentially

determine the entire distribution. In more detail, their

main result is that if X,Y are two Poisson bino-

mial distributions (satisfying mild technical conditions)

whose t-th moments match, i.e. E[Xt] = E[Yt] for

t = 1, . . . , O(log(1/ε)), then the total variation distance

between X and Y is at most ε.

Our analysis proceeds in two main steps. In the

first step, we show that there exist two mixtures of

pairs of binomial distributions, which we denote by DS

and DT , with certain desirable properties. S and T
are both subsets of {0, . . . , 2�}, and DS is a certain

mixture of pairs of binomial distributions (Bin(n/2 +
i, 1 − δ),Bin(n/2 − i, 1 − δ)) for i ∈ S while DT

is a certain mixture of pairs of binomial distributions

(Bin(n/2 + j, 1 − δ),Bin(n/2 − j, 1 − δ)) for j ∈ T .

We establish the existence of disjoint sets S, T such that

the resulting mixtures DS and DT have matching t-th
moments for all t = 1, . . . , �. This is proved using known

algebraic expressions for the moments of binomial dis-

tributions and simple linear algebraic arguments. In the

second main step, we extend the analysis of Daskalakis

and Papadimitriou [DP15] and apply this extension to

our setting, in which we are dealing with mixtures of

(pairs of) binomial distributions (as opposed to their

and Roos’s setting of Poisson binomial distributions).

We show that the matching first � moments of DS and

DT imply that the distributions Delδ(X) and Delδ(Y)

7We remark that our actual scenario is more complicated than this
idealized version because n is a finite value rather than +∞. For
n = 2m+1, this means that a received trace 0a10b which contains a
1 and came from Delδ(em+i) provides a pair of values (a, b) where
a is distributed according to Bin(m + i, ρ) and b is independently
distributed according to Bin(m−i, ρ) where ρ = 1−δ is the retention
probability. This second value b provides additional information which
is not present in the n = +∞ version of the problem, and this makes
it more challenging and more technically involved to prove a lower
bound. We deal with these issues in Section V-B.
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are very close, where X corresponds to the mixture of

Hamming-weight-one strings in {0, 1}n corresponding

to DS and Y likewise corresponds to the mixture of

Hamming-weight-one strings corresponding to DT . (In

fact, in our setting having � matching moments leads to

n−Ω(�)-closeness in total variation distance, whereas in

[DP15] the resulting closeness from � matching moments

was 2−Ω(�).)

We close this subsection by observing that while the

results of [Roo00], [DP15] were used in a crucial way

in subsequent work of Daskalakis et al. [DDS15] to

obtain a sample complexity upper bound on learning

Poisson binomial distributions, in our context we use

these results to obtain a sample complexity lower bound

for population recovery. Intuitively, the difference is

that in the [DDS15] scenario of learning an unknown

Poisson binomial distribution, there is no noise process

affecting the samples: the learning algorithm is assumed

to directly receive draws from the underlying Poisson

binomial distribution being learned. In such a noise-

free setting, the existence of a small ε-cover for the

space of all Poisson binomial distributions (which is

established in [DP15] as a consequence of their moment-

matching result) means, at least on a conceptual level,

that a learning algorithm “need only search a small space

of candidates” to find a high-accuracy hypothesis. In

contrast, in our context of deletion-channel noise, our

arguments show that it is possible for two underlying

true distributions X,Y over {0, 1}n to be very different

(indeed, to have disjoint supports) but to be such that

their deletion-noise-corrupted versions have low-order

moments which match each other exactly. In this sce-

nario, the [Roo00], [DP15] results can be used to show

that the variation distance between the two distributions

of noisy samples received by the learner is very small,

and this gives a sample complexity lower bound for

distinguishing X and Y on the basis of such noisy

samples.

III. PRELIMINARIES

Notation. Given a nonnegative integer n, we write [n] to

denote {1, . . . , n}. Given integers a ≤ b we write [a : b]
to denote {a, . . . , b}. It will be convenient for us to index

a binary string x ∈ {0, 1}n using [0 : n − 1] as x =
(x0, . . . , xn−1). Given a vector v = (v1, . . . , vd) ∈ �d,

we write ‖v‖∞ to denote maxi∈[d] |vi|. Given a function

∆ : A → � over a finite domain A, we write ‖∆‖∞ =
maxa∈A |∆(a)|. Given a polynomial p (which may be

univariate or multivariate), we write ‖p‖1 to denote the

sum of magnitudes of p’s coefficients. All logarithms and

exponents are binary (base 2) unless otherwise specified.

Distributions. We use bold font letters to denote prob-

ability distributions and random variables, which should

be clear from the context. We write “x ∼ X” to

indicate that random variable x is distributed according

to distribution X. The total variation distance between

two distributions X and X̃ over a finite set X is defined

as

dTV(X, X̃) =
1

2

∑

x∈X

∣

∣X(x)− X̃(x)
∣

∣,

where X(x) denotes the amount of probability mass that

the distribution X puts on outcome x.

Population recovery from the deletion channel.

Throughout this paper the parameter 0 < δ < 1 denotes

the deletion probability. Given a string x ∈ {0, 1}n, we

write Delδ(x) to denote the distribution of a random

trace of x after it has been passed through the δ-deletion

channel (so the distribution Delδ(x) is supported on

{0, 1}≤n). Recall that a random trace y ∼ Delδ(x) is

obtained by independently deleting each bit of x with

probability δ and concatenating the surviving bits. 8

We now define the problem of population recovery

from the deletion channel that we will study in this

paper. In this problem the goal is to learn an unknown

target distribution X supported on at most � strings from

{0, 1}n. The learning algorithm has access to indepen-

dent samples, each of which is generated independently

by first drawing a string x ∼ X and then outputting a

trace from Delδ(x). For conciseness we write Delδ(X)
to denote this distribution. The goal for the learning

algorithm is to output with high probability (say at least

0.99) a hypothesis distribution X̃ for X which is ε-

accurate in total variation distance: dTV(X, X̃) ≤ ε. We

are interested in the number of samples needed for this

learning task in terms of n, �, ε and δ.

Decks. Given a subset T = {t1, . . . , tk} ⊆ [0 : n− 1] of

size k with t1 < · · · < tk, and two strings v ∈ {0, 1}k,

x ∈ {0, 1}n, we say that v matches x at T if xT = v,

where xT = (xt1 , . . . , xtk) ∈ {0, 1}k denotes the string

x restricted to positions in T . We say that the number

of occurrences of v in x is the number of size-k subsets

T ⊆ [0 : n−1] such that v matches x at T , and we write

#(v, x) to denote this quantity. Given a distribution X

8For simplicity in this work we assume that the deletion probability
δ is known to the learning algorithm. We note that it is possible to
obtain a high-accuracy estimate of δ simply by measuring the average
length of traces received from the deletion channel.
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over {0, 1}n, we write #(v,X) to denote the expected

number of occurrences of v in x ∼ X, i.e.

#(v,X) = E
x∼X

[

#(v,x)
]

.

Given a string x ∈ {0, 1}n, we write Dk(x) to denote

the (normalized9) k-deck of x. This is a 2k-dimensional

vector indexed by strings v ∈ {0, 1}k such that

(

Dk(x)
)

v
=

#(v, x)
(

n
k

) .

So Dk(x) is a nonnegative vector that sums to 1.

Similarly, for a distribution X over strings from {0, 1}n,

we write Dk(X) to denote the (normalized10) k-deck of

X, given by

(

Dk(X)
)

v
=

#(v,X)
(

n
k

) ,

for each v ∈ {0, 1}k. So Dk(X) is also a 2k-dimensional

nonnegative vector that sums to 1.

IV. UPPER BOUNDS FOR DISTRIBUTIONS SUPPORTED

ON AT MOST � STRINGS

Our goal is to prove Theorem 3, which is restated

below:

Theorem 3. There is an algorithm A which has the

following performance guarantee: For any distribution

X supported over at most � strings in {0, 1}n, if A is

given

1

ε2
·
(

2

1− δ

)

√
n · (logn)O(�)

(5)

many samples from Delδ(X), then with probability at

least 0.99 the algorithm outputs a probability distri-

bution X̃ supported over at most � strings such that

dTV(X, X̃) ≤ ε.

In Section IV-A we introduce the notion of a restric-

tion, which is a “local view” of a distribution X confined

to a specific subset of coordinates and a specific outcome

for those coordinates. We then provide some terminology

and prove three useful lemmas about restrictions in

Section IV-A. Next in Section IV-B we describe the

algorithm A, state our main technical lemma, Lemma

IV.6, and use it to prove the correctness of algorithm A.

We prove Lemma IV.6 in Sections IV-C and IV-D.

9It will be more convenient for us to use the notion of (normalized)
k-decks defined here; note that we can recover from it the multi-set
of all subsequences of x with length k, and vice versa.

10Similarly, the (normalized) k-deck here is equivalent to the
weighted multi-set version used in the introduction up to a simple
rescaling.

