POSTER: Understand the Overheads of Storage Data
Structures on Persistent Memory

Abdullah Al Raqibul Islam
aislamé6@uncc.edu
University of North Carolina at Charlotte
Charlotte, NC

Abstract

The byte-addressable persistent memory (PMEM) devices
have opened new opportunities for building high-performance
storage systems. With both DRAM and PMEM in the system,
it is important to choose the correct storage data structures
on each of them to achieve the best overall performance
and the needed data persistence. However, this is non-trivial.
One reason is the limited understanding of the actual perfor-
mance characteristic of different data structures on PMEM.
In this study, we develop storeds-bench to help developers bet-
ter understand the overhead they will encounter when using
a certain data structure on PMEM. Specifically, storeds-bench
is designed as a benchmark suite that leverages YCSB and
has various commonly used storage data structures imple-
mented using PMDK (persistent memory develop kit) under
different persistent and consistency requirements.

CCS Concepts «Information systems — Phase change
memory; « Theory of computation — Data structures de-
sign and analysis.
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1 Introduction

Non-volatile memory (NVM) or persistent memory (PMEM)
is a new kind of memory devices that provide near-DRAM
data access latency and data persistence after power-off [6].
Among all the non-volatile memory solutions, Optane Per-
sistent Memory (3D XPoint) from Intel is the first released
product on the market [3]. Table 1 compares the specs of
DRAM and Optane PMEM [7]. It is seen that Optane has a
larger per-dimm size (high density) and lower per GB cost
with relatively good bandwidth and latency. PMEM is con-
sidered as a promising complement of DRAM in the memory
hierarchy.
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Table 1. Intel Optane v.s. DRAM!

Device Price $/GB Band. (GB/s) Latency (ns)
DRAM-128GB  ~$2,400 18  ~80 [w/r]  ~120 [w/r]
N ~10 [w] ~800 [w]

Optane-128GB ~$700 5 ~40 [r] ~400 [r]
Optane-256GB  ~$2,400 10 - -
Optane-512GB =$7,000 15 - -

2 PMEM Programming Overheads

Although PMEM seems promising for efficiently storing data,
programming it does need extra care to guarantee data con-
sistency. This complicates the performance overheads more
than just the hardware difference.

First, although PMEM itself is non-volatile, the caches
and registers that CPUs utilize to access PMEM are still
volatile. So, just calling store to persistent memory address
does not guarantee the data persistence, as the data might
still in the cache and will be lost after the system reboot.
It is then necessary to call CLFLUSHOPT to force the cache
line flush. This will introduce overheads for each persistent
write. Also, modern CPUs reorder memory accesses. So, for
two consecutive persistent memory writes, we may only
have the later one persisted after failures, violating the order
and potentially breaking data consistency. To avoid this, we
have to enforce the order of multiple memory operations by
calling memory fence, such as CLWB after flushing the cache,
which also introduces overheads [1].

Second, the atomic write unit for modern CPUs is small
(e.g., 8-byte for Intel Cascade Lake CPUs), so even with cache
line flushing and memory fencing, writing a large chunk
of memory to PMEM may still result in partially persisted
data if there are failures in the middle. To guarantee data
consistency, we will have to deploy mechanisms such as
logging (undo log and redo log) or copy-on-write (CoW) to
protect any write that is larger than 8 bytes. This complicates
the programming itself and introduces significant overheads.

These extra programming overheads and the asymmetric
physical performance of persistent memory on reads and
writes may change the performance characteristics of data

! The bandwidth and latency numbers are collected for the Optane-128GB
model [7]. The actual price may vary.
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structures on persistent memory. Understanding the actual
overheads model of PMEM data structures under different
workloads then becomes critical for developers. In this study,
we proposed storeds-bench to help tackle this challenge.

3 Design and Implementation
We first category the PMEM overheads into two parts:

e Persistence Overhead, which denotes the overheads
caused by persisting data items into PMEM. This in-
cludes both its hardware overhead as well as the extra
operations of flushing cache lines and fencing memory
operations. Such overheads are necessary as long as
developers expect the data (no matter it is small or
large) to be persistent after failures.

e Transaction Overhead, which denotes the overheads
whenever we need to persist a set of memory oper-
ations together. In this case, developers have to use
transactions to protect these operations. Otherwise, it
is possible to leave partial results persisted.

To exam these overheads, in storeds-bench, we implemented
the storage data structures in four different versions: DRAM,
PMEM-Volatile, PMDK-Persist, PMDK-Trans for compari-
son. Here, DRAM version is the traditional data structure
implementation in DRAM, without any persistence. PMEM-
Volatile is the usage of persistent memory device as a volatile
memory with the support of PMDK 1ibvmem [4] library. Both
PMDK-Persist and PMDK-Trans use the PMDK 1ibpmemobj
library to implement [5]. PMDK-Persist leveraged _persist
APIs to guarantee single write persistence. PMDK-Trans fur-
ther leveraged PMDK transaction APIs to guarantee multiple
memory accesses consistency, which is necessary for opera-
tions like allocating a new entry and linking it into a list.

We leveraged the YCSB workload generator to create dif-
ferent workloads for the evaluations [2]. We used 8 Byte
integer key, 128 Byte string value, and, Zipfian type request
distribution for most of the tests.

4 Initial Results and Analysis

We reported our initial results in Fig. 1. In this test, we eval-
uated the performance of four different versions (DRAM,
PMEM-Volatile, PMEM-Persist, PMEM-Trans) of four exam-
ple data structures, i.e., hashtable, array, skiplist, and
b-tree, on five different YCSB workloads. Note that, all these
data structures are implemented following basic strategies
as our goal is to exam how data structures are affected by
PMEM instead of finding the best implementation.

From these results, we have several initial observations.
First, PMEM persistence and transaction do have negative
impacts on write performance. For instance, b-tree PMEM-
Trans version performs 29x worse than its DRAM counter-
part on write-dominated (i.e., 0(R)/100(W)) workload. Second,
PMEM devices have much less overhead on read-dominate
(i-e., 100(R)/0(W)) workload. In fact, PMEM-Volatile b-tree
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Figure 1. storeds-bench results. y-axis shows the throughput
(K operations per second); x-axis shows different workloads.

and skiplist has a similar performance as its DRAM ver-
sion. Given PMEM is physically slower than DRAM, we be-
lieve such a result should come from the cache behaviors. It is
also noticeable that PMEM has different impacts on different
data structures on a read-dominated workload. For instance,
b-tree and hashtable have almost the same DRAM perfor-
mance, while hashtable performs much worse than b-tree
on PMEM. Last but not the least observation is that, in our
current implementation, a data structure that performs bet-
ter in DRAM may perform worse in PMEM. For example, for
write-dominated workload (i.e., 0(R)/100(W)), b-tree per-
forms better than skiplist on DRAM (1420 vs. 992), but
performs worse on PMEM-Trans (49 vs. 152). Such a result
shows the necessity of having storeds-bench to benchmark
the overheads of data structures before making the design
decisions, and exemplify that data structures performance
on PMEM could diverge from its traditional DRAM version.
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