Notational convention. Our argument below involves

many integer-valued index variables which take values

in a range of different intervals. To help the reader keep

track, we will use the following convention (the values

L and m will be defined later):

• s, t, s1, t1, . . . will denote an index ranging over [0 :
n− 1];

• j, j1, . . . will denote an index ranging over [0 : k−
1];

• a, a′, a1, . . . will denote an index ranging over [L];
• b, b′, b1, . . . will denote an index ranging over [0 :
m];

• i, i1, . . . , α, α1, . . . and β, β1, . . . will denote an

index in all other places.

A. Restrictions

Let X be a distribution over strings from {0, 1}n and

let d ∈ [n] be a parameter (which should be thought of

as quite small; we will set d = O(log �) below). Given

a size-d subset T = {t1, . . . , td} of [0 : n − 1] with

0 ≤ t1 < · · · < td < n and a string c ∈ {0, 1}d, we

define

restrict(X, T, c) := Prx∼X

[

(xt1 , . . . ,xtd) = c
]

,

the probability that a draw of x ∼ X matches c in the

coordinates of T .

Let X and Y be two distributions, each supported over

at most � strings from {0, 1}n. Our first lemma shows

that if dTV(X,Y) is large, then there are a size-d subset

T and a string c ∈ {0, 1}d with d = 	log(2�)
 such that

there is a reasonably big gap between restrict(X, T, c)
and restrict(Y, T, c).

Lemma IV.1. Let X and Y be two distributions, each

supported over at most � strings from {0, 1}n. Then there

exist a size-d subset T of [0 : n − 1] and a string c ∈
{0, 1}d with d = 	log(2�)
 such that

∣

∣

∣restrict(X, T, c)− restrict(Y, T, c)
∣

∣

∣ ≥ dTV(X,Y)

�O(�)
.

Proof. Let supp(X) ∪ supp(Y) = {z1, . . . , z�′} for

some �′ ≤ 2�. For each i ∈ [�′], let pi ≥ 0 be the

magnitude of the difference between the probabilities

of zi in X and in Y. Let ε = dTV(X,Y). Then

by definition we have
∑

i pi = 2ε. Without loss of

generality we assume that p1 ≥ · · · ≥ p�′ ≥ 0 and

prove the following claim (where we set p�′+1 = 0 by

default for convenience):

Claim IV.2. There exists an i∗ ∈ [�′] such that pi∗ ≥
ε/(4�)�

′

and pi∗+1 ≤ pi∗/(4�).
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Proof. First we notice that p1 ≥ ε/� given that
∑

i pi =
2ε and �′ ≤ 2�. Now given that the pi’s are nonnegative,

there exists an i ∈ [�′] (e.g., by taking i = �′) such that

pi+1 ≤ pi/(4�). Take i∗ to be the smallest such index i.
Then we have

pi∗

p1
=

pi∗

pi∗−1
· · · p2

p1
>

1

(4�)i∗−1

by the choice of i∗ as the smallest such index. As a

result, we have

pi∗ ≥ ε

(4�)i∗
≥ ε

(4�)�′
.

This finishes the proof of the claim.

Let i∗ ∈ [�′] be the integer given by the claim

above, and we consider the first i∗ strings z1, . . . , zi
∗

.

Given that i∗ ≤ �′ ≤ 2�, there exist a d-subset T of

[0 : n − 1] with d = 	log(2�)
, a string c ∈ {0, 1}d
and an i′ ≤ i∗ such that the restriction of zi

′

matches c
but the restriction of zi does not match c for any other

i ≤ i∗. (This can be achieved by repeatedly selecting

a coordinate that splits the remaining strings into two

nonempty subsets and setting c to reduce the size by at

least half each time.) Using properties of i∗ given in the

claim above, we have
∣

∣

∣restrict(X, T, c)− restrict(Y, T, c)
∣

∣

∣

≥ pi∗ −
∑

i>i∗

pi ≥ pi∗ − 2� · pi∗
4�

=
pi∗

2
≥ ε

�O(�)
.

This finishes the proof of the lemma.

Given two size-d subsets S = {s1, . . . , sd} and T =
{t1, . . . , td} of [0 : n − 1] with s1 < · · · < sd and

t1 < · · · < td, we say that S is dominated by T if

si ≤ ti for every i ∈ [d]. Let ∆ :
(

[0:n−1]
d

)

→ � be

a function over size-d subsets of [0 : n − 1]. We use

supp(∆) to denote the set of subsets T with ∆(T ) �= 0.

We need the following definitions of a cover and a group

cover of such a function ∆.

Definition 1 (Covers and group covers). We say that a

function ∆ :
(

[0:n−1]
d

)

→ � has an L-cover {(Ta,Sa) :
a ∈ [L]} for some L ≥ 0 if

1) S1, . . . ,SL form an L-way partition of supp(∆);
2) Ta ∈ Sa for each a ∈ [L];
3) ∆(T ) = ∆(Ta) for every T ∈ Sa; and

4) Ta is dominated by every T ∈ Sa.

We refer to the set Ta as the anchor set of the collection

Sa.

Furthermore we say that ∆ has an (L, q, λ)-group

cover if ∆ has an L-cover {(Ta,Sa) : a ∈ [L]} and

a q-way partition of [L] into A1, . . . , Aq such that for

each i ∈ [q], for all a, a′ ∈ Ai we have

|∆(Ta)|
|∆(Ta′)| ≤ λ.

Given distributions X and Y over strings from {0, 1}n
and a string c ∈ {0, 1}d, we write ∆X,Y,c to denote the

function over size-d subsets of [0 : n − 1] that maps a

size-d subset T to

∆X,Y,c(T ) := restrict(X, T, c)− restrict(Y, T, c).

The second lemma shows that when d and the supports

of X,Y are small, the function ∆X,Y,c has a small cover

for any string c ∈ {0, 1}d. Taking as an example when

� = d = 2 and supp(X) = {x1, x2}, we have that

restrict(X, S, c) = restrict(X, T, c) if x1
S = x1

T and

x2
S = x2

T (note that this is a sufficient but not necessary

condition in general). Letting S = {s1, s2} for some

s1 < s2 and T = {t1, t2} for some t1 < t2, this

condition can be written equivalently as

(x1
s1 , x

2
s1) = (x1

t1 , x
2
t1) and (x1

s2 , x
2
s2) = (x1

t2 , x
2
t2).

This implies that restrict(X, ·, c), as a function over

size-2 subsets, has the following combinatorial “rectan-

gular” structure: one can partition indices t ∈ [0 : n− 1]
into four types 00,01,10,11 according to values of x1

t

and x2
t ; this induces a partition of all size-2 subsets

into 16 “rectangles,” 11 where S = {s1 < s2} and

T = {t1 < t2} belong to the same “rectangle” iff the

type of s1 is the same as that of t1 and the type of s2 is

the same as that of t2. It follows that all T in the same

“rectangle” share the same value restrict(X, T, c). We

use this observation to obtain a small cover for ∆X,Y,c.

Lemma IV.3. Let X and Y be two distributions, each

supported over at most � strings from {0, 1}n. For any

d ∈ [n] and any string c ∈ {0, 1}d, ∆X,Y,c has an

L-cover for some L ≤ 22d�.

Proof. Suppose that X is supported on x1, . . . , x�′ and

Y is supported on y1, . . . , y�
′′

with �′, �′′ ≤ �. We say an

index t ∈ [0 : n−1] is of type-(u, v), where u ∈ {0, 1}�′
and v ∈ {0, 1}�′′ , if

(x1
i , . . . , x

�′

i ) = u and (y1i , . . . , y
�′′

i ) = v.

This allows us to classify size-d subsets of [0 : n − 1]
into at most (2�

′+�′′)d ≤ 22d� many equivalence classes:

S ∼ T if S = {s1, . . . , sd} with s1 < · · · < sd and

11Strictly speaking, these are not rectangles since we always need
to order indices of a subset in ascending order.

754



T = {t1, . . . , td} with t1 < · · · < td are such that si
and ti are of the same type for all i ∈ [d].

Let Sa be a nonempty equivalence class of ∼ such that

S = {s1, . . . , sd} ∈ Sa if s1 < · · · < sd and si has type-

(u(i), v(i)) for each i ∈ [d]. It follows from the definition

of ∼ that all S ∈ Sa have the same restrict(X, S, c)
and restrict(Y, S, c), and hence the same value of

∆X,Y,c(S). Moreover, we let Ta = {t1, . . . , td} be the

following set: t1 is the smallest index of type-(u(1), v(1))
and for each i from 2 to d, ti is the smallest index that is

larger than ti−1 and has type-(u(i), v(i)). Because Sa is

nonempty, Ta is well defined and it is easy to verify that

Ta is dominated by every S ∈ Sa. As a result, ∆X,Y,c

has the following L-cover:
{

(Ta,Sa) : Sa is nonempty and ∆X,Y,c(Ta) �= 0
}

,

for some L ≤ 22d�. This finishes the proof of the lemma.

The last lemma shows that the function ∆X,Y,c actu-

ally has an (L, q, λ)-group cover, for some parameters

L ≤ 22d�, q ≤ � and λ ≤ �O(�).

Lemma IV.4. Let X and Y be two distributions, each

supported over at most � strings from {0, 1}n. For any

d ∈ [n] and c ∈ {0, 1}d, ∆X,Y,c has an (L, q, �O(�))-
group cover for some L ≤ 22d� and q ≤ �.

Proof. First we apply Lemma IV.3 to obtain an L-

cover {(Ta,Sa) : a ∈ [L]} of ∆ := ∆X,Y,c for some

L ≤ 22d�. It suffices to show that the L positive numbers

|∆(Ta)|, a ∈ [L], can be divided into at most � groups

such that any two in the same group have the ratio

bounded from above by �O(�).

Let p1, . . . , p�′ > 0 be probabilities of strings in X

for some �′ ≤ � and q1, . . . , q�′′ > 0 be probabilities

of strings in Y for some �′′ ≤ �. The observation is

that every number |∆(Ta)| is a linear form over the pi’s
and qi’s with coefficients −1, 0 or 1. This motivates the

following claim:

Claim IV.5. Let u1, . . . , ug > 0 be g (not necessarily

distinct) positive numbers. Let V be the set of all positive

values v of the form v = c1u1 + · · · + cgug for some

c1, . . . , cg ∈ {−1, 0, 1}. Then there cannot exist g + 1
numbers v1, . . . , vg+1 in V satisfying vg+1 > · · · > v1
and

vi+1

vi
≥ (g + 2)!, for all i ∈ [g].

Proof. Assume for a contradiction that such g + 1
numbers v1, . . . , vg+1 exist in V and let

vi = ci,1u1 + · · ·+ ci,gug

where ci,j ∈ {−1, 0, 1} for each i ∈ [g + 1]. Given

that these are g + 1 many g-dimensional vectors ci =
(ci,1, . . . , ci,g), let i∗ ≤ g + 1 be the smallest integer

such that ci∗ can be written as a linear combination of

c1, . . . , ci∗−1: ci∗ = α1c1 + · · · + αi∗−1ci∗−1, which

implies that

vi∗ = α1v1 + · · ·+ αi∗−1vi∗−1

≤ |α1| · v1 + · · ·+ |αi∗−1| · vi∗−1. (6)

We show below that the magnitude of coefficients

α1, . . . , αi∗−1 is relatively small, which leads to a con-

tradiction because we assumed that vi∗ is much bigger

than vi∗−1, . . . , v1.

To see this, note that (α1, . . . , αi∗−1) is the solution

to a (i∗−1)×(i∗−1) linear system Ax = b where A is a

{−1, 0, 1}-valued (i∗−1)×(i∗−1) full-rank matrix and

b is a {−1, 0, 1}-valued vector. (In more detail, one can

take A to be a full-rank (i∗− 1)× (i∗− 1) submatrix of

the matrix that consists of c1, . . . , ci∗−1 as columns and

take the vector b to be the corresponding entries of ci∗ .)

It follows from Cramer’s rule that each entry of A−1 has

magnitude at most (i∗−1)! and thus, each entry of A−1b
has absolute value at most (i∗ − 1) · (i∗ − 1)! < i∗! ≤
(g + 1)! This contradicts with (6) and the assumption

that v1 < . . . < vi∗−1 ≤ vi∗/(g + 2)!.

Claim IV.5 gives us the following procedure to parti-

tion [L] into A1, . . . , Aq for some q ≤ �:

1) Set i = 1 and L = [L].
2) While L is nonempty do

3) Let v be the smallest |∆(Ta)|, a ∈ L.

4) Remove from L and add to Ai every a ∈ L with

|∆(Ta)| ≤ (2�+ 2)! · v, and increment i.

It follows from Claim IV.5 that when L becomes empty

at the end, the number of Ai’s we created can be no

more than �. Furthermore, every a and a′ that belong

to the same Ai have the ratio of |∆(Ta)| and |∆(Ta′)|
bounded by (2�+2)! = �O(�). This finishes the proof of

the lemma.

B. Main Algorithm

We start with an algorithm, based on dynamic pro-

gramming, for estimating the k-deck of a distribution X

over {0, 1}n.

Theorem 4. Let k ∈ [n]. There is an algorithm with the

following performance guarantee: for any distribution

X over strings in {0, 1}n, if the algorithm is given

M = O

(

k

ξ2(1− δ)2k

)
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many samples from Delδ(X) then with probability at

least 0.99 the algorithm outputs a nonnegative 2k-

dimensional vector Q with ‖Q − Dk(X)‖∞ ≤ ξ. Its

running time is 2kM · poly(n).
Proof. Let x1, . . . , xp be the support of X. Then for each

string v ∈ {0, 1}k, we have

E
z∼Delδ(X)

[

#(v, z)
]

= (1− δ)k ·
p

∑

i=1

X(xi) ·#(v, xi)

= (1− δ)k · E
x∼X

[

#(v,x)
]

= (1− δ)k ·#(v,X) = (1− δ)k ·
(

n

k

)

·
(

Dk(X)
)

v
.

The first equation is because for a given size-k subset

S ⊆ [0 : n− 1] of indices at which v matches xi, all of

the positions in S “survive” into a string z ∼ Delδ(x
i)

with probability exactly (1− δ)k.
As a result, it suffices to estimate E[#(v, z)] to addi-

tive accuracy ±ξ(1−δ)k
(

n
k

)

for every string v ∈ {0, 1}k.

For any fixed string v ∈ {0, 1}k, by a standard Chernoff

bound, using

M = O

(

k

ξ2(1− δ)2k

)

samples the empirical estimate of E[#(v, z)] will have

the desired additive ξ(1 − δ)k
(

n
k

)

accuracy except with

failure probability 0.01/2k. The success probability of

0.99 follows from union bound.

The running time of the algorithm uses the following

simple observation: given z ∈ {0, 1}n′

and v ∈ {0, 1}k,

there is a poly(n′, k)-time procedure that computes

#(v, z). The procedure works by straightforward dy-

namic programming: For each j ∈ [0 : k − 1] and

i ∈ [0 : n′ − 1], the algorithm maintains a count of the

number #(v0 . . . vj , z0 . . . zi). This then implies that the

running time of the overall algorithm is M ·2k ·poly(n).
This finishes the proof of the lemma.

We prove the following main technical lemma in

Sections IV-C and IV-D. Intuitively, this lemma says that

if the total variation distance between X and Y is not

too small, then for a suitable (not too large) value of

k∗, the distance between the k∗-decks of X and Y also

cannot be too small.

Lemma IV.6. Let � be a positive integer with � ≤ log n.

Let X and Y be two distributions, each supported over

at most � strings from {0, 1}n. Then there is a positive

integer

k∗ =
√
n · (log n)O(�) (7)

such that

dTV(X,Y) ≤ exp
(√

n · (log n)O(�)
)

·‖Dk∗(X)−Dk∗(Y)‖∞.

We now present our algorithm A and use Lemma IV.6

to prove Theorem 3:

Proof of Theorem 3. The bound (5) we aim for holds

trivially when � ≥ log n. To see this, we first notice that

when � ≥ log n, the sample complexity bound (5) we

aim for is at least

poly(�)

ε2
·
(

1

1− δ

)n

. (8)

With (1/(1− δ))n samples from Delδ(X), we expect to

see a full string of length n where no bits are deleted

and we know that such a string is drawn directly from

X. This means that, with (8) many samples, we receive

poly(�)/ε2 draws from X with high probability. When

the latter happens, the empirical estimation X̃ of X

satisfies dTV(X, X̃) ≤ ε with high probability. This

allows us to focus on the case when � ≤ log n in the

rest of the proof (so Lemma IV.6 applies).

Let ε be the total variation distance we aim for in

Theorem 3. Let k∗ be the parameter in (7). Let ξ be

a parameter to be specified later. By Theorem 4, the

algorithm A can first use

M∗ = O

(

k∗

ξ2(1− δ)2k∗

)

(9)

samples to obtain an estimate Q of Dk∗(X) such that

‖Q− Dk∗(X)‖∞ ≤ ξ, (10)

and it succeeds in obtaining such an estimate with

probability at least 0.99.

With Q in hand the algorithm A computes ‖Q −
Dk∗(Y)‖∞ for every distribution Y supported on at

most � strings such that the probability of each string

in Y is an integer multiple of ξ/�. Finally the algorithm

outputs the distribution X
∗ that minimizes the distance

(breaking ties arbitrarily).

We show that when Q satisfies (10), X
∗ must be

close to X. We start with a simple observation that

one can round X to get a distribution X
′ in which

the probability of each string is an integer multiple

of ξ/� and dTV(X,X′) ≤ ξ. This can be done by

rounding the probability of every string except one to the

nearest multiple of ξ/� and setting the last probability

as required so that the total probability is 1. We have
∥

∥Q− Dk∗(X′)
∥

∥

∞
≤

∥

∥Q− Dk∗(X)
∥

∥

∞ +
∥

∥Dk∗(X)− Dk∗(X′)
∥

∥

∞

≤
∥

∥Q− Dk∗(X)
∥

∥

∞ + dTV(X,X′) ≤ 2ξ.
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By definition of X
∗ and X

′, we have ‖Q −
Dk∗(X∗)‖∞ ≤ ‖Q− Dk∗(X′)‖∞ ≤ 2ξ. As a result,

∥

∥Dk∗(X)− Dk∗(X∗)
∥

∥

∞
≤

∥

∥Q− Dk∗(X∗)
∥

∥

∞ +
∥

∥Q− Dk∗(X)
∥

∥

∞ ≤ 3ξ.

It follows from Lemma IV.6 that

dTV(X,X∗) ≤ 3ξ · exp
(√

n · (log n)O(�)
)

.

Finally we choose ξ so that the RHS becomes ε. The

number of samples needed in (9) becomes

(

1

ε

)2

·
(

2

1− δ

)

√
n · (logn)O(�)

.

This finishes the proof of Theorem 3.

We use the following two lemmas to prove Lemma

IV.6. They are proved in Section IV-C and IV-D.

Lemma IV.7. Let d, q, L and λ be positive integers

satisfying

d, q ≤ log n and L, λ ≤ (log n)O(logn).

Let ∆ :
(

[0:n−1]
d

)

→ � be a function that is not identi-

cally zero and has an (L, q, λ)-group cover. Let m =
d(n− 1)L2. Then there exists a d-variate polynomial φ
with degree at most O(

√
m · log4q+1 m) and ‖φ‖1 =

exp(O(
√
m · log4q+3 m)) such that

∣

∣

∣

∣

∣

∣

∑

0≤t1<···<td<n

φ(t1, . . . , td) ·∆
(

{t1, . . . , td}
)

∣

∣

∣

∣

∣

∣

≥ ‖∆‖∞
exp(O(

√
m · log4q−1 m))

.

We note that the following lemma holds for any

two distributions X,Y over {0, 1}n regardless of their

support size.

Lemma IV.8. Let d, k ∈ [n] with k ≥ d. Let X,Y be

distributions each supported over strings from {0, 1}n.

Then for any string c ∈ {0, 1}d and d-variate polynomial

φ of degree at most k − d,
∣

∣

∣

∣

∣

∣

∑

0≤t1<···<td<n

φ(t1, . . . , td) ·∆X,Y,c

(

{t1, . . . , td}
)

∣

∣

∣

∣

∣

∣

≤ ‖φ‖1 · nO(k) · ‖Dk(X)− Dk(Y)‖∞.

Proof of Lemma IV.6. Let X and Y be two distributions

each supported over at most � strings from {0, 1}n. It

then follows from Lemma IV.1 and Lemma IV.4 that

there exists a string c ∈ {0, 1}d with d = 	log(2�)
 such

that ∆ := ∆X,Y,c satisfies ‖∆‖∞ ≥ dTV(X,Y)/�O(�)

and has an (L, q, λ)-group cover for some L ≤ 22d�,
q ≤ �, and λ = �O(�). As we assumed that � ≤ log n,

both d and q are at most log n and L, λ ≤ �O(�) ≤
(log n)O(logn) (so Lemma IV.7 applies).

Let m = d(n − 1)L2 and φ be the polynomial given

in Lemma IV.7. Let k∗ = deg(φ) + d (we set k = k∗

in Lemma IV.8; the choice of k∗ ensures that deg(φ) ≤
k∗ − d as required in Lemma IV.8) with

k∗ = O(
√
m · log4q+1 m) =

√
n · (log n)O(�).

Combining Lemma IV.7 and Lemma IV.8, we have

‖∆‖∞
exp(

√
n · (log n)O(�))

≤ exp
(√

n · (log n)O(�)
)

· n
√
n·(log n)O(�) ·

‖Dk∗(X)− Dk∗(Y)‖∞.

The lemma follows from the fact that ‖∆‖∞ ≥
dTV(X,Y)/�O(�).

C. Proof of Lemma IV.7

Let ∆ be a function over d-subsets of [0 : n− 1] that

is not identically zero and has an (L, q, λ)-group cover

{(Ta,Sa) : a ∈ [L]} with a q-way partition A1, . . . , Aq

of [L]. We start with a high-level description of the d-

variate polynomial φ.

To evaluate φ on a tuple (t1, . . . , td), we first

project (t1, . . . , td) onto a line along the direction of

(w1, . . . , wd) for some relatively small positive integers

w1, . . . , wd to be specified later, and then apply a uni-

variate polynomial f(·) on the image of the projection.

In other words φ takes the form

φ(t1, . . . , td) = f
(

w1t1 + · · ·+ wdtd
)

(11)

for some positive integers w1, . . . , wd ∈ [L2]. We give

details below.

1) The projection : Let m = d(n−1)L2 and let w be

the following function from size-d subsets of [0 : n− 1]
to [0 : m]:

w(T ) = w1t1 + · · ·+ wdtd,

where T = {t1, . . . , td} with t1 < · · · < td. So w is

the projection function that maps a size-d subset T of

[0 : n − 1] (or equivalently, a sorted d-tuple of distinct

values from [0 : n − 1]) to a location on the real line.

Claim IV.9 implies that there exist w1, . . . , wd ∈ [L2]
such that all anchor sets in the L-cover are mapped to

distinct locations.
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Claim IV.9. If w1, . . . , wd are drawn independently and

uniformly at random from [L2] then w(Ta) �= w(Ta′) for

all a �= a′ ∈ [L] with probability at least 1/2.

Proof. Let S = {s1, . . . , sd} and T = {t1, . . . , td}
denote two size-d subsets of [0 : n−1] that satisfy s1 <
· · · < sd, t1 < · · · < td and S �= T . Then the probability

that w(S) = w(T ) equals

Pr
[

w1s1 + · · ·+ wdsd = w1t1 + · · ·+ wdtd
]

. (12)

As (s1, . . . , sd) �= (t1, . . . , td), one of the d quantities

si−ti is nonzero; say without loss of generality s1 �= t1.
Fixing any outcomes of random draws of w2, . . . , wd,

there is a unique outcome of w1 which would result in

the equation in (12), and the probability that w1 takes

this particular outcome is either 1/L2 or zero (if it is not

in [L2]). As a result, the probability in (12) is at most

1/L2, and the claim follows from a union bound over
(

L
2

)

events.

We fix such a tuple w1, . . . , wd ∈ [L2] that satisfies

Claim IV.9 for the rest of the proof.
2) The univariate polynomial : Now we move to the

more difficult part of choosing the univariate polynomial

f in (11).

A useful tool. A key tool for our construction of f is

a univariate polynomial h with several useful properties

described below. Figure 1 gives a schematic representa-

tion of the key upper bounds on |h(b)| provided by item

(2) in Lemma IV.10.

Lemma IV.10. There is a univariate polynomial h with

the following properties:

1) h has degree O(
√
m logm).

2) h(0) = 1 and for each b ∈ [m],

|h(b)| ≤ 1

2
√
b

and |h(−b)| ≤ e6
√
b logm.

3) h satisfies ‖h‖1 ≤ exp(O(
√
m logm)).

Our construction of the polynomial h is based on

the Chebyshev polynomial and builds on an earlier

construction due to Borwein et al. [BEK99]. We prove

Lemma IV.10 in Appendix A, and we explain the role

that h plays in the construction of our desired univariate

polynomial f under the heading “The high-level idea”

below, after first providing some useful preliminary

explanation.

Given that our polynomial φ takes the form of (11),

the crucial quantity whose magnitude we are trying to

lower bound, namely
∑

0≤t1<···<td<n

φ(t1, . . . , td) ·∆
(

{t1, . . . , td}
)

Fig. 1: A schematic representation of the bounds on

|h(b)| given by item (2) of Lemma IV.10. The three

key properties are that (i) h(0) = 1; (ii) for b ∈ [m],
the upper bound on |h(b)| is very small and

decreases rapidly as we move away from 0; and (iii)

for b ∈ [−m : −1], the upper bound on |h(b)| is not

too large and does not increase too rapidly as we

move away from 0.

(recall the LHS of Lemma IV.7), can be written as

∑

b∈[0:m]

f(b) · Γ(b), (13)

where Γ : [0 : m] → is a function that is defined

using ∆ as follows:

Γ(b) =
∑

T :w(T )=b

∆(T ), (14)

where the sum is over all d-subsets T of [0 : n− 1].
To better understand Γ, we use the (L, q, λ)-group

cover of ∆ to introduce two new sequences τ0, . . . , τr
and m0, . . . ,mr, for some value r ∈ [0 : q − 1] that

is defined below. We start with some notation. For each

i ∈ [q], we let Gi = ∪a∈Ai
Sa and refer to Gi as group

i. We refer to the Ta with the smallest w(Ta) among all

a ∈ Ai as the anchor of group i and denote it by Vi.

(By Claim IV.9, each group has a unique anchor and we

have w(T ) > w(Vi) for all T ∈ Gi other than Vi.) We

let vi = |∆(Vi)| and κi = w(Vi), so κi is the location

that the anchor Vi of Gi is projected to. By the definition

of an (L, q, λ)-group cover and Claim IV.9, we have that

each vi > 0, the κi’s are distinct,

max
i∈[q]

vi ≥
‖∆‖∞

λ
.
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Now we are ready to define r and the two sequences.

See Figure 2 for an illustration of these sequences. First

we let τ0 = maxi∈[q] vi and also let m0 ∈ [0 : m]
denote the smallest κi (among all groups i ∈ [q]) with

vi = τ0. We are done and the value of r is 0 if no κi is

smaller than m0 (i.e. the anchor of every other group is

projected to a larger location value than m0); otherwise,

we let τ1 < τ0 be the largest value of vi over those

i ∈ [q] that have κi < m0 and also let m1 < m0 be the

smallest κi such that vi = τ1. We are done and the value

of r is 1 if no κi is smaller than m1 (i.e. every other

group anchor is projected to a larger location value than

m1); otherwise we repeat the process. Continuing in this

way, at the end we obtain two sequences:

0 < τr < · · · < τ0, with τ0 = max
i∈[q]

vi ≥
‖∆‖∞

λ
and

0 ≤ mr < · · · < m0 ≤ m,

for some value r ∈ [0 : q − 1]. We say that (τ0, . . . , τr)
is the τ -step-sequence and that (m0, . . . ,mr) is the m-

step-sequence for Γ.

The high-level idea. Before entering into further details

we give intuition for the polynomial f . Looking ahead to

(18), the polynomial f is essentially a translation of the

polynomial h depicted in Figure 1, i.e. f(x) is essentially

h(x − mα) for some α ∈ [0 : r].12 Recalling the key

properties of h, we see that

• f(mα) = 1.
• |f(b)| is “very small” for b > mα; and

• |f(b)| is “not too large” for b < mα.

The crux of our analysis below is to establish that there

is a suitable value mα in the m-step-sequence which is

such that the magnitude of the single summand f(mα) ·
Γ(mα) in (13) is greater than the contribution of all other

summands in (13).

To gain some intuition for why this is the case, let us

pretend that instead of the Γ being defined as in (13), the

definition of Γ instead only took a sum over the q anchors

V1, . . . , Vq of the q groups G1, . . . ,Gq (i.e. Γ is supported

on κi, i ∈ [q], with |Γ(κi)| = vi). Of course this is not

actually the case since each group Gi in general contains

many more sets than just its anchor Ti, but it turns out

that the effect of other sets in supp(∆) will only cost us

some extra ndλ factors in the analysis (corresponding to

the ndλ factors in properties (ii) and (iii) of Γ0, . . . ,Γr as

described below, where nd ≥
(

n
d

)

just serves as a bound

12The exponent of h in the exact definition of our f given in
Equation (18) is needed for technical reasons that are not important
for this intuitive explanation.

for the number of size-d subsets) which turn out to be

manageable.

In this hypothetical scenario the only nonzero values

of Γ(b) that would enter the picture would be the vi
values at locations κi, i ∈ [q], which are the heights

of the bars in Figure 2. The desired mα could then be

identified as follows:

• We proceed in an inductive fashion. For each

p ∈ [0 : r], we show that there is a choice of

α ∈ [0 : p] such that, by setting

f(x) = h(x−mα), the value of |f(mα) · Γ(mα)|
outweighs |f(b) · Γ(b)| for every other

b ∈ [mp : m]. The choice of α at the end of the

induction when p reaches r gives us the desired

location mα for the translation of h to define f .

• The base case when p = 0 is trivial by setting

α = 0 and f(x) = h(x−m0). Here we have that

|f(m0) · Γ(m0)| outweighs |f(b) · Γ(b)| for all

b > m0 because |Γ(m0)| = τ0 ≥ |Γ(b)| by the

definition of our step-sequences and the fact that

f(m0) = 1 is “much larger” than |f(b)| for

b > m0.

• Next we move to p = 1, and now we need to take

Γ(b), b ∈ [m1 : m0 − 1], into consideration. To

this end we compare τ0/τ1 with exp(
√
m0 −m1)

and consider the following two cases.

– If τ0/τ1 is larger then we can keep α = 0 and

f(x) = h(x−m0) because |f(m0) · Γ(m0)|
outweighs |f(m1) · Γ(m1)| (since Γ(m1) = τ1
and f(m1) is roughly13 exp(

√
m0 −m1)) as

well as |f(b) · Γ(b)| for all

b ∈ [m1 + 1 : m0 − 1] (since |f(m1)| > |f(b)|
and by the definition of our step-sequences,

|Γ(m1)| ≥ |Γ(b)|). By the inductive hypothesis

we also know that |f(m0) · Γ(m0)| outweighs

|f(b) · Γ(b)| for all b > m0.

– Otherwise (if τ1 is larger than

τ0/ exp(
√
m0 −m1)) we show that setting

α = 1 and f(x) = h(x−m1) works. On the

one hand, |f(m1) · Γ(m1)| outweighs

|f(b) · Γ(b)| for b ∈ [m1 + 1 : m0 − 1] since

|Γ(b)| ≤ |Γ(m1)| by the definition of our

step-sequences and the fact that f(m1) = 1 is

“much larger” than |f(b)| (similar to the base

case). On the other hand, |f(m1) · Γ(m1)| = τ1
outweighs |f(m0) · Γ(m0)| = |f(m0)| · τ0

13This is not entirely precise because in (2) of Lemma IV.10 there
is indeed an extra factor of logm in the exponent on the left side of
0; overcoming this factor of logm is the reason why we end up with
the exponent as in (18).
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Fig. 2: An illustration of a τ -step-sequence and its associated m-step-sequence. The values

τr < τr−1 < · · · < τ1 < τ0 (which may be arbitrary real positive values) are the heights of the bars at locations

0 ≤ mr < mr−1 < · · · < m1 < m0 ≤ m (these locations are integers). The location of each vertical bar

corresponds to some κi, i ∈ [q], and its height is vi; the corresponding group Gi is illustrated as a diamond, with

Vi being its left corner. Note that all the bars between locations mi and mi−1 have height at most τi. See

Example 5 for an explanation of why certain diamonds are shaded in the figure.

(since |f(m0)| is, roughly speaking,

exp(−√
m0 −m1)) as well as |f(b) · Γ(b)| for

b > m0 (since |f(m0)| > |f(b)| and

|Γ(m0)| ≥ |Γ(b)| so the contribution from b is

smaller than that from m0).

• Continuing in this fashion, we show that, if α is

the choice for some p ∈ [0 : r − 1], then for p+ 1
we can either keep the same choice of α or move

α to p+ 1, depending on the result of a similar

comparison between τα/τp+1 and

exp(
√
mα −mp+1). This finishes the induction.

The above reasoning is formalized in the statement and

proof of the (crucial) Lemma IV.11, which additionally

has to deal with the complication that it must address the

real scenario rather than the hypothetical simplification

considered in the informal description above.

Now we turn to the details. For each b ∈ [0 : m], we

let

G≥b =
⋃

i∈[q]: κi≥b

Gi.

For each p ∈ [0 : r] let Γp denote the following function

on [0 : m]:

Γp(b) =
∑

T∈G≥mp :w(T )=b

∆(T ).

In words, the value of Γp evaluated at a location value

b is obtained as follows: for each group Gi for which

the location κi that the anchor set Vi is projected to is

at least mp, we sum the value of ∆(T ) over all T ∈ Gi

which are mapped by the projection function w to the

location b.

760



Example 5. In Figure 2, only Gi’s that correspond to

shaded diamonds are considered in Γ1.

We have the following properties from our choices of

τi’s and mi’s:

(i) Γ = Γr. This is because every location κi is at

least mr.
(ii) Γ0 is such that Γ0(b) = 0 for all b < m0,

|Γ0(m0)| = τ0, and

|Γ0(b)| ≤ ndλτ0

for all b > m0. (The last bound holds just because

there are at most nd many size-d subsets and the

maximum value of |∆(T )| on any T contributing

to the sum Γ0(b) is at most λτ0.)
(iii) Generalizing the previous property, for each

p ∈ [r], Γp(b) = 0 for b < mp, |Γp(mp)| = τp and

∣

∣Γp(b)− Γp−1(b)
∣

∣ ≤ ndλτp

for all b > mp (since the maximum magnitude of

∆(T ) on any subset T contributing to the sum

Γp(b) but not to Γp−1(b) is at most λτp).

We require the following crucial lemma,

Lemma IV.11, concerning Γp. Intuitively, the lemma

states that for each p there is a suitable index α ≤ p
(so mα ≥ mp) such that (a) the magnitude of Γp(mα)
is not too small compared to τ0 (this is given by (15));

(b) for locations b > mα the magnitude of Γp(b) is not

too large compared to the magnitude of Γp(mα) (this is

given by (16)); and (c) for locations b between mp and

mα the magnitude of Γp(b) is small compared to the

magnitude of Γp(mα) (this is given by (17)). In all three

places the meaning of “small” or “large” is specified by

a second parameter β which can grow slowly with

p. We defer the proof, which proceeds by induction

on p and makes the high-level idea (described earlier)

precise, to the full version of the paper [BCF+19].

Lemma IV.11. Assume that d ≤ log n and λ ≤
(log n)O(logn). Then for each p ∈ [0 : r] there are two

parameters αp ∈ [0 : p] and βp ∈ [0 : 4p+ 3] (letting α
denote αp and β denote βp below for convenience) such

that

∣

∣Γp(mα)
∣

∣ · 2p · exp
(√

m · logβ m
)

≥ τ0 (15)

and every index b ∈ [mp : m] satisfies

1) If b ≥ mα, then

∣

∣Γp(b)
∣

∣ ≤
∣

∣Γp(mα)
∣

∣ ·2p ·exp
(
√

b−mα · logβ m
)

;
(16)

2) If mp ≤ b < mα, then
∣

∣Γp(b)
∣

∣·exp
(
√

mα − b · logβ+3 m
)

≤ 2p·
∣

∣Γp(mα)
∣

∣.
(17)

Finally we combine Lemma IV.10 and Lemma IV.11

to prove Lemma IV.7.

Proof of Lemma IV.7. Recall that d, q ≤ log n and

λ, L ≤ (log n)O(logn).

Let α ∈ [0 : r] and β ∈ [0 : 4r + 3] be the final

parameters that satisfy Lemma IV.11 for Γr = Γ. We

define the polynomial f using h from Lemma IV.10 as

follows

f(x) =
(

h(x−mα)
)

⌈

3 logβ+1 m
⌉

. (18)

It follows from Lemma IV.10 that f has degree

deg(f) = O
(√

m · logβ+2 m
)

= O
(√

m · log4q+1 m
)

.

using r < q and β ≤ 4r + 3. Moreover, we have

‖f‖1 ≤ exp
(

O(
√
m · log4q+1 m)

)

· (m+ 1)deg(f)

= exp
(

O(
√
m · log4q+2 m)

)

.

It follows from the definition of φ in (11) and

w1, . . . , wd ∈ [L2] that the same degree upper bound

holds for φ and

‖φ‖1 ≤ exp
(

O(
√
m · log4q+2 m)

)

· (dL2)deg(f)

≤ exp
(

O(
√
m · log4q+3 m)

)

.

To analyze
∑

b f(b)·Γ(b), we show that |f(b)·Γ(b)| ≤
|Γ(mα)|/(2m) for all b �= mα and thus,
∣

∣

∣

∣

∣

∣

∑

b∈[0:m]

f(b) · Γ(b)

∣

∣

∣

∣

∣

∣

≥ |Γ(mα)|
2

(15)

≥ τ0

2q · exp(√m · logβ m)

≥ ‖∆‖∞
exp(O(

√
m · log4q−1 m))

,

using τ0 ≥ ‖∆‖∞/λ. For each b > mα, by Lemma

IV.11 and Lemma IV.10 (and q ≤ log n),

∣

∣f(b) · Γ(b)
∣

∣ ≤
∣

∣Γ(mα)
∣

∣ · 2q · exp
(√

b−mα · logβ m
)

exp
(√

b−mα · 3 logβ+1 m)

≤ |Γ(mα)|
2m

.

For each b < mα we have from Lemma IV.11 and

Lemma IV.10 that

∣

∣f(b) · Γ(b)
∣

∣ ≤ 2q · |Γ(mα)| ·
exp

(√
mα − b · logβ+2 m

)

exp(
√
mα − b · logβ+3 m)

≤ |Γ(mα)|
2m

.

This finishes the proof of Lemma IV.7.
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D. Proof of Lemma IV.8

Let X and Y be two distributions each supported over

strings from {0, 1}n.

Given 0 ≤ j1 < · · · < jd ≤ k − 1, we use gj1,...,jd to

denote the following d-variate polynomial,

gj1,...,jd(t1, . . . , td) :=

(

t1
j1

)

·
(

t2 − t1 − 1

j2 − j1 − 1

)

· · ·
(

td − td−1 − 1

jd − jd−1 − 1

)(

n− td − 1

k − jd − 1

)

.

(19)

To see the relevance of this polynomial to the k-deck,

we note that given any 0 ≤ t1 < · · · < td < n the

quantity gj1,...,jd(t1, . . . , td) is the number of ways to

pick k indices from [0 : n − 1] such that each ti is the

(ji + 1)th smallest index picked.

We first show that the following sum
∑

gj1,...,jd(t1, . . . , td) · restrict
(

X, {t1, . . . , td}, c
)

(20)

(where the sum is over all 0 ≤ t1 < · · · < td < n) can

be written as a low-weight linear combination of entries

of Dk(X).

Lemma IV.12. For any 0 ≤ j1 < · · · < jd ≤ k − 1
and any c ∈ {0, 1}d, the sum (20) can be written as a

linear combination of entries of Dk(X) in which each

coefficient is either 0 or
(

n
k

)

.

Proof. Recalling the combinatorial interpretation of

gj1,...,jd(t1, . . . , td) given after (19), we see that if we

divide the sum in (20) by
(

n
k

)

, the result is precisely

the probability that (zj1 , . . . , zjd) = c when we draw

x ∼ X, draw a size-k subset T of [0 : n− 1] uniformly

at random, and then set z = xT. The latter probability

can also be expressed using entries of Dk(X) as
∑

z∈{0,1}k

(zj1 ,...,zjd )=c

(

Dk(X)
)

z
,

as (Dk(X))z is the probability of xT = z with x and

T drawn as above. This finishes the proof.

Next we show that, for every monomial tr11 · · · trdd of

degree r1 + · · ·+ rd ≤ k − d, there exists a low-weight

linear combination of polynomials gj1,...,jd that agrees

with tr11 · · · trdd over t1, . . . , td that satisfy 0 ≤ t1 <
· · · < td < n.

Lemma IV.13. For any nonnegative integers r1, . . . , rd
with r1 + · · ·+ rd ≤ k − d, we have that

tr11 · · · trdd =
∑

0≤j1<···<jd<k

wj1,...,jd ·gj1,...,jd(t1, . . . , td),

for all 0 ≤ t1 < · · · < td < n, where the coefficients

wj1,...,,jd satisfy
∑ |wj1,...,jd | ≤ kO(k).

Before proving Lemma IV.13, we use Lemma IV.12

and Lemma IV.13 to prove Lemma IV.8.

Proof of Lemma IV.8. Combining Lemma IV.12 and

Lemma IV.13, we have that
∑

0≤t1<···<td<n

tr11 · · · trdd · restrict
(

X, {t1, . . . , td}, c
)

=
∑

0≤j1<···<jd<k

wj1,...,jd

∑

0≤t1<···<td<n

gj1,...,jd(t1, . . . , td)·

restrict
(

X, {t1, . . . , td}, c
)

can be written as a linear combination of entries of

Dk(X) in which each coefficient has magnitude at most

kO(k) ·
(

n
k

)

= nO(k). As a result, we have
∣

∣

∣

∣

∣

∣

∑

0≤t1<···<td<n

tr11 · · · trdd ·∆X,Y,c

(

{t1, . . . , td}
)

∣

∣

∣

∣

∣

∣

≤ nO(k) · ‖Dk(X)− Dk(Y)‖∞.

This finishes the proof of the lemma.

Finally we prove Lemma IV.13. We follow a three-step

approach. We say that a quasimonomial is a polynomial

of the form

tα1
1 · (t2− t1−1)α2 · (t3− t2−1)α3 · · · (td− td−1−1)αd

for some nonnegative integers α1, . . . , αd; the degree of

this quasimonomial is α1 + · · ·+αd. And we say that a

PBC (Product of Binomial Coefficients) is a polynomial

of the form
(

t1
β1

)(

t2 − t1 − 1

β2

)

· · ·
(

td − td−1 − 1

βd

)

for some nonnegative integers β1, . . . , βd; the degree of

this PBC is β1+ · · ·+βd. We observe that, compared to

PBCs, the polynomials gj1,...,jd have an extra binomial

coefficient that involves td at the end. The three steps of

our approach are as follows:

• First step: Express each d-variable monomial

tr11 · · · trdd with r1 + · · ·+ rd ≤ k − d as a

low-weight linear combination of quasimonomials

of degree at most k − d.

• Second step: Express each quasimonomial of

degree at most k − d as a low-weight linear

combination of PBCs of degree at most k − d.

• Third step: Finally, express each PBC of degree

at most k − d as a low-weight linear combination

of polynomials gj1,...,jd .
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For each step, we bound the sum of magnitudes of

coefficients in the linear combination. The rest of the

proof of Lemma IV.13, including the details of each step,

is deferred to the full version of our paper [BCF+19].

V. LOWER BOUNDS FOR DISTRIBUTIONS SUPPORTED

ON AT MOST 2� STRINGS

Our main result in this section is Theorem 6, given

below, which establishes a lower bound on the sample

complexity of population recovery under the deletion

channel which is exponential in the population size for

a wide range of population sizes:

Theorem 6. Fix any constant deletion probability δ ∈
(0, 1). Suppose that A is an algorithm which, when run

on i.i.d. samples drawn from a distribution Delδ(X) with

|supp(X)| ≤ 2�, outputs a hypothesis X̃ which satisfies

dTV(X, X̃) ≤ 0.49 with probability at least 0.51. Then

A must use

Ω
(

n/�2
)

�+1
2

�
3
2

many samples.

If the population size upper bound 2� is a constant

this gives a lower bound of Ω(n(�+1)/2) samples, and

for any � < n0.499 this gives a lower bound of nΩ(�).
For the rest of this section fix δ ∈ (0, 1) and let ρ

denote 1 − δ. The high-level idea of the proof is as

follows: We show that there exist two distributions X,Y
over {0, 1}n which have disjoint supports, each of size

at most 2�, but satisfy

dTV(Delδ(X),Delδ(Y)) = O

(

�2

n

)

�+1
2

· � 3
2 · (1− δ)

(21)

which clearly implies Theorem 6.

For simplicity throughout this section we assume that

n is odd, and we write m to denote (n − 1)/2. The

following notation will be useful: For 0 ≤ i ≤ 2� we

write em+i to denote the string 0m+i10m−i. The two

distributions X and Y that we consider will be supported

on disjoint subsets of {em+i}i∈[0:2�] (and hence each

distribution has support size at most 2� + 1, but in our

proofs neither will have full support so their support size

will be at most 2�).

Notation and setup. For notational convenience, let

B(r) denote the binomial distribution Bin(r, ρ).
Let S be a set of indices, πS be a distribution over S,

and {Vi}i∈S be a set of random variables indexed by S.

We write Mix(πS ; {Vi}i∈S) to denote the mixture over

{Vi}i∈S with each Vi weighted by πS(i).

For conciseness we write Zn to denote a random

variable which is distributed according to the binomial

distribution B(n). We recall the following convenient

expression for the falling moments of the binomial

distribution: for any t = 0, 1, . . ., we have

E[Zn(Zn − 1) · · · (Zn − t)] = Pt(n) (22)

where Pt(n) = n(n− 1) · · · (n− t)ρt+1.

For completeness we include the derivation below:

E[Zn(Zn − 1) · · · (Zn − t)]

=
n
∑

i=0

i(i− 1) · · · (i− t) ·
(

n

i

)

ρi(1− ρ)n−i

=
n
∑

i=t+1

n!

(n− i)!(i− t− 1)!
· ρi · (1− ρ)n−i

= n · · · (n− t)ρt+1
n−t−1
∑

j=0

(

n− t− 1

j

)

ρj(1− ρ)n−t−1−j

= Pt(n).

The key lemmas. The first main lemma makes precise

the moment-matching property of πS and πT that we

require:

Lemma V.1 (Matching moments of mixtures of dis-

jointly supported binomial distributions). Let � ≤
O(

√
n).14 There are two disjoint subsets S, T ⊂ [0 : 2�]

and two distributions πS , πT supported on {em+i}i∈S

and {em+j}j∈T respectively with the following property

(which we call the “matching moment property”):

Let D̃S be a random variable whose distribution is

the mixture of {Zm+i}i∈S in which distribution Zm+i

has mixing weight πS(em+i), and likewise D̃T be a

random variable whose distribution is the mixture of

{Zm+j}j∈T in which distribution Zm+j has mixing

weight πT (em+j). Then the first � moments of D̃S and

D̃T match each other, i.e. for all t ∈ [�], we have

E[(D̃S)
t] = E[(D̃T )

t]. (23)

The second main lemma (statement given in

Lemma V.3 below) gives the desired upper bound on

total variation distance. To prove Theorem 6 it suffices

to prove Lemmas V.1 and V.3.

A. Proof of Lemma V.1

Proof. We defer the proof to the full version of the paper

[BCF+19].

14Note that if � = ω(
√
n) then Theorem 6 holds trivially, so this

assumption is without loss of generality.
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We will use the following corollary of Lemma V.1:

Corollary V.2. Let S, T, πS , πT be as in Lemma V.1.

Then for any polynomial p of degree at most �, we have

∑

i∈N

πS(em+i)p(m+i) =
∑

j∈N

πS(em+j)p(m+j). (24)

Proof. Equation (23) can be rewritten as
∑

i∈N

πS(em+i)E[(Zm+i)
t] =

∑

j∈N

πS(em+j)E[(Zm+j)
t],

which holds for all t ≤ �.
This is equivalent to having equal falling moments,

i.e. for all t ∈ [�],
∑

i∈N
πS(em+i)E[Pt−1(Zm+i)]

equals
∑

j∈N
πS(em+j)E[Pt−1(Zm+j)]. Indeed, for a

random variable Z, E[Pt−1(Z)] can be written as a

linear combination of 1,E[Z],E[Z2], . . . , E[Zt] and

since 1, P0(Z), P1(Z), . . . , P�−1(Z) form a set of �
polynomials in Z with degrees 0, 1, 2, . . . , �, then they

form a basis for polynomials in Z with degree at most

�.
By (22), this is in turn equivalent to having, for all

t ∈ [�],
∑

i∈N

πS(em+i)·Pt−1(m+i) =
∑

j∈N

πS(em+j)·Pt−1(m+j),

which is in turn equivalent to (24) by the reasoning in

the above paragraph.

B. Total Variation Distance Upper Bound

We state Lemma V.3 below. Informally, it says that

if πS , πT have the matching moment property, then the

variation distance between two corresponding mixtures

of two-dimensional vector-valued random variables is

small. (In the following, the notation (B(a),B(b)) stands

for a vector-valued random variable in which the two

coordinates are independently drawn from B(a) and

B(b) respectively.)

Lemma V.3. Let X,Y be two distributions with disjoint

supports {em+i}i∈S and {em+j}j∈T respectively, where

S ∪ T ⊂ [0 : 2�], with the matching moment property

from Lemma V.1 above. Then

dTV(Delδ(X),Delδ(Y)) ≤ O

(

�2

n

)

�+1
2

· � 3
2 ·(1− δ).

(25)

Setup and useful results. Our proof of Lemma V.3 is

based on “moment-matching” results for Poisson bino-

mial distributions which were proved by Roos [Roo00]

and subsequently used by Daskalakis and Papadimitriou

[DP15]. Our approach is similar to the approach used

in [DP15]. To state these results, recall that a Poisson

binomial distribution (PBD) is a sum U = A1+· · ·+An

of independent Bernoulli random variables (so each Ai

is a random variable taking value 1 with some probability

pi ∈ [0, 1] and taking value 0 with probability 1− pi).
In [DP15], it is shown that if two PBDs satisfy

some mild technical condition and have matching first �
moments, then they have total variation distance at most

2−Ω(�). We show that two mixtures of pairs of suitable

binomially distributed variables that have matching first

� moments will have total variation distance at most

n−Ω(�).

We recall Theorem 1 of [DP15], which gives a

“Krawtchouk expansion” for any Poisson binomial dis-

tribution. This provides an expression for the exact

probability that the Poisson binomial distribution puts

on any outcome in its support. (We state the theorem for

PBDs which are a sum of n′ many random variables, as

when we apply it later it will be for such PBDs where

n′ = m+ � = (n− 1)/2 + �.)

Theorem 7 (Theorem 1 of [Roo00], see also Theorem 7

of [DP15]). Let U = A1 + · · · + An′ be a Poisson

binomial distribution in which each Ai takes value 1

with probability pi ∈ [0, 1]. Then for all r ∈ [n′] and all

p ∈ [0, 1], we have

Pr[U = r] =

n′

∑

t=0

αt(p1, . . . , pn′ ; p) ·∆tBn′−t,p(r),

(26)

where

• α0(p1, . . . , pn′ ; p) = 1 and for t ∈ [0 : n′],

αt(p1, . . . , pn′ ; p) :=
∑

1≤u(1)<···<u(t)≤n′

t
∏

r=1

(pu(r)−p),

• and for all t ∈ [0 : n′],

∆tBn′−t,p(r) :=
(n′ − t)!

n′!
· dt

dpt
Bn′,p(r),

where in the last expression Bn′,p(r) denotes the

value
(

n′

r

)

pr(1−p)n
′−r, the probability that the bi-

nomial distribution Bin(n′, p) puts on the outcome

r, viewed as a function of p.

We highlight the fact that ∆tBn′,p(r) has no de-

pendence on the parameters p1, . . . , pn′ ; this will be

important for us later.

The following result, deduced from [Roo00], is very

useful in analyzing (26). It bounds each of the n′ + 1
summands in (26) which add up to Pr[U = r].
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Theorem 8. Let (p1, . . . , pn′) ∈ [0, 1]n
′

, p ∈ [0, 1], and

αt(·, ·) be as in the statement of Theorem 7. Define

θ(p1, . . . , pn′ ; p) :=
2
∑n′

i=1(pi − p)2 + (
∑n′

i=1(pi − p))2

2n′p2(1− p)2
.

(27)

For t ∈ [n′],

|αt(p1, . . . , pn′ ; p)| · ‖∆tBn′−t,p(·)‖1
≤

√
e · θ(p1, . . . , pn′ ; p)

t
2 t

1
4

where ‖∆tBn′−t,p(·)‖1 denotes the 1-norm of

∆tBn′−t,p(·) viewed as an (n′ + 1)-dimensional

vector, i.e. ‖∆tBn′−t,p(·)‖1 :=
∑n′

r=0 |∆tBn′−t,p(r)|.
Proof. Inequality (30) in [Roo00] says

|αt(p1, . . . , pn′ ; p)| is at most

p
t
2 (1− p)

t
2 θ(p1, . . . , pn′ ; p)

t
2

(

n′

n′ − t

)
n′−t

2

for t ∈ [n′].
Inequality (38) in [Roo00] gives

‖∆tBn′−t,p(·)‖1 ≤
√
e·t 1

4

(

n′ − t

n′

)
n′−t

2
(

t

n′p(1− p)

)
t
2

for t ∈ [n′].
By multiplying the above two inequalities together we

get the desired result because t ≤ n′.

For conciseness we now let DS denote

Mix(πS ; ((Bin(m + i, ρ),Bin(m − i, ρ)))i∈S) where

in each component two-dimensional distribution the

two distributions Bin(m + i, ρ) and Bin(m − i, ρ)
are independent, and similarly we let DT denote

Mix(πT ; ((Bin(m + j, ρ),Bin(m − j, ρ)))j∈T ). In the

rest of the proof we will argue that

dTV(DS ,DT ) ≤ O

(

�2

n

)

�+1
2

· � 3
2 (28)

This establishes the claimed upper bound on

dTV(Delδ(X),Delδ(Y)) given in (25). To see this,

observe that for any outcome in supp(X) or supp(Y),
with probability δ the one 1-coordinate is deleted under

Delδ (in which case the distributions resulting from

Delδ(X) and Delδ(Y) are identical), and that with the

remaining 1− δ probability (when the one 1-coordinate

is not deleted) there is an exact correspondence between

Delδ(X) and DS and between Delδ(Y) and DT .

For an index c ≤ n′, let v(c) denote the n′-dimensional

real vector whose first c values are ρ and whose remain-

ing values are 0.

For t, t′ ∈ [0 : n′] we define

Ct,t′(p) =
∑

i∈N

πS(em+i) · αt(v
(m+i); p) · αt′(v

(m−i); p),

Dt,t′(p) =
∑

j∈N

πT (em+j) · αt(v
(m+j); p) · αt′(v

(m−j); p).

The following lemma is crucial for us. Recall that n′ =
m+ �.

Lemma V.4. Let πS , πT be as in the statement of

Lemma V.3. Then for any p ∈ [0, 1], the values Ct,t′(p)
and Dt,t′(p) are identical for t, t′ ≥ 0 and t+ t′ ≤ �.

Proof. Let p be any value in [0, 1]. If t + t′ = 0, then

t = t′ = 0. Recalling that α0(·, ·) ≡ 1 we have that

C0,0(p) =
∑

i∈N
πS(em+i) = 1 =

∑

j∈N
πT (em+j) =

D0,0(p) as desired.

Let κ(k) =
(

m+k
c

)(

n′−m−k
t−c

)(

m−k
c′

)(

n′−m+k
t′−c′

)

.

For t + t′ ≥ 1, we observe that αt(v
(m+i); p) ·

αt′(v
(m−i); p) is composed of summands of the form

(ρ− p)c+c′(−p)t+t′−c−c′ for c ∈ [0, t], c′ ∈ [0, t′].
In particular, we have Ct,t′(p) =

∑

i∈N
πS(em+i) ·

∑t
c=0

∑t′

c′=0 κ(i) · (ρ− p)
c+c′ · (−p)

t+t′−c−c′
, in which

each πS(em+i) is multiplied by a polynomial in m of

degree at most t+ t′ ≤ �.
Similarly, we have Dt,t′(p) =

∑

j∈N
πT (em+j) ·

∑t
c=0

∑t′

c′=0 κ(j) · (ρ− p)
c+c′ · (−p)

t+t′−c−c′
and by

Corollary V.2, we see that Ct,t′(p) = Dt,t′(p).

We can now prove Lemma V.3 using a similar ar-

gument to the one used in the proof of Theorem 3 in

[DP15]. Our proof will upper bound Pr[DS = (r, s)]−
Pr[DT = (r, s)] by using Theorem 7, Lemma V.4, and

Theorem 8. The proof is deferred to the full version of

the paper [BCF+19].
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APPENDIX

A. Chebyshev polynomials

Let Tr(x) denote the rth Chebyshev polynomial of

the first kind. Then Tr has degree r and satisfies the

following property:

Property 9. Tr(1) = 1 and |Tr(x)| ≤ 1 for all |x| ≤ 1.

If x > 1 then Tr(x) > 1.

We will need an upper bound for Tr(x) over x ∈ [1, 2].
For this purpose we recall the following explicit form of

Tr(x) for |x| ≥ 1:

Tr(x) =
(x−

√
x2 − 1)r + (x+

√
x2 − 1)r

2
. (29)

Property 10. For a ∈ [0, 1], we have Tr(1+a) ≤ e3r
√
a.

Proof. Using (29) we have

Tr(1+a) ≤
(

1 + a+
√

2a+ a2
)r

≤ (1+3
√
a)r ≤ e3r

√
a,

where we used a2 ≤ a ≤ √
a when a ∈ [0, 1] and

1 + x ≤ ex.

The next property follows from the recurrence relation

Tr+1(x) = 2x · Tr(x)− Tr−1(x)

with initial conditions T0(x) = 0 and T1(x) = 1.

Property 11. For all r ≥ 0, we have ‖Tr‖1 ≤ 3r.

Following [BEK99], we write gr to denote the follow-

ing polynomial of degree r:

gr(x) =
1

r + 0.5
·
(

T0(x)

2
+ T1(x) + · · ·+ Tr(x)

)

.

We need the following properties of the polynomial

gr. Items 1, 2 and 3 of Property 12 follow directly from

Properties 9, 10 and 11, respectively. For item 4 we have

gr(cos y) =
1

r + 0.5

(

0.5 + cos y + cos 2y + · · ·+ cos ry
)

=
1

r + 0.5
· sin(r + 0.5)y
√

2(1− cos y)
,

for all 0 < y ≤ π. This implies that for all x ∈ [−1, 1),
we have

|gr(x)| ≤
1

r + 0.5
· 1
√

2(1− x)
≤ 1

r
√

2(1− x)
.

Property 12. The polynomial gr satisfies the following

properties.

1) gr(1) = 1 and |gr(x)| ≤ 1 for all |x| ≤ 1;

2) 1 ≤ gr(1 + a) ≤ e3r
√
a for all a ∈ [0, 1];

3) ‖gr‖1 ≤ 3r; and

4) |gr(x)| ≤ 1

r
√

2(1−x)
for all x ∈ [−1, 1).

B. Proof of Lemma IV.10

Recall the statement of Lemma IV.10:

Lemma IV.10, restated. There is a univariate polyno-

mial h with the following properties:

1) h has degree O(
√
m logm).

2) h(0) = 1 and for each b ∈ [m],

|h(b)| ≤ 1

2
√
b

and |h(−b)| ≤ e6
√
b logm.

3) h satisfies ‖h‖1 ≤ exp(O(
√
m logm)).

Proof. Recall the polynomial gr in Section A. We use

it to define a degree-r polynomial ψr:

ψr(x) = gr

(

1− x

m

)

.

Properties of gr directly imply the following properties

of ψr:

1) ψr(0) = 1;

2) For each b ∈ [m], we have

|ψr(b)| ≤ min

(

1,
1

r

√

m

2b

)

and 1 ≤ ψr(−b) ≤ e3r
√

b/m;

3) Finally, ψr satisfies

‖ψr‖1 ≤ 3r ·
(

1 +
1

m

)r

.

Let m̃ = 4β be the smallest power of 4 with m̃ ≥ m.

We use ψr to define our h as follows:

h(x) =
∏

i∈[β]

(

ψ√
m̃/4i−2(x)

)

√
4i

.

First we have h(0) = 1 and the degree of h is at most

∑

i∈[β]

√

m̃

4i−2
·
√
4i = O(

√
m̃ log4 m̃) = O(

√
m logm).
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Next, given b ∈ [m], let i ∈ [β] be an integer such that

4i−1 ≤ b ≤ 4i. Then (using m̃ ≥ m)

∣

∣

∣ψ√
m̃/4i−2(b)

∣

∣

∣
≤

√

4i−2

m̃
·
√

m

2b
≤

√

4i−2

m
·
√

m

2 · 4i−1
<

1

2
.

Using |ψr(b)| ≤ 1 for all r, we have that

|h(b)| ≤ 1

2
√
4i

≤ 1

2
√
b
.

On the other hand, we have for each b ∈ [m] (using

m̃ ≤ 4m and that m is asymptotically large),

h(−b) ≤ exp

⎛

⎝3
√

b/m
∑

i∈[β]

√

m̃/4i−2 ·
√
4i

⎞



= exp
(

24
√
b log4 m̃

)

≤ exp
(

24
√
b logm

)

.

Finally, the sum of magnitudes of coefficients of h is at

most

∏

i∈[β]

(

3
√

m̃/4i−2 · 2
)

√
4i

= exp
(

O(
√
m logm)

)

.

This finishes the proof of the lemma.
